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Optimal Economic Management of 
Groundwater Quantity and Quality: An Integrated Approach

Introduction

Abundant supplies of clean groundwater are essential to communities that rely on aquifers – for

drinking, watering livestock, irrigation or industrial uses. Conflict is common in areas where the quantity or

quality of water is compromised by over-extraction or contamination. Agricultural uses have often been blamed

as sources of groundwater contamination, particularly by nitrates leached from the fertilized soil (Addiscott

and Powlson, 1991). Depletion of groundwater quantity has usually been associated with municipal and

industrial works, impacting on all water users who may require deeper wells, or face higher costs of importing

water if wells run dry. 

Policy analysts have at times proposed restrictions to limit groundwater contamination to a certain

threshold, and/or to curtail rates of groundwater extraction, without considering the effects of the individuals

policies on each other. Resource economists have often acknowledged linkages between groundwater quality

and quantity management issues, but have not done much analysis of these relationships (Fleming and Adams,

1997). This paper applies dynamic optimization model developed by Zachariah (1999) to a case study of the

Southwestern Ontario township of Wilmot to demonstrate that integrating quantity and quality relationships

into a single economic problem of aquifer management would yield an optimal outcome, and individual policies

by themselves may be inappropriate. 

The paper uses an approach that combines water quality and quantity costs and benefits over extractive

and non-extractive users into one intertemporal allocation problem. The non-extractive use is agricultural waste

assimilation, and the extractive use is as drinking water for nearby municipalities with well-heads in

surrounding rural regions. The externalities that are modeled include over-extraction due to municipal water

pricing that only covers the costs of distribution and treatment, and overuse for waste assimilation due to the

absence of controls on leaching of agricultural nutrients. 



 Apart from costs incurred by groundwater extractors there may be costs related to the decreased value of surface1

waters affected by increase nutrient loading. This environmental cost has not been included in the analysis.
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Empirical results, indicate that if attempts were made to resolve groundwater quantity and quality

problems by addressing them independently, the overall loss would be greater than the current loss of allowing

both problems to persist and allowing their cross effects to partially offset each other. 

The rest of this paper is divided into three sections. Section One presents the rationale for integrating

groundwater quantity and quality management policies and describes the theoretical model. Section Two

presents the economic and physical data of Wilmot Township to which the model was applied, and the

management scenarios considered. Section Three presents the results of the study, and concludes with a

discussion of the research applications and policy implications. 

Section One

Aquifers provide extractive benefits, associated with groundwater withdrawals for crop and livestock

production, industrial production and domestic use, and non-extractive benefits derived by farmers when waste

products from animal rearing and field fertilization are assimilated on-site (Bergstrom et al. 1996). Onsite

disposal agricultural waste is a private benefit to farmers as it allows them to avoid waste handling costs that

would lower profits. Thus, the pollution abatement cost avoided is counted as the benefit of waste assimilation.

Private and external costs are created from the extractive or non-extractive uses of aquifers. Excessive

extraction drives the water table lower and causes other pumps to expend more energy to draw water over

greater lifts, and may necessitate the deepening of shallow wells. Excessive extraction not only increases

extraction costs but also reduces the stock of water available for other users in the future (Provencher and Burt,

1993). In a sense, current extractors create an externality that lowers the social value of groundwater for future

generations. This is the central problem addressed by a number of studies (e.g.,  Negri, 1989, and Tsur and

Zemel, 1995). On the other hand, waste assimilation creates external costs for groundwater extractors if, due

to such assimilation, groundwater treatment becomes necessary (O’Neil and Raucher, 1990).   1
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Lee (1998) as reviewed a number of studies proposing  how the appropriate balance between waste

assimilation benefits and clean water benefits of the aquifer should be achieved. Similarly, Zachariah (1999)

has reviewed the main approaches proposed to address the problem of excessive extraction. In general, water

quality models propose pollution reduction programs such as taxes, emissions charges, changes in agricultural

practices to lower the cost of supplying drinking water. By concentrating solely on supplying drinking water,

researchers attach all economic importance of the aquifer to its extractive uses. But clearly, an aquifer provides

beneficial services other than that of supplying water. This is why Bergstrom et al., (1996) recommend that

the full range of environmental and economic services of groundwater needs to be accounted for in policy

decisions. This involves measuring the benefits and costs of extractive and non-extractive uses of groundwater

and their interrelated nature. The missing link in the groundwater economics literature is that little attention

has been given to how extractive and non-extractive benefits and costs of groundwater use should be pulled

together. 

This economic model accounts for extractive and non-extractive benefits and costs of using the aquifer.

The model accounts for the economic functions that measure the benefits of groundwater extraction and waste

assimilation. Quantity and quality variables are linked through economic relationships of extractive and non-

extractive uses, on one hand, and through physical relationships (stock dynamics, pollution dynamics, and

hydrology), on the other hand.

Extractive uses affect groundwater quantity variables, creating extraction externalities on other users

and may affect the quality of water remaining in the aquifer as a given amount of pollutant must be assimilated

by a smaller volume of water. These extractors derive the benefits of groundwater for a range economic

activities. Non-extractive uses affect groundwater quality parameters making it more expensive for extractive

users, thus affecting groundwater quantity parameters. For example, more polluted water increases treatment

cost and reduces the incentive to extract. The decreased incentive to extract helps to decrease the costs

associated with water table depletion. Simultaneously, non-extractive users are benefitting from agricultural
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(1)

(2)

(3)

production derive benefits as costs of waste abatement are avoided. The converse on this reasoning is also true.

Improved water quality  serves to increase extraction rates. 

The optimal solution is one that determines the allocation of activities that maximizes the net present

value of economic benefits of services provided by the aquifer over the given planning horizon. Using dynamic

programing, the Lagrangian function to be maximized is:

where 

g ,  c , are benefit and cost functions respectively, in period t;  p, m and d are superscripts referring tot t

privately supplied extraction, municipal extraction, and waste assimilation activities, respectively; w  and 5t t

are rates of groundwater extraction and waste assimilation, respectively, w  � 0 and 5  � 0; x   is the stock oft t t

groundwater in the aquifer, N is the number of privately self-supplied extractors, r  is the rate of groundwatert

recharge in period t, � is the discount factor, V  is the function representing the value of the aquifer in periodt+1

t+1, and � is the Lagrangian multiplier for the stock constraint.

The cost of water for extractive purposes is a function of groundwater x  (affects the pumping cost)t

and the  rate of waste assimilation, 5  (which affects treatment cost). Agricultural cost avoided, g , is at t
d

function of waste assimilation since this is derived from the abatement cost function.  The term:

   

defines the groundwater stock equation of motion. And 
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sets the constraint that total extraction should not exceed available stock. 

The model uses linear inverse demand functions based on an own price elasticity of -0.569 estimated

by Renzetti and Dupont (1997). Parameters for the non-extractive user’s benefit function were obtained by

regressing levels of nitrate leaching on foregone agricultural revenues as estimated by Yiridoe and Weersink

(1998). 

Several other simplifying assumptions about the hydro-geologic properties about the Wilmot aquifer

were made along with assumptions about the fate of nitrate in groundwater and water treatment technology.

The main parameters are summarized in Tables 1 and 2. The problem was solved for a 50 year planning

horizon using General Algebraic Modelling System (GAMS) computer software. Other time horizons were

solved as sensitivity checks.

Analytical results for the socially optimal solution from include the following:

i. The optimal time path of waste assimilation and the optimal time path of  groundwater extraction are
simultaneously determined and cannot be obtained by independent management of groundwater quality
or quantity.

ii. Farm operators choose levels of activity (fertilizer application with the associated level of waste
assimilation) where the marginal benefit is equal to the present value of the sum of all marginal effects
of fertilizer application on the cost functions of all extractive users affected. These marginal effects
are determined by size and duration of external costs visited on extractive users. 

The primary implication of the analytical results of the integrated model is that while the existence of

externalities may point to the need some adjustment in aquifer management, it may not be sufficient to

improved groundwater management benefits by implementing policies that do not recognize the

interrelationships of quality and quantity decisions.

Section Two: Empirical Model and Case Data

The model was applied to Wilmot Township in Southwestern Ontario where the maim regional aquifer

is an important source of potable water for the 13,000 residents of the area and some of the 250,000 urban

residents in nearby Kitchener-Wateroo (K-W).  Wilmot Township is also a prime agricultural region. Farm

cash receipts from the 307 farms located there in 1996 amounted to $61M. This represents a substantial
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contribution to local employment and other economic activities.  

In 1996, a groundwater quality survey showed that nitrate levels in the area ranged from as low as 1

part per million (ppm) to 19 ppm (RMW, 1998). The Ontario drinking water objective for nitrate in water is

10 ppm. To protect future drinking water supplies, the Region contemplates wellhead protection policies

intended to avoid future groundwater treatment expenses. Some policies may include restriction of agricultural

activities in high risk areas (Murray, 1995).  To reduce the problem of water table depletion due high

withdrawal rates, extraction controls by Ministry of the Environment have been proposed. Though both

authorities often consult each other, such consultations have  generally not been for the purpose of defining the

quantity quality program interrelationships of their proposed policies. The model is used to estimate what might

be the optimal levels of extraction and waste assimilation activities if these relationships are connsidered.

To estimate the optimal levels of groundwater extraction and waste assimilation, the model was solved

under the assumption that groundwater authorities had the necessary information and appropriate policy

instruments at hand to maximize the net present value of benefits (extractive and non-extractive) from the

aquifer over a given planning horizon.

Alternative management scenarios:

From the theoretical model, the solution of the integrated approach is optimal. To compare the extent

to which other approaches would fall short of the optimal result four alternative management regimes for

groundwater were considered. These scenarios were based actual or suggested policy activities of groundwater

management authorities in Wilmot Township – The Regional Municipality of Waterloo and the provincial

Ministry of Environment.  

As the primary supplier of water The Region has the authority to protect groundwater recharge areas

from potential sources of pollution. They may use landuse zoning by-laws, local operating standards and

outright restrictions to prevent groundwater contamination form agricultural waste assimilation. The Ministry

of Environment has the responsibility under the Ontario Water Resources Act to limit the amount of permitted



 Groundwater managers are assumed to know the marginal abatement cost functions per hectare of the2

agricultural community. A maximum amount of fertilizer per hectare or a precisely nutrient accounting
system would be sufficient to ensure a binding constraint.
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extractions from aquifers. It may use various measures to reduce groundwater extraction that creates cost

externalities on neighbouring wells or where the aquifer is threatened with depletion. 

These two groundwater management authorities, together have the authority to design and implement

policy tools that would  bring about the optimal aquifer management result but generally  do not act together

to the extent necessary for an the optimal result. Rather, decisions may be based on the perceived need for

action. The management scenarios evaluated in this paper were constructed to account for this reality.

A) Status Quo - The Region and the Ministry of Environment were assumed not to take any specific

actions to reduce the current trends in groundwater extraction and waste assimilation due to crop

fertilization activities. Municipal extractors supply water to residents at the cost of extraction and

distribution without any specific charge for the scarcity value of water itself. Farm operators apply

nutrients to their fields without accounting for the costs that could be passed on to extractive users.

B) Water Quality Protection Regime - The Region responds the high levels of nitrate recorded in some

areas of Wilmot with a limit on the amount of nitrogen that can be applied of fields given crops.  This

water quality protection program is designed to limit nitrate leaching to no more than 15 kg nitrate

nitrogen /ha/year.  Under this regime, the Ministry of Environment operates as under the status quo.2

C) Groundwater Demand Management - In response to well interference complaints and to concerns about

protecting base flow for ecosystems at risk, the Ontario Ministry of Environment embarks on a

program to limit groundwater extraction by municipalities and industrial extractors. This would be

done through the revocation or reduction of permitted extractions. Farmers as assumed to produce

agricultural waste due form crop fertilization without penalties or disincentives from The Region.

D) Separately Implemented Demand Management and Water Quality Protection - This policy scenario

considers the possibility that both The Region and Ministry of Environment may implement policy

tools that address specific area of responsibility. Each authority implements policy to address the
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problem as is seen in isolated context; thus, no consideration is given to the possibility that

interrelationships between policies could affect their suitability. 

Section Three: Results

For every policy scenario considered, the model predicts levels of groundwater extraction, levels of

agricultural production (for a given nitrate management plan), and total economic benefits derived from water

use and agricultural fertilization in the township (summarized in Table 3).

According to the model, the scenarios ranked by benefits from highest to lowest were:  integrated

approach, status quo, groundwater quality protection policy, demand management to conserve aquifer stock,

and separately administered groundwater quality protection and  demand management policy. 

In the ideal state, groundwater extraction rates would be set at exactly the amount that would maximize

benefits to the area, and farming would be restricted to the level where the marginal environmental cost of

farming was equal to the marginal environmental benefit of farming. If these were actually done, the benefits

obtained under this scenario would be maximized. Thus, the integrated approach would yield optimal results.

� As can be seen, the optimal amount of extractions would exceed that amount under the status quo, but

the optimal amount of waste assimilation would be less than that under the status quo. 

� Under a demand management program to protect groundwater stocks, extractors absorb the major cost

of the policy.

� When a water quality protection program is introduced the farming community bears the major cost

of the action but this spurs on greater rates of extraction even beyond the optimal amount.

These results demonstrate that the activities are interrelated and changes in one may affect levels of the other.

Policy Implications & Research Applications

Consider the policy recommendation that stronger restrictions be placed on the farming community to

keep nitrate levels below a given threshold. Depending on the extent of restriction, policy makers may be

creating greater costs than benefits. By forcing the farming community to cut back its use of fertilizers, policy
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makers may help make groundwater cheaper but make farming less profitable. In this case the marginal cost

of this policy would be larger than the marginal benefit.

To the municipal water user, the water quality program is beneficial. Compared to the optimal

outcome, this policy would cause economic benefits of urban water users to increase by 17% while benefits

of the farming community would fall by approximately 10% (see Table 3). However, as Table 3 shows, the

overall economic well-being of Wilmot Township region would decrease by 4%. 

Water quantity conservation does not necessarily increase economic benefits either. An extraction

control policy would reduce total benefits by more than 1%. The full cost of this would be borne by municipal

water users whose welfare would fall by 9%. Finally, the economic losses from groundwater use under

current policy (status quo) are less than 1%. The municipal water users are clearly much worse off than they

would be under a nitrate management policy. However, the status quo is the policy scenario that is closest to

the optimal outcome predicted by the model.

Apart from implementing the ideal integrated approach to address the rural-urban groundwater conflict

in Wilmot Township, it becomes clear that the best action for the perceived groundwater management problem

is almost no action. This is explained by the interrelationship between water quality and quantity decisions. The

policy implication is that all such regulations should be economically justified.

As Table 4 shows, these results are very sensitive to the area of land cultivated, the marginal benefit

function for waste assimilation, the marginal benefits function for groundwater extracted, environmental

constraints, and the treatment cost of water. For example, with a large and rapidly growing urban population

in Wilmot Township, or high value industries that depended on large amounts of clean groundwater a water

quality protection program may become economically feasible. Also, increased treatment costs for

contaminated groundwater could justify the introduction of water quality programs.
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Table 1     Hydrological Data Used In The Integrated  Model

     Area of aquifer = 38.48 km2

     Storativity = 0.15
     Transmisivity = 1250 cubic m per day
     Distance measurement for well interference (d  ) = 300 mij

     Initial depth of water table from ground surface = 22 m
     Initial thickness of aquifer = 105 m
    

Table 2       Explanation Of Functions and Coefficients Used in 
                    Base Solution of the Integrated Model

Expression Notes

Gross benefit of private extraction = N = 300, number of self-supplied wells
N[2.5368w  - 0.003246(w ) /2] 2.5368 = intercept; 0.003246 = coefficientp p 2

w  = self-supplied groundwater extractionp

(m /year)3

Sources: Renzetti and Dupont (1997) and Tate
and Lacelle (1995)

Gross benefit of municipal extraction = 2.5368 = intercept; 0.00000121 = coefficient
2.5368w  - 0.0000121(w ) /2] w  = municipal groundwater extraction (m /year)p m 2 m 3

Sources: Renzetti and Dupont (1997) and Wilmot
Township (pers. com.)

Gross benefit of onsite disposal = E  = agricultural land producing onsite disposal,
165.0445 -7.1965 /2 1924 hectares2

d

165.286 = constant
7.196 = coefficient
5 = onsite disposal, kg nitrogen/ha
Source of data: Yiiridoe (1997)

Total Pumping Cost = PC  = self-supplied marginal cost of pumping 1 p

m  over vertical distance of 1m, $0.0007.3

PC  = municipal marginal cost of pumping 1 m m 3

over vertical distance of 1m, $0.0007.
Source: Provencher and Burt (1994)

L  + Dd  = total vertical distance (static watert t

table distance and effect of cone of depression
respectively). Endogenously determined.

Total Variable Treatment Cost = 0.01455 = coefficient,
      0.01455 5 5   = cumulative amount of nitrate inC

t
C

t

groundwater per hectare of land.
Endogenously determined.
Source: extrapolation based on data from AFCW
Environmental Systems Services
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Table 3: Summary of Solution Values of  Model Applied To Wilmot Township, Ontario

Management Regime/Solution Integrated Status Demand Water Quality Separately 
Approach Quo Management Protection Managed

Groundwater extraction rate 1.4 1.2 1.04 1.54 1.37  
    (Million cubic meters)

Level of waste assimilation 20.5 22.9   22.9   15  15    
    (kg nitrate/hectare/year leached)

Depth of water table at end of 23.2 22.7    21.3   24.4  23    
planning horizon (meters)

Marginal treatment cost of 0.6  0.68  0.68  0.45 0.45  
groundwater ($ per cubic meter)

Net present value of extractive and 62.9 62.3    60.3    62.1    60.1    
non-extractive benefits ($ Million)

Welfare loss associated with
management approach as a 0.0% 0.9% 1.2% 4.0% 4.4% 
percentage of social optimum 

Extractors share of total benefits in
management scenario 24.4% 22.8% 22.5% 29.8% 29.6%

Farm operators’ share of total
benefits in management scenario 75.6% 77.2% 77.5% 70.2% 70.4%

Change in extractors’ welfare
compared with integrated approach 0.0% -7.5% -9.0% 17.0% 15.5%

Change in farm operators’ welfare
compared with integrated approach 0.0% 1.2% 1.2% -10.9% -10.9%



 EFFECTS OF ECONOMIC, HYDRO-GEOLOGIC, AND WATER
QUALITY VARIABLES ON DECISION VARIABLES

   SENSITIVITY 
   ELASTICITY = 
   % Ä column / % Ä row

PERCENTAGE
CHANGE IN
BENEFITS

PERCENTAGE
CHANGE IN

TOTAL
EXTRACTION

PERCENTAGE
CHANGE IN

AGRICULTURAL
WASTE 

   Area of cultivated land 
   vulnerable to leaching

 0.753 -0.060  0.156 

   Marginal benefit function 
   for agricultural cost avoided

 0.745 -0.100  0.259 

   Marginal benefit function 
   for groundwater extracted

 0.503  0.068 -0.009 

   Maximum allowable
   nutrient loading   

 0.291 -0.250  0.959 

   Cost of treating water for
   nitrate contamination

-0.167 -0.356 -0.096
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