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Abstract 
 
     The primary objective of this paper is to estimate the influence of Lake Erie water 
quality on the housing price by taking spatial effects into account. The robust LM tests 
for spatial autocorrelation suggested that spatial error model specification is more likely 
model in our study.  Fecal coliform counts and Secchi depth disk reading are used as 
water quality measures. In order to overcome the spatio-temporal aspects of Secchi depth 
disk reading data, Kriging was used for spatial prediction. We found the significant 
influences of both water quality measures on housing values. Gradient effects considering 
the distance from a beach and water quality variables are also observed. 
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1. Introduction 
 

     Lake Erie is one of the five large freshwater lakes in North America and 13th largest 

natural lake in the world.  The pace of residential and commercial development around 

the shoreline of Lake Erie increased considerably following substantial improvements in 

the lake’s water quality and clarity in the 1970’s and 1980’s.  Between 1982 and 1997, 

the amount of urban land use in the eight Ohio counties bordering Lake Erie increased 

24.4 percent, an increase of 112,500 acres. A significant portion of this development 

appears tied to Lake Erie.  For example, the amount of urban development in Ottawa 

County, a county that contains a number of lake amenities and recreational sites, 

increased 53 percent during this fifteen year time period.  In this research we focus on the 

linkage between lake quality and residential development and how the lake and the 

amenities influence the demand for residential housing.   

     There have been several hedonic price studies linking housing price and water quality 

since 1960s.  Epp and Al-Ani (1979) incorporated water pH and perceived water quality 

and concluded a one-point increase in pH would result in $653.96 (1972 $s) increase in 

the mean sales value of the properties. Young (1984) included one to ten water quality 

ratings by local officials.  The study showed that the values of the properties adjacent to 

the bay were an average of $4,700 less than equivalent properties. Steinnes (1992) 

studied fifty-three Minnesota lakes by using secchi depth disk readings as his water 

quality measure and found that each additional foot of clarity would raise the value of a 

lot by $206.  Michael, Boyle and Bouchard (1996) used secchi depth disk readings of 

minimum clarity for thirty-four Maine lakes and found that a one-meter improvement in 

lake clarity would increase property prices by anywhere from $11 to $200 per foot 



frontage. Leggett and Bockstael (2000) employed inverse distance-weighted average of 

fecal coliform counts as water quality measure and controlled for emitter effects by 

including straight-line distance to the nearest sewage treatment plant to investigate the 

influence of water quality on residential property values along the Chesapeake Bay 

coastline. They found that a change of 100 fecal coliform count /100 mL resulted in a 

change in property prices of about 1.5 percent.  

     Among the studies mentioned above, only Leggett and Bockstael (2000) took the 

presence of spatial autocorrelation into account.  The number of hedonic studies 

involving water quality itself is small comparing to air-quality studies. Hedonic studies 

with water quality considering spatial effects are very limited. We consider the spatial 

aspects in our model and also try to overcome the difficulty of handling water quality 

data (especially Secchi depth readings) collected over different points in space and time.  

 

2.  Hedonic Pricing Models 

General hedonic pricing models employ different functional forms to estimate the effects 

of independent variables (housing structures, neighborhood environments, proximity to 

places, other variables of interests such as environmental variables and crime rate on 

property values. General form is expressed as  

( , )=P P H, N, D E  

where P is the sales price of a house, H is structural and property characteristics of the 

house, such as lot sizes and the age of the house, N represents neighborhood 

characteristics, such as median income and ranking of schools, D is proximity to places, 

such as proximity to cities and beaches, and E represents environmental variables.  



     Whenever we deal with properties which locate within a certain distance together in 

one model, we should consider general intrinsic spatial relationships among them.  More 

specifically, we should handle spatial dependence and spatial heterogeneity. Spatial 

dependence or spatial autocorrelation implies a lack of independence across observations 

in cross-sectional, spatially organized data.  Anselin and Bera (1998) define spatial 

autocorrelation as  

 … the coincidence of value similarity with locational similarity. In other words, high or low 

values for a random variable tend to cluster in space (positive spatial autocorrelation), … The 

existence of positive spatial autocorrelation implies that a sample contains less information 

than an uncorrelated counterpart. In order to properly carry out statistical inference, this loss 

of information must be explicitly acknowledged in estimation and diagnostics tests. 

 

Tobler’s (1979) first law of geography states that “everything is related to everything else, 

but close things more so”.  We have to determine a relevant “neighborhood set” 

indicating which locations have interaction by defining spatial weights matrix. 

“Neighbors” have been defined in different ways. Weight matrix based on distance decay 

with a cutoff distance or k-nearest neighbor are often used in recent studies 

     The general model of spatial hedonic model is specified as follows: 

2~ (0, )

P WP X
M

N I

ρ β ε
ε λ ε µ

µ σ

= + +
= +  

where P is property sales price, X is NxK matrix including structural and property 

characteristics of the house, neighborhood characteristics, proximity to places, 

environmental variables or other variables of interests, β is Kx1 vector of coefficients, W 

and M are spatial weights matrices, ρ and λ  are coefficients on spatially lagged 



dependent variables P and ε , ε is a Nx1 spatial autoregressive error, and µ is a Nx1 

random error term with variance 2Iσ .  It is not necessary for W and M to be different.  

     Spatial lag model is expressed as follows: 

P WP Xρ β ε= + +  

where ε  is assumed to be a vector of independent and identically distributed (i.i.d) error 

terms.  When spatial lag model is selected, we know that a housing price is explained 

partially by the neighboring observations. In other words, this model is capturing 

spillover effects of neighborhood. The modeler is interested in measuring the strength of 

the relationship and the “true” effect of the explanatory variables after removing the 

spatial autocorrelation effects.  The weight matrix is constructed to reflect the structure of 

potential spatial interactions among observations (Kim et. al.,2003). When the spatial 

autoregressive parameter, ρ is tested to be significant, ordinary least square (OLS) 

estimates are biased and inconsistent (Kelejian and Prucha, 1998). Therefore, we have to 

use maximum likelihood estimation or instrumental variables estimation for this model 

(Anselin (1988), Kelijian and Prucha (1998), Kelijian and Prucha (1999)).   

     When ρ is tested insignificant and λ  is significantly different from zero, we employ 

spatial error model which is expressed as follows: 

P X
M
β ε

ε λ ε µ
= +
= +

 

where µ  is an N x 1 vector assumed to be distributed i.i.d. normal. The housing price is a 

function of the omitted variables at neighboring location as well as the independent 

variables.  This model is appropriate when there is no theoretical or apparent spatial 

interaction between any house and its neighboring observations and the modeler is 



interested only in correcting the potentially biasing influence of spatial autocorrelation by 

using data with spatial features. OLS estimates are unbiased, but inefficient. 

 

3. Data 

    Deed transaction data between 1991 and 1996 in four Ohio counties along Lake Erie, 

Erie, Lorain, Ottawa and Sandusky, are included. After excluding records with missing 

variables, 10,665 observations are used in our analysis.  

3.1. Water Quality Measure 
 

     In this study, fecal coliform counts and secchi disk depth readings are used as the 

measurement of water quality. Fecal coliform counts data have been obtained from the 

Ohio Department of Health and Erie County Health Department.  Secchi depth readings 

have been provided by the Ohio Department of Natural Resources and Stone Laboratory 

of the Ohio State University.  Fecal coliform counts measured in 18 beaches in four 

counties, Cuyahoga, Lorain, Erie, and Ottawa, have been used.  The data are generally 

collected weekly between May to September every year.  We first determine the closest 

beach to each house, and then assign the aggregated fecal coliform value over the 

previous year of the house purchase. 

     Secchi depth reading is an indicator of water clarity.  It is measured by dropping a 

black and white disk tied to a rope and recording the length of the rope at the point the 

disk is not visible any more.  Therefore, the larger the reading value is the better the 

water clarity is. The readings are taken between May and October in typical years. They 

are not taken from the same spots every month or year. Since the data varies over both 



space and time, using the raw data causes massive amount of missing observations. In 

this study, we used ordinary spherical Kriging as our spatial interpolation method.  

Kriging makes inferences on unobserved values, takes into account the covariance 

structure as a function of distance and obtains the best linear unbiased predictor. Kriging 

is done with all the data points taken each year and has been assigned to 18 beaches.  

Each house which is allocated to a beach based on the distance to the beach is given 

secchi disk depth readings value from the previous year of the house purchase.  ArcMap 

is used for the implementation of Kriging. An example of Kriging is shown in Figure 1. 

3.2. Housing, Proximity and Neighbourhood Data 

     Deed Transaction Data for 1991 – 1996 was provided by the Center for Urban and 

Regional Analysis (CURA), the Ohio State University. Based on the addresses on the 

data set, we geocoded the location of each house, assigned to each census block and 

determined each school district. School district ranking was obtained from the Ohio 

Department of Education. Proximities to the closest beach from each house and Sandusky 

City were calculated with road network distance. Population density and total number of 

crimes were adopted from census block group level data. School district ranking was 

recalculated for four counties along the Lake shore based on the ranking in Ohio State. In 

this paper, we are going to present the results from four combined counties, Lorain, Erie, 

Sandusky and Ottawa.  

 

4. Estimation of Hedonic Pricing Models 



     Table 1 is the list of dependent and independent variables we included in the hedonic 

regression. Since the hedonic price function is the locus of equilibrium points, there is 

little a priori information to determine the functional form.  Four functional forms, linear, 

semi-log, inverse semi-log and log-log form are estimated.  We found that inverse semi-

log and log-log form have unacceptably high conditional number indicating 

multicollinearity, therefore we excluded them from our candidate specifications.  Based 

on the fitness of the model, semi-log form which has the highest R squares and 

acceptable condition number is adapted for further analysis and is reported in this paper. 

     The expected signs for LOTACR, BLDGSF, BATHN, GRGSQF, AIRCND, DECK, 

FIREPL, SECCHI1, DISTFECAL and DISTSECCHI are positive. For Secchi depth 

reading, since the greater the reading the better the water clarity, we expect a positive 

sign.  DISTFECAL DISTSECCHI is included to evaluate the gradient effects of water 

quality variables.  Interaction between fecal coliform counts and distance to the closest 

beach is included as FECAL1 multiplied by DISTBEACH while it is SECCHI1 over 

DISTBEACH for the interaction of water clarity and the distance to the beach in order to 

match the direction of the effects to the housing price.  The impact of age of a house may 

have quadratic form since a very old house tends to have historic values. Therefore we 

also include AGE2 which is AGE squared and expect it to have positive sign.    

     Negative signs are expected for AGE, TOTCRIME, SDRANK4, DISTBEACH and 

FECAL1.  For school district ranking, since the highest ranking is the first, we expect that 

the lower the actual rank value is (which indicates that the rank is higher), the higher the 

housing price is. The distance to the closest beach is expected to have a negative impact 

on the housing price because we expect that people prefer living closer to the beach.  



Fecal coliform counts have a negative impact on the housing price since we assume that 

the higher the bacterial counts is the lower the housing values are.  As for PDENS and 

SANDUSKYCITY, there are no a priori signs expected. Population density could have 

either effect. The effect of the proximity to Sandusky City is uncertain because people 

could have different preference on living close to a city.  

 

4.1. Estimated Results of the OLS Regressions 
 

     The results of the semi log model estimated using ordinary least squares are reported 

in the second column of Table 2.   All the variables except for proximity to Sandusky 

City are statistically significant at least at 10 percent level with expected signs. All of the 

housing characteristics are estimated as being statistically significant at 1 percent level. 

The age of a house has an impact with quadratic form on housing price. Based on the 

estimated coefficients on age, we found that a house being older than 83.5 years old has 

positive value on its housing price.  Negative and significant result on population density 

value reveals house owner’s preference for living in a less crowded area.  Negative 

influence of the number of crimes is as expected.  Proximity to Sandusky City is not 

significant while the distance to the closest beach has negative and significant impact on 

the housing price.  This indicates that home owners prefer living closer to the beach.   

    Fecal coliform counts have negative and significant influence on the housing value 

while secchi disk depth readings have positive and significant impact.  Therefore, we 

confirmed that water quality of the Lake do influence the housing price in these counties.  

The interaction terms of water quality variables with distance to the closest beach is 



significant at 10 percent for fecal and less than 1 percent level for secchi disk depth 

readings.  This result indicates that there is strong evidence that water quality effects 

decay as the house locates farther away from the closest beach.  This evidence is stronger 

for secchi disk depth readings according to the level of significance.  Since water clarity 

can be observed not only at the beach but also anywhere near the coastline, distance from 

the beach matters significantly for this measure. On the other hand, fecal coliform is 

typically observed on a beach as beach closing or consequences of bacterial outbreak 

such as unpleasant odor, or from the information provided by the Department of Health, 

therefore we could conclude that the distance to the beach has less influence on the 

variable. 

 

4.2. Estimated Results of Spatial Error Model 

     The results of robust Lagrange multiplier (LM) tests for spatial dependence are highly 

significant (Anselin, 1988). Since the significance levels indicate that spatial error model 

is more likely alternative, we are going to report the result of spatial error model. Highly 

significant result of Jarque-Bera test on normality of errors suggests that the estimation 

with maximum likelihood method is not appropriate.  Therefore, we use generalized 

method of moment to estimate the spatial error model (Kelejian and Prucha, 1998). 

     GEODA is used for the generation of spatial weight matrix and MATLAB is used for 

the estimation of the spatial error model.  After the experimentation of several different 

weight matrices, we found that the weight including neighbours within 150 meter radius 

of a house returns the best outcome in terms of the fit of the model. The matrix is formed 

by measuring distances between houses within 150 meter radius of each other, taking the 



reciprocal of each distance, and normalizing the sum of distances for each house to 1. 

The estimated results of semi-log specifications are shown in the third column of Table 2.  

     The significance level of spatial autoregressive coefficients indicates the existence of 

omitted variables with spatial structures in the neighbourhood.  The levels of significance 

do not change significantly between OLS and spatial error model except for 

SANDUSKYCITY variable. Now proximity to Sandusky City is negative and 

statistically significant at 5 percent level, meaning that home owners prefer to live closer 

to Sandusky City.  As for AGE variable, we found that the influence of the house age 

changes from negative to positive at 83 years, which is a slight decrease compared to the 

OLS result. 

     Based on the estimated coefficients both from OLS and spatial error model, marginal 

implicit prices are computed and shown in Table 3.  Average values of each variable are 

given in the second column of the table. Third column shows marginal implicit price 

computed based on OLS estimates and the fourth column is marginal implicit price from 

spatial error model.  Marginal implicit prices are calculated by multiplying the estimated 

coefficients by the mean price. As for DISTBEACH, FECAL1 and SECCHI1, interaction 

terms are taken into account and computed accordingly by involving mean values of each 

variable.  Comparisons of the absolute magnitudes of computed marginal implicit prices 

between OLS and spatial error model reveal an interesting tendency.  As for housing 

structure variables except for air-conditioning dummy, marginal implicit prices are larger 

for OLS while for neighbourhood, proximity and environmental variables, results from 

spatial error model are larger.  Therefore, we can conclude that we overestimate housing 



structures and underestimate variables involving spatial structures if we do not correct for 

spatial error autocorrelation. 

     As for the variables of our main interests, FECAL and SECCHI, we found that one 

count increase in fecal coliform count decreases housing value by 1.94 dollars while one 

centimeter increase in water clarity increases housing value by 21.54 dollars when 

measured at the mean distance to the beach. A change in 100 fecal coliform counts per 

100 mL is estimated to produce a 0.17 percent change in housing value. This value is far 

smaller if we compare the outcome of Leggett and Bockstael who found a 1.5 percent 

change in property value for the same change in fecal coliform counts.  One possible 

reason for the difference could be due to the disparity of mean fecal coliform counts. 

While mean fecal coliform count in our study is 255 counts per 100 mL, it is 103 counts 

per 100 mL for their study.  Since the original condition is more than twice better in 

Leggett and Bockstael study, the impact from the same change in fecal coliform counts is 

also larger. As for secchi disk depth readings, a 100 centimeter or 1 meter change in 

water clarity causes a 1.93 percent change in housing value.  

     There is an inverse relationship between the magnitude of these values and the 

distance from the closest beach.  For example, if we compute the influence of water 

quality at one kilometer from the assigned beach for each house, the benefit from the one 

unit decrease in fecal coliform counts is 3.23 dollars while it is 26.87 dollars for water 

clarity.  As we see in OLS estimates, the interaction terms are significant at 10 percent 

level for fecal coliform counts and 1 percent for secchi disk depth readings. We also 

found that secchi interaction term gives consistent result when we test various model 

specifications and the use of different weight matrices while the interaction term for fecal 



coliform counts does not become significant even at 10 percent level for some 

specifications. Therefore, we can conclude that there is stronger evidence of the gradient 

effect for water clarity. 

4.3. Average Net Benefit for Each Beach 
 

     If the amenity change is localized and the number of houses affected by the change in 

the amenity is small, the hedonic function itself can provide an approximate measure of 

welfare gains.  Therefore, given the estimated results of both OLS and spatial error model, 

we computed the average change in welfare or net benefit based on two hypothetical 

scenarios. We consider the hypothetical scenario of fecal coliform counts being improved 

to the level of 200 counts per 100 mL and of secchi depth readings being increased to 200 

centimeter for each beach.  Houses which are not affected by the improvement are 

excluded from the calculation.   

     Table 4 summarizes the average net benefit calculation per house.  The first column 

shows the names of counties where each beach is located and the second column lists 

names of the beaches. The third column is the average net benefit per affected house 

when fecal coliform counts decreased to 200 counts per 100 mL and the fourth column is 

for the increase in secchi depth readings to 200 cm.  Unobserved values are due to the 

fact that initial water quality on the beach is better than the targeted level in the scenario. 

The lowest welfare gain from the change in fecal coliform counts observed is for Rye 

Beach, $ 88 while the highest is $ 2692 for East Harbor State Park. As for secchi disk 

depth readings, the lowest net benefit is $ 221 of Lakeside Beach and the highest is 

$ 2379 of Rye Beach.  



5. Conclusions 
 

     We analyzed the influence of water quality on housing values by using deed 

transaction data from four counties along Lake Erie in Ohio.  10,665 observations were 

involved in this study. We first ran the ordinary least squares with semi-log functional 

form which was chosen based on the goodness of fit after excluding the inappropriate 

specifications due to high multicollinearity. The robust Lagrange Multiplier tests for 

spatial autocorrelation suggested that spatial error model specification is the more likely 

model in our case.  We incorporated two water quality variables, fecal coliform counts 

and secchi disk depth readings, to observe the influence of water quality on house price 

together with housing structure variable, neighborhood variables and proximity variables.  

By comparing the estimated coefficients from OLS and spatial error model, we found that 

OLS estimates tend to overestimate housing structures while underestimating 

neighborhood, proximity and environmental variables.  We also found that one count 

increase in fecal coliform counts decreases housing values by 1.94 dollars while one 

centimeter increase in water clarity increases the housing value by 21.54 dollars.  

Interaction terms included in the model confirmed the gradient effects of water quality 

depending on the distance from the beach. As the distance from the beach increases, the 

influence of water quality decays. The evidence of the gradient effect is stronger for the 

water clarity measure.  



 

Table1. Variables and Descriptive Statistics     
       

Variable Description Units Min Max Mean Std.Dev. 

DPRICE Discounted housing price in 
1996 dollars $  50,000.00 669,291.96 111,503.16  59,186.36 

LOTACR Lot acreage acre 10.00 78,000.00 586.72  1,806.78 
BLDGSF Building square foot sq.ft. 196.00 5,824.00 1,649.75  5.88 
BATHN Number of Bathrooms  1.00 5.00 1.42  0.01 
GRGSQF Garage square foot sq.ft. 0.00 4,040.00 133.30  2.27 

AGE Age of the house (built year - 
year of purchased) year 0.00 171.00 30.38  0.24 

AIRCNDD = 1 if there is air-conditioning 
system  0.00 1.00 0.75  0.00 

DECK = 1 if there is a deck  0.00 1.00 0.10  0.00 
FIREPL = 1 if there is a fireplace  0.00 1.00 0.47  0.00 
PDENS Population density  33.48 13,900.00 2,420.25  21.91 

TOTCRIME Total number of crime within a 
census block group  3.00 186.00 42.56  0.34 

SDRANK4 
School district ranking within 
4 counties along the Lake 
shore 

 1.00 38.00 19.53  0.12 

SANDUSKYCITY Proximity to Sandusky city km 0.29 571,599.36 53.60  0.18 

DISTBEACH Total network distance to the 
closest beach km 0.01 48.13 12.56  0.08 

FECAL1 
Fecal coliform counts, 
previous year of the house 
purchase 

counts 
per 

100ml 
12.00 2,717.26 255.99  2.73 

SECCHI1 
Secchi depth readings, 
previous year of the house 
purchase 

cm 89.54 431.78 221.27  0.70 

DISTFECAL1 = DISTBEACH*FECAL1  0.75 88,629.47 3,222.18  54.62 
DISTSECCHI1 =(1/DISTBEACH)*SECCHI1   2.80 18,728.29 52.50  2.36 

Figure 1. Example of Kriging, Year 1996 



 
Table2. Estimated Results of OLS and Spatial Error Model 
       
  OLS   ERROR   

DEPENDENT LNDPRICE t-value   LNDPRICE t-value   

CONST 10.9975 (638.745) *** 11.0754 (605.04) *** 

LOTACR 0.000013 (9.849) *** 0.000013 (10.12) *** 

BLDGSF 0.00033 (63.033) *** 0.0003 (57.71) *** 

BATHN 0.0735 (13.388) *** 0.0652 (12.36) *** 

GRGSQF 0.000055 (4.249) *** 0.000026 (2.09) ** 

AGE -0.0060 (-21.542) *** -0.0060 (-20.37) *** 

AGE2 0.000036 (14.236) *** 0.000036 (13.68) *** 

AIRCND 0.1144 (16.025) *** 0.1168 (16.66) *** 

DECK 0.0763 (10.126) *** 0.0738 (10.29) *** 

PDENS 0.000019 (-15.322) *** -0.000021 (-13.9) *** 

TOTCRIME -0.0003 (-3.457) *** -0.0005 (-4.68) *** 

SDRANK4 -0.0037 (-14.708) *** -0.0034 (-11.35) *** 

SANDUSKYCITY -0.0001 (-.913)   -0.0004 (-1.96) ** 

DISTBEACH -0.0045 (-12.093) *** -0.0045 (-10.81) *** 

FECAL1 -0.000029 (-2.28) ** -0.000030 (-2.33) ** 

SECCHI1 0.0002 (5.481) *** 0.0002 (5.98) *** 

DISTFECAL1 0.000001 (1.924) * 0.000001 (1.81) * 

DISTSECCHI1 0.0001 (7.361) *** 0.0001 (5.13) *** 

RHO       0.2691 (27.64) *** 

N 10665   10665   

R^2adj 0.711   0.737   

sigma^2 0.054   0.049   

 
Table3. Marginal Implicit Prices 
    

  AVE_FULL MIP(OLS) MIP(ERROR) 

DPRICE 111503.16    
LOTACR 586.72 1.45 1.45 
BLDGSF 1649.75 36.24 33.45 
BATHN 1.42 8191.80 7270.12 
GRGSQF 133.30 6.13 2.90 
AGE 30.38 -426.01 -421.33 
AIRCND 0.75 12751.72 13023.68 
DECK 0.10 8507.36 8226.93 
FIREPL 0.47 12442.86 10807.44 
PDENS 2420.25 -2.12 -2.34 
TOTCRIME 42.56 -34.34 -55.97 
SDRANK4 19.53 -409.66 -376.43 
SANDUSKYCITY 53.60 -16.06 -39.36 
DISTBEACH 12.56 -460.1523 -467.8739 
FECAL1 255.99 -1.83 -1.94 
SECCHI1 221.27 20.92 21.54 

 



Table 4. Average Net Benefit from Hypothetical Scenario 

    

COUNTY BEACH FECAL ($) SECCHI($) 

LORAIN Avon Lake 402 720 

ERIE BayView East - 1441 

ERIE BayView West - 1376 

ERIE Bluebird Beach - 1538 

OTTAWA Camp Perry 1709 1073 

ERIE Cedar Point Chaussee - 883 

LORAIN Century Park 249 863 

OTTAWA East Harbor St. Park 2692 235 

CUYAHOGA Huntington Reservation 201 670 

ERIE Huron City Beach - - 

OTTAWA Lakeside - 221 

LORAIN Lakeview Park 474 792 

OTTAWA Port Clinton 1913 789 

ERIE Rye Beach 88 2379 

LORAIN Sheffield Lake Comm. Park 490 918 

ERIE Sherod Park Beach 251 1561 

ERIE Vermilion City Beach 1526 533 

ERIE Vermilion Lagoon Beach - 1517 
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