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Weather risk markets are among the newest and most dynamic for risk sharing.  The market has 

seen rapid growth with continual emergence of new, weather-based risk management tools over 

the last decade.  The Chicago Mercantile Exchange’s (CME) website1 reports that 20% of the US 

economy is directly affected by weather, and describes the weather hedging and risk 

management sector as “today’s fastest growing derivative market.”  Participants come from a 

broad range of economic sectors including energy, insurance, banking, and agriculture 

(Varangis, 2001).  Exchange traded Cooling Degree Day and Heating Degree Day contracts for 

10 U.S. cities were initially opened in 1979 on the Chicago Mercantile Exchange.  The CME 

contracts have since then expanded to 29 cities worldwide, with contracts offered on a variety of 

weather indexes.  Additionally, market survey data indicates that total trading volumes more than 

quadrupled from 1999 to 2003 while the notional value of trading more than doubled (Van 

Lennep et al.; Ali; Cao, Li, and Wei).  In addition to the exchange-traded weather derivatives, 

there are many products traded as over-the-counter (OTC) derivatives (Jewson).  The Weather 

Risk Management Association (WRMA) reports that roughly 80% of the traded contracts are for 

temperature derivatives, comprising 90% of the notional value of the weather risk market.  In 

contrast, the precipitation-based derivative market is still in its infancy stages with only 3% of 

trade volumes in 2001 and little subsequent growth (Cao, Li, and Wei).  Given the success and 

size of the market for temperature related weather derivatives, a natural area for further 

development is in precipitation-based weather derivatives. 

 Figure 1 outlines the major reasons behind crop failures in the United States, illustrating 

that weather events are the primary source of crop losses in the US.  Drought is by far the 

number one factor, accounting for nearly half of all crop losses.  Excess moisture is linked to 

nearly one-quarter of all crop losses.  However, hail remains the only weather event, among 
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named perils, where specific agricultural insurance products have been successfully developed 

and sold in the US.  Moreover, there is a strong correlation between extremes in both 

temperature and precipitation and catastrophic damages in developing countries (Varangis, 

Skees, and Barnett). 

 One of the major problems facing weather-based derivatives is that of weather basis risk.  

The sellers of weather derivative contracts require high quality data from reputable sources 

which may exist only in certain locations.  The users, or purchasers, of weather derivatives 

would like to minimize the basis risk involved with the use of weather data collected at a site that 

does not necessarily correspond with their exposure location (Dischel).  Basis risk, in the specific 

case of rainfall, refers to the relationship between the precipitation measured at the weather 

station and the production or revenue on the farm.  Recorded precipitation may not be highly 

correlated with actual precipitation at the farm, and production or revenue on the farm may not 

be highly correlated with precipitation at the farm.  Dischel notes that: 

“Farmers, growers and hydroelectric generators would like to have contracts written on 

rain falling on their fields, in their groves or over their watersheds.  This is generally 

impossible because the market needs long and accurate measurement records to assess 

the value of a weather derivative, and unaffiliated parties do not generally compile 

measurement records at these locations.” 

 Thus far, weather data has not been used extensively as a basis for crop insurance 

products.  The resulting output of the crop after the weather events (crop yield) can be directly 

insured for a variety of crops through the multi-peril policies currently offered in the US.  Thus, 

the development of weather-derived insurance products has been limited.  This paper develops 

an insurance policy which would provide coverage for pastureland owners and cow-calf 
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producers against drought risk.  Specifically, the policy provides protection against periods of 

reduced precipitation and drought conditions, which have been outlined as the leading cause of 

crop losses and are not perils directly covered under any existing FCIC crop policies.  The rating 

methods used in this study could be directly extended to the development of similar products in 

developing nations. 

 This study focuses on the first component of basis risk by utilizing a spatial kriging 

model to interpolate rainfall at locations where actual rainfall is not observed (i.e. the farm).  We 

utilize precipitation data from weather stations administered by the National Oceanic and 

Atmospheric Administration (NOAA).  Since these stations are sponsored by a government 

agency, all parties involved should have significant confidence in the accuracy of the data.  

Moreover, extensive time series of historical data are available for multiple locations throughout 

the state of Iowa.  Cross-validation2 is used to show that the spatial model provides unbiased 

estimates of unobserved rainfall.  The kriging results are also compared to those obtained from a 

simpler inverse distance weighted (IDW) estimator for rainfall at unobserved locations.  

Consistent with previous findings, the two methods are shown to be nearly equivalent with 

respect to the historical rainfall point estimates of interest.  The second component of basis risk 

is addressed through the use of indemnity factors obtained through simple regression analysis 

relating losses to precipitation shortfalls.  The insurance policy is rated as an exotic option on 

rainfall using the historical rainfall data, the interpolation results, and Monte Carlo analysis 

assuming that rainfall at a given site follows the Gamma distribution.  An historical analysis is 

included to show the potential performance of the product were it actually marketed.  While most 

authors note the importance of reducing basis risk, this is, to the authors’ knowledge, the first 
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direct application of pricing a rainfall insurance policy using the results of a sophisticated 

interpolation technique. 

Background 

Insurance 

Skees, Barnett, and Hartell outline the necessary conditions for perfect insurability of a risk.  

First, the loss must be quantifiable and the loss frequency must be calculable to ensure accurate 

rating for the policy.  Second, loss occurrence must be random or unintentional and the potential 

purchasers of the insurance must be accurately classified by the amount of risk they bring to the 

overall risk pool to eliminate moral hazard and adverse selection.  Finally, there should be a large 

number of independent exposure units to allow the insurer to diversify over the total risk pool.  

These conditions generally do not hold, and most definitely do not hold in the specific cases of 

agricultural and weather risk due to their spatial nature.  Skees and Barnett classify agricultural 

risks as “in-between” risks because they generally are not completely independent nor highly 

correlated.  Duncan and Myers explore the impact of catastrophic risk on insurance offerings in a 

model of risk-averse insurance firms and farmers in a mean-variance framework.  They find that 

unless reinsurance is available and subsidized, an equilibrium where catastrophic insurance is 

offered may not exist.  Weather patterns tend to exhibit positive spatial correlation making losses 

more volatile from the perspective of the insurer, and thus the cost of maintaining adequate 

reserves to cover potential losses from systemic events.  Thus, insurance may not be the optimal 

mechanism to provide efficient risk-sharing (Skees and Barnett).  However, if the insurer can 

cover an area large enough to diversify even the systemic risk of weather events, or has access to 

an adequate reinsurance program, an insurance mechanism should be feasible and 

implementable.  Thus, governments or international organizations may have the potential to play 
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a natural role in providing coverage for weather related risks such as drought.  Governments 

could either offer the insurance directly, or provide reinsurance coverage to existing private 

insurers similar to the crop insurance program in the US.  Natural disaster assistance is an 

example that is already implemented in both developed and developing nations. 

 Martin, Barnett, and Coble outline various option structures for precipitation insurance 

and provide a rating method application for cotton in Mississippi.  Skees et al. investigate the 

development of drought insurance based on a rainfall index in Morocco and find that the product 

would be both feasible and of significant benefit to Moroccan farmers.  Turvey (2001, 1999) also 

discusses the application of weather derivatives in agriculture by rating various examples of 

rainfall and temperature options for various locations in Canada.  To relate crop yields to weather 

events, Turvey (2001) examines the correlation of corn, soybean, and hay yields with measures 

of both rainfall and temperature.  Temperature was found to be highly correlated with corn and 

soybean yields, while precipitation showed more correlation with hay yields.  In addition to 

studies examining the supply-side of product rating, there have also been studies which have 

explored the demand side for agricultural insurance based on precipitation.  Sakurai and Reardon 

and Gautam, Hazell, and Alderman use household survey data to estimate latent demand for 

drought insurance in West Africa and Southern India, respectively.  Using a set of reduced-form 

equations resulting from the optimality conditions of a dynamic household optimization problem, 

both studies estimate a positive latent demand for drought insurance.  Additionally, it is 

estimated that the insurance would be implementable on a full-cost basis.  McCarthy estimates 

the demand for rainfall based insurance contracts for four regions in Morocco, finding that the 

median willingness to pay for rainfall based insurance was 12-20% above the fair value of the 

contracts. 
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 Precipitation insurance policies have been explored and utilized in other countries.  

Argentina, Ethiopia, Mexico, Morocco, Nicaragua, and Tunisia have all tested the feasibility of 

weather-based insurance products for agriculture (Varangis), while Australia is currently 

exploring the possibility of developing rainfall insurance (Plate).  Two Canadian provinces, 

Ontario and Saskatchewan, currently have precipitation insurance products on the market offered 

through Agricorp and Saskatchewan Crop Insurance.  The use of precipitation-based insurance in 

the Canadian provinces is attributed to the high correlation between cattle pasture productivity 

and rainfall (Varangis, 2001).     

 The construction of most weather-based insurance policies falls under the larger umbrella 

of area-based index insurance.  Index-based products have a number of advantages.  Adverse 

selection and moral hazard problems are minimized because the underlying index is 

uncontrollable by the insured. Additionally, individualized product set-up, inspection, and loss 

adjustment are not required.  Thus, weather based insurance for agriculture may be of higher 

interest for developing countries, as they may lack the required resources needed to develop a 

crop insurance system such as that of that of the US.  Moreover, markets for such policies could 

be opened up to any interested parties, while private companies may be able to construct “add-

on” products that cover the individual risks left outside of the index product’s coverage.  

Specifically, the systemic or catastrophic risk of weather variability could be covered by the 

indexed product while the poolable risk components could be covered through additional risk 

management strategies tailored to the individual (Skees and Barnett; Skees, Barnett, and Hartell; 

Varangis, Skees, and Barnett).  These advantages also outline the disadvantages to users of 

index-based insurance.  Index products are such that individual losses can occur without the 

triggering of payments from the policy or, conversely, it can be that payments flow from the 
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index product even though the individual has not suffered a loss (Skees, Barnett, and Hartell).  

This problem captures the notion of basis risk, which is unavoidable in index-based products.  

Basis risk makes index-based weather derivatives more attractive to associations, industries, or 

institutions whose risk exposure can be spread over larger geographic areas.  Conversely, 

inherent basis risk is more problematic for individual purchasers whose risk exposure is more 

centralized (Varangis, Skees, and Barnett).  Martin, Barnett, and Coble note that weather 

derivative basis risk may be reduced considerably through a portfolio holding of various weather 

derivatives based on several surrounding weather stations. 

Rainfall Interpolation 

There is an extensive literature focused on rainfall interpolation techniques.  The simplest 

method is to set the value of rainfall at out-of-sample locations equal to the rainfall recorded at 

the nearest observed site (Thiessen).  The National Weather Service developed another method 

in 1972 where rainfall was estimated as a weighted average of surrounding observed values, 

where the weights were inversely proportional to the squared distances from the unobserved site 

(Bedient and Huber).  More recently, advances in the area of Geostatistics have created more 

statistically sophisticated interpolation methods through the use of kriging.  Kriging, or optimal 

prediction, refers to the practice of making inferences on unobserved values of a random process 

given data generated from the same process (Cressie).  In practice, kriging techniques form a 

predictor which is equal to a weighted average of the data in the sample.  The weights used in the 

average are determined from the correlation structure of the process which may be given, 

assumed, or estimated from the data.  Kriging techniques have been rigorously shown to provide 

predictors which are not only unbiased, but also efficient linear estimators. 
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 Cressie discusses various types of kriging, which differ with respect to the underlying 

assumptions for the stochastic process.  In general, the stochastic process of interest is modeled 

as the sum of a mean and a spatially correlated error component.  Bayesian kriging assumes that 

the mean and error components are random and independent.  Given appropriate priors for the 

parameters of the mean and error structure components, the optimal predictor for unsampled 

locations can be found and has been shown to be superior to other kriging methods (Cressie).  

While point estimates for the conditional means and variances of the process of interest can be 

derived explicitly given appropriate distributional assumptions (e.g. Kitanidis), an alternative 

approach is to sample directly from the posterior distribution of interest using Markov Chain 

Monte Carlo techniques.  MCMC methods are often employed when the calculation of interest is 

that of a complex and high dimensional integral function.  When explicit evaluation of these 

integrals is not possible, MCMC techniques provide an alternative to more traditional numerical 

or analytic integration methods (Brooks).  By specifying starting values and non-informative 

priors for the variables of interest, MCMC methods use a variety of updating techniques to 

generate Markov chains of independent samples which converge, at least asymptotically, to the 

true posterior distribution of the variable of interest.  Point estimates of interest are simply 

computed as sample moments from the sampling distributions.  The transition kernels vary, and 

are defined by the updating schemes employed.  Samplers based on the Gibbs and Metropolis-

Hastings updating kernels are the most commonly used in MCMC applications.  A full 

discussion of MCMC methods is beyond the scope of this paper.  Please refer to Brooks and 

Gilks, Richardson, and Spiegelhalter for more detailed descriptions of the theory behind MCMC 

methods and implications for empirical implementation.    
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 While kriging methods provide statistically attractive properties, they can also require a 

significant amount of computing time and effort.  Thus, many studies have focused on the 

comparison of kriging to the simpler interpolation approaches.  While many authors have shown 

that kriging techniques provide better estimates than simpler methods (Tabios and Salas, and 

Phillips et. al), others have found that the results depend critically on the density of the sampled 

locations.  Dirks et. al concluded that kriging methods did not provide significantly better 

estimates than simpler methods, such as inverse distance weighting.  In general, studies have 

shown that kriging dominates the simpler interpolation methods for areas with smaller sampling 

densities while the methods are fairly equivalent for areas with sampling grids of higher density.  

Data 

State-level monthly precipitation totals for Iowa were obtained from the NOAA’s National 

Climatic Data Center (NCDC).  The historical series of precipitation totals for all sequential 

combinations of months were compared to historical per-acre hay returns to find the combination 

of monthly precipitation totals that were the most highly correlated with hay yields.  The April 

through December time period showed the highest correlation between cumulative precipitation 

and hay yields for Iowa and was adopted as the coverage period for the insurance product.  In 

addition to aggregated state-level data, the NCDC reports data from thousands of individual 

weather stations located throughout the country.  The full data set of Iowa weather stations was 

condensed to exclude those weather stations that did not have complete precipitation records for 

the months included in the coverage period (April-December) for the entire 30-year period from 

1973-2002.  At the time of data collection the last monthly recording was for August 2003, hence 

the use of 1973-2002 data to calculate the 30-year average precipitation levels guaranteed by the 

policy.  Given the data requirements, the number of usable weather stations was reduced to 67 in 
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the state of Iowa.  Figure 2 provides a map of the locations of the weather stations.  The grid of 

67 weather stations provides a relatively dense sampling grid in comparison to previous studies.  

The distance between adjacent weather stations averages 20 miles, with a maximum (minimum) 

distance between weather stations of 50 (7) miles. 

 Figures 3 and 4 map the means and standard deviations of reported precipitation levels, 

respectively, for the counties in which the weather stations are located.  The weather station data 

shows that the northwest section of Iowa tends to be the driest with more precipitation, on 

average, being reported as you move into the southeast section of the state.  Precipitation 

variability, as measured by the standard deviation of reported precipitation, follows a similar 

pattern across the state with lower variability in the northern section of the state and higher 

variability in the central and southern regions. 

 Two additional issues arose with the weather station data.  First, for some stations and 

months only estimated precipitation values were available.  These estimated values were 

assumed to be unbiased and were left unchanged.  Second, for some other stations and months, 

the precipitation values were reported as incomplete.  For these incomplete months, the NCDC 

indicated that somewhere between one and nine days of information were missing from the 

reported precipitation value.  In order to conserve these data points, it was assumed that the 

incomplete months were missing the average of five days of precipitation information and that 

the precipitation amount during those five days was equal to the five day average precipitation 

amount for the month based on the reported total.  The adjusted precipitation amount was set 

equal to the incomplete amount times the sum of one and the ratio of five and the number of days 

in the months less five.  For example, if June was reported as incomplete with 2.5 inches of 

precipitation, the June precipitation was adjusted to 3.0 inches. 
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 The coordinates of the geographical centers of each county in Iowa, measured in degrees 

of latitude and longitude, were calculated from a data file created by Giglierano and Madhukar.  

This yielded 99 county reference points, or sample “farms”, where rainfall could be interpolated 

to rate the insurance policy.  The geographic coordinates of each of the 67 weather stations in 

Iowa were obtained from the NCDC.  The distance measure of one degree of latitude is relatively 

constant across the surface of the earth3, and equal to roughly 111.3 kilometers (69.1 miles).  The 

distance measure of one degree of longitude varies with location on the earth’s surface.  At any 

given point on the earth’s surface, one degree of longitude, measured in latitude degrees, is equal 

to the cosine of the latitude coordinate of the given point.  Thus, given the latitude and longitude 

coordinates of two points on the earth’s surface, the distance in degrees of latitude can be 

computed using a measure of Euclidean distance in a plane4.    

Rainfall Model  

Following Cressie and Kitanidis to derive an empirical Bayes predictor for rainfall, let yi denote 

observed rainfall at weather station i and assume that the actual rainfall at a given site is 

determined by the sum of a mean or drift process, µ, and a spatial error process, ε, which are both 

functions of the site’s geographic location, X, and unknown model parameters Θµ and Θε, 

respectively. 

( ) ( εµ )θεθµ ,, iii XXy +=  (1) 

Using Baye’s Rule, and denoting all model parameters by Θ, the posterior distribution for the 

estimated model parameters is given by 

( )
∫

==
θθθ

θθθθθ
dpyp

pyp
yp

pypyp
)()|(
)()|(

)(
)()|(|   . (2) 
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For any unobserved site j, the distribution of estimated rainfall, , conditional on observed 

rainfall at N locations is given by 

jy~

).....|~( 1 yyyyp Nj =  ∫=
θ

θθ dyyp j )|,~(  

 ∫=
θ

θθθ dypyyp j ),(),|~(  (3) 

 [ ]),|~()|( yypE jyp θθ= . 

Thus, the posterior distribution for jy~  given y is taken as the expected value of the posterior 

given y and Θ with respect to the posterior distribution of Θ given y.  MCMC methods can be 

used to simultaneously generate Markov Chains of the both model parameters from the posterior 

distribution in equation 2, and rainfall estimates for any number of unobserved locations from 

the posterior given in equation 3.  Given J unobserved sites and P model parameters, the order of 

integration for a given unobserved site is N+P-1.     

 To estimate the model the structure of the mean and error processes must be specified.  A 

linear model was chosen for the mean process due to the relationship between average rainfall 

and geographic location exhibited in figure 3.  After examination of the historical correlations 

between recorded rainfall against the distance between the weather stations, an exponential 

correlogram was chosen to represent the error structure. 

( ) ilongilati longlatX βββθµ µ ++= 0,  (4) 

( ) ( )( )κϕκϕ ijijij ddf −==Σ exp,,  (5) 

The correlation of rainfall at locations i and j, Σij, was specified as a function of the Euclidean 

distance, dij, between the two locations.  The parameters κ and φ are measures of spatial 

smoothing and decay, respectively.  The smoothing parameter, κ, is bounded between zero and 

 12



two with larger values indicating higher levels of spatial smoothing.  A value of κ equal to two 

implies the Gaussian correlation function.  The decay parameter, φ, is bounded below at zero and 

indicates the degree of decline in correlation between two locations with distance.  A larger 

(smaller) value of φ indicates a faster (slower) decline in correlation as distance increases 

(Thomas et. al).  Thus, larger estimates for phi indicate a smaller degree of similarity between 

nearby stations.  Given the specifications in equations 4 and 5, the model consists of 5 

parameters.  Including the 99 sample farms as rainfall estimation points causes the order of 

integration for the expectation summarized in equation 3 to equal 103.  Thus, the computing 

requirements to carry out the kriging estimation were expected to be quite large. 

 The IDW method estimates rainfall at an unobserved site as the weighted average of the 

observed rainfall at the weather stations, where the weights (λij) are the inverse distance between 

the unobserved site and the weather station (dij), normalized by an appropriate constant.  While 

the IDW method lacks the robust statistical properties of the estimates obtained from kriging, it 

also requires significantly less computing power and time. 

∑
=

=
N

i
iijj yy

1

~ λ , where (6) 

∑
=

−

−

= N

i
ij

ij
ij

d

d

1

1

1
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Interpolation Results 

Kriging 

The WinBUGS software package was used to specify and estimate the rainfall model.  For each 

year in the data a sample from the posterior distributions of each model parameter and rainfall 

for the 99 sample farms were generated.  To save time, the program was set to estimate rainfall 
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for each sample site individually, reducing the order of integration to five5.  The latitude and 

longitude coordinates for each of the weather stations and reference points were normalized to 

make the southwest corner of Iowa the grid origin.  The sample autocorrelation plots from initial 

sample iterations exhibited autocorrelation out to roughly ten lags.  To obtain a more 

independent sample, the chains were thinned to save every tenth iteration.  To ensure 

convergence, three chains were run from different starting values, 5000 “burn-in” iterations were 

discarded, and the chains were run until the Monte Carlo error for the samples was less than 5% 

of the sample standard deviation6.  The process yielded 5000 independent rainfall and parameter 

samples for each year in the data.  The point estimates for unobserved rainfall at the reference 

points were taken as the sample means from the Markov Chains.  The estimated 30-year means 

and standard deviations of precipitation are illustrated in figures 5 and 6, respectively.  The 

rainfall patterns exhibited in figures 5 and 6 are very similar to those in the actual weather station 

data illustrated in figures 3 and 4.  Average rainfall tends to fall as you move further north and 

west, while the standard deviation of rainfall is larger in the southern part of Iowa.  Furthermore, 

cross-validation confirmed that the kriging results were statistically unbiased estimates of actual 

rainfall, while the average standard deviation of the bias estimates was 3.01 inches of rainfall.  

These results can be interpreted as upper bounds on the performance of the model as cross-

validation effectively reduces the grid density. 

 The parameter estimates for the mean process and the correlogram are summarized in 

table 1.  The complete Markov chains of the model parameters and precipitation estimates are 

available upon request from the author.  The estimates for β0 can be interpreted as a rainfall 

estimate for the southwest corner of the Iowa grid, and averaged just under 29 inches of rainfall 

which is consistent with the true 30-year means from weather stations in that region.  The 

 14



estimates for βlat and βlong indicate that, on average, precipitation declines by 1.46 inches for 

every degree of latitude as you move north, and increases by 0.85 inches for every degree of 

longitude as you move east.  These results are also consistent with the relationship between 

average rainfall amounts and location in the state of Iowa depicted in figure 3.  The smoothing 

parameter, κ, ranged between 0.56 and 1.66, with an average value of 1.01.  The decay 

parameter, φ, varied within a considerable range from 0.48 to 11.34, with an average value of 

3.58.  Larger estimates of φ indicate a weaker spatial correlation structure in the rainfall data for 

the given year.  Thus it was expected that the estimation bias would be larger for years with 

larger φ estimates.  Using cross-validation, it was found that the absolute bias was in fact 

positively correlated with the absolute bias of the rainfall estimates, although the level of 

correlation was rather low at 0.30. 

 Figure 7 plots the actual correlations between the rainfall records from the weather 

stations against the distance between the stations.  Also included in figure 7 are the correlograms 

implied by a smoothing parameter, κ, equal to one and a range of values for the decay parameter.  

The correlogram with φ set to 0.5 seems to match the historical correlation structure quite well, 

while the correlograms while larger rates of decay tend to underestimate the historical correlation 

in the data.  However, the parameter estimates for each year are estimated from the cross-section 

of data for the given year only and can vary depending on the similarity between measurements 

at differing distances.  The correlation structure estimated for any given year is not constrained to 

match the average historical relationship. 

Inverse-Distance Weighting 

Again using cross-validation, precipitation estimates were calculated using IDW for the weather 

station sites for each year over the period 1973-2002 covered in the data set.  The precipitation 
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estimates were calculated using from one to the entire set (66) of the nearest weather stations to 

the station sites and compared to the actual precipitation values recorded at the stations.  Figure 8 

shows the average and standard deviation of the bias estimates when using one to ten weather 

stations in computing the IDW rainfall estimate.  The minimum bias is achieved when the 

nearest four weather stations are used to estimate precipitation at the non-sampled site.  

However, none of the average bias estimates for the individual example sites were statistically 

different from zero at standard significance levels when any amount of weather stations, from 

one to the entire sample, were used in computing the precipitation estimates. 

 There seems to be a fairly significant decrease in the average standard deviation across 

the example sites as the number of stations used in the estimate increases from one to four or 

five, with the average standard deviation leveling off as additional stations are included.  Thus, 

while the use of only one weather station may provide an unbiased estimator of the precipitation 

at a non-sampled site, incorporating additional weather stations seems to provide gains in 

efficiency for the precipitation estimate.   

 Given the information in figure 6, the four nearest weather stations were used under the 

IDW interpolation method.  The 30-year means and standard deviations of rainfall for each of the 

99 sample farms were computed.  A comparison between the kriging results showed that the two 

methods were nearly identical.  The largest difference between the 30-year averages was found 

to be less than 0.7 inches, while the largest difference in the standard deviation of rainfall was 

less than 0.7 inches.  Moreover, the coefficients of variation implied by the estimates of the two 

methods differed by less than 2%, implying that the insurance rates calculated from the estimates 

of either method will be nearly identical.   
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Contract Structure 

The rainfall guaranteed under the policy is computed as the 30-year average of recorded 

precipitation for the area over the insurance period, which is patterned after the 30-year climate 

normals used by the NCDC.  Equations 7 and 8 outline the liability (L) and indemnity (I) 

structures adopted for the example policy.  The indemnity takes the form of an exotic put option 

on the 30-year average rainfall guarantee.  Indemnities equal the losses resulting from 

precipitation shortfalls if they occur and are capped at the total liability level insured.  The 

indemnity structure is similar to an example outlined by Martin, Barnett and Coble. 

*A*YPL HH 10,10,*53.0=  (7) 
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 (8) 

where A = total insured acres 
 PH,10  = 10-year average hay price ($/ton) 
 YH,10  = 10-year average hay yield (tons/acre) 
 F  = indemnity factor 
 C  = coverage level ( [ ]1,0∈C ) 
 RA  = actual rainfall 
 R30  = 30-year average rainfall, or the rainfall guarantee  

 Indemnities are triggered when actual precipitation is less than a selected percentage (the 

coverage level, C) of the historical average precipitation.  The percentage shortfall in 

precipitation is translated into a shortfall in liability value, and the indemnities paid are equal to 

the liability shortfall.  The insurance liability was taken as the product of moving averages of hay 

prices and yields for the state of Iowa7.  The liability is set equal to the product of 10-year 

moving averages of Iowa hay prices and yields to establish the expected per-acre value for the 

product liability.  The liability is then multiplied by 0.53 to adjust the liability value for pasture8.  

The data for the hay prices and yields were obtained from the United States Department of 
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Agriculture, National Agricultural Statistics Service (USDA-NASS).  More disaggregated data is 

available for hay yields at the crop reporting district and county levels, but prices are only 

consistently reported for the states.  The 10-year averages for yields and prices were chosen to 

provide a representative example of per-acre liability to rate the product.  Additionally, the 10-

year moving averages mimic current crop yield insurance rules for setting yield guarantees on 

individualized FCIC insurance products offered in the U.S. 

 The indemnity factor, F, was created to translate precipitation shortfalls into liability 

value shortfalls.  A regression relating precipitation levels to hay yields was estimated for Iowa.  

To put all variables on a percentage basis, ratios were created for each variable.  The 

precipitation ratio (RR) is the ratio of the current year’s precipitation to the 30-year average.  The 

hay yield ratio (YRH) is the ratio of the current year’s reported hay yield to the 10-year average 

hay yield.  Table 1 reports the regression estimates. 

εβα ++= RRYRH *  (9)  

 The sign of the estimated slope coefficient was as expected, with precipitation shortfalls 

leading to a reduction in hay yields below the average level.  This result is consistent with 

Turvey’s findings of strong relationships between precipitation levels and hay yields.  The results 

exhibit fairly strong yield movements in Iowa, with a one percent drop in precipitation from the 

30-year average resulting in a 1.52 percent drop in hay yields below the 10-year average hay 

yield. The indemnity factor (F) was taken as the slope coefficient estimate (1.52).  Thus the 

policy pays 1.52 percent of the liability for every one percent drop in precipitation below the 

guaranteed historical average.  
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Insurance Rates 

To rate the insurance policy, Monte Carlo analysis was used under three different alternative 

approaches.  Gamma distributions were fit to the historical rainfall means and standard 

deviations implied by 1) the kriging estimates for the 99 reference points, 2) the IDW estimates 

for the 99 reference points (IDW1), and 3) the actual histories for the 67 weather stations (IDW2).  

For each method, 5000 random draws were taken from each of the specified gamma 

distributions.  The policy was then rated by taking the average indemnity value over the 5000 

rainfall draws for each of the 99 reference points.  While the first two methods use estimated 

histories to generate precipitation draws for the 99 reference points directly, the third method 

uses the actual rainfall histories to generate random precipitation draws at the weather stations 

for use with IDW to rate the policy.  For the IDW2 method, IDW was used to evaluate the 

indemnity value for each reference point over the correlated weather station draws.  The 

historical correlation structure of the historical data was imposed on the set of 67 weather station 

rainfall draws using a method outlined in Iman and Conover.  The Iman and Conover procedure 

has four attractive properties.  First, the procedure works well with any distribution function.  

Second, the mathematics behind the procedure are not extremely complex as cholesky 

factorization and matrix inversion are the most exotic steps in the procedure.  Third, the 

procedure can be used under any sampling scheme.  Finally, the marginal distributions of interest 

are maintained throughout the procedure in that the moments of the marginal distributions are 

not affected by the procedure.  A more detailed description of the procedure is included in the 

Appendix and a MatLab program which implements the algorithm is available from the authors.   

 The choice of gamma distributions was based on the prevalence of this distributional 

choice for precipitation in the scientific and agricultural literature (Barger and Thom; Thom; 
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Ison, Feyerherm, and Bark; Martin, Barnett, and Coble; Groisman et al.).  The gamma 

distribution is bounded from below at zero and can represent skewed data, which makes it 

appropriate for precipitation modeling.  The gamma distribution is defined by two shape 

parameters which are functions of the distribution’s mean and variance.   

 Using the method proposed by Moschini, nonparametric kernel densities were fit to each 

of the 30 year precipitation histories for the weather stations and compared with the gamma 

distributions implied by the sample moments.  Although no statistical tests were performed, the 

gamma density plots were quite similar to the nonparametric estimates and seemed to provide an 

excellent fit to the data.  The gamma distribution and the nonparametric density for the Chariton 

weather station are illustrated in Figure 9. 

 The liability value (152 $/acre) was taken as constant and equal to the product of the 

2002 10-year average hay yield (3.27 Tons/acre) and price (87.7 $/Ton) for Iowa as reported by 

NASS, multiplied by a factor of 0.53.  The number of insured acres was set to unity to create per-

acre premiums that could be scaled to any level of coverage.  As expected, the premiums 

calculated under each of the three methods were nearly identical.  Only the premiums calculated 

from the kriging estimates are reported for convenience.  The full set of premiums and rates 

calculated under each method are available upon request from the author. 

 Iowa premiums average $18.91 per acre under full coverage, and $13.39 and $5.70 at 

95% and 85% coverage, respectively.  The average premium across the Iowa reference points is 

equal to $1.85 per acre for 75% hay coverage, with a standard deviation of $0.65.  The premiums 

seem to be unrestrictive, especially at lower coverage levels which would be expected to be 

offered to provide drought risk coverage.  At 75% coverage, the highest premium is $3.64 in 

Southeast Iowa at the Taylor county reference point, while the lowest premium is $0.46 in 
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Northeast Iowa at the Clayton county reference point.  These results are expected as the lowest 

implied coefficient of variation (15.8%) is at the Clayton County reference point, while the 

largest implied CV (24.6%) is at the Taylor County reference point.  Figure 8 maps the premium 

levels at a 75% coverage level.  In general, premium levels are the lowest in the Northeast 

section of the state, with areas of relatively larger premium levels located in various locations 

throughout the state. Table 3 reports the premium rates, as a percentage of the liability insured, 

at 100, 95, 85, and 75 percent coverage levels for each of the 99 county reference points within 

Iowa for the policy. 

Historical Analysis 

An historical analysis of the insurance policy was constructed for the 1995-2004 contract years.  

As an example, the 2003 contract year uses the 2002 30-year average precipitation levels 

(estimates) as the historical average precipitation level in the indemnity formula.  The estimated 

actual precipitation levels for 2003 were used to calculate indemnity payments based on the 2002 

30-year average rainfall levels for each county reference point.  Precipitation estimates were 

taken from the kriging results.  Using USDA-NASS data, 10-year averages of hay yields and 

prices in Iowa were calculated for 1994-2003 to compute liability levels for each year, as 

outlined in the previous section. 

 Figure 10 maps indemnity payments at 75% coverage for the 2002 contract year at the 

county reference points in Iowa.  Precipitation was below 75% of the 30-year average for a 

pocket of counties in Southwestern Iowa, causing the product to trigger indemnity payments.  In 

counties where indemnities were triggered, payments ranged from $0.94 per acre in Mahaska 

and Page Counties to $15.16 per acre in Ringgold County.  
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 Figure 11 maps indemnity payments at 75% coverage across Iowa for the 2000 contract 

year.  Indemnity payments were triggered in a large pocket of counties in the Western and 

Southwestern portions of the state of Iowa.  Indemnities, for triggered counties, ranged from a 

low of $0.64 per acre in Page County to a high of $36.46 per acre in Carroll County.  Historical 

premium and indemnity levels and maps for other contract years included in the analysis and for 

coverage levels above 75% are available upon request from the authors. 

 Table 5 reports the average premiums, indemnity payments, and loss ratios at 75% 

coverage across the entire state of Iowa for each contract year included in the historical analysis.  

The loss ratio is the ratio of premium to indemnities and should average one over time if the 

policy is actuarially fair.  Table 6 reports the same information for the counties where losses 

occurred.  No losses were triggered at any of the county reference points in the 1995, 1996, 

1998, 2001, and 2004 contract years yielding zero loss ratios.  Indemnities were triggered at 16 

of the county reference points for the 1997 contract year, with the average indemnity (loss ratio) 

in the triggered counties equal to $8.36 (5.51).  The main loss region for the 1997 contract year 

was the Northwestern part of Iowa.  There was one county reference point (Davis County) with 

losses in the 1999 contract year with an indemnity payment (loss ratio) equal to $5.15 (2.38).  

The 2000, 2002, and 2003 contract years yielded 20, 8, and 13 loss counties, respectively.  

Average indemnities (loss ratios) were $12.98 (6.92) in 2000, $6.50 (3.02) in 2002, and $7.55 

(4.82) in 2003.  The Northeastern and Northcentral regions of Iowa were the loss areas for the 

2003 contract year.   

 For all contract years in which losses occurred, with the exception of 2003, the counties 

in which indemnities were triggered were high risk areas relative to the state average as the 

average premium rates (and thus CV’s) were higher than the overall state average for the same 
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contract year.  This can be seen by comparing the average premium levels reported for the entire 

state of Iowa in table 5 and the average premiums in the loss counties in table 6. 

 Indemnity payments, when triggered, tend to be quite large relative to the per-acre 

premium rates for the associated area.  In general, the policy tends to pay indemnities in 

concentrated areas and at fairly high loss ratios.  At higher coverage levels the loss regions 

expand to cover larger and more general areas across the state.   These results are expected given 

the spatial nature of weather events.  While the policy is theoretically rated to yield a loss-ratio of 

unity over time for any given location, the systemic nature of weather risk requires a large 

geographic area of coverage to provide proper risk pooling and insurability for any given year.        

Discussion and Conclusions 

 Markets for weather-based financial tools have realized extensive growth over the past 

decade.  There are currently markets for temperature-based weather derivatives traded on the 

CME as well as more personal markets for OTC weather derivatives exchanged in the form of 

weather swaps and options.  While the market for weather derivatives based on temperature 

indexes has grown significantly, the market for precipitation based derivatives is still in its 

infancy.  Weather basis risk and sources of accurate and reliable data for pricing, especially for 

developing countries, seem to be the largest obstacles to further growth in the weather derivative 

market.  

 This paper has outlined a potential drought insurance policy for pasture owners in the 

state of Iowa.  The policy provides coverage against precipitation shortfalls below a coverage 

threshold of the historical 30-year average rainfall for the area.  The rainfall interpolation 

techniques focused on addressing the first component of weather derivative basis risk.  Rainfall 

at a measurement site may not be the same as rain falling on the farmer’s fields.  Using a 

 23



Bayesian derived estimator, precipitation estimates for 99 sample farms in Iowa were obtained 

from a spatial kriging model using Markov chain Monte Carlo methods within the WinBUGS 

software package.  The kriging estimates were then compared to a simpler inverse distance 

weighting estimator.  The rainfall interpolation techniques focused on addressing the first 

component of weather derivative basis risk.  Consistent with previous studies, the results were 

found to be nearly equivalent.  Using cross-validation, both interpolation methods were shown to 

provide unbiased estimates.  

 Monte Carlo analysis was performed to calculate fair premium rates for the 99 county 

reference points in the state of Iowa at various coverage levels by specifying the indemnity 

structure of the policy as an exotic put option on rainfall.  The policy was rated using three 

alternative methods.  The first used the estimated rainfall histories from kriging, while the second 

used the estimated histories from the inverse distance weighting method.  Finally, the actual 

histories from the weather stations were used to specify gamma distributions of rainfall and then 

inverse distance weighting was used to form the rainfall draws for each sample site.  Again, the 

methods were found to provide nearly equivalent results with respect to premium levels and 

rates.   

 An historical analysis was also performed to assess potential product performance if the 

policy were marketed.  The product was shown to successfully trigger losses in regions of 

abnormally low precipitation reported at local weather stations across Iowa over a 10-year range 

of contract years.  Given the systemic nature of weather events such as precipitation, loss areas 

over the period analyzed tended to be geographically concentrated exhibiting high loss ratios.  

While the policy is fairly rated for any given location over time, a sufficiently large geographic 

coverage area would generally be required for sufficient risk pooling in a given contract.  Thus, a 
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drought insurance policy such as this may be more suited for administration under large 

institutions, associations, or government agencies rather than smaller private companies.  

Moreover, the extensive weather data available from the NCDC for other states in the U.S. from 

the NCDC should allow similar derivatives to be developed to cover a variety of weather-related 

losses in various locations.  Furthermore, the rainfall interpolation methods utilitized in this 

study could be widely applied to data in other areas, to develop other types weather derivatives 

including insurance for agriculture.  The fact that weather-based products fall under the umbrella 

of index coverage causes the administrative costs to be low relative to other insurance program 

types, providing even more potential for developing nations.  However, the feasibility of 

weather-based insurance offerings hinges greatly on the reinsurance capacity available to 

insurers (Duncan and Myers).          

 An issue which was not addressed is the possibility of an adverse selection advantage 

created by the use of long-term weather forecasting models, such as the El Nino/Southern 

Oscillation Index.  Over the last 20 years, the ENSO and the weather phenomena associated with 

it (El Niño and La Niña) have become a common part of the agriculture vocabulary.  Farmers 

around the nation track the ENSO to gauge the likelihood of long-term weather patterns in their 

area.  For Iowa, El Niño seasons typically are wetter than usual (sometimes extremely so), while 

La Niña seasons can be anywhere from extremely dry to near normal.  There are many places 

producers can find information on the latest ENSO levels and forecasts, including the NOAA 

Climate Prediction Center.  However, the International Research Institute for Climatic Prediction 

reports that while forecasting El Niño and La Niña episodes from the early part of the summer is 

not difficult, it is quite difficult to accurately forecast cycles during the months of January 

through April.  This phenomenon is referred to as the “spring barrier” in the Northern 
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Hemisphere.  Thus, forecasting through the use of ENSO forecasts to arbitrage this product 

would be limited as long as sales closing dates were held in the late winter or early spring 

periods.  Additionally, this problem could potentially be addressed through an adjustment to 

premium rates, or alternatively an adjustment to the 30-year precipitation average guaranteed, 

from year to year based on the forecasts of these long term models.  However, other existing 

insurance policies which cover production yield levels face this same type of adverse selection 

risk as farmers may be more prone to purchasing yield insurance in forecasted drought years.  

Incorporating seasonal weather forecasts is also an area with potential for further research. 
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Appendix 

Imposing Correlation 

The procedure is based on rank correlations.  The rank correlation ( ), also known as 

Spearman’s rho, for a given set of paired data is calculated by ranking the x’s and 

y’s among themselves, from high to low (or low to high), and then substituting into the 

following formula 
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where denotes the difference between the ranks assigned to xid i and yi and is the 

sample size.  Iman and Conover point out that raw correlation numbers can be misleading 

when the underlying data is non-normal or contains outliers, which is why the rank 

correlations are used rather than the simple (Pearson) correlation measure. 

n

The theoretical basis for the procedure is that given a random matrix A whose columns 

are assumed to have a correlation matrix I (the identity matrix) and a desired correlation 

matrix B, there exists a transformation matrix C such that the columns of AC’ (where C’ 

is the transpose of C) have a positive definite correlation matrix B.  Since B is positive 

definite and symmetric, there exists a lower triangular matrix (the transformation matrix) 

C such that B = CC’. 

 Let X be an matrix where each column contains random draws from a 

specific marginal distribution, N is the sample size, and K is the number of variables.  In 

this setting, X is the matrix of independent random draws from gamma distributions for 

each weather station.  The sample size for this analysis is N = 5000, while the number of 

variables is K = 67 individual weather stations.  Let R be a matrix, of the same 

KNΧ
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dimensionality of X, containing what Iman and Conover refer to as “scores.”  Iman and 

Conover suggest using ranks, random normal deviates, or van der Waerden scores (Φ-1(i / 

N+1)) where Φ-1 is the inverse of the standard normal distribution function, N is the 

number of draws (5000), and i = 1, ..., N) as possible scores.  Furthermore, the correlation 

matrix for the columns of R is assumed to be equal to I (the identity matrix), meaning the 

elements of R are uncorrelated.  Following Iman and Conover, van der Waerden scores 

are used to generate the matrix R in this analysis.   

 Define T to be the desired rank correlation matrix for a transformation (resorting) 

of X.  In this setting, T is equal to the historical rank correlation matrix of reported 

rainfall data from the individual weather stations.  Given T is positive definite and 

symmetric it may be written as T = PP’, where P’ is a lower triangular matrix.  P, the 

transformation matrix, can be found using Cholesky factorization.  The transformed 

matrix of scores, R* = RP’, has a rank correlation matrix M which is approximately equal 

to the target rank correlation matrix T.  By rearranging the columns of X into the same 

ranking as R*, the transformed X matrix has a rank correlation matrix equal to M, which 

is very close to the target correlation matrix T.   

 Some of the deviation of M from T is due to correlation among the columns of R, 

meaning the assumption of the correlation matrix for the columns of R to be equal to I 

does not hold9.  Iman and Conover propose a variance reduction procedure to minimize 

the deviation of M from T.  A matrix S is found, such that SDS’ = T, where D is the 

actual correlation matrix associated with the columns of R.  Cholesky factorization can 

then be used to find a lower triangular matrix Q, where D = QQ’.  Therefore SQQ’S’ = 

PP’.  Obviously, one possible solution is that S = PQ-1, where Q-1 denotes the inverse 
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matrix of Q.  Then the transformed matrix R*B = RS’ will have a correlation matrix 

exactly equal to T.  Let the rank correlation matrix of R*B be equal to MB.  Comparing 

MB to M and T, it is shown that MB is a more accurate approximation to the target rank 

correlation matrix T.  The variance reduction technique proposed by Iman and Conover 

was also utilized in this analysis. 

Transforming the Historical Correlation Matrix 

 The relationship between the correlation and distance between any two weather 

stations was examined.  It was found that the distance and correlation of reported 

precipitation between any two weathers stations were inversely related. Figure A1 plots 

the correlation values from the historical correlation matrix against the distance between 

the weather stations (in degrees latitude).  The correlation and distance values are highly 

negatively correlated, with a simple correlation coefficient of -0.74.  Initially, a linear 

regression model was fit by regressing the precipitation correlations on the distance 

between the stations.  The linear model was fit in both an unrestricted fashion and also 

restricting the constant term to equal unity.  In the unrestricted (restricted) case, the linear 

model’s fitted correlation values tended to consistently under-predict (over-predict) the 

correlation values for stations whose distances were less than 1.25 degrees of latitude 

(roughly 87 miles).  

  
 Since information from four “local” weather stations was utilized in the analysis 

of each county reference point, the values under- or over-predicted by the linear 

specifications were precisely the correlation values that were the most critical (the 

maximum distance between any two stations used for the same reference point was found 

to be just under 90 miles).  Therefore a restricted quadratic regression equation10 was fit 
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to the data.  Figure A1 also plots the fitted relationships for the quadratic and both linear 

specifications.  It is evident that the quadratic model (in red) falls within the center of the 

data for distances under 90 miles, whereas the unrestricted (restricted) model tends to fall 

below (above) the center of the data for stations less than 90 miles apart.  Table A1 

summarizes the regression coefficient estimates for each model estimated.  

 Using the quadratic specification and distance values from a weather station 

distance matrix, a transformation of the historical correlation matrix was created.  This 

matrix did satisfy the condition of positive definiteness and was used with the 5000 draws 

for each of the 67 weather stations to impose the transformed target correlation structure.  

The target correlation matrix can be broken down into 99 4X4 matrices that are critical to 

the analysis of each county reference point.  To provide an example, the historical 

correlation and transformed target correlation matrices relevant to the Adair county 

reference point are provided below in tables A2 and A3 respectively.  The transformed 

correlation values are all within 0.10 of the actual historical correlation values for the 

Adair county reference point.  Table A4 reports the correlation matrix, relevant to the 

Adair county reference point, of the Monte Carlo precipitation draws after the target 

correlation structure was imposed using the Iman and Conover method.  The largest 

deviation between the target and actual correlation matrices for Adair County is less than 

0.02.  The largest deviation between the target and actual correlation matrices over the 

entire range of entries is only 0.03.  Thus the Iman and Conover method provides a very 

close approximation of the target correlation matrix to the actual correlation structure of 

the correlated Monte Carlo precipitation draws.
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Figure 1.  Causes of U.S. Crop Losses 
Note: Based on crop loss data, provided by the Risk Management Agency of the USDA, 
from 1980-1999 
 
 
 
 

 
Figure 2. Iowa Weather Station Locations 
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Figure 3. Reported Precipitation Means (Inches) 
 
 
 
 

 
Figure 4.  Standard Deviation of Reported Precipitation (Inches) 
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Figure 5.  30-Year Average Precipitation (inches), Kriging Estimates 
 
 
 
 

 
Figure 6. Precipitation Standard Deviation (inches), Kriging Estimates 
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Table 1. Summary Statistics of Rainfall Model Parameter Estimates 
 β0 βlat βlong κ φ 

Mean 28.91 -1.46 0.85 1.01 3.58 

Median 28.07 -1.89 0.59 0.97 2.03 
Standard 
Deviation 6.89 1.90 0.96 0.24 3.37 

Minimum 18.20 -4.70 -0.56 0.56 0.48 

Maximum 43.16 2.74 2.85 1.66 11.34 
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Figure 7.  Correlation of Recorded Rainfall Against Distance Between Stations  
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Figure 8.  Bias and Standard Deviation of IDW Precipitation Estimates 

 

Table 2. Regression Coefficient Estimates (Standard Errors). 
Equation α̂  β̂  R2

3 -0.34 
(0.20) 

1.52 
(0.22) 0.85 

 

 
Figure 9.  Gamma and Nonparametric Rainfall Densities, Chariton Weather Station 
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Figure 8.  Map of Iowa Premiums ($/acre) at 75 Percent Coverage 
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Table 3. Iowa County Rates at Various Coverage Levels (%). 
County 100% 95 % 85% 75%  County 100% 95 % 85% 75% 
Adair 13.92 10.25 4.89 1.90 Jefferson 13.23 9.56 4.28 2.60
Adams 14.07 10.36 4.93 1.87  Johnson 14.49 10.73 5.10 3.24 
Allamakee 9.69 6.25 2.01 0.40  Jones 13.24 9.55 4.22 2.53 
Appanoose 12.21 8.57 3.53 1.10  Keokuk 14.11 10.44 5.04 3.23 
Audubon 11.52 8.00 3.21 0.95 Kossuth 11.95 8.34 3.37 1.91 
Benton 11.99 8.33 3.35 1.04 Lee 12.55 8.92 3.85 2.31 
Black Hawk 10.56 7.07 2.57 0.65 Linn 12.74 9.09 3.96 2.37 
Boone 13.46 9.84 4.57 1.70 Louisa 12.29 8.68 3.67 2.16 
Bremer 10.45 6.99 2.48 0.62 Lucas 11.79 8.14 3.21 1.79 
Buchanan 10.12 6.62 2.23 0.51 Lyon 14.54 10.85 5.37 3.50 
Buena Vista 11.31 7.76 3.02 0.83 Madison 11.96 8.43 3.60 2.11 
Butler 10.73 7.27 2.73 0.74 Mahaska 11.93 8.32 3.38 1.93 
Calhoun 13.99 10.26 4.75 1.76 Marion 10.61 7.08 2.49 1.30 
Carroll 12.97 9.27 4.09 1.39 Marshall 14.27 10.56 4.94 3.09 
Cass 13.09 9.40 4.13 1.38 Mills 12.88 9.19 3.97 2.37 
Cedar 12.24 8.67 3.70 1.22 Mitchell 12.00 8.36 3.36 1.90 
Cerro Gordo 11.32 7.72 3.00 0.87 Monona 11.85 8.27 3.37 1.95 
Cherokee 12.10 8.48 3.47 1.04 Monroe 10.70 7.09 2.51 1.29 
Chickasaw 11.58 7.92 3.01 0.81 Montgomery 13.41 9.72 4.43 2.73 
Clarke 12.23 8.56 3.46 1.06 Muscatine 13.26 9.55 4.33 2.71 
Clay 12.09 8.57 3.64 1.20 Obrien 12.11 8.49 3.48 1.99 
Clayton 9.38 5.91 1.76 0.30 Osceola 12.84 9.17 3.93 2.34 
Clinton 12.52 8.85 3.69 1.19 Page 13.71 10.04 4.71 2.98 
Crawford 13.53 9.91 4.64 1.70 Palo Alto 12.39 8.77 3.70 2.18 
Dallas 12.57 8.95 3.85 1.22 Plymouth 12.61 8.93 3.79 2.21 
Davis 13.82 10.10 4.69 1.75 Pocahontas 11.58 8.00 3.20 1.80 
Decatur 13.42 9.74 4.43 1.54 Polk 12.55 8.97 3.90 2.33 
Delaware 11.04 7.45 2.73 0.67 Pottawattami 12.56 8.87 3.81 2.22 
Des Moines 12.02 8.41 3.44 1.05 Poweshiek 12.66 9.00 3.89 2.31 
Dickinson 14.10 10.45 5.06 1.99 Ringgold 14.68 10.90 5.25 3.36 
Dubuque 11.19 7.60 2.89 0.71 Sac 11.55 7.97 3.13 1.72 
Emmet 12.36 8.72 3.62 1.12 Scott 12.87 9.15 3.86 2.28 
Fayette 9.80 6.35 2.09 0.46 Shelby 12.36 8.71 3.63 2.09 
Floyd 12.19 8.57 3.57 1.07 Sioux 12.16 8.59 3.63 2.11 
Franklin 11.52 7.91 3.04 0.81 Story 14.54 10.82 5.24 3.36 
Fremont 14.11 10.44 5.03 1.97 Tama 12.83 9.13 3.95 2.36 
Greene 13.50 9.81 4.52 1.59 Taylor 15.30 11.53 5.78 3.80 
Grundy 12.68 9.02 3.89 1.26 Union 13.35 9.67 4.38 2.70 
Guthrie 12.25 8.71 3.74 1.20 Van Buren 12.97 9.34 4.18 2.52 
Hamilton 14.63 10.76 5.04 1.84 Wapello 12.01 8.43 3.47 1.99 
Hancock 11.72 8.16 3.25 0.89 Warren 11.66 8.08 3.17 1.74 
Hardin 13.05 9.37 4.07 1.34 Washington 12.69 9.11 4.00 2.40 
Harrison 12.28 8.59 3.52 1.06 Wayne 12.18 8.52 3.49 2.02 
Henry 14.81 11.03 5.36 2.09 Webster 11.93 8.29 3.32 1.90 
Howard 11.46 7.91 3.13 0.87 Winnebago 12.19 8.55 3.58 2.05 
Humboldt 11.69 8.05 3.14 0.86 Winneshiek 10.78 7.18 2.57 1.32 
Ida 12.51 8.90 3.78 1.20 Woodbury 12.13 8.46 3.42 1.93 
Iowa 12.60 8.98 3.88 1.30 Worth 11.54 7.96 3.19 1.84 
Jackson 11.71 8.04 3.12 0.88 Wright 12.24 8.61 3.50 2.00 
Jasper 12.78 9.12 3.95 1.30      
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Figure 10.  2002 Contract Year Indemnity Payments ($/acre) 
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Figure 11. 2000 Contract Year Indemnity Payments ($/acre) 
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Table 5. Historical Premiums and Indemnities ($/acre), Averages for all Iowa Counties   
 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Premiums 1.23 1.29 1.41 1.52 1.60 1.63 1.67 1.71 1.73 1.76 
Indemnities 0.00 0.00 2.50 0.00 0.10 4.86 0.00 0.97 1.84 0.00 
Loss Ratio 0.00 0.00 0.96 0.00 0.03 1.61 0.00 0.31 0.57 0.00 
 
 
 
 
 
Table 6. Historical Premiums and Indemnities ($/acre), Averages for Loss Counties 
 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
Premiums - - 1.52 - 2.20 1.84 - 2.12 1.57 - 
Indemnities - - 8.36 - 5.15 12.98 - 6.50 7.55 - 
Loss Ratio - - 5.51 - 2.38 6.92 - 3.02 4.82 - 
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Figure A1. Correlations of Reported Precipitation vs. Distance Between Stations 

 

Table A1. Regression Model Coefficient Estimates 
Coefficient EstimateSpecification Constant Di,j Di,j

2

Quadratic 1 -0.392 0.0575 
Linear, Unrestricted 0.773 -0.137 - 
Linear, Restricted 1 -0.230 - 
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Table A2.  Historical Correlation Matrix for the Adair County Reference Point 
 Corning Greenfield Lorimor Perry 1 SE 

Corning 1 0.8113 0.7701 0.5800 
Greenfield 0.8113 1 0.8466 0.6881 
Lorimor 0.7701 0.8466 1 0.7142 

Perry 1 SE 0.5800 0.6881 0.7142 1 
 
 
 
Table A3.  Transformed Target Correlation Matrix for the Adair County Reference Point 

 Corning Greenfield Lorimor Perry 1 SE 
Corning 1 0.8552 0.8038 0.6720 

Greenfield 0.8552 1 0.8677 0.7894 
Lorimor 0.8038 0.8677 1 0.7471 

Perry 1 SE 0.6720 0.7894 0.7471 1 
 
 
 
Table A4.  Correlation Matrix of Correlated Draws for the Adair County Reference Point 

 Corning Greenfield Lorimor Perry 1 SE 
Corning 1 0.8452 0.7871 0.6521 

Greenfield 0.8452 1 0.8589 0.7752 
Lorimor 0.7871 0.8589 1 0.7295 

Perry 1 SE 0.6521 0.7752 0.7295 1 
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Endnotes 

1. www.cme.com 

2. Cross-validation refers to removing an observation from the data and estimating the 

variable of interest for the removed site using the remaining data.  The estimated value is 

then compared to the true value to evaluate accuracy of the interpolation method. 

3. Kirvan and Foote note that while a degree of latitude is not exactly equal to the same 

distance at all points due to the earth’s curvature, the maximum variation in distance 

between degrees of latitude is only 1.13 kilometers.  Therefore, the use of the average 

length of a degree of latitude, roughly 111.3 kilometers, is acceptable. 

4. Note that we disregard issues of curvature of the earth and elevation in our analysis.  

While these issues may play a crucial role in examining larger distances over hillier 

terrain, we feel the approximation of distance in two-dimensions is adequate for the state 

of Iowa and small distances, relative to the size of the earth, employed in the analysis. 

5. While this approach saved considerable time, the correlation structure of the rainfall 

distributions across space for any give year were lost.  While this information was not 

critical to this specific application, the spatial structure of the rainfall distributions would 

be of definite interest for reinsurance purposes. 

6. The Monte Carlo error is a measure of the deviation of the sampled mean from the 

mean of the true posterior distribution.  See Gilks, Richardson, and Spiegelhalter and 

Brooks for further discussion on convergence criterion in MCMC applications. 

7. It is assumed here that pasture and hay production are directly proportional.  Hay 

prices and yields were used due to a lack of data for production value on pastureland.  
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The feed value of an acre of pastureland will most likely be lower than the production 

value of an acre of hay.  Alternatively, the liability value could be multiplied by a factor 

which accounts for the differential in value of an acre of pastureland versus an acre of 

land used for hay production.   

8. The factor of 0.53 is meant to adjust the liability computed from hay yield and price 

data for a better proxy of pasture value.  It is equal to the average ratio of pasture rental 

rates to rental rates for land used for hay production across Iowa counties, as reported in 

the 2005 Iowa Rental Rate Survey published by Iowa State University Extension. 

9. While computers generate random numbers in an independent fashion theoretically, 

there is always some level of sample correlation among the draws that creates bias in the 

Iman and Conover procedure. 

10. The constant term for the quadratic specification was restricted to equal unity and the 

formula was further restricted to ensure that the marginal effect of distance was bounded 

above by zero.  The full specification was  corri,j = 1 - 0.3921*min(3.41,disti,j) + 0.0575*[ 

min(3.41,disti,j)]2.  This effectively sets the correlation between any two weather stations 

further than 235 miles (3.41 degrees latitude) apart equal to 0.33. 
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