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Is Risk Aversion Really Correlated with Wealth?  

How estimated probabilities introduce spurious correlation 

 

ABSTRACT 

Economists attribute many common behaviors to risk aversion and frequently focus on how 

wealth moderates risk preferences. This paper highlights a problem associated with empirical 

tests of the relationship between wealth and risk aversion that can arise when the probabilities 

individuals face are unobservable to researchers. The common remedy for unobservable 

probabilities involves the estimation of probabilities in a profit or production that includes 

farmer, farm and agro-climatic variables. Unfortunately, these variables are often correlated with 

wealth such that estimated probabilities are likely to leave statistical fingerprints on 

subsequently-estimated risk aversion coefficients and may thereby introduce spurious 

correlations between wealth and risk preferences. In this paper, we use data from an experiment 

conducted among 290 Indian farmers to detect these spurious correlations. We estimate 

coefficients of risk aversion with known probabilities and with estimated probabilities and 

compare subsequent correlations with wealth and other farmer traits. We estimate ‘unobservable’ 

probabilities in conjunction with risk preferences following a standard field data approach. We 

explore the statistical implications of estimating probabilities by comparing correlations between 

wealth and these two sets of estimated risk preferences. These comparisons show how estimated 

probabilities can change risk aversion coefficients substantially and introduce spurious 

correlations between risk aversion and wealth.   
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Is Risk Aversion Really Correlated with Wealth?  

How estimated probabilities introduce spurious correlation 

 

Economists attribute many common behaviors to risk aversion. These precautious behaviors 

often appear to be rational, but sometimes seem quite pernicious. Risk aversion, for example, is 

frequently blamed for poverty traps and impediments to technology adoption. Since responses to 

risk can be self-preserving in some settings and self-defeating in others, it is important to 

understand how individuals’ degree of risk aversion shapes their decisions and outcomes. 

Beginning with the hypotheses proposed by Arrow (1971), pursuit of this understanding has 

focused largely on how wealth moderates an individual’s risk aversion. Empirically testing the 

relationship between wealth and risk aversion is unfortunately plagued with a variety of 

problems. This paper highlights one such problem that arises when the probabilities individuals 

face when making a particular decision are unobservable, which is common in empirical settings.  

To illustrate the inherent problems with relating risk aversion to wealth, suppose you 

wanted to estimate risk preferences among a group of farmers, then test for correlations between 

these estimated risk preferences and wealth and other farmer traits. You collect data on farmer 

characteristics and various farm management decisions and outcomes, and specify a utility 

function with estimable parameters that capture a measure of absolute or relative risk aversion. 

But now what do you use as probabilities when you estimate the implied expected utility model? 

Since you cannot observe probabilities associated with profit distributions in the field, you must 

estimate them instead, typically as a function of farmer, farm and agro-climatic variables. The 

analysis now gets complicated. Many of the factors affecting risk response also affect profit 

distributions and farm structure. This makes it difficult, if not impossible, to separate structural 

risk effects from behavioral effects, and severe bias can result from these confounding 
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influences. Furthermore, variables used to estimate probabilities in the profit function potentially 

leave statistical fingerprints on estimated risk aversion coefficients in the utility function. This 

artifactual link between farmer traits and risk aversion coefficients renders any correlations 

between farmer characteristics such as wealth and risk preferences suspect. Simply put, you 

cannot tell whether the correlation is a meaningful result or a spurious artifact of the estimation 

procedure. Such a link may draw into question the now common tests of Arrows hypotheses 

relating risk to wealth. 

In this paper, we use data from an experiment conducted among Indian farmers to detect 

these spurious correlations. Using known probabilities of experimental payoff distributions 

offered to farmers, we estimate farmers’ revealed risk preferences and establish corresponding 

correlations with farmers’ wealth. We then estimate revealed risk preferences under the 

assumption that farmers’ decisions and outcomes are observable, but corresponding probabilities 

are not and must instead be estimated in conjunction with risk preferences as is commonly done 

with field data. By comparing correlations between wealth and these two sets of estimated risk 

preferences, we show how jointly estimating stochastic profit or production functions using 

farmer traits or other correlates of wealth changes risk aversion estimates substantially and 

clearly introduces spurious correlations between risk aversion coefficients and wealth.   

 

1 BACKGROUND 

Much early research on risk behavior considered how heterogeneity in risk aversion was related 

to socio-economic variables such as wealth or education (e.g., Friedman and Savage 1948). 

Arrow (1971) and Pratt (1964) developed coefficients of relative and absolute risk aversion for 

the purpose of objectively measuring aversion to risk. Arrow (1971) also proposed a series of 

hypotheses regarding how these measures relate to wealth. In particular, Arrow argued that 
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individuals increase in relative risk aversion and decrease in absolute risk aversion as allocable 

wealth increases. Several empirical studies followed with the goal of testing Arrow’s hypotheses.  

 Binswanger (1980) conducted some of the earliest tests of Arrow’s hypotheses. 

Binswanger conducted experiments in India, asking individuals to choose to play one of eight 

gambles. The outcome of each gamble was determined by a coin toss. The gambles ranged from 

a safe amount of money (resulting from both heads and tails) to a 50% chance of a large gain and 

50% chance of no gain. Each individual was asked to choose between the choices for several 

different payoff levels ranging from very small amounts, to more than the daily wage rate. No 

losses were possible. Binswanger associated a range of partial risk aversion with each choice, 

and then regressed these partial risk aversion measures on demographic variables for each level 

of payoffs. Binswanger finds some evidence that partial risk aversion declines with income and 

wealth (though insignificantly). Further, Binswanger finds little variation in risk aversion based 

on other socio-economic variables. 

 Other attempts to relate wealth or socio-economic data to risk aversion have depended on 

econometric estimation using data on investment or production decisions. Such econometric 

studies use either structural estimation based on a parametric utility model or reduced form 

estimation. Holt and Chavas (2001) outline many of the drawbacks of econometric estimation of 

risk aversion parameters and in particular of reduced form estimation. Reduced form estimation 

relies on estimating a Taylor series approximation of the expected utility function around the 

mean wealth level. This form has become popular because it is simple, and produces risk 

aversion coefficients that appear as simple linear coefficients of variance measures (e.g., Bar-

Shira et al. 1997, Chavez and Holt 1990, Pope and Just 1991). Two primary drawbacks, noted by 

Holt and Chavas, to reduced form estimation are that (1) it can be difficult to infer how changes 

in socio-economic variables affect risk aversion measures, and (2) one must create some estimate 
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of the individual’s perceived risk from various choices. Estimating perceived risk may sound 

simple at first blush. However, one can never observe the moments of the distribution perceived 

ex ante by the decision-maker. Often econometric estimation will use outcomes to estimate ex 

ante beliefs. No matter what method is used, it is impossible to account for heterogeneity in risk 

perception by decision-makers. Unaccounted for, this heterogeneity of perception thus 

contaminates risk aversion estimates and possibly creates false correlations between socio-

economic variables and risk parameters (Just 2001). 

 Holt and Chavas (2001) suggest that structural estimation is underutilized in measuring 

properties of risk aversion. Antle (1987), Chavas and Holt (1996), and Saha et al. (1994) each 

use a structural approach to measure risk parameters. Originally, employing a structural approach 

to test Arrows hypotheses was difficult because no functional form had been proposed that could 

satisfy the hypotheses. Saha’s expo-power utility function (employed in Saha et al. to measure 

farmer’s risk aversion) filled this gap by providing the necessary flexibility. While many have 

argued the benefits of structural estimation, results have been widely conflicting, and therefore 

suspect. Just and Peterson (2003) show that estimates of risk parameters fundamentally 

contradict the data that produced them. Using the conditional profit distribution estimated by 

Saha et al., Just and Peterson show that farmer’s revealed preferences can only be consistent with 

a negatively sloped utility of wealth function and interpret this as evidence of the failures of 

expected utility theory. Just and Pope (2003) suggest that this contradiction may alternately be 

explained by the omission of heterogeneity in production technologies or external constraints on 

production in estimation. In many cases, heterogeneity in preferences and technology are 

confounded when both are estimated jointly. Even if estimated separately, it is difficult if not 

impossible to estimate a realistic conditional profit distribution – a prerequisite for using the 

structural approach in econometric estimation. 
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 We overcome the inherent problems of estimation encountered in econometric studies of 

risk aversion by employing experiments. By using hypothetical seed distributions, we can control 

for the exact distribution of profits available to decision-makers. Moreover, by using willingness 

to pay data, we obtain much more detailed information on risk aversion parameters than was 

possible using Binswanger’s dichotomous experimental design.  

 

2 DATA 

This paper uses data from the Salem and Perambalur districts of Tamil Nadu state, India (see 

Figure 1). These data were collected with local support from Tamil Nadu Agricultural University 

and funding from the Agricultural Biotechnology Support Program (USAID-Cornell University). 

Ten enumerators surveyed 290 households in three Perambalur villages (Annukur, Pandagapadi, 

and Namaiyur) and three Salem villages (Vellaiyur, Kilakku Raajapalayam, and Kavarparnai). 

These villages were selected from the 12 or so villages in Tamil Nadu that presently have more 

than 18 Bt cotton farmers.1 The research team used choice-based stratified sampling to ensure the 

participation of Bt cotton farmers and other farmers. The team collected data in two parts. In the 

first part, enumerators administered a detailed household questionnaire focused on farmers’ 

management decisions, valuation of seed traits, risk exposure and wealth. In the second part, the 

team conducted experiments with farmers to elicit their valuation of hypothetical yield 

distributions. Farmers earned money (Rupees (Rs)) according to their performance in the 

experiment.  

The experiment consisted of a series of hypothetical farming seasons. At the beginning of 

each season, farmers were offered a ‘seed’ with a known Rupee-payoff distribution. This 

distribution was explained simply and repeatedly and shown graphically in order to facilitate 

                                                 
1 One objective of the broader research project was to assess farmers’ valuation of Bt crops (Lybbert forthcoming). 
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farmers’ understanding of the payoff distribution implied by a given ‘seed.’ The distribution of a 

particular ‘seed’ was represented by 10 chips in a small black bag. There were three colors of 

chips, each representing a ‘harvest’ payoff: blue (high), white (average), and red (low). The 

distribution was modified by changing the proportion of blue, white and red chips in the bag. 

Farmers’ valuation of the seed was elicited using an open-ended question, which generally elicits 

true values better than dichotomous choice questions (Balistreri et al. 2001, Coursey et al. 1999), 

and the well-known Becker-DeGroot-Marschak (BDM) mechanism (Becker et al. 1964). Before 

the price of the seed was known, each farmer expressed his maximum WTP for the seed. 

Following the BDM mechanism, the seed price was then randomly drawn from a uniform 

distribution with the minimum and maximum corresponding to the minimum and maximum 

Rupee-payoff. Farmers who were willing to pay at least as much as the randomly-drawn seed 

price ‘purchased and planted’ the seed.2 With the help of a farmer, the lead enumerator would 

then draw a chip from the bag to determine the Rupee-payoff for the season. Farmers’ season 

earnings were Rs50 plus their net seed earnings (harvest payoff minus the seed price). Farmers 

who did not ‘purchase and plant’ the seed because their WTP was lower than the seed price still 

received Rs50 at the season’s end. Each seed and its corresponding yield distribution was offered 

for five consecutive seasons: four practice seasons, then one ‘high-stakes’ season. Practice 

season earnings were ‘exchanged’ for real Rupees at an exchange rate of 1/100. High-stakes 

season earnings were ‘exchanged’ at real Rupees with an exchange rate of 1/10.  

The structure and presentation of the experiment was simplified as much as possible 

during pre-testing. As a necessary departure from the experimental economics principle of 

                                                 
2 To make the BDM mechanism more tangible for farmers, the lead enumerator would explain that the mechanism 
worked much like sending money with a trusted friend to purchase the seed on their behalf without first knowing the 
seed price. If the friend had enough money with him to cover the seed price once he observed the price, he would 
purchase the seed and return any surplus money. If he did not have enough money to cover the seed price, he would 
not purchase the seed and return the money in full. This imagery effectively helped farmers to realize that it was in 
their best interest to send as much money as they thought the seed was worth, which is precisely the advantage of 
the BDM mechanism (Becker et al. 1964).  
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abstractness, the experiment was framed clearly in a farming context to improve farmers’ 

understanding of the experiment. While all participants were farmers and abandoning some 

abstractness in favor of an agriculture context is therefore defensible, striking an appropriate 

balance between abstractness and context was challenging nonetheless. At the conclusion of the 

experiment, the enumerators asked farmers how well they had understood the experiment, to 

which 11% reported “with some confusion”, 4% reported “poorly”, and 0% reported “very 

poorly”.  

There were five payoff distributions in the experiment: a Base distribution (B), a High 

distribution (H), a Low distribution (L), a Stabilized distribution (S), and a Truncated distribution 

(T). To control for potential ordering effects, these five distributions were offered to farmers in 

one of four orderings: [B-S-T-H-L-B], [B-L-T-H-S-B], [B-T-L-S-H-B], and [B-H-S-L-T-B]. 

Since farmers’ valuations of distribution changes are desired, all four orderings begin and end 

with the Base distribution, B, which we denote as B1 and B2, respectively.3  

Figure 2 shows the marginal probability distributions for the payout distributions of the 

experiment along with the Expected Value (EV), standard deviation (σ) and skewness (sk) of 

each distribution. These simple typological distributions where chosen to facilitate farmers’ 

understanding of the experiment. We used simple pictures like those in Figure 2 to capture each 

distribution and explain the experiment to farmers.  

Table 1 contains descriptive statistics for several relevant variables from the 

questionnaire and experiment. Of the 290 farmers surveyed, only three (or 1%) are female. One 

third of the farmers have no formal education and the average farmer has five years. Subjects 

                                                 
3 During the experiment, each enumerator worked separately with at most two farmers. If an enumerator was working 
with two farmers, they would be seated far enough apart that their conversations with the enumerator, including any 
questions about the experiment and the farmers’ stated WTP, were completely private. Logistically, the experiment 
was typically held in a public room in the village and would last approximately two hours. The first hour was spent 
explaining and practicing the experiment, then tea was served and farmers could discuss the experiment among 
themselves. The second hour was spent on the B, H, L, S, and T distributions.  
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indicated that 33% (73%) own a television (radio), but only 4% own a tractor. Livestock are 

important for farmers in the survey area, and most farmers have at least a couple of animals.4 

The average farmer farms five or six acres, about a third of which is irrigated. Cotton and maize 

are the two most important crops in terms of the percentage of farmers’ land planted. Farmers’ 

top ranking management goal is, not surprisingly, increasing yield, after which come protecting 

against pest losses and lowering production costs. Stabilizing yield across years and increasing 

harvest quality are relatively less important to the average farmer. Most farmers earned more 

than Rs60 in the experiment and none earned less than Rs40. Compared to the daily wage for 

unskilled labor in the survey site of about Rs50 the experiment payoffs provided non-trivial 

incentives.  

 

3 ESTIMATION 

In this section, we describe two sets of estimation procedures. The first set uses farmers’ 

willingness to pay (WTP) for experimental payout distributions to estimate coefficients of risk 

aversion. The second set of procedures uses these coefficients of risk aversion as dependent 

variables to estimate the relationship between risk aversion and farmer traits such as wealth and 

education. We present these sets of procedures along with estimation results in sub-sections A 

and B, respectively.  

 

A. Coefficients of Risk Aversion 

We use four different approaches to estimate coefficients of risk aversion. These four 

approaches all use farmers’ WTP to estimate risk preferences, but differ in their treatment of the 

payout distribution probabilities. In particular, the True Probabilities approach assumes we know 

                                                 
4 Tropical Livestock Units are constructed as a weighted sum of cows, bullocks and goats, where the weights are 1, 1 
and 0.1, respectively. 
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the true underlying probabilities farmers faced when deciding on their WTP. Using these true 

probabilities we can solve directly for coefficients of risk aversion implied by farmers’ WTP. 

The three other approaches, which we denote as Estimated Probabilities (EP) approaches, 

assume we do not know the true probabilities and must instead estimate them using ex post 

payout amounts. Probability estimation across these three approaches differs according to 

whether we can distinguish between the different seeds offered to farmers – i.e., whether we 

know which of the nine possible experimental payouts, {-30, 0, 20, 30, 50, 70, 80, 100, 130}, 

were relevant ex ante – and how we use this knowledge. Approaches EP1 and EP2 both assume 

we can distinguish between seeds. Approach EP1 estimates probabilities separately for each 

seed. Approach EP2 estimates probabilities by pooling all the ex post payout amounts and 

adding a dummy variable for each seed in this pooled equation. Approach EP3 assumes we 

cannot distinguish between seeds and also estimates a pooled equation, this time without seed 

dummy variables. Each of these approaches – EP1, EP2 and EP3 – is designed to mimic 

procedures that are commonly employed in estimation with field data. We use estimates from the 

True Probabilities approach, which is the most efficient and least biased method of using the 

data to estimate risk preferences, as a benchmark for evaluating these EP-based estimates. We 

hope that the results from each method can tell us something of the nature and size of bias 

introduced by using estimated rather than true probabilities to infer how risk attitudes relate to 

other individual characteristics such as wealth.   

 

True Probabilities Approach 

In this straight-forward approach, we solve for the risk preferences implied by farmer j’s WTP 

for seed t using the expected utility relationship 
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Eq  1  ( ) ( )| |j jt it j jt it jt
i

U w U w WTP xβ π β= − +∑        

where U is the utility of wealth function, wj represents wealth of individual j, βjt is a risk aversion 

parameter for individual j and payout distribution t, πit is the probability of outcome i in payout 

distribution t, and xit is payout for outcome i in distribution t. The experiment described above 

provides data for variables πjt, WTPjt, and xit; the companion questionnaire provides data for wj. 

For any function U, then, we can solve for the risk aversion parameter βjt that rationalizes farmer 

j’s WTPjt. This parameter simply adjusts the curvature of U to maintain the expected utility 

equality in Eq 1.  

Before we specify a functional form for U, recall that each individual faced five different 

payout distributions. Under many circumstances, it would be possible to estimate a single risk 

aversion coefficient for each individual by minimizing squared error or by assuming a normally 

distributed error and maximizing the likelihood function. However, in the case of canonical risk 

aversion models with willingness-to-pay data, such estimators are biased even when distributions 

of the underlying uncertainty are known. Solving  for jtβ  separately for each observation t of 

individual j, then estimating j jt
t

Tβ β=∑   produces a consistent estimate of risk parameters 

(see Just and Lybbert 2005 for complete explanation). 

 We use a locally quadratic utility function to solve for individual risk preferences, 

Eq  2  ( ) ( ) ( )2
0 1 0 11U w w w w wβ= + − − −  

where β is the local Arrow-Pratt measure of absolute risk aversion, w0 is initial wealth and w1 is 

end-of-period wealth. We solve for seed-specific measures of absolute risk aversion for each 

individual, βjt, by combining Eq  1 and Eq  2 and using the following expected utility 

relationship 
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Eq  3  ( ) ( )
3 2

1
1 1it jt it jt jt it

i
WTP x WTP xπ β

=

⎡ ⎤= + − + − − +⎢ ⎥⎣ ⎦∑  

where payouts xit are sorted for each seed t in ascending order: i={1=Low, 2=Mid, 3=High}.5 

Note that βjt indicates the curvature required to maintain this expected utility relationship for 

seed t and is therefore a seed-specific coefficient of absolute risk aversion. We compute and 

analyze both βjt and the average over all six seeds for each individual, denoted jβ , then use these 

True Probabilities-based estimates as a benchmark for evaluating the Estimated Probabilities 

approaches. 

 
 
Estimated Probabilities Approaches 

 In these approaches, we use the expected utility relationship in Eq 3 but assume we can 

no longer observe πit and must estimate probabilities instead. With estimated probability pijt – 

which is specific to individual j if probabilities are conditioned by farmer traits such as 

education, land holdings, and wealth – the relationship in Eq 3 produces an estimate of the 

coefficient of risk aversion, bjt, rather than the true implied coefficient βjt. Before delving into 

different ways of estimating pijt, consider first the broader challenges of using field data to 

estimate risk preferences.  

If we were using field data, rather than experimental data, we would still observe w, but 

field data analogues of WTP, πit and xit are more problematic. We could likely find a proxy for 

WTP. Although such a proxy might be more realistic than our experimental WTP, it would 

almost surely be less tidy and may even be binary (e.g., adoption of technique or technology). 

Our knowledge of the profit distribution facing individuals – the field data analogue of the 

                                                 
5 There were a total of nine outcomes in the experiment: {-30,0,20,30,50,70,80,100,130}. Since each distribution had 
only three possible outcomes, the notation i={L,M,H} is used to denote the low, middle and high outcome for a given 
distribution and serves simply as a place holder for the numeric value of the outcome.  
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experimental payout distribution – would likely be even more garbled. We may or may not be 

able to distinguish clearly between the gambles (subscript t) relevant for each individual (e.g., 

crops, seed varieties, technologies, etc.). We would still observe the ex post outcome drawn by 

each individual, but may know very little about the size or number of outcomes the individual 

faced ex ante. The probabilities implicit in an individual’s profit distribution would be even more 

difficult to observe. The next three approaches offer different ways of estimating these 

probabilities according to whether we can distinguish between and how we treat the seeds 

farmers faced in the experiment. We refer to these estimated probability approaches as EP1: 

Known and Separate Seeds, EP2: Known and Pooled Seeds, and EP3: Unknown and Pooled 

Seeds.  

 

EP1: Known & Separate Seeds (KS).  In this approach, assume we know precisely which seed 

farmers faced when they formulated their WTP – i.e., we could see subscript t on WTP – and we 

can therefore estimate separate probability equations for each seed. This Known and Separate 

Seeds approach uses the observable ex post payouts corresponding to a given seed as the 

dependent variable and various farmer traits as the independent variables. We then use this 

estimated model to predict KS
ijtp , the probability of each possible outcome i for seed t and farmer 

j. This approach is intended to mimic the common procedure of estimating profit distributions 

contingent on crop or other inputs, and then using this distribution to estimate risk preferences 

(e.g. Chavas and Holt, 1990).  

Since the experiment offered farmers discrete payout distributions, we use an ordered 

probit model to estimate KS
ijtp  for i={1=L, 2=M, 3=H} and t=τ as follows  
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Eq  4  
( )
( ) ( )

( )

,

,

, 1

KS
j t

KS
L j

KS KS
M j M

KS KS
H j M

x

p

p

p

τ

τ τ

τ τ

τ τ

ε

µ

µ

=
′= +

′= Φ −

′ ′= Φ − −Φ −

′= −Φ −

KS
τ j

KS
τ j

KS KS
τ j τ j

KS
τ j

φ z

φ z

φ z φ z

φ z

 

where j tx τ=  is the observed payout for farmer j and seed τ, zj is a column vector of traits for 

farmer j and ϕτ
KS is a vector of estimable parameters for seed τ,  εKS is an error term, KS

Mτµ  is the 

estimated break between i=L and i=M, and Φ is the cumulative density function for the normal 

distribution. In estimating these probabilities, we specify a full model using the following farmer 

traits in the vector zj: age, education, a wealth index (discussed below), irrigated land holdings, 

and non-irrigated land holdings. To help identify the source of any spurious correlations between 

wealth and risk preferences in subsequent estimation, we also estimate probabilities excluding 

the wealth index from this trait vector and with a single random variable in place of this trait 

vector. We refer to these three specifications of the trait vector as the full, no wealth, and random 

variable specifications, respectively. 

Estimating the ordered probit in Eq 4 is analogous to estimating a profit or production 

function assuming a (discrete) normal distribution of returns. Using these estimated probabilities 

with known and separate seeds, we then estimate a seed-specific coefficient of risk aversion for 

each farmer using the expected utility relationship in Eq 3, which we denote as KS
jtb . This 

coefficient is directly comparable to the true coefficient jtβ  as both are seed- and individual-

specific. We also compute and analyze an average coefficient for each farmer, denoted KS
jb . 

 

EP2: Known & Pooled Seeds (KP).  This approach still assumes we can distinguish between 

seeds, but estimates a single pooled equation for all eight seeds instead of treating each seed 
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separately. In this pooled equation we control for seed type using dummy variables. This 

approach is intended to mimic approaches that are similar to those above but allow less 

flexibility in the estimation of the distribution. In many cases, too little data exists to estimate full 

distributions for each input variety. In this case researchers will often introduce a dummy 

variable to control for variation. With the known seeds pooled in this way, probabilities for all 

nine possible payouts –  KP
ijtp  for i={-30, 0, 20, 30, 50, 70, 80, 100, 130} – are predicted with a 

single estimated ordered probit model as follows 

Eq  5  

( )( )
( )( ) ( )( )
( )( ) ( )( )

( )( )

30,

0, 0

20, 20 0

130, 1001

KP
jt

KP
jt

KP KP
jt

KP KP KP
jt

KP KP
jt

x

p

p

p

p

ε

µ

µ µ

µ

−

′ ′= + +

′ ′= Φ − +

′ ′ ′ ′= Φ − + −Φ − +

′ ′ ′ ′= Φ − + −Φ − +

′ ′= −Φ − +

KP KP
j

KP KP
j

KP KP KP KP
j j

KP KP KP KP
j j

KP KP
j

φ z γ t

φ z γ t

φ z γ t φ z γ t

φ z γ t φ z γ t

φ z γ t

 

where γKP is a vector of estimable parameters on the seed dummies in vector t, and KP
iµ  is the 

estimated break for payout i. Using these estimated probabilities with known and pooled seeds, 

we estimate another coefficient of risk aversion for each farmer, which we denote KP
jb . Note that 

since estimated probabilities in this case are derived from a pooled model the expected utility 

relationship in Eq 3 must be slightly modified. Instead of estimating a farmer-specific coefficient 

of risk aversion that is different for each seed t, we now must pool all the estimated probabilities, 

outcomes and WTP observations for each farmer as follows:  

Eq  6  ( ) ( )
9 2

1
1 1KP KP

ijt jt it j jt it
i

p WTP x b WTP x
=

⎡ ⎤= + − + − − +⎢ ⎥⎣ ⎦∑  
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where again payouts i are in ascending order such that i={1=-30, 2=0, 3=20, …, 9=130}.While 

this estimated coefficient is seed-specific, we focus exclusively on each farmer’s average 

coefficient of risk aversion over the six seeds since the probabilities are predicted from a probit 

model that pools all the seeds together. We denote this average coefficient as KP
jb . 

 

EP3: Unknown & Pooled Seeds (UP).  For the final approach, assume we can no longer 

distinguish between seeds – i.e., we cannot see subscript t on WTP – and so can only estimate 

probabilities by pooling all the observed payouts together. At some level nearly all approaches 

pool various inputs, seed types, or other production methods. For example, Saha, Shumway and 

Talpaz (1994) pool all inputs into three variables, materials, capital and land. In this case, much 

of the variation in profit distributions may not be discernable from the data. In contrast to the 

Known & Pooled Approach, we can no longer control for seeds with seed dummies, and the 

predicted probabilities, UP
ijp , are no longer seed-specific as follows 

Eq  7  

( )( )
( )( ) ( )( )
( )( ) ( )( )

( )( )

30,

0, 0

20, 20 0

130, 1001
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j

UP UP
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UP UP UP
j

UP UP
j

x

p

p

p

p

ε

µ

µ µ

µ

−

′= +

′= Φ −

′ ′= Φ − −Φ −

′ ′= Φ − −Φ −

′= −Φ −
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Using these predicted probabilities with unknown and pooled seeds, we estimate a final 

coefficient of risk aversion for each farmer. Again, because the estimated probabilities are based 

on a pooled model, we estimate a single overall coefficient of risk aversion for each farmer, 

which we denote as UP
jb . 
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B. Farmer Traits and Coefficients of Risk Aversion 

With four different sets of estimated coefficients of risk aversion – three sets based on 

estimated probabilities and one comparable set based on true probabilities – we can now test for 

correlations between wealth and risk aversion by estimating the relationship between these 

coefficients of risk aversion and individual traits. We begin with an individual trait model that 

uses the average true coefficient of risk aversion, jβ , as the dependent variable to establish the 

true correlation between wealth and risk aversion implied by our experimental data. Using these 

results as a benchmark, we assess whether estimated probabilities introduce spurious correlation 

between traits and risk preferences by comparing them to results for trait models with KS
jb , KP

jb  

and UP
jb  as dependent variables. Lastly, we compare results for trait models with seed-specific 

coefficients jtβ  and KS
jtb  as dependent variables.  

With jβ  as dependent variable, we estimate the following trait model: 

Eq  8  
1 2 3 4 5 6 7j j j j j j j

j

Age Edu TLU IrrLand Bt Wealthβ α α α α α α α

ε

= + + + + + +

′ ′+ + +v j g jφ v φ g
 

where TLU is herd size measured in tropical livestock units, IrrLand is the percent irrigated of 

total land holdings, and Bt is a dummy that indicates whether individual j has adopted Bt cotton. 

Fixed-effects are introduced into this model through a vector of village dummies v and a vector 

of order dummies g that indicate the order in which individual j was offered the experimental 

distributions.6 Wealth is a factor analytic wealth index, which is described and discussed in the 

                                                 
6 Recall that distribution B was always the first and last one (B1 and B2, respectively) offered to participants. This 
vector of dummies indicates the order in which distributions T, S, H, and L were presented to individual j.  
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Appendix. We replicate the trait model specified in Eq 8 for dependent variables KS
jb , KP

jb  and 

UP
jb , as well as for the seed-specific dependent variables jtβ  and KS

jtb .  

 

4 RESULTS 

In this section, we present and discuss estimation results – first, from the ordered probit model 

used to estimate probabilities and, second, from the farmer trait models used to estimate the 

correlation between wealth and risk aversion.  

Estimation results for the ordered probit models EP1, EP2, and EP3 outlined above are 

shown in Table 3. Since the probabilities in the experiment are independent of individual traits, 

the statistical insignificance of the trait coefficients is not surprising. As shown in Figures 3 and 

4,7 however, these probability models do a decent job predicting the probabilities attached to 

specific outcomes in the experiment. In addition to these estimated probabilities, which are 

estimated based on the full trait vector shown in Table 3, we estimate two alternative sets of 

probabilities; the first excludes wealth from this trait vector, and the second uses a random 

variable in place of this trait vector.8 As already mentioned, we use these alternative sets of 

estimated probabilities to identify how wealth and other traits in the probability model introduce 

spurious correlation between risk preferences and traits in subsequent estimations. 

 Using these estimated probabilities, we solve Eq  3 for the estimated coefficients of risk 

aversion discussed above. Histograms of KS
jb , KP

jb  and UP
jb  are superimposed on a histogram of 

the average true coefficient jβ  in Figure 3. Since moving from KS
jb  to KP

jb  to UP
jb  entails greater 

restrictions – and, hence, less information – in the estimated probabilities model, it is not 

surprising that the distribution of average estimated coefficients becomes tighter and more 
                                                 
7 Note that the average true probabilities depicted in Figure 4 are computed as ( )6

1
6itt

p
=∑ . 

8 Results from these alternative order probit models are available upon request. 
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symmetric over these progressively more restricted models. Also apparent in Figure 3 is the 

consistent downward shift in the distribution of risk aversion coefficients when estimated 

probabilities are used in lieu of true probabilities. The aggregate differences between true and 

estimated coefficients, both for average and seed-specific coefficients, are further confirmed in 

Table 3, which displays descriptive statistics for these coefficients and t statistics for the test that 

the means for true and estimated coefficients are equal.9 It is important to note that this disparity 

between true and estimated coefficients of risk aversion is likely exaggerated in this case because 

the probabilities used in the experiment are clearly independent from individual traits. In field 

data, probabilities may indeed depend on traits, but because it is difficult to know how well 

estimated probabilities proxy for the probabilities perceived by individuals it is also difficult to 

judge how well estimated coefficients reflect true coefficients.  

Table 4 displays estimation results from the trait model in Eq  8 with average coefficients 

of risk aversion as dependent variables. Comparing the standard errors and overall fit across 

these models, it is clear that using estimated probabilities introduce correlations between traits 

and these coefficients. When true probabilities are used, none of the trait coefficients are 

statistically significant, indicating that farmers’ risk preferences are not measurably influenced 

by farmer characteristics. As we progressively presume to know less and less about these 

probabilities (i.e., as we move from EP1 to EP2 to EP3), statistical significance uniformly 

increases. Moreover, these patterns are robust when standard errors are bootstrapped. 

To facilitate comparisons across these estimation results, we use graphical depictions of 

90% confidence interval estimates of these trait coefficients. Figure 6 shows these interval 

estimates for the average true and average estimated coefficients of risk aversion. Spurious 

correlations introduced by estimated probabilities are evident in the tightening of the confidence 

                                                 
9 Table 3 excludes 13 farmers who expressed some confusion during the experiment such that N=277. 
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intervals for IrrLand and Wealth. Since the relationship between wealth and risk aversion is 

often central to empirical risk research, we focus on the coefficient on Wealth. Figure 7 displays 

interval estimates for this coefficient in the KP
jb  and UP

jb  models for the different probability 

model specifications. Under the most restrictive approach (EP3), the source of spurious 

correlation between wealth and risk aversion is clear. 

 Next, we focus on seed-specific trait models that compare KS
jtb  and jtβ  for 

t={B1,B2,T,S,H,L}. Instead of presenting the full set of regression results for these 12 models, 

we focus exclusively on interval estimates of the wealth coefficient. Figure 8 shows these 

interval estimates for all six distribution types and for the average over these distributions (i.e., 

jβ  and KS
jb ). There are two results worth noting in this figure. First, the estimated wealth 

coefficients for the true coefficient of risk aversion may be seed-specific, implying that the 

relationship between wealth and risk aversion may depend on qualitative features of payoff 

distributions. Second, the spurious correlation introduced into this relationship by estimated 

probabilities is due to the inclusion of wealth correlates in the estimation of probabilities and 

vanishes as these correlates are excluded from the estimation of probabilities.  

 

5 CONCLUSION 

Ever since risk aversion was formulated as an analytic concept, the correlation between wealth 

and measures of risk aversion has been central to empirical risk research. This paper highlights a 

common problem in this research that may complicate establishing this correlation. In empirical 

settings outside the economic laboratory, the probabilities that individuals face when making 

decisions (or their perceptions of these probabilities) are not observable and must be estimated, 

often via a production or profit function that is jointly estimated with a utility function. When 
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these probabilities are estimated as a function of individual wealth or correlates of wealth, 

subsequent estimation of the correlation between wealth and risk preferences is potentially 

misleading. We use data from a field experiment in which probabilities are known to 

demonstrate how estimating probabilities can introduce spurious correlation.  
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APPENDIX 

The Wealth Index & Risk Exposure  

We computed the wealth index used in the trait models as Eq  8the product of a vector of farmer 

variables and a vector of corresponding factor analytic weights. We also computed a risk 

exposure index using a similar approach. We follow an iterative approach for selecting the 

variables included in the vectors for these wealth and risk exposure indices. Beginning with a 

broad set of variables, we estimate an initial weight vector and compute a residual correlation 

matrix. When off-diagonal residual correlation is greater than 0.10 between two variables, we 

retain the variable that seems to be more relevant or more reliable and remove the other, then re-

estimate the weight vector using this more focused variable vector. (See Lawley and Maxwell 

(1971) for details about factor analysis and Sahn et al. (1999) and Lybbert et al. (2002) for 

applications of factor analysis that involve asset and wealth indices similar to those constructed 

in this section.)  

The results of the estimation of these weights are shown in Table A1. The left panel of 

Figure A1 displays kernel density plots of the wealth and risk exposure indices.10 The right panel 

of Figure A1 displays a scatter plot of the two indices with a kernel density regression line of the 

wealth index on the risk exposure index.11 Despite the conventional wisdom that wealth directly 

shapes risk tolerance as revealed by asset allocation and production decisions, these two indices 

are clearly uncorrelated (correlation coefficient -0.06).  

 

                                                 
10 Epanechnikov kernel with bandwidths of 0.18 and 0.17, respectively. 
11 Logistic kernel with bandwidth of 0.13. 
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Figure 1 Map of surveyed villages in Salem and Perambalur districts of Tamil Nadu (TN), India 
(India map courtesy of www.theodora.com/maps, used with permission). 
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Figure 2 Marginal probability distributions for distribution types in experiment 
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Figure 3 True probabilities (bars) and average KS
ijtp  (dash) ± 2 standard deviations (line).  
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Figure 4 Average true probabilities (bars) and average (dots) ± 2 standard deviations 
(lines) for (a) KP

ijtp  and (b) UP
ijp . 
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Figure 5 Histograms of average true risk aversion coefficient jβ  (white) and average estimated 

coefficients (grey): (a) KS
jb  (b) KP

jb  and (c) UP
jb .  
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Figure 6 90% confidence interval estimates of trait model coefficients with average 
coefficient of risk aversion as dependent variables. 
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EP3: Unknown & Pooled Seeds
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Figure 7 90% confidence interval estimates of wealth coefficient for average estimated 
betas with different explanatory variables in probability model 
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Figure 8 90% confidence interval estimates of wealth coefficient for seed-specific 
coefficients of risk aversion with different explanatory variables in probability model 
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Figure A1 Non-parametric regressions of wealth index and risk exposure index 
densities (left) and scatter plot of wealth and risk exposure indices (right). 
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Table 1 Descriptive statistics for relevant variables 
Median Mean Std.Dev Max Min # Min

HH size 4 4.24 1.17 7 2

Female {0,1} 0.01 0 287

Age 45 43.64 11.39 77 19

Education (yrs) 5 4.82 4.52 20 0 105

House w/ concrete floor {0,1} 0.87

Tractor {0,1} 0.04

Television {0,1} 0.33

Telephone {0,1} 0.09

Radio {0,1) 0.73

Total annual expenses (Rs)† 6,500 11,490 14,416 118,000 0 2

Tropical livestock units 2 1.80 1.66 10 0 66

Land (acres) 5 6.67 5.60 50 0 1

% irrigated land 25% 33% 36% 100% 0 115

% in cotton 24% 28% 29% 100% 0 88

% in maize 50% 46% 33% 100% 0 65

% in chilies 0% 2% 6% 67% 0 254

% in paddy 0% 8% 14% 100% 0 184

Increase yield 1 1.3 0.7

Stabilize yield 4 4.1 1.3

Protect against crop loses 3 2.7 1.1

Lower production costs 3 3.6 1.4

Increase harvest quality 4 4.2 1.2

Efficiently use water 6 5.0 1.5

% income from 'very risky' sources 40 36 33 100 0 109

% ... from 'no risk' sources 0 6 18 100 0 244

% ... exposed to high weather risk 40 39 35 100 0 104

% …exposed to high market risk 30 35 37 100 0 129

% …exposed to high pest risk 40 37 31 100 0 89

Average [Base (B)]‡ 44 45 12 85 14.5

High (H) 60 58 17 99 20

Stabilized (S) 45 44 13 95 10

Truncated (T) 50 51 15 99 10

Total earnings from experiment (Rs) 63 64 11 135 44

† Includes expenses on clothes, education, medicine/health, and electronics.
‡ The average of the two high-stakes seasons for B.

Household Demographics, Wealth & Assets

Farm Management Goals (rank)

Risk Exposure of Productive Income

High-Stakes WTP in Experiment
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 Table 2 Ordered probit results for predicting probabilities (standard errors in parentheses) 

t = B1 B2 T S H L EP2: Known EP3: Unknown
Age -0.011 0.002 -0.004 0.009 0.002 0.0002 -0.0007 -0.0007

(0.006) (0.006) (0.007) (0.007) (0.006) (0.006) (0.002) (0.002)
Edu -0.009 -0.011 0.043 0.017 -0.023 0.0001 -0.003 -0.002

(0.016) (0.016) (0.019) (0.019) (0.016) (0.016) (0.006) (0.006)
Wealth -0.088 -0.023 -0.105 -0.097 -0.088 -0.051 -0.059 -0.050

(0.117) (0.116) (0.139) (0.133) (0.115) (0.116) (0.044) (0.044)
Irr.Land 0.008 0.011 -0.002 -0.044 0.022 0.038 0.010 0.008

(0.023) (0.024) (0.028) (0.027) (0.023) (0.024) (0.009) (0.009)
Non-Irr.Land -0.002 0.028 -0.004 0.023 -0.003 0.005 0.006 0.005

(0.018) (0.019) (0.021) (0.021) (0.018) (0.019) (0.007) (0.007)
B2 {0,1} 0.068

(0.086)
T {0,1} 0.406

(0.087)
S {0,1} 0.021

(0.087)
H {0,1} 0.877

(0.087)
L {0,1} -1.040

(0.088)
Log Likelihood -316 -316 -170 -180 -313 -310 -3034 -3276

N = 290 290 290 290 290 290 1740 1740

EP1: Known & Separate Seeds Pooled Seeds
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Table 3 Descriptive statistics for true and estimated risk aversion coefficients. 

Mean Std.Dev. Min Max t statistic* Corr.

β ¯ j 0.0046 0.0053 -0.0145 0.0146

b ¯KS
j -0.0011 0.0041 -0.0122 0.0080 -10.10 0.03

b KP
j 0.0001 0.0030 -0.0093 0.0073 -9.01 0.04

b UP
j -0.0012 0.0027 -0.0089 0.0056 -12.03 -0.06

β j,B1 0.0032 0.0070 -0.0128 0.0129

b KS
j,B1 -0.0023 0.0071 -0.0129 0.0129 -6.52 0.05

β j,B2 0.0088 0.0057 -0.0129 0.0129

b KS
j,B2 0.0024 0.0058 -0.0124 0.0151 -9.28 0.04

β j,T 0.0156 0.0112 -0.0217 0.0218

b KS
j,T 0.0055 0.0171 -0.0249 0.0248 -5.91 0.12

β j,S 0.00002 0.0151 -0.0223 0.0224

b KS
j,S -0.0039 0.0125 -0.0230 0.0229 -2.38 0.08

β j,H 0.0032 0.0062 -0.0129 0.0129

b KS
j,H -0.0024 0.0063 -0.0131 0.0131 -7.52 -0.03

β j,L -0.0036 0.0077 -0.0129 0.0125

b KS
j,L -0.0061 0.0062 -0.0133 0.0134 -3.03 -0.01

* Tests the null that an estimated b  is equal to the corresponding true β .  
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Table 4 Estimation results from trait model with average coefficient of risk aversion (x 100,000) 
as dependent variable (standard errors in parentheses) 

True 
Probabilites

EP1: Known & 
Separate

EP2: Known & 
Pooled

EP3: Unknown 
& Pooled

Age -0.09  3.02  1.13 0.63  

(2.98) (1.92) (1.40) (1.24)

Edu 7.00  -1.50  3.66 5.12  

(7.97) (5.14) (3.74) (3.31)

TLU 8.26  17.41  12.80 12.23  

(21.76) (14.03) (10.22) (9.04)

IrrLand 82.26  -211.62 * -78.85 * -79.51 *

(100.49) (64.80) (47.20) (41.72)

Bt {0,1} -85.25  9.33  5.72 26.76  

(64.63) (41.68) (30.36) (26.83)

Wealth -50.34  -34.31  -4.80 -44.09 *

(55.18) (35.58) (25.92) (22.91)

Constant 422.29 * -204.65 * -60.41 -181.68 *

(158.38) (102.13) (74.39) (65.75)

R-Sqr 0.07 0.37 0.38 0.40
N= 277 277 277 277  
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Table A1 Factor analysis results for wealth and risk exposure indices 

Variable Std. Coeff. Mean Std.Dev. Hypotheses df ChiSq Pr>ChiSq

Ln(Non-Irr.Land) 0.33 1.4 0.79 H0: No common factors 10 40.7 < 0.0001

Ln(TLU) 0.19 0.84 0.60 HA: At least one factor

Television {0,1} 0.53 0.33 0.47 H0: One factor is sufficient 5 3.6 0.61

Concrete floor {0,1} 0.23 0.87 0.34 HA: More factors needed

Ln(Selected Expenses*) 0.42 8.8 1.2

% Crop Lost** -0.12 63 20 H0: No common factors 6 17.9 0.006

% Income from 'Very Risky' source 0.40 35 33 HA: At least one factor

% Income from 'No Risk' source -0.31 6.2 18 H0: One factor is sufficient 2 2.8 0.23

Ln(Irr.Land) -0.10 0.85 0.80 HA: More factors needed

† Motorcycle {0,1} and Radio {0,1} (Tractor {0,1}) were removed after iteration one (two) to reduce multicollinearity.

‡ Log TLU (% Income in 'worst' season) were removed after iteration one (two) to reduce multicollinearity.

* Total household expenses on clothing, education, electronics, and medicine.

** Measured as crop lost in the 'worst season in past five years' as percent of average harvest.

========== Risk Exposure Index ‡ ==========

Hypothesis Tests

========== Wealth Index † ==========

 
 


