Heterogeneous agrifood firms, agricultural prices and access to foreign markets

Léo LE MENER

October 2015

UMR INRA-Agrocampus Ouest SMART (Structures et Marchés Agricoles, Ressources et Territoires)
UR INRA LEREKO (Laboratoires d’Etudes et de Recherches en Economie)
Les Working Papers SMART-LERECO ont pour vocation de diffuser les recherches conduites au sein des unités SMART et LERECO dans une forme préliminaire permettant la discussion et avant publication définitive. Selon les cas, il s'agit de travaux qui ont été acceptés ou ont déjà fait l'objet d'une présentation lors d'une conférence scientifique nationale ou internationale, qui ont été soumis pour publication dans une revue académique à comité de lecture, ou encore qui constituent un chapitre d'ouvrage académique. Bien que non revus par les pairs, chaque working paper a fait l'objet d'une relecture interne par un des scientifiques de SMART ou du LERECO et par l'un des deux éditeurs de la série. Les Working Papers SMART-LERECO n'engagent cependant que leurs auteurs.

The SMART-LERECO Working Papers are meant to promote discussion by disseminating the research of the SMART and LERECO members in a preliminary form and before their final publication. They may be papers which have been accepted or already presented in a national or international scientific conference, articles which have been submitted to a peer-reviewed academic journal, or chapters of an academic book. While not peer-reviewed, each of them has been read over by one of the scientists of SMART or LERECO and by one of the two editors of the series. However, the views expressed in the SMART-LERECO Working Papers are solely those of their authors.

This work is licensed under a Creative Commons Attribution – Noncommercial – NoDerivatives 4.0 International
Heterogeneous agrifood firms, agricultural prices and access to foreign markets

Léo LE MENER

INRA, UR1134 LEREKO, F-44316 Nantes, France

Corresponding author

Léo Le Mener
INRA UR LEREKO
Rue de la Géraudière, BP 71627
44316 Nantes cedex 03, France
Email: Leo.Le-Mener@nantes.inra.fr
Téléphone / Phone: +33 (0)2 40 67 51 74
Fax: +33 (0)2 23 48 53 80

Les Working Papers SMART-LEREKO n’engagent que leurs auteurs.
The views expressed in the SMART-LEREKO Working Papers are solely those of their authors
Heterogeneous agrifood firms, agricultural prices and access to foreign markets

Abstract
We analyze how a change in agricultural input price impacts the selection process and market shares in foreign markets for firms in the final agrifood good sector. To do so we develop a model with heterogeneous firms and intermediate good where input use is technologically constrained. We show that the effect of input price depends on labor productivity and fixed costs. Moreover, we show that a decrease in input price in all countries can decrease the probability to enter foreign markets, through export or horizontal foreign direct investment (HFDI). Finally, we show that the decrease of the intermediate good price always increases the share of HFDI relative to export, even if it can modify the HFDI-Export trade-off in favor of HFDI or export.

Keywords: Horizontal Foreign Direct Investment, exports, firm heterogeneity, processing sectors, agricultural prices

JEL classifications: F12, L11, Q18

Firmes agroalimentaires, prix agricoles et accès aux marchés étrangers

Résumé
Nous construisons un modèle théorique où une variation des prix agricoles (secteur intermédiaire) modifie à la fois le processus de sélection des firmes agroalimentaire (secteur final) sur les marchés étrangers, et la répartition de leurs parts de marché. En supposant que l'utilisation du bien agricole est contrainte technologiquement (processus de transformation du bien agricole en bien agroalimentaire) nous montrons que l'effet du prix agricole est une fonction du niveau de productivité de la firme agroalimentaire et des coûts fixes d'accès aux marchés étrangers. De plus, nous montrons qu'une baisse globale du prix agricole peut réduire la probabilité d'entrer sur les marchés étrangers, que ce soit via des exportations ou des Investissements directs à l'étranger (IDE). Enfin, nous montrons que la diminution du prix agricole augmente toujours la part des IDE par rapport aux exportations, même si l'arbitrage entre ces deux modalités peut être modifié en faveur de l'un ou de l'autre.

Mots-clés : IDE horizontaux, exportations, firme hétérogènes, industrie agroalimentaire, prix agricoles

Classifications JEL : F12, L11, Q18
1 Introduction

While over the last two decades of the twentieth century, the growth of multinational enterprises activity in the form of foreign direct investment (FDI) has grown at a faster rate than trade flows between countries (see UNCTAD (2002)), this trend has reversed since the 2008 financial crisis for most manufactured sectors, including agrifood ones (see UNCTAD (2009) and UNCTAD (2014)). In general, developed countries are more affected by this fall than developing countries. One can notice that many commodity prices, including agricultural goods, followed reverse trends over the same period: after more than four decades of real average declines, the past decade displayed historically unprecedented and widespread rises in commodity prices.

The patterns of foreign direct investment have several implications for policy makers as the local economy is affected in various ways by outgoing and incoming FDI (employment, economic growth, etc.). This explains the increasing interest of the international economics literature in explaining the fundamental factors that drive FDI behavior (Blonigen, 2005; Helpman, 2006). It appears that FDI are determined by a combination of factors such as ownership advantages or agglomeration economics, market size and characteristics, the cost of production factors, transport costs, protection, risk factors and policy variables (Caves, 2007).

The theoretical models that analyze factors that determine whether a firm becomes a multinational fall into two main groups¹. The first group deals with the vertical fragmentation of the production process, and focuses on the sourcing strategy of firms. This approach is based on comparative advantages and intangible assets, or on the theory of incomplete contracts, and mainly explains outsourcing and vertical FDI strategies. The second group deals with the choice to serve foreign markets, and is based on the proximity-concentration or horizontal model (Markusen, 1984; Horstmann and Markusen, 1987; Horstmann and Markusen, 1992; Brainard, 1993; Markusen and Venables, 1998; Markusen and Venables, 2000). This literature explains why some firms choose to export while others invest abroad to serve foreign markets. The proximity-concentration model considers multi-plant firms that produce the same good in different countries to serve local markets. Firms choose between (i) producing at home and exporting to a foreign market at some additional variable trade costs (customs tariff, transport costs, etc.), and (ii) producing abroad and bear additional fixed costs of setting up a plant in the host country, but a lower variable cost to serve the market.

¹See Markusen (2004), Navaretti and Venables (2004), Blonigen (2005) and Helpman (2006) for surveys of this literature.
In proximity-concentration models, the cost of intermediate goods affects the strategy of firms if prices differ between the home country and the destination market. Different input prices affect the trade-off between producing at home and investing abroad in favor of locating production in the country where intermediate goods are less expensive. Indeed, it seems obvious that, as the choice of setting up an affiliate abroad is driven by a reduction of variable costs, firms are more likely to make horizontal FDI in countries where intermediate goods are less expensive. While the cost of intermediate good is a major determinant of vertical FDI (Zhang and Markusen, 1999; Markusen and Maskus, 2002), its impact on horizontal FDI (HFDI) has not received much attention. To our knowledge, no study has investigated the impact of these costs when countries are perfectly symmetric.

In this paper, we extend the model with heterogeneous firms proposed by Helpman, Melitz and Yeaple (hereafter HMY) in 2004 by introducing an upstream sector as in the paper of Chevassus-Lozza, Gaigné and Le Mener (hereafter CGL) in 2013.

In HMY (2004), the heterogeneity assumption follows the Melitz’s (2003) model, where less productive firms sell only on domestic markets, while more productive firms produce more and are thus able to support fixed export costs to access foreign markets. They extended the proximity-concentration models of Brainard (1993; 1997) by introducing firm heterogeneity in order to include the decision to set up an overseas affiliate. They built a proximity-concentration theoretical model with heterogeneous firms, and tested their predictions econometrically. They found that, compared to foreign affiliates sales, export sales are negatively impacted by the heterogeneity of the domestic sector. In other words, the higher the heterogeneity of firms, or the higher the elasticity of substitution between varieties, the higher FDI sales as compared to export sales. They validated their theoretical predictions with firm level data. This result highlights a new determinant of HFDI. However, this result is not very useful for policy makers as it is difficult to influence total factor productivity distribution and elasticity of substitution.

In models with heterogeneous firms, the only production factor is labor. In order to go further in the analysis, some authors include other production factors to account for comparative advantages or for differences in factor endowment (Bernard and Jensen, 2007). To investigate the effect of input characteristics, some models use an intermediate good as the second factor of production. However, both theoretical models and empirical studies (Amiti and Konings, 2007; Halpern et al., 2009) always assume that either the elasticity of substitution between production factors is equal to one (Cobb-Douglas production function), or that heterogeneity applies to the whole marginal cost, so that more productive firms are more efficient with respect to all production factors. Thus, in these models, a fall in the price of one of the production factor affects all firms without affecting the share of final demand across varieties.

Following CGL (2013), we assume that production factors are not substitutes, and that the heterogeneity applies only to labor use while the use of the intermediate good is homogeneous across firms. Under this assumption, more productive firms have a larger share of intermediate goods in their production costs and are more affected by a change in intermediate good price.
Firms react differently to a change in the price of the intermediate good or in the cost of labor, leading to a change in relative prices and to a reallocation of market shares. Consequently, depending on the relative prices of production factors, some firms are not able to access foreign markets while others serve them through exports or FDI. In this paper, we show that the heterogeneity of production levels also depends on the price of the intermediate good and on wages in the final good sector. Consequently, as in HMY (2004), more heterogeneity leads to a higher share of FDI compared to exports.

These results may be useful for policy makers since, although they are not able to modify the distribution of labor productivity, they can affect production factor prices through several policies. For example, policy makers can subsidize final sector firms in order to reduce the cost of labor (industrial policy) or the cost of intermediate goods (such as the Common Agricultural Policy in Europe). In this paper, we investigate the effect of such subsidies on the export performance of national agrifood firms and FDI. We show that both subsidies on agricultural goods and on wages support total agrifood exports, reduce outgoing FDI and attract incoming FDI. However, reducing the cost of agricultural goods leads to a reallocation of market shares from less productive national firms to more productive affiliates of foreign firms, whereas decreasing labor cost leads to a reallocation from more productive firms to less productive ones.

For this investigation, we use the same technology and preferences as CGL (2013): heterogeneous agrifood firms produce differentiated products using labor and agricultural goods in fixed proportion.

However, our paper differs from CGL (2013) on several points.

In their article, authors investigate the effect of a fall in input tariffs on exports of French agrifood firms. To do so, they assume a perfect pass-through of tariffs to consumer prices. In addition, they take into account of exports only, so that changes in intermediate good sectors can’t modify the way firms access foreign markets. In our paper, we go further, assuming that agrifood firms are able to access foreign markets through FDI. In addition, we do not focus on the impact of the liberalization of the agricultural sector, but on the impact of the prices of production factors, including labor. Thus, while the aim of CGL (2013) was to highlight the effect of agricultural trade liberalization on agrifood exports, our goal is to explicit through which mechanism prices of production factors, including intermediate agricultural goods and labor, can affect the location of production for foreign markets. This location choice may have huge implication for local economies, as it can represent a significant amount of workers, tax revenues, etc.

The contribution of this article is twofold. We theoretically show that prices of production factors can affect the choice of firms to access foreign markets, even if countries are perfectly symmetric (size, preferences, productivity distribution, prices of production factors, etc.). Our model is particularly relevant to analyze export and FDI trade-off in sectors highly dependent on their inputs, as it is the case for agrifood sectors\(^2\). In addition, as Gopinath et al. (1998) show

\(^2\)Intermediate goods represents, in average, 84.5 per cent of productions cost of French agrifood firms (CGL,
that FDI and trade are substitute in food sectors, they support the idea that horizontal FDI are important in these sectors and that proximity-concentration models are relevant to analyze FDI patterns. Our model highlights the linkage between agricultural prices and horizontal FDI in agrifood sectors. Indeed, we show that even if the lowering of FDI in agrifood sectors is probably driven by the drop of economic growth, the rise of agricultural prices may have reinforced this decrease.

We present the theoretical framework in the next section, then we present the effects of symmetric changes in agricultural price on exports and HFDI of agrifood firms. We show that the reallocation process that results from a simultaneous and identical change in the agricultural price in both countries is highly dependent on fixed costs. In the fourth section, we analyze the impacts of subsidies to labor and to intermediate goods and give some policy recommendations. The last section concludes.

2 Set-up of the model

In this section, we develop a theoretical framework where heterogeneous agrifood firms produce a final good using labor and an agricultural input and are able to sell it on the domestic market or on foreign markets through exports or horizontal FDI. The aim of this section is to highlight the main mechanisms of the model. In the following sections, we analyze the effects of changes in agricultural good prices and compare two subsidies supporting the international activities of agrifood firms.

This model is based on CGL (2013) and on HMY (2004) models. We consider a world with two vertically related sectors and two symmetric countries. The agricultural sector uses labor to produce a homogeneous good, and the agrifood sector uses labor and the agricultural good to produce a differentiated good in monopolistic competition. The agricultural good is used entirely by the final sector, so that the representative consumer consumes only the agrifood good.

The quantity of the agricultural good used to produce one unit of final good is exogenously determined by the nature of the agrifood good and the final sector activity. In other words, there is a constraint on the processing formula, or recipe, of the agrifood good. As all firms produce the same agrifood product, all firms use the same quantity of homogeneous good to produce one unit of this differentiated good. As in HMY (2004), firms in the final sector are heterogeneous in their labor productivity. In other words, the quantity of labor used by a firm to produce one unit of final good depends on its labor productivity which differs among firms.

To ensure full employment, the amount of labor available in the economy is given inelastically at its aggregate level by the size of the country, and is used by the two sectors. For the sake of simplicity and without loss of generality, here we assume that the number of domestic agrifood firms is exogenous and is the same in both countries.

2013), agricultural goods representing the main part of these intermediates (Gopinath, 1996).
In this paper, the world is assumed to be composed of two symmetric countries, namely the home country h and the foreign country f. To simplify the presentation, we focus on the results for firms in country h, keeping in mind that the results are exactly the same for firms in country f.

The assumption of symmetric countries, including symmetric demands, ensures that wages and the price of the intermediate good are the same in each country, and that the consumption of this intermediate good by firms in the agrifood sector is also the same. Thus, for a given level of labor productivity, production costs are the same in the two countries. Assuming that input trade costs are strictly positive and that the intermediate good is homogeneous, there is no international trade in this sector. Thus, firms use locally produced intermediate goods.

This assumption is particularly relevant for many agricultural goods which are highly perishable or very costly to trade. It’s the case of raw milk, for example, which is hardly traded internationally, contrary to processed milk (powder or butter).

Firms in the final good sector can choose to sell part of their output in foreign countries via exports. To do so, firms pay a fixed cost, f_x, which represents the adaptation costs to international markets (distribution and servicing network) and an iceberg transport cost $\tau > 1$. Alternatively, firms can serve foreign markets by creating an affiliate abroad. To do so, they must pay a fixed cost f_I. As in HMY (2004), this fixed cost includes the adaptation costs to foreign markets (distribution and servicing network) f_x, as well as the cost of creating or acquiring an affiliate overseas, so that $f_I > f_x$.

The location of production does not affect the characteristics of the varieties or the productivity of the firms. Each firm still produces only one variety, regardless of which country the variety is produced in. As multinational firms produce the same variety in each of their plants, there is no intra-firm trade and these varieties are provided by local plants only. Thus, a firm has three strategies: (i) it remains on its domestic market and does not serve foreign markets, (ii) it exports, (iii) it sets up an affiliate abroad. While all firms produce for their domestic market, domestic firms sell only in the home country and do not access the foreign market. Exporting firms produce in the home country and sell part of their production abroad. Multinational firms serve both countries: domestic production is sold on the domestic market, and the production of the foreign affiliate is sold in the foreign country.

2.1 Preferences

The preferences of a representative consumer are given by a CES utility function over a continuum of goods indexed by ω:

$$U = \left[\int_{\omega \in \Omega} y(\omega)^{\rho} d\omega \right]^{1/\rho}$$

(1)

This utility function depends only on final good consumption and Ω represents the set of available varieties. Varieties are substitutes; this implies that $0 < \rho < 1$, and the elasticity of
substitution between any two varieties is given by $\sigma = \frac{1}{1 - \rho} > 1$. As in the Dixit-Stiglitz (1977) model, we can consider the set of varieties consumed as an aggregate good $Y \equiv U$ associated with an aggregate price P.

Considering the budget constraint in the foreign country $R = \int_{\omega \in \Omega} p(\omega) y(\omega) d\omega$ where R is aggregate expenditure, the optimization of consumer utility leads to the optimal consumption of each variety ω: $y(\omega) = \frac{\int p(\omega)^{1-\sigma} d\omega}{\int p(\omega)^{1-\sigma} d\omega} R$, which can be written with the aggregate price index $P = \left[\int_{\omega \in \Omega} p(\omega)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}}$

$$y(\omega) = Y \left(\frac{p(\omega)}{P} \right)^{-\sigma} \quad (2)$$

The expenditure for each variety is given by

$$r(\omega) = R \left(\frac{p(\omega)}{P} \right)^{1-\sigma}. \quad (3)$$

These results are standard in a monopolistic competition settings.

2.2 Agricultural sector

In this paper, we focus on the impact of agricultural prices on the strategy of agrifood firms to serve foreign markets. In order to solve the model in a general equilibrium framework, we need to define the consumption of labor in the agricultural sector. We set up a very simple input sector producing a homogeneous agricultural good using only labor with constant return to scale. The assumption of non homogeneous agricultural good is discussed in CGL (2013)\(^3\).

The agricultural sector is perfectly competitive, its entire production is processed to produce the agrifood good. Let A be the quantity of agricultural good produced, which is a function of the labor used by the representative firm, L_A, and of the labor needed to produce one unit, z. w is the common wage of the economy.

The profit function of a representative agricultural firm is given by

$$\pi_A = p_A A - w L_A \quad (4)$$

In perfect competition, the representative firm will sell its production at its marginal cost. Normalizing the common wage w to 1, we have the price of the agricultural good $p_A = z$.

2.3 Agrifood sector

There is a continuum of firms, each choosing to produce a different variety ω. The production of variety ω requires two inputs, labor l_ω and intermediate goods a_ω.

\(^3\)see section 2.5, page 395.
The focus of this model is on sectors closely related to their intermediate goods. As in CGL (2013), we assume that inputs are complementary\(^4\).

We also assume that each unit of final good produced in a given sector requires the same amount of intermediate good (\(\alpha\)), so there is a technological constraint on the production of the final good. Each firm uses \(\alpha\) units of the intermediate good and \(1/\varphi\) units of labor to produce one unit of final good. Nevertheless, a firm can be more efficient than others and use a less labor-intensive technology to produce its variety. So, like in Melitz (2003), the marginal productivity of labor \(\varphi\) differs across firms. Hence, each firm produces its own variety (\(\omega\)), and each firm is defined by its labor productivity \(\varphi\). Indeed, since for each \(\varphi\) we have one \(\omega\), we can refer to a firm either by its variety (\(\omega\)), or by its labor productivity (\(\varphi\)). Indeed, even if a firm decides to set up an affiliate abroad, it will produce the same variety in its affiliate as at its headquarters, and will use the same amount of labor to produce one unit of the variety.

For a firm in the final good sector, the total cost function to serve a market will differ according to the means of accessing it:

- on the domestic market, this is given by

\[
TC_d (\varphi) = \left(z\alpha + \frac{1}{\varphi} \right) y_d (\varphi) \quad (5)
\]

- to serve the foreign market through export, the cost function is given by

\[
TC_x (\varphi) = \tau \left(z\alpha + \frac{1}{\varphi} \right) y_x (\varphi) + f_x \quad (6)
\]

- and to serve it by FDI:

\[
TC_I (\varphi) = \left(z\alpha + \frac{1}{\varphi} \right) y_I (\varphi) + f_I \quad (7)
\]

where \(y_d (\varphi)\) is the production of the firm with a labor productivity \(\varphi\) destined for the domestic market.

Under monopolistic competition, each firm faces a residual demand curve with constant elasticity \(\sigma\). Thus, whatever the market, a firm sells its production with a markup \(\frac{1}{\rho}\) over its marginal cost \(MC (\varphi)\) and the pricing rules in each country become:

\[
\begin{align*}
p_d (\varphi) &= \frac{1}{\rho} MC_d (\varphi) = \frac{1}{\rho} \left(z\alpha + 1/\varphi \right) \\
p_x (\varphi) &= \frac{1}{\rho} MC_x (\varphi) = \frac{1}{\rho} \left(z\alpha + 1/\varphi \right) \tau \\
p_I (\varphi) &= \frac{1}{\rho} MC_I (\varphi) = \frac{1}{\rho} \left(z\alpha + 1/\varphi \right)
\end{align*}
\]

For varieties produced by domestic firms

For imported varieties

For varieties produced by affiliates of foreign firms

\(^4\)The same mechanisms hold as long as the elasticity of substitution between inputs is lower than 1 (see CGL (2013) for a discussion of this assumption).
We observe that when a firm invests abroad, the pricing rule for the domestic market and for the foreign market is the same \((p_I(\varphi) = p_d(\varphi))\). In other words, on a given market, the price of a given variety depends on the location of production, but not on the nationality of the firm. Thus, as the price of a good produced at the firm’s headquarter and at its affiliates is the same, and as countries are symmetric, the level of production and revenues are also the same for the headquarter and its affiliates: \(y_d(\varphi) = y_I(\varphi)\) and \(r_d(\varphi) = r_I(\varphi)\).

The elasticity of the final good price to a change in the intermediate product price is the same for each market and is the same as in CGL (2013):

\[
\varepsilon_{p(\varphi),z} = \frac{\partial p(\varphi)}{\partial z} \frac{z}{p(\varphi)} = \frac{z \alpha}{z \alpha + 1/\varphi}
\]

where \(d\varepsilon_{p(\varphi),z}/dz\) increases with \(\varphi\). Thus, high productivity firms react more to a change in intermediate goods in total production costs is higher for high productivity firms. Thus, a change in intermediate product price leads to a change in relative prices in the final good sector.

The firm revenue can be broken down into what it earns on each market: namely domestic sales and export sales or affiliate sales if the firm is able to access the foreign market.

The combined revenue of a firm \(r(\varphi)\), depends on its status.

\[
r(\varphi) = \begin{cases}
 r_d(\varphi) & \text{For domestic firms} \\
 r_d(\varphi) + r_x(\varphi) = (1 + \tau^{1-\sigma}) r_d(\varphi) & \text{For exporting firms} \\
 r_d(\varphi) + r_I(\varphi) = 2r_d(\varphi) & \text{For multinational firms}
\end{cases}
\]

The ratios of any two firms’ outputs or revenues associated with each market are the same for each status\(^5\) and, using (2) and (8), they can be written as a function of their labor productivity

\[
\frac{y_d(\varphi_1)}{y_d(\varphi_2)} = \frac{y_x(\varphi_1)}{y_x(\varphi_2)} = \frac{y_I(\varphi_1)}{y_I(\varphi_2)} = \left[\frac{\varphi_1}{\varphi_2} \left(1 + z \alpha \varphi_2 \right) \right]^\sigma
\]

\[
\frac{r_d(\varphi_1)}{r_d(\varphi_2)} = \frac{r_x(\varphi_1)}{r_x(\varphi_2)} = \frac{r_I(\varphi_1)}{r_I(\varphi_2)} = \left[\frac{\varphi_1}{\varphi_2} \left(1 + z \alpha \varphi_2 \right) \right]^\sigma^{-1}
\]

Output and revenue ratios depend not only on labor productivity but also on the price of the intermediate good and its use in production process. Higher use of the intermediate good to produce the final good or a higher price of the intermediate good reduces these ratios. In other words, the price of intermediate goods affects the impact of heterogeneous labor productivity and a fall in prices of agricultural goods increases the differences between agrifood firms in terms of production and revenues. The lower the price of the intermediate good, the greater the heterogeneity of output, revenue and profit.

\(^5\)Because firms are either only domestic firms, or exporters, or multinational, these ratios do not represent effective output and revenues but potential ones.

2.4 Entry and exit of agrifood firms on foreign markets

We separate the domestic profit from the export and FDI profit.

\[
\text{Domestic profit: } \pi_d (\varphi) = \frac{r_d (\varphi)}{\sigma} \\
\text{Export profit: } \pi_x (\varphi) = \frac{r_x (\varphi)}{\sigma - f_x} \\
\text{Affiliate profit: } \pi_I (\varphi) = \frac{r_I (\varphi)}{\sigma - f_I}
\]

Using eq.12 and eq.10, the combined profit of a firm, \(\pi (\varphi) \), then depends on its status.

\[
\pi (\varphi) = \begin{cases}
\pi_d (\varphi) = \frac{r_d (\varphi)}{\sigma} & \text{For domestic firms} \\
\pi_d (\varphi) + \pi_x (\varphi) = \frac{(1 + \tau^{1-\sigma}) r_d (\varphi)}{\sigma - f_x} & \text{For exporting firms} \\
\pi_d (\varphi) + \pi_I (\varphi) = \frac{2r_d (\varphi)}{\sigma - f_I} & \text{For multinational firms}
\end{cases}
\]

2.4.1 Labor productivity threshold \(\varphi^*_x \) and \(\varphi^*_I \):

A firm will export only if its export profit is non negative \(\pi_x (\varphi) \geq 0 \) and will invest abroad only if its investing profit is non negative \(\pi_I (\varphi) \geq 0 \) and higher than its export profit \(\pi_I (\varphi) \geq \pi_x (\varphi) \). Then, for a successful entrant, combined profit can be written as:

\[
\pi (\varphi) = \pi_d (\varphi) + \max \{0, \pi_x (\varphi), \pi_I (\varphi)\}
\]

Thus, we define the export cutoff level as the labor productivity level below which a firm will not export:

\[
\varphi^*_x = \inf \{ \varphi : \pi_x (\varphi) \geq 0 \}
\]

and the FDI cutoff level as the labor productivity level below which a firm will not invest abroad:

\[
\varphi^*_I = \inf \{ \varphi : \pi_I (\varphi) \geq 0 \text{ and } \pi_I (\varphi) \geq \pi_x (\varphi) \}
\]

2.4.2 Coexistence of exporting firms and multinational firms

If \(\varphi^*_x = \varphi^*_I \), all firms which can serve the foreign market will do so by FDI, and there will be no exporting firms. For exporting and multinational firms to coexist, we must have \(\varphi^*_I > \varphi^*_x \). To do so, we assume a cost structure such as:

\[
f_I > \tau_x^{\sigma - 1} f_x.
\]
Hence we assume that the structure of costs satisfies (17). Thus, we have a partitioning of firms by export and FDI status.

2.4.3 Distribution of labor productivity and the status of the firm

The equilibrium is characterized by a mass \(M \) of firms in each country and a common distribution \(g(\varphi) \) of labor productivity over a subset of \([0, \infty]\). \(M \) and \(g(\varphi) \) are exogenous. Moreover, we set \(v(\varphi) \) as distribution of \(g(\varphi) \), conditional on the successful entry on the FDI market, on \([\varphi_I^*; +\infty[^{] }\):

\[
v(\varphi) = \begin{cases} \frac{g(\varphi)}{1-G(\varphi_I^*)} = \frac{g(\varphi)}{\theta_I} & \text{if } \varphi \geq \varphi_I^* \\ 0 & \text{if } \varphi < \varphi_I^* \end{cases}
\]

where \(G(\varphi) \) is the cumulative distribution of \(g(\varphi) \). The probability that a successful entrant invests abroad is equal to \(\theta_I = 1 - G(\varphi_I^*) \). There is thus a proportion \(\theta_I \) of firms which invest abroad, and hence an endogenous mass \(M_I = \theta_I M \) of multinational firms.

Only firms whose labor productivity lies between \(\varphi_x^* \) and \(\varphi_I^* \) export. The probability that a successful entrant exports is given by \(\theta_x = 1 - G(\varphi_x^*) - [1 - G(\varphi_I^*)] = G(\varphi_I^*) - G(\varphi_x^*) \).

We set \(\eta(\varphi) \) as the ex-ante distribution \(g(\varphi) \) conditional on export status:

\[
\eta(\varphi) = \begin{cases} \frac{g(\varphi)}{G(\varphi_I^*)-G(\varphi_x^*)} = \frac{g(\varphi)}{\theta_x} & \text{if } \varphi \geq \varphi_x^* \\ 0 & \text{if } \varphi_x^* \leq \varphi < \varphi_I^* \end{cases}
\]

So there is a fraction \(\theta_x \) of firms which export and hence an endogenous mass \(M_x = \theta_x M \) of exporting firms. The total mass of available varieties in a country \((M_t) \) is given by the mass of varieties produced by national firms \((M) \), the mass of imported varieties \((M_x) \) and the mass of affiliates producing in the country \((M_I) \):

\[M_t = M + M_x + M_I. \]

3 Symmetric change in agricultural price

In this section, we analyze how a symmetric change in agricultural price affects the market shares of agrifood firms and their ability to access foreign markets. This symmetric change can be due to a worldwide shock on agricultural supply, or from a European point of view, to a change in the common agricultural policy or to a change in tariffs at European borders. Applying this model to the European case implies that exports and FDI are between European countries.
3.1 Effect of agricultural good price change on revenues and profits.

CGL (2013) show that the impact of agricultural price \(z \) on \(r(\varphi) \) at a given labor productivity (or for a given firm) is not straightforward. Input price affects not only the price of the agrifood variety but also the aggregate price index in the agrifood sector. Let \(\varphi_\omega \) be the labor productivity of the firm producing the variety \(\omega \). The effect of the price of the intermediate good on the domestic revenue of this firm is given by

\[
\frac{\partial r_d(\varphi_\omega)}{\partial z} = (\sigma - 1) \frac{r_d(\varphi_\omega)}{z} \left(\frac{\partial P}{\partial z} \frac{z}{p(\varphi_\omega)} - \frac{\partial p(\varphi_\omega)}{\partial z} \frac{z}{p(\varphi_\omega)} \right)
\]

or, equivalently,

\[
\varepsilon_{r_d(\varphi),z} = (\sigma - 1) \left(\varepsilon_{P,z} - \varepsilon_{p(\varphi),z} \right)
\]

where \(\varepsilon_{r_d,z} \) and \(\varepsilon_{P,z} \) are respectively the elasticities of the domestic revenue and of the price index with respect to the input price (see Appendix A for calculation). The effect of input price on domestic revenue can be positive or negative depending on the gap between the elasticity of the price index and that of the variety price. If the decrease in the variety price is larger than the decrease in the aggregate price index, the variety \(\omega \) will be relatively more competitive, and the firm producing it will increase its market share. Conversely, if the decrease in the price index is greater, then the variety \(\omega \) will become relatively less competitive and the market share of the firm \(\varphi_\omega \) will shrink with a fall in input price.

Let recall that more productive firms are more affected by changes in the price of intermediate good. Thus, \(\varepsilon_{p(\varphi),z} \) is likely to be higher than \(\varepsilon_{P,z} \) for high productive firms. Indeed, we show in Appendix B that the sign of the effect of intermediate good prices on sales is the same for domestic, export and FDI sales. It is positive when the price of the variety is high (when the labor productivity of the firm is low), and is negative when the price of the variety is low (when the labor productivity of the firm is high).

Thus, a unique labor productivity value \(\hat{\varphi} \) exists such that the revenue of a firm with this labor productivity is not affected by variations in the price of intermediate good: \(\partial r(\hat{\varphi})/\partial z = 0 \). Regardless of the destination market, every firm whose labor productivity is greater than \(\hat{\varphi} \) will benefit from a decrease in the price of the intermediate good, at the expense of less productive firms.

The marginal costs of more productive firms are more affected by variations in the price of the intermediate good. Thus, when the price of the intermediate good decreases, the marginal cost and the variety price of more productive firms decrease more than those of less productive firms. Therefore, changes in relative prices between varieties lead to a reallocation of market shares from less productive firms (\(\varphi < \hat{\varphi} \)) to more productive ones (\(\varphi > \hat{\varphi} \)).

Proposition 1 Regardless of the destination market, a symmetric decrease in prices of the intermediate good leads to market share reallocation from less productive firms to more productive ones in both countries.
3.2 Effect of agricultural price changes on productivity threshold values

3.2.1 Impact of agricultural price change on the export threshold

We are now in a position to determine the impact of the price of intermediate goods on the export threshold.

At equilibrium, the profit level at the threshold value remain zero, \(\pi_x (\varphi^*) = 0 = r_x (\varphi^*) / \sigma - f_x \iff r_x (\varphi^*) = \sigma f_x \). Thus \(dr_x (\varphi^*) = \frac{\partial r_x (\varphi)}{\partial \varphi} d\varphi^* + \frac{\partial r_x (\varphi)}{\partial z} dz = 0 \) or

\[
\frac{dr_x (\varphi^*)}{dz} = \frac{\partial r_x (\varphi)}{\partial \varphi} \frac{d\varphi^*}{dz} + \frac{\partial r_x (\varphi)}{\partial z} = 0
\]

And we can write

\[
\frac{d\varphi^*}{dz} = -\frac{\partial r_x (\varphi)}{\partial z} \frac{\partial r_x (\varphi)}{\partial \varphi} \frac{d\varphi^*}{dz} + \frac{\partial r_x (\varphi)}{\partial z} = 0
\]

(22)

where \(\hat{\varphi} \) is the labor productivity of the firm whose revenues are not affected by variations in the price of intermediate goods (see section 3.1). Let \(\hat{f}_x \) be the export fixed costs such as \(\hat{f}_x = r_x (\hat{\varphi}) / \sigma \). For such a value of export fixed costs, the export profit of the firm with productivity \(\hat{\varphi} \) is zero. Thus, at this level of fixed costs, the productivity threshold \(\varphi^*_x \) equals \(\hat{\varphi} \) and does not vary with the input price \(\left(\frac{d\varphi^*_x}{dz} = \frac{d\hat{\varphi}}{dz} = 0 \right) \); there is a unique level of export fixed costs \(\hat{f}_x \) such that the probability to export is not affected by variations in the price of inputs.

3.2.2 Impact of agricultural price change on FDI threshold

Keeping in mind that the FDI labor productivity threshold is given by the equalization of export and FDI profit, we can determine the impact of intermediate good prices on the FDI threshold.

\[
\frac{d\varphi^*_I}{dz} = -\left[\frac{\partial r_I (\varphi)}{\partial z} - \frac{\partial r_x (\varphi)}{\partial z} \right] \frac{\partial r_I (\varphi)}{\partial \varphi} - \frac{\partial r_x (\varphi)}{\partial \varphi} > 0
\]

(23)

\(\hat{f}_I \) is the FDI fixed costs such that \(\pi_I (\hat{\varphi}) = \pi_x (\hat{\varphi}) \iff \hat{f}_I = \frac{r_I (\hat{\varphi}) - r_x (\hat{\varphi})}{\sigma + f_x} \). For such a value of FDI fixed costs, the FDI profit of the firm with productivity \(\hat{\varphi} \) is equal to its export profit so that \(\hat{\varphi} = \varphi^*_I \). We know that the firm with a labor productivity \(\hat{\varphi} \) is not affected by input price variations whatever its destination market. Thus, as its export revenue and its investing revenue do not vary, the trade-off between exporting and investing abroad remains unchanged for this firm. Therefore, at this level of FDI fixed costs,
the productivity threshold φ^*_I does not vary with the input price \(\frac{d\varphi_I}{dz} = \frac{d\varphi}{dz} = 0 \): for a given export fixed cost, there is a unique level of FDI fixed costs \hat{f}_I such that the probability to invest abroad is not affected by an input price variation. Note that $\hat{f}_I = \tau^{\sigma-1}\hat{f}_x$.

3.2.3 Impact of agricultural price change on Export/FDI trade-off

We know that if a firm has a productivity level above $\hat{\varphi}$, a decrease in the intermediate good price will increase its market share on the domestic market and on the foreign market, if the firm can access it. However, the export-FDI trade-off may be affected if export and FDI profit do not vary in exactly the same way. We compare the effect on export and FDI sales and profits. We know that

\[
\frac{\partial \pi_I (\varphi)}{\partial z} = \frac{\partial r_d (\varphi)}{\partial z} \\
\frac{\partial \pi_x (\varphi)}{\partial z} = \tau^{1-\sigma} \frac{\partial r_d (\varphi)}{\partial z}
\]

Thus,

\[
\left| \frac{\partial \pi_I (\varphi)}{\partial z} \right| > \left| \frac{\partial \pi_x (\varphi)}{\partial z} \right| \tag{24}
\]

The effect of the intermediate good price is always greater on FDI revenue and profit than on export revenue and profit. In other words, when $\frac{\partial r_d (\varphi)}{\partial z} > 0$, i.e. $\varphi < \hat{\varphi}$

\[
\frac{\partial \pi_I (\varphi)}{\partial z} > \frac{\partial \pi_x (\varphi)}{\partial z} \tag{25}
\]

but when $\varphi > \hat{\varphi}$, then $\frac{\partial r_d (\varphi)}{\partial z} < 0$ and

\[
\frac{\partial \pi_I (\varphi)}{\partial z} < \frac{\partial \pi_x (\varphi)}{\partial z} \tag{26}
\]

On the one hand, for less productive firms, a decrease in the intermediate good price will decrease FDI and export profits and sales, but export sales will decrease less. Thus, the FDI-export trade-off will change in favor of exports.

On the other hand, for high productive firms ($\varphi > \hat{\varphi}$), a decrease in the intermediate good price will increase FDI and export profit and sales, but export sales will increase less. Thus, the FDI-export trade-off will change in favor of FDI.

Thus, if the least productive firm which invests abroad is a low productivity firm ($\varphi^*_I < \hat{\varphi}$), a decrease in the intermediate good price will change its FDI-export trade-off in favor of export, and the labor productivity threshold above which the firm decides to invest abroad will increase. Conversely, if the least productive firm investing abroad is a high productivity firm ($\varphi^*_I > \hat{\varphi}$), a
fall in the intermediate good price will change its export/FDI trade-off in favor of FDI, and the labor productivity threshold above which the firm decides to invest abroad will decrease.

3.3 Levels of fixed costs and reallocation process according to firm’s status

The status of the firm which is not affected by a fall in input price \((\varphi = \hat{\varphi}) \) depends on fixed costs. Indeed, if \(f_I > \hat{f}_I \) the firm with a labor productivity \(\hat{\varphi} \) is not able to invest abroad \((\varphi^*_I > \hat{\varphi}) \) and if \(f_x > \hat{f}_x \) this firm is not able to export \((\varphi^*_x > \hat{\varphi}) \). As we assume that exporting firms and multinational firms coexist (i.e. \(f_I > \tau^{-1}_f f_x \)) and knowing that \(\hat{f}_I = \tau^{-1}_f \hat{f}_x \), we cannot have both \(f_x > \hat{f}_x \) and \(f_I < \hat{f}_I \). Three cases arise depending on the level of fixed costs:

1. **High** fixed export and **high** fixed FDI costs. \((f_x > \hat{f}_x \text{ and } f_I > \hat{f}_I) \):

 In this case, the selection process on the foreign market is tough: only high productive firms are able to access it. Thus, both export and FDI labor productivity thresholds are above \(\hat{\varphi} \) \((\hat{\varphi} < \varphi^*_x < \varphi^*_I) \). More productive domestic firms benefit from a fall in input prices \((\varphi < \hat{\varphi}) \), like all firms which export and invest abroad. The market share of all these firms increases both on their domestic market and on the foreign market at the expense of less productive domestic firms \((\varphi < \hat{\varphi}) \). The least productive exporting firm \((\varphi^*_x) \) increases its market share so that its profit also increases and becomes strictly positive and the threshold labor productivity to export decreases in order to have \(\pi (\varphi^*_x) = 0 \). The same happens on the foreign market, the share of firms that can access the export market increases and the number of available varieties increases in both countries. In addition, as shown in eq. 25, the export revenue increases less than that of affiliates, the FDI-export trade-off is modified in favor of FDI for all firms accessing the foreign market so that \(\varphi^*_I \) decreases.

2. **Low** fixed export and **high** fixed FDI costs. \((f_x < \hat{f}_x \text{ and } f_I > \hat{f}_I) \):

 In this case, the export labor productivity threshold is below \(\hat{\varphi} \) and the FDI labor productivity threshold is above \(\hat{\varphi} \) \((\varphi^*_x < \hat{\varphi} < \varphi^*_I) \). More productive exporting firms \((\varphi \in]\hat{\varphi}, \varphi^*_I[) \) benefit from a decrease in input prices, like all firms investing abroad, and their market share increases on each market at the expense of both domestic firms and less productive exporting firms \((\varphi < \hat{\varphi}) \). As the export labor productivity threshold is below \(\hat{\varphi} \), it increases in order to have \(\pi (\varphi^*_x) = 0 \). Thus, the probability to export \(\theta_x = (G (\varphi^*_I) - G (\varphi^*_x)) \) shrinks. In this case, the share of firms which can access foreign markets decreases and the number of available varieties decreases in both countries. Moreover, as in the previous case, the export revenue of more productive exporting firms increases less than that of affiliates (see eq. 25) so that the FDI-export trade-off evolves in favor of FDI leading to a fall in \(\varphi^*_I \) and an increase in the probability of investing abroad.
- Low fixed export and low fixed FDI costs. ($f_x < \hat{f}_x$ and $f_I < \hat{f}_I$):

In this case, both export and FDI labor productivity thresholds are below $\hat{\varphi}$ ($\varphi_x^* < \varphi_I^* < \hat{\varphi}$). Only the most productive firms investing abroad ($\varphi_I^* > \varphi > \hat{\varphi}$) benefit from a fall in input prices. The market shares of these multinational firms increase on each market at the expense of domestic firms, exporting firms and less productive investing firms.

As φ_x^* is under $\hat{\varphi}$, the firm with this labor productivity sees its market share shrinking and its profit becomes strictly negative. Thus, the firm is no longer able to export and φ_x^* increases in order to have $\pi(\varphi_x^*) = 0$, and the share of firms that can access foreign markets decreases. Moreover, for more productive exporting firms and less productive investing ones ($\varphi < \hat{\varphi}$), the export revenue and the investment revenue decrease. However, the export revenue decreases less than the investing revenue (see eq. 26) so that the FDI-export trade-off evolves in favor of export for these firms, while for more productive firms which invest abroad ($\varphi > \hat{\varphi}$), the investment revenue increases more than the export revenue (see eq. 25), and the FDI-export trade-off changes in favor of FDI. Thus, less productive multinational firms will close their affiliates and serve the foreign market through exports, while more productive multinational firms will see their decision to invest abroad reinforced.

Whatever the level of fixed costs, a decrease in the intermediate good price leads to a higher increase in total FDI revenues than the possible increase in total export revenue. Thus, at the aggregated level, a multilateral decrease in the intermediate good price leads to an increase in FDI sales over exports.

This result is in line with the result of HMY (2004): the ratio of FDI sales on exports increases with sectoral heterogeneity, due to a higher dispersion of labor productivity ($g(\varphi)$) or a higher elasticity of substitution (σ). In the model presented in this paper, a fall in intermediate good price leads to an increase in the heterogeneity of revenues and production (as shown in eq. 11) and increases FDI sales over exports.

Thus, the intermediate good price level affects the international strategies of firms, even if countries are perfectly symmetric and without any comparative advantages. Moreover, in this model, the sectoral heterogeneity plays a similar role as in HMY (2004) model, but while the elasticity of substitution and the dispersion of labor productivity may be parameters on which policy makers do not have influence, several policy tools may affect intermediate good price and thus the export-FDI trade-off. These tools can be international trade policies, e.g., a decrease in input tariffs, but also subsidies on intermediate goods purchased by firms in the domestic final good sector, may decrease intermediate good prices on the domestic market and lead to an increase in FDI sales compared to exports. However, these policies may also affect the symmetry of countries if they apply in only one country. Thus, a deeper analysis is required. In the next section, a comparison is made between two alternative subsidies: one on intermediate good costs, and the other on labor used by firms in the final good sector. These subsidies only apply in country h.

Working paper SMART-LERECO N°15-11
4 Impact of asymmetric agricultural good and labor subsidies

In the previous section, we saw that changes in agricultural prices affect both the export performance of agrifood firms and their choice between exporting and investing abroad, even if agricultural prices remain the same in all countries. This new determinant of HFDI can help policy makers attracting foreign capital, supporting export, or reducing outgoing FDI. However, national policies have more important effects of national economies. Thus, national policies affecting production factors of agrifood firms imply asymmetric changes.

In this section, we compare two policies, the first consists in a subsidy to final good producers on the intermediate good costs, and the second on their labor costs. Investigating these two policies is interesting in this model because, as shown in previous sections, the impact of a change in a production factor price depends on the share of the production factor in a firm’s marginal costs. We show that the share of an intermediate good in marginal costs increases with the labor productivity of the firm, so that more productive firms are more affected by variations in the price of the intermediate good, and, conversely, are less affected by changes in the price of labor. Thus, we expect different allocations of revenues depending on policies.

We assume that policy makers are concerned by consumers’ welfare, export performance of national firms, and by the attraction of foreign capital through incoming FDI. In addition, for employment considerations, they may be concerned by the reduction in outgoing FDI.6

Assuming that these subsidies are paid in country h, only firms producing in this country will see their marginal costs decreasing. Consequently, changes in production costs of firms depend on where they produce, and not on their nationality.

The aim of this section is not to assess whether it is efficient for policy makers to pay subsidies, but to compare the effects of different subsidies. Thus, we are not concerned with how policy makers finance the subsidies and we assume that all other things remain equal: countries remain symmetric with respect to all variables, except intermediate good price and wages.7

4.1 Intermediate good subsidy

Here, the policy consists in subsidizing the purchase of the intermediate good to decrease the production costs of final good firms. The Common Agricultural Policy (CAP) is such a policy in Europe. Even if the CAP does not finance the purchase of agricultural goods, the 2003 "decoupling" reform and the end of agricultural price support allowed a decrease in agricultural prices for consumers and for firms that process agricultural goods while preserving farmers’

6Note that this model does not take effects on the labor market into account because it assumes full employment.

7A custom tariff can be integrated in the variable cost of final goods τ, and the revenue generated by this tax can be redistributed through subsidies. In order to achieve symmetric trade costs between countries, firms in country h can have additional variable costs to export to country f so that $\tau_h = \tau_f = \tau$. This may be the case if export infrastructures are more efficient in country h (higher container capacity for shipping for example).
4.1.1 New prices

Let \(s_A \) be the subvention, expressed as the ad-valorem part of the intermediate good price. The price of intermediate goods in country \(h \) is now given by

\[
p_{Ah} = (1 - s_A) z
\]

while in country \(f \) it is still \(p_{Af} = z \), consequently \(p_{Ah} < p_{Af} \). This policy leads to the following pricing rules:

- in country \(h \)

\[
\begin{align*}
p_{hd}(\varphi) &= \frac{1}{\rho} ((1 - s_A) \alpha + w/\varphi) & \text{For varieties produced by national firms} \\
p_{hx}(\varphi) &= \frac{1}{\rho} (z\alpha + w/\varphi) \tau & \text{For imported varieties from } f \\
p_{hI}(\varphi) &= \frac{1}{\rho} ((1 - s_A) \alpha + w/\varphi) & \text{For varieties produced by affiliates of foreign firms}
\end{align*}
\]

- in country \(f \)

\[
\begin{align*}
p_{fd}(\varphi) &= \frac{1}{\rho} (z\alpha + w/\varphi) & \text{For varieties produced by national firms} \\
p_{hx}(\varphi) &= \frac{1}{\rho} ((1 - s_A) \alpha + w/\varphi) \tau & \text{For imported varieties from } h \\
p_{hI}(\varphi) &= \frac{1}{\rho} (z\alpha + w/\varphi) & \text{For varieties produced by affiliates of foreign firms}
\end{align*}
\]

4.1.2 Impact on price indexes and domestic revenues

The marginal costs of firms producing in country \(h \) decrease thanks to the subsidy, leading to a fall in the price index in this country due to the lower price of domestic varieties and of varieties sold by foreign affiliates. Firms producing in country \(f \) still have the same marginal costs and variety prices. However, the price index in country \(f \) also decreases due to the fall in prices of imported varieties from country \(h \).

Thus, in country \(h \), imported varieties from country \(f \) lose market shares because their prices remain constant while the price index decreases. In country \(f \), varieties produced locally (domestic varieties and varieties produced by affiliates) also lose market shares. Therefore, all firms producing in country \(f \) lose market shares, whatever their destination market, because their marginal costs remain constant while price indexes decrease in both countries.
In addition to firms producing in country f, some firms in country h will also lose market shares even if they are able to reduce their variety price. Indeed, we saw in the previous sections that more productive firms are more affected by changes in intermediate good prices. Thus, in country h, less productive firms will not reduce their variety price sufficiently relative to the fall in the price index, and their market share will decrease to the benefit of more productive firms. The higher the productivity of firms, the higher the gain due to the subsidy. Thus, the gain in the share of the market will be higher for affiliates of multinational firms from country f and headquarters of multinational firms in country h. In addition, the loss will be greater for less productive domestic firms. This reallocation process from low productivity firms to high productivity firms leads to a better allocation of resources among firms in country h.

4.1.3 Impact on exports

The extent to which a firm is affected by the reallocation process depends on the relative variation of its variety price with respect to the variation of the price index of its destination market. Export fixed costs and fixed costs to invest abroad influence the share of firms able to export from country h to country f, and hence the fall in the price index in country f and the reallocation process.

When export fixed costs are high or when fixed costs to invest abroad are low, φ^*_x and φ^*_I are close and the share of firms exporting from country h to country f decreases ($\theta_{hx} = G(\varphi^*_I) - G(\varphi^*_x)$).

In country f, only the prices of imported varieties produced in country h decrease. As the share of varieties with decreasing prices is low in country f, the decrease in the price index is low.

If this decrease in the price index is low enough, the variety prices of all exporting firms from country h decrease more than the price index, and the export market shares of all firms exporting from country h to country f increase. The subsidy on the price of the intermediate good in country h leads to a decrease in the labor productivity threshold above which a firm is able to export. In other words, when export fixed costs are high enough or when fixed costs to invest abroad are low enough, a subsidy reducing the intermediate good price paid by final good sector firms increases the share of national firms able to access the foreign country.

When export fixed costs are low enough or fixed costs to invest abroad are high enough, the share of firms exporting from country h to country f is high, and the drop in the price index in country f is high. Consequently, some low productive exporting firms will reduce their variety price less than the fall in price index of country f and will lose market shares. Thus, even if the aggregate market share of exporting firms increases, less productive exporting firms lose export market shares and are forced to exit the country f: the labor productivity threshold above which a firm is able to export to country f rises. In other words, when export fixed costs are low enough or fixed costs to invest abroad are high enough, a subsidy reducing the intermediate good price paid by final good sector firms decreases the share of national firms able to access the foreign country.
In both cases, aggregate exports increase, but the number of exporting firms varies depending on export fixed costs. In other words, the share of firms able to access foreign markets increases only if subsidized firms are few enough so they do not have a too strong impact on the foreign price index.

4.1.4 Impact on the export-FDI trade-off

As the intermediate good price is lower in country \(h \), the trade-off between export and FDI for firms in country \(h \) is modified in favor of exports (the fall in variable cost due to saving transport costs is reduced by the higher price of the intermediate good in country \(f \)). This leads to the relocation in country \(h \) of a share of the production destined to country \(f \). For firms in country \(f \), the reduction in the marginal cost due to less expensive inputs is an additional incentive to serve country \(h \) through FDI. Thus, for firms in country \(f \), the trade-off between export and FDI is modified in favor of FDI. However, if fixed costs to invest abroad are low enough, some multinational firms have a low productivity and lose market shares. Thus, the number of varieties produced in country \(h \) by affiliates of firms from country \(f \) can decrease, even if the aggregated sales of these affiliates constantly increase.

The policy consisting in decreasing input costs has the expected results when export fixed costs are high enough: the number of exporting firms and the number of foreign affiliates increase in country \(h \), aggregated incoming FDI and aggregated exports increase, outgoing FDI decreases and the price index decreases leading to an increase in consumer welfare. When export fixed costs are low enough, the number of exporting firms in country \(h \) decreases, but the effect on aggregate exports and other variable remains positive. In addition, if fixed costs to invest abroad are also low enough, the number of affiliates of firms from country \(f \) decreases, but the aggregate market share of these affiliates increases nevertheless.

Proposition 2 A policy that decreases the cost of inputs for the final good sector firms leads to a reallocation of market shares in the subsidized country from low productive firms to high productive ones, supports incoming FDI and aggregate exports, reduces outgoing FDI, and increases the share of firms able to access foreign markets, provided that these firms are not too numerous.

The following table summarizes the impact of a subsidy on an intermediate good on final sector firms.

As the subsidy is only paid in country \(h \), the impact on price indexes is not symmetric among countries, and the labor productivity threshold above which firms gain or lose from the subsidy is not the same for exporting firms and for firms producing and selling in country \(h \). Thus, \(\phi_{hd} \) represents the labor productivity threshold above which a firm producing and selling in country
Table 1: Effects of intermediate good subsidy on revenues and thresholds

<table>
<thead>
<tr>
<th>Level of fixed costs</th>
<th>Domestic revenues</th>
<th>Export revenues</th>
<th>FDI revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (f_x) high enough and (f_I) low enough</td>
<td>(r_{hd} \geq \forall \varphi < \varphi_{hd})</td>
<td>(r_{hx} \geq \forall \varphi \in [\varphi_{hx}^, \varphi_{hl}^])</td>
<td>(r_{hl} \geq \forall \varphi \in [\varphi_{hl}^*, \infty])</td>
</tr>
<tr>
<td></td>
<td>(r_{hd} \nearrow \forall \varphi \in [\varphi_{hd}, \infty[)</td>
<td>(\varphi_{hx}^* \searrow)</td>
<td>(\varphi_{hl}^* \nearrow)</td>
</tr>
</tbody>
</table>

| (2) \(f_x \) low enough and \(f_I \) high enough | \(r_{hd} \geq \forall \varphi < \varphi_{hd} \) | \(r_{hx} \geq \forall \varphi \in [\varphi_{hx}^*, \varphi_{hl}^*] \) | \(r_{hl} \geq \forall \varphi \in [\varphi_{hl}^*, \infty] \) |
| | \(r_{hd} \nearrow \forall \varphi \in [\varphi_{hd}, \infty[\) | \(\varphi_{hx}^* \nearrow \) | \(\varphi_{hl}^* \nearrow \) |

Thresholds and firms’ revenues in country \(f \)

<table>
<thead>
<tr>
<th>Level of fixed costs</th>
<th>Domestic revenues</th>
<th>Export revenues</th>
<th>FDI revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_I) low ((f_I < \hat{f}_I))</td>
<td>(r_{fd} \geq \forall \varphi)</td>
<td>(r_{fx} \geq \forall \varphi \in [\varphi_{fx}^, \varphi_{fI}^])</td>
<td>(r_{fI} \geq \forall \varphi \in [\varphi_{fI}^, \varphi_{hd}^])</td>
</tr>
<tr>
<td></td>
<td>(\varphi_{fx}^* \nearrow)</td>
<td>(\varphi_{fI}^* \nearrow)</td>
<td></td>
</tr>
</tbody>
</table>

| \(f_I \) high (\(f_I > \hat{f}_I \)) | \(r_{fd} \geq \forall \varphi \) | \(r_{fx} \geq \forall \varphi \in [\varphi_{fx}^*, \varphi_{fI}^*] \) | \(r_{fI} \geq \forall \varphi \in [\varphi_{fI}^*, \infty] \) |
| | \(\varphi_{fx}^* \nearrow \) | \(\varphi_{fI}^* \nearrow \) |

\(h \) (national firms and affiliates of \(f \)) gains from the fall in input prices, while \(\varphi_{hx} \) represents the labor productivity threshold above which exporting firms from country \(h \) gain from the fall in input prices.

It is important to note that the level of fixed costs changes the effect of a subsidy on an intermediate good only for exporting firms in country \(h \), and only for firms investing abroad in country \(f \). While for exporting firms in country \(h \), the share of exporting firms (given by the relative level of fixed costs \(f_x \) and \(f_I \)) determines the triggering of a reallocation process among exporting firms, for firms in country \(f \), only the (absolute) level of fixed costs to invest abroad determines the triggering of a reallocation process among multinational firms.

4.2 Wage subsidy

Policy makers may also support firms in the final good sector by reducing the cost of labor. This policy could be a decrease in labor taxes. Note that this decrease in labor cost only occurs in the final good sector.

4.2.1 New prices

Let \(s_I \) be the subsidy expressed as a share of wages in the final good sector. Thus labor cost in the final sector of country \(h \) is now given by

\[
w'_h = (1 - s_I) w_h
\]
while wages in country f and in agricultural sector remain unchanged so that $w'_h < w_h = w_f (= w = 1)$. Note that the subsidy reduces the labor cost without reducing wages paid to workers in the final good sector.

This wage policy leads to the following pricing rules:

- in country h

$$p_{hd} = \frac{1}{\rho} MC_{hd} = \frac{1}{\rho} (z\alpha + (1 - s_l) w/\varphi)$$

For varieties produced by national firms

$$p_{fx} = \frac{1}{\rho} MC_{fx} = \frac{1}{\rho} (z\alpha + w/\varphi) \tau$$

For imported varieties from country f

$$p_{fI} = \frac{1}{\rho} MC_{fI} = \frac{1}{\rho} (z\alpha + (1 - s_l) w/\varphi)$$

For varieties produced by affiliates of foreign firms

\[(31)\]

- in country f

$$p_{fd} = \frac{1}{\rho} MC_{fd} = \frac{1}{\rho} (z\alpha + w/\varphi)$$

For varieties produced by national firms

$$p_{hx} = \frac{1}{\rho} MC_{hx} = \frac{1}{\rho} (z\alpha + (1 - s_l) w/\varphi) \tau$$

For imported varieties from country h

$$p_{hI} = \frac{1}{\rho} MC_{hI} = \frac{1}{\rho} (z\alpha + w/\varphi)$$

For varieties produced by affiliates of foreign firms

\[(32)\]

4.2.2 Impact on price indexes and domestic revenues

As in the case of a subsidy on the intermediate good, marginal costs of firms producing in country h decrease, leading to a decrease in the price index in country h, while firms producing in country f have unchanged marginal costs so the price remains the same as prior the subsidy. The price index in country f decreases due to less expensive imported varieties. Thus, all firms producing in country f lose market shares whatever their destination market (domestic or export market) and whatever their nationality (national firms or affiliates of firms from country h).

We saw in the previous section that more productive firms are more affected by changes in intermediate good prices because they use relatively more intermediate goods, and less labor. Conversely, as less productive firms use relatively more labor to produce one unit of final good, they will be more affected by a decrease in labor price. Thus, their prices will decrease more than prices of varieties produced by more productive firms, leading to a reallocation of market shares from more productive firms to less productive ones, and to a less optimal allocation of resources. Indeed, this market share reallocation favors less productive national firms, at the expense of more productive multinational firms.
Thus, as illustrated in Fig.1, while a decrease in agricultural price leads to an anticlockwise rotation of revenue curve, a decrease in labor prices leads to a clockwise rotation of the revenue curve. However, the impact on firms’ revenue still depends on how the price of the variety varies with respect to the price index of the destination market.

Figure 1: Impact of wage subsidy on domestic revenues

In country h, the decrease in the price index is always lower than the decrease in the price of varieties of less productive firms (as they are more affected), but is greater than the decrease in the price of varieties of more productive affiliates from country f (as they are less affected) and of exporting firms from country f (as their prices remain constant). Thus, less productive domestic firms always benefit from a decrease in labor cost, while exporting firms from country f and more productive affiliates always lose market shares. However, if export fixed costs are high enough, some domestic firms are sufficiently highly productive and may reduce their market share, and if fixed costs to invest abroad are also low enough, some less productive affiliates from country f increase their market share.

In country f, the price index will decrease because of less expensive imported varieties from country h. Thus, as firms producing in country f have constant variety prices, domestic firms and affiliates of multinational firms from country h lose market shares in this country.

4.2.3 Impact on exports

The impact of a decrease in labor price on firms producing in country h and exporting to country f is more complex. In country f, the decrease in the price index will be greater if the market share of imported varieties is large.
If fixed export costs are high enough or if fixed costs to invest abroad are low enough, few firms export to country \(f \), and the fall in production costs in country \(h \) leads to a limited decrease in the price index in country \(f \). If the share of imported varieties is small enough, the fall in the variety price is higher than the fall in the price index, leading to an increase in the market shares of all firms exporting to country \(f \). All firms exporting from country \(h \) increase their market share in country \(f \) so that the labor productivity threshold above which a firm is able to export is lowered. In this case, all exporting firms benefit from the fall in wages, and more firms are able to export to country \(f \). However, the gain is greater for less productive exporting firms.

Alternatively, when fixed export costs are low enough and fixed costs of investing abroad are high enough, many firms in country \(h \) export to country \(f \), and the fall in the price of imported varieties in country \(f \) leads to a relatively large fall in its price index. As the fixed costs of investing abroad are high, some exporting firms are highly productive, and are little affected by the fall in wages. If these firms are productive enough, the fall in their variety price is lower than the fall in the price index in country \(f \). These high productive exporting firms thus lose market shares in favor of less productive exporting firms. Both mechanisms (a lower marginal cost and a reallocation process) increase the market share of less productive exporting firms, leading to a drop in the labor productivity threshold above which a firm is able to export to country \(f \). In this case, even if some exporting firms lose market shares (the most productive firms), aggregate exports increase because of the increased competitiveness of firms producing in country \(h \), and more firms are able to export to country \(f \).

To sum up, a subsidy on wages always increases the share of firms able to access foreign markets. However, if the share of exporting firms is high enough, some high productive exporting firms may see their market share decrease to the advantage of less productive exporting firms.

4.2.4 Impact on the export/FDI trade-off

Focusing on the trade-off between export and FDI, as before marginal costs are lower for firms producing in country \(h \). Thus, the subsidy on wages in country \(h \) favors exports from firms in country \(h \) and favors FDI for firms in country \(f \).

Indeed, for firms in country \(h \), the potential gain in variable trade cost from switching from export to FDI is reduced by the higher labor cost in country \(f \). Thus, outgoing FDI from country \(h \) is reduced.

For firms in country \(f \), when fixed costs to invest abroad are low enough, some low productivity firms investing in country \(h \) reduce their price more than the fall in the price index. These multinational firms thus increase their market share whereas their market share would decrease if they were exporting. This leads to a clear effect on the export/FDI trade-off in favor of FDI for firms in country \(f \).

When fixed costs to invest abroad are high enough, all firms investing in country \(h \) reduce their price less than the price index, and reallocation occurs leading to a decrease in the market share
of all affiliates located in country h. However, the fall in market shares of affiliates is less than if they were exporting. Thus, even if less productive firms investing in country h have their market share reduced, the trade-off between export and FDI still changes in favor of FDI.

The policy consisting in decreasing labor costs has the expected results for policy makers: a drop in the price index leading to an increase in welfare, access to foreign markets is facilitated and exports are supported at the expense of outgoing FDI. Moreover, incoming FDI are supported because firms in the foreign country will switch from export to FDI in order to serve the subsidized country. However, the allocation of resources is not optimal as more efficient firms will see their market share reduced.

Proposition 3 A policy that decreases labor costs for firms in the final good sector leads to a reallocation of market shares in the subsidized country from high-productivity firms to low-productivity ones, supports incoming FDI and aggregate exports, reduces outgoing FDI, and increases the share of firms able to access foreign markets, whatever the fixed costs.

The following table summarizes the impact of a wage subsidy on final sector firms.

<table>
<thead>
<tr>
<th>Thresholds and firms revenues in country h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of fixed costs</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>(1) f_x high enough and f_I low enough</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thresholds and firms revenues in country f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of fixed costs</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>f_I low ($f_I < \hat{f}_I$)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| f_I high ($f_I > \hat{f}_I$) | $r_{fd} \downarrow \forall \phi$ | $r_{fx} \uparrow \forall \phi \in [\phi_{fx}, \hat{\phi}_{fI}]$ | $r_{fI} \downarrow \forall \phi \in [\phi_{fI}, \infty]$ |
| | $r_{fx} \downarrow \forall \phi \in [\phi_{fx}, \hat{\phi}_{fI}]$ | $\phi_{fx} \uparrow$ | $\phi_{fI} \downarrow$ |

As the subsidy is only paid in country h, the labor productivity threshold above which firms gain or lose from the subsidy is not the same for exporting firms and for firms producing in country
The labor productivity thresholds above which domestic and exporting firms in country \(h \) lose from the fall in wages are given by \(\hat{\phi}_{hd} \) and \(\hat{\phi}_{hx} \).

Like for subsidies on intermediate good, fixed cost levels change the effect of a subsidy on labor only for exporting firms in country \(h \), and only for firms investing abroad in country \(f \). For exporting firms in country \(h \), the share of exporting firms (the relative level of fixed costs) determines the existence of a reallocation process among exporting firms, for firms in country \(f \), only the (absolute) level of fixed costs to invest abroad determines the triggering of a reallocation process among multinational firms.

4.3 Comparison of the two policies and discussion

To sum up, both policies favor aggregated export by national firms and incoming FDI, and reduce outgoing FDI. However, as firms from country \(f \) do not benefit from these subsidies, it becomes more difficult to access country \(h \) through export and the productivity threshold to serve country \(h \) through export (\(\phi_{xf}^* \)) increases. As we assume that there exists both exporting firms and firms investing abroad in both countries (ie. \(\phi_x^* < \phi_I^* \)), all firms with a labor productivity above \(\phi_x^* \) are able to serve the other market. Thus, the amount of available varieties in country \(h \) depends only on the export threshold in country \(f \) (\(\phi_{xf}^* \)), and decreases with both policies. However, both policies decrease the price index of both countries, leading to an increase in consumer’s welfare (\(W = P^{-1} \)). Note that the fall in the price index is greater in the country with the subsidy, so the consumer welfare increases more in the subsidized country, namely country \(h \).

The two policies have different effects on the allocation of revenues among firms and on the ability of firms to access foreign markets. On the one hand, the subsidy on intermediate goods favors more productive firms (affiliates of foreign firms), and leads to a better allocation of resources, but it may reduce the ability of national firms to access foreign markets if export fixed costs are low. On the other hand, the subsidy on wages favors small national firms leading to a less optimal allocation of resources. However, it increases the share of firms able to access foreign markets whatever the fixed costs.

Proposition 4 A subsidy on wages always increases the share of firms in the final good sector able to access foreign markets, while a subsidy on intermediate good may decrease the share of firms accessing foreign markets.

Proposition 5 A subsidy on wages favors less productive domestic firms while a subsidy on the price of an intermediate good favors affiliates of more productive foreign firms.

To conclude, the choice between these two policies depends on the aim of the policy makers. If the aim is to favor domestic production and small producers (in order to decrease market power and concentration in the final good sector), a subsidy on wages appears to be a better
choice, as it induces market share reallocation from high productive firms to low productive ones, leading to a reduction of differences between firms in terms of revenue and production levels.

If the aim is to support exports of national firms, the subsidy on wages may be the preferred policy. Indeed, a subsidy on an intermediate good can decrease the share of firms able to access foreign markets provided that export fixed costs are low and investment costs are high. However, it may be difficult for policy makers to know the level of fixed costs, all the more because they differ depending on the destination market (see Chevassus-Lozza and Latouche (2012)). Thus, a subsidy on an intermediate good may increase the ability of firms to export to more protected foreign markets (high export fixed costs), but reduce the ability to export to less selective foreign markets (low export fixed costs). This may be detrimental to firms in the final good sector and to the exporting process of firms. Less productive firms accessing less selective markets may increase their productivity thanks to confrontation with other exporters (learning by exporting), and this may allow them to subsequently access more selective markets. Thus, a subsidy on wages may be preferred because it favors exports whatever the fixed export costs, and, even though it may be detrimental to high productive firms, it does not force them to exit foreign markets.

Even if this model does not account for the effect of attracting FDI because the employment level is exogenously given by the size of the country, the attraction of incoming FDI can have several positive externalities (see Barry and Bradley (1997) or Buckley and Ruane (2006) for Ireland) supplying foreign capital to the economy and leading to increased competition and a better allocation of resources. Thus, the aim of policy makers may be to attract foreign capital through incoming FDI, and in this case both policies may be appropriate. However, even if the subsidy on wages favors incoming FDI with respect to imports from foreign countries, more productive firms lose market shares due to the reallocation process, unlike in the case of a subsidy on an intermediate good, which favors more productive firms. Thus, if there is competition between countries to attract FDI, firms may choose to invest in the country that subsidizes intermediate goods, as their market share will be higher.

Finally, these policies may affect the entry on the domestic market. If there exist fixed domestic costs, since a decrease in intermediate good price decreases the domestic revenues of less productive firms, some of them will be forced to exit the market. A subsidy on intermediate goods may have exactly the same effect. Conversely, a subsidy on wages triggers reallocation of market share from more productive firms to less productive ones. Thus, less productive firms may increase their market shares, and if there are fixed domestic costs, the labor productivity threshold above which a firm is able to produce would be lowered, leading to an increase in the number of domestic varieties.
5 Conclusion

In this paper, we described an extension of the HMY (2004) model of heterogeneous firms with intermediate goods. We showed that the characteristics of intermediate goods can shape the international strategy of firms aside from any consideration of comparative advantages. Indeed, as firms are assumed to use one input heterogeneously (here labor) and one input homogeneously (here the agricultural good), the greater the use of either input in the final good, or the higher its price, the greater the impact of this input. At aggregated level, an increase in the share of an intermediate good in production costs, which depends on its share in the production process and on its price, reduces differences in production levels and in revenues between firms in the final good sector.

Moreover, all firms do not respond to a change in the price of an intermediate good in the same way. As more productive firms use relatively less labor to produce the final good, the share of intermediate good in their total cost is higher, and they react more to variations in the price of an intermediate good. In this case, a decrease in input price leads to a higher decrease in the variety price for high productive firms than for low productive firms. This effect, by leading to a change in relative prices between varieties in the final good sector, affects the allocation of the demand for final goods. Market shares are reallocated from less productive firms to more productive ones, resulting in a better allocation of resources and an increase in the aggregate production level.

The effect on access to foreign markets through export or FDI is more complex. When countries are perfectly symmetric, the reallocation process does not depend on the firms’ status but only on their labor productivity. Thus, when fixed costs are high enough, selection on foreign markets is strong and only very productive firms can access them. As more productive firms benefit from a decrease in the price of intermediate goods, if fixed costs are high enough, all firms that access foreign markets benefit from the decrease in production costs, and the probability of serving foreign markets increases.

Alternatively, when fixed cost to access foreign markets are low, the selection process is weak and some low productivity firms are able to access foreign markets. In this case, some of these low productive firms will suffer from the decrease in intermediate good prices, some will be forced to exit foreign markets, and the probability of accessing foreign markets decreases.

Concerning the effect of the price of intermediate goods on the export/FDI trade-off, a decrease in the price of intermediate goods always increases the share of FDI sales over export sales. However, depending on the level of fixed costs, the impact on the probability to invest abroad can vary: the effect of a decrease in intermediate good price increases the probability of investing abroad when fixed investment costs are high, and decreases this probability when fixed investment costs are low. As in HMY’s (2004) model, increased heterogeneity leads to a higher share of FDI compared to exports.

Moreover, production factors used in fixed proportions (here an intermediate good) and hetero-
geneously (here labor) have opposite effects on the heterogeneity of firms and on reallocation processes. While a decrease in intermediate good price increases the heterogeneity of production and revenues and triggers a reallocation process from less productive firms to more productive ones, a decrease in wages reduces heterogeneity of production and revenues and triggers a reallocation process from more productive firms to less productive ones.

In this paper, we also compared two policies: a subsidy to the intermediate good price and a subsidy to the cost of labor. The introduction of subsidies causes asymmetry between countries depending on the wages and intermediate good prices paid by firms in the final good sector. Such subsidies generate advantages for firms producing in the subsidized country.

However, even if these two types of subsidies increase aggregated exports of national firms, attract FDI from foreign countries, reduce outgoing FDI and improve consumer welfare, they have different effects on the reallocation of market shares.

On the one hand, subsidizing the price of intermediate goods triggers a reallocation process from low productivity firms to high productivity firms, but may also force some exporting firms to exit foreign markets and increase the concentration of market shares in the hands of a few high productive firms. On the other hand, subsidizing wages triggers a reallocation process from high productivity firms to low productivity firms, making the allocation of resources less efficient, but increasing the ability of domestic firms to access foreign markets whatever the level of fixed costs, and reducing the concentration of market shares in the final good sector.

To sum up, this model introduces a new determinant of FDI with symmetric countries. The relative share of production factors in production costs affects the heterogeneity of firms, which has an impact on both the allocation of market shares and on the share of FDI sales compared to exports. As in HMY (2004), the greater the heterogeneity, the higher the share of FDI sales compared to exports.
References

Appendices

A Proof that the elasticity of the domestic revenue with respect to the input price depends on the elasticities of the variety price and the price index relative to the input price.

\[\varepsilon_{rd,z} = (\sigma - 1) \left(\varepsilon_{P,z} - \varepsilon_{P(\varphi_{\omega}),z} \right) \]

The domestic revenue of a firm with labor productivity \(\varphi_{\omega} \) is given by

\[r_d(\varphi_{\omega}) = R \left(\frac{P}{p(\varphi_{\omega})} \right)^{\sigma^{-1}} \]

The effect of input price variation on its revenue is given by

\[
\frac{\partial r_d(\varphi_{\omega})}{\partial z} = (\sigma - 1) \left(\frac{P}{p(\varphi_{\omega})} \right)^{\sigma^{-2}} \left[\frac{\partial_p P(\varphi_{\omega}) - P \frac{\partial p(\varphi_{\omega})}{\partial z}}{p(\varphi_{\omega})^2} \right] \\
= (\sigma - 1) r_d(\varphi_{\omega}) \left[\frac{\partial P}{\partial z} \frac{p(\varphi_{\omega})}{P} - \frac{\partial p(\varphi_{\omega})}{\partial z} \frac{1}{p(\varphi_{\omega})^2} \right] \\
= (\sigma - 1) r_d(\varphi_{\omega}) \left[\frac{\partial P}{\partial z} \frac{1}{P} - \frac{\partial p(\varphi_{\omega})}{\partial z} \frac{1}{p(\varphi_{\omega})} \right] \\
= (\sigma - 1) r_d(\varphi_{\omega}) \left(\frac{\partial P}{\partial z} \frac{z}{P} - \frac{\partial p(\varphi_{\omega})}{\partial z} \frac{z}{p(\varphi_{\omega})} \right) \\
\]

so that

\[
\frac{\partial r_d(\varphi_{\omega})}{\partial z} \frac{z}{r_d(\varphi_{\omega})} = (\sigma - 1) \left(\frac{\partial P}{\partial z} \frac{z}{P} - \frac{\partial p_d(\varphi_{\omega})}{\partial z} \frac{z}{p_d(\varphi_{\omega})} \right) \\
\varepsilon_{rd,z} = (\sigma - 1) \left(\varepsilon_{P,z} - \varepsilon_{p_d(\varphi_{\omega}),z} \right) \\
\]

B Sign of the elasticity of the domestic revenue with respect to the input price \((\varepsilon_{rd,z}) \)

From Appendix A, we know that

\[\varepsilon_{rd,z} = (\sigma - 1) \left(\varepsilon_{P,z} - \varepsilon_{p_d(\varphi_{\omega}),z} \right) \]

The price index in both countries is given by:

\[P = (MG)^{1-\sigma} \] (33)
where M is the mass of firms in each country and:

$$ G \equiv \int_{0}^{\infty} p_d(\varphi)^{1-\sigma} g(\varphi) \, d\varphi + \int_{\varphi^*_i}^{\varphi^*_j} p_d(\varphi)^{1-\sigma} g(\varphi) \, d\varphi + \int_{\varphi^*_j}^{\infty} p_d(\varphi)^{1-\sigma} g(\varphi) \, d\varphi $$

where the first term corresponds to the price of varieties produced by domestic firms, the second term corresponds to the price of varieties imported from the other country and the last term corresponds to the price of varieties produced by affiliates of foreign firms. The elasticity of the price index to the input price is given by

$$ \varepsilon_{P,z} = \frac{\partial P}{\partial z} \frac{z}{P} = \frac{\partial (MG)^{1-\sigma}}{\partial z} \frac{z}{(MG)^{1-\sigma}} = \frac{1}{1 - \sigma} \frac{z}{G} \frac{\partial G}{\partial z} $$

We have $\frac{\partial G}{\partial z}$ such that

$$ \frac{\partial G}{\partial z} = \int_{0}^{\infty} \frac{\partial p_d(\varphi)^{1-\sigma}}{\partial z} g(\varphi) \, d\varphi + \int_{\varphi^*_i}^{\varphi^*_j} \frac{\partial p_d(\varphi)^{1-\sigma}}{\partial z} g(\varphi) \, d\varphi + \int_{\varphi^*_j}^{\infty} \frac{\partial p_d(\varphi)^{1-\sigma}}{\partial z} g(\varphi) \, d\varphi $$

where

$$ \frac{\partial p_d(\varphi)^{1-\sigma}}{\partial z} = (1 - \sigma) \frac{\alpha}{\rho} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} $$

So $\frac{\partial G}{\partial z}$ is given by

$$ \frac{\partial G}{\partial z} = (1 - \sigma) \frac{\alpha}{\rho} \left[\int_{0}^{\infty} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} g(\varphi) \, d\varphi + \int_{\varphi^*_i}^{\varphi^*_j} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} g(\varphi) \, d\varphi + \int_{\varphi^*_j}^{\infty} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} g(\varphi) \, d\varphi \right] $$

and the elasticity of the price index with respect to the input price can be written as

$$ \varepsilon_{P,z} = \frac{z\alpha}{\rho G} \left[\int_{0}^{\infty} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} g(\varphi) \, d\varphi + \int_{\varphi^*_i}^{\varphi^*_j} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} g(\varphi) \, d\varphi + \int_{\varphi^*_j}^{\infty} \frac{p_d(\varphi)^{1-\sigma}}{p_d(\varphi)} g(\varphi) \, d\varphi \right] $$

Knowing that

$$ \varepsilon_{p_d(\varphi,\omega),z} = \frac{z\alpha}{\rho} \frac{1}{p_d(\varphi,\omega)} = \frac{z\alpha}{\rho G} \frac{G}{p_d(\varphi,\omega)} $$

34
we have:

\[
\varepsilon_{p_{z}} - \varepsilon_{p_{d(\varphi)\omega}} = \frac{z\alpha}{pG} \left[\int_{0}^{\infty} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi + \tau^{1-\sigma} \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi \\
+ \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi - \int_{0}^{\infty} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi \right]
- \tau^{1-\sigma} \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi - \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi \]

And the elasticity of the firm φ_{ω} domestic revenue to input price $\varepsilon_{r_{d\omega}} = (\sigma - 1) \left(\varepsilon_{p_{z}} - \varepsilon_{p_{d(\varphi)\omega}} \right)$ is given by:

\[
\varepsilon_{r_{d\omega}} = \frac{\sigma z\alpha}{G} \left[\int_{0}^{\infty} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi + \tau^{1-\sigma} \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi \\
+ \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi - \int_{0}^{\infty} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi \right]
- \tau^{1-\sigma} \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi - \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p_{d}(\varphi)^{1-\sigma}}{p_{d}(\varphi)} \varphi (\varphi) d\varphi
\]

Similarly, the sign of the effect of intermediate good price on the revenue of the firm φ_{ω} is given by:

\[
\text{sign} \left\{ \frac{\partial r_{d}(\varphi_{\omega})}{\partial z} \right\} = \text{sign} \left\{ \int_{0}^{\infty} \frac{p(\varphi)^{1-\sigma}}{p(\varphi)} g(\varphi) d\varphi + \tau^{1-\sigma} \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p(\varphi)^{1-\sigma}}{p(\varphi)} g(\varphi) d\varphi + \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} g(\varphi) d\varphi \right\} \]

\[
- \left\{ \int_{0}^{\infty} \frac{p(\varphi)^{1-\sigma}}{p(\varphi)} g(\varphi) d\varphi + \tau^{1-\sigma} \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} \frac{p(\varphi)^{1-\sigma}}{p(\varphi)} g(\varphi) d\varphi + \int_{\varphi_{z}^{\omega}}^{\varphi_{d}} g(\varphi) d\varphi \right\} \]

In other words, the impact of the intermediate good price on domestic revenue and profit is positive when the price of the variety is high (when the labor productivity of the firm is low), and is negative when the price of the variety is low (when the labor productivity of the firm is high).

This result can also be used to determine the effect of intermediate good prices on exports and affiliate revenues.

As $r_{x}(\varphi) = \tau^{1-\sigma} r_{d}(\varphi)$, thus $\text{sign} \left\{ \frac{\partial r_{d}(\varphi_{\omega})}{\partial z} \right\} = \text{sign} \left\{ \frac{\partial r_{x}(\varphi_{\omega})}{\partial z} \right\} = \text{sign} \left\{ \frac{\partial r_{d}(\varphi_{\omega})}{\partial z} \right\}$

Moreover, as $r_{I}(\varphi) = r_{d}(\varphi)$, $\text{sign} \left\{ \frac{\partial r_{d}(\varphi_{\omega})}{\partial z} \right\} = \text{sign} \left\{ \frac{\partial r_{I}(\varphi_{\omega})}{\partial z} \right\}$.

\[
\text{sign} \left\{ \frac{\partial r_{d}(\varphi_{\omega})}{\partial z} \right\} = \text{sign} \left\{ \frac{\partial r_{x}(\varphi_{\omega})}{\partial z} \right\} = \text{sign} \left\{ \frac{\partial r_{I}(\varphi_{\omega})}{\partial z} \right\} \]
C Effect of intermediate good price on the investment threshold

At equilibrium, the firm with labor productivity φ^*_I is indifferent between exporting or investing abroad, thus $\pi_x(\varphi^*_I) = \pi_I(\varphi^*_I)$ where:

$$
\pi_x(\varphi^*_I) = \frac{r_x(\varphi^*_I)}{\sigma} - f_x
$$

$$
\pi_I(\varphi^*_I) = \frac{r_I(\varphi^*_I)}{\sigma} - f_I
$$

Thus, at the equilibrium we have:

$$
d\left[r_I(\varphi^*_I) - r_x(\varphi^*_I) \right] = \frac{dr_I(\varphi^*_I)}{dz} - \frac{dr_x(\varphi^*_I)}{dz} = 0
$$

$$
= \frac{\partial r_I(\varphi)}{\partial \varphi} \frac{d\varphi_I^*}{dz} + \frac{\partial r_I(\varphi)}{\partial z} - \frac{\partial r_x(\varphi)}{\partial \varphi} \frac{d\varphi^*_I}{dz} - \frac{\partial r_x(\varphi)}{\partial z} = 0
$$

So we can write

$$
\frac{d\varphi^*_I}{dz} = - \left[\frac{\partial r_I(\varphi)}{\partial \varphi} - \frac{\partial r_x(\varphi)}{\partial z} \right] / \left[\frac{\partial r_I(\varphi)}{\partial \varphi} - \frac{\partial r_x(\varphi)}{\partial \varphi} \right]
$$

We know that $r_I(\varphi) = r_d(\varphi)$ and $r_x(\varphi) = \tau^{1-\sigma}r_d(\varphi)$, thus $\partial r_I(\varphi) / \partial \varphi - \partial r_x(\varphi) / \partial \varphi = (1 - \tau^{1-\sigma}) \partial r_d(\varphi) / \partial \varphi > 0$.

Moreover,

$$
\text{sign} \left\{ \frac{\partial r_I(\varphi)}{\partial z} - \frac{\partial r_x(\varphi)}{\partial z} \right\} = \text{sign} \left\{ (1 - \tau^{1-\sigma}) \frac{\partial r_d(\varphi)}{\partial z} \right\} = \text{sign} \left\{ \frac{\partial r_d(\varphi)}{\partial z} \right\}
$$

so we have:

$$
\frac{d\varphi^*_I}{dz} = - \left[(1 - \tau^{1-\sigma}) \frac{\partial r_d(\varphi)}{\partial z} \right] / \left[(1 - \tau^{1-\sigma}) \frac{\partial r_d(\varphi)}{\partial \varphi} \right]
$$

$$
\frac{d\varphi^*_I}{dz} = - \left[\frac{\partial r_I(\varphi)}{\partial z} - \frac{\partial r_x(\varphi)}{\partial z} \right] / \left[\frac{\partial r_I(\varphi)}{\partial \varphi} - \frac{\partial r_x(\varphi)}{\partial \varphi} \right]
> 0 \forall \varphi < \hat{\varphi}
< 0 \forall \varphi > \hat{\varphi}
$$
Les Working Papers SMART – LERECO sont produits par l’UMR SMART et l’UR LERECO

• UMR SMART
Adresse :
UMR SMART - INRA, 4 allée Bobierre, CS 61103, 35011 Rennes cedex
UMR SMART - Agrocampus, 65 rue de Saint Brieuc, CS 84215, 35042 Rennes cedex

• LERECO
Unité de Recherche Laboratoire d’Etudes et de Recherches en Economie
Adresse :
LERECO, INRA, Rue de la Géraudière, BP 71627 44316 Nantes Cedex 03

Site internet commun : http://www.rennes.inra.fr/smart

Liste complète des Working Papers SMART – LERECO :
http://www.rennes.inra.fr/smart/Working-Papers-Smart-Lereco
http://ideas.repec.org/s/rae/wpaper.html

The Working Papers SMART – LERECO are produced by UMR SMART and UR LERECO

• UMR SMART
The « Mixed Unit of Research » (UMR1302) Structures and Markets in Agriculture, Resources and Territories, is composed of the research unit of Rural Economics and Sociology of INRA Rennes and of the members of the Agrocampus Ouest’s Department of Economics Management Society who are located in Rennes.
Adresse :
UMR SMART - INRA, 4 allée Bobierre, CS 61103, 35011 Rennes cedex, France
UMR SMART - Agrocampus, 65 rue de Saint Brieuc, CS 84215, 35042 Rennes cedex, France

• LERECO
Research Unit Economic Studies and Research Lab
Adresse :
LERECO, INRA, Rue de la Géraudière, BP 71627 44316 Nantes Cedex 03, France

Common website: http://www.rennes.inra.fr/smart_eng/

Full list of the Working Papers SMART – LERECO:
http://www.rennes.inra.fr/smart_eng/Working-Papers-Smart-Lereco
http://ideas.repec.org/s/rae/wpaper.html

Contact

Working Papers SMART – LERECO
INRA, UMR SMART
4 allée Adolphe Bobierre, CS 61103
35011 Rennes cedex, France
Email : smart_lereco_wp@rennes.inra.fr
2015

Working Papers SMART – LERECO
UMR INRA-Agrocampus Ouest SMART (Structures et Marchés Agricoles, Ressources et Territoires)
UR INRA LERECO (Laboratoire d’Etudes et de Recherches en Economie)
Rennes, France