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The Dynamics of Reintroducing,  Supplementing and Controlling 

Endangered Predator Populations

A dynamic model is developed to analyze the reintroduction of endangered predators. Non-

convexities and the conditions under which reintroduction is sub-optimal are studied.

Following reintroduction, costly population control should be initiated before marginal

animals impose net costs, providing an economic interpretation to changes in the sign of the

shadow price.
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The Dynamics of Reintroducing,  Supplementing and Controlling 

Endangered Predator Populations

The reintroduction of locally extirpated species and the supplementation of threatened

populations are increasingly relied upon in efforts to ensure the continued existence of

animals in danger of extinction.  While they provide nonconsumptive benefits, population

recovery plans are controversial when they involve the return of predators.  Strong opposition

to the reintroduction of  wolves to Yellowstone, the southwestern United States, the

Adirondacks and Maine (Stevens, 1997); and of Grizzlies to Idaho (MacCracken et al., 1994)

are testimony to the fears of local populations, and the danger posed by predators.  Coyotes,

cougars and bobcats cause losses of li vestock estimated at $65 milli on per year (GAO, 1995).

Alli gator, coyotes and mountain lions occasionally attack and kill humans and the number

of such attacks is on the rise (Kenworthy, 1997).  In Florida, authorities receive 15,000 calls

annually from residents requesting the removal of Alli gators (Kenworthy, 1997). 

While society may benefit from the protection of endangered predators, reestablishing

self-sustaining populations implies the potential for population growth and increased conflict

with humans.  Yet, the intertemporal analysis of costs and benefits from wildli fe with the

potential to harm humans is notably absent from the literature. 

In this paper, an optimal control model of wildli fe management is constructed to

analyze the characteristics of eff icient population recovery and control programs.  The model

is designed to accommodate management strategies ranging from reintroduction to costly

population control of a species for which additional animals may be either desirable or

undesirable.  After a presentation of the model, I explore the characteristics of the dynamical
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system.  Because of the predator’s potential to harm as well as benefit society, the shadow

price of the population is allowed to be either positive or negative, creating multiple

equili bria which are studied in order to determine the optimal solution to the model.  The

conditions under which species reintroduction is uneconomical and the properties of optimal

wildli fe management plans are then discussed.  Concluding remarks summarize the findings.

1. Model Essentials

The objective of a benevolent wildli fe manager is to choose a sequence of  harvesting

rates to maximize the discounted flow of net benefits from wildli fe:

Maximize
{ Y}

� �
0

e � � t [ V(X) � N(Y) � D(X)] dt

Subject to �X � F(X) � Y
Ymin � Y � Ymax

X 	 0 X(0) � X0 given

(P)

where the time index, t, has been suppressed from X and Y for convenience.  
  is the

discount rate, X is the population of a predator species expressed as a proportion of carrying

capacity, and Y is the rate of harvesting where Ymin �  Y(t) �  Ymax;  Ymin <0,  Ymax>0.  A

negative harvest rate indicates supplementation of the population. Throughout, it is  assumed

that Ymax is suff iciently large to be economically irrelevant. V(X) and D(X) are increasing and

respectively strictly concave and strictly convex functions measuring the rates of

nonconsumptive benefits and damage to society when the population level is X.  N(Y) is a

strictly concave and single-peaked function indicating the net benefits from harvesting

wildli fe at rate Y. The maximum of this function is Y
�

>0 with N(Y<0)< 0, N(0)=0, Ny>0 for

Y<Y
�

, Ny(Y� )=0, and Ny<0 for Y>Y
�

.  For Y<0, N(Y) represents the cost of supplementation,
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which, given our assumptions, is increasing at an increasing rate (in negative Y).  The taking

of animals beyond Y
  would never be part of the solution in a standard harvesting model but

must be entertained here since a large stock can have detrimental effects on welfare.

Harvesting rates above Y
  will be interpreted as “pest” control.  It is also convenient to define

X
 ={ X:Vx(X� )-Dx(X� )=0} as the (unique) population level at which the damage caused by an

additional unit of the stock equals the nonconsumptive benefits received from it. The law of

motion for the animal population is given by where the natural rate of growth,
�

X � F(X) � Y

F(X), has F(0)=F(1)=0 and F(X)>0 for 0<X<1.

2. Necessary Conditions and Phase Space

We show elsewhere (Rondeau, 1997) that a solution to (P) exists.  Forming the

current value Hamiltonian and the Lagrangean( ) ( ) ( ) ( )[ ]��
= − + + −V X D X N Y F X Yµ

the necessary conditions for an optimal trajectory are  given by( )�� ��
= + −λ Y Ymin

Ny � µ � � � 0 (1)�
µ � � µ � � [ Vx � Dx � µ fx] (2)�

X � F(X) � Y (3)

lim
t � � e � � tX(t)µ(t) � 0 (4)

X(0) � X0 (5)

as well as by the slackness conditions � (Y-Ymin)=0, � � 0.  Since we allow the net benefits

from a marginal unit of the stock and the marginal return on harvesting to be either positive

or negative, the sign of the costate variable µ is not restricted.  It is therefore possible for the

Lagrangean to be non-concave and (1) to (5) are not suff icient for a maximum (Kamien and

Schwartz, 1991). Combining (1) with the slackness condition, we obtain that Y=Ymin if
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1  All simulations use V(X) = p(1-e-aX); D(X)=cXg; N(Y) = bY-zY2; and 

F(X)=rX(1-X). Constants are positive. Systems simulated using Mathematica 3.01.

Ny(Ymin)<µ and Y=Y* if Ny(Y*)=µ (1').  Note from 1' that harvesting beyond profitabilit y

will be optimal whenever the costate variable is negative. 

The dynamical system of this problem in the X-Y space is given by equations (3) and

(after manipulation of equations 1 and 2) ( )[ ]  
.Y V D N F Nx x y x yy= − + + − −δ λ

Figure 1 presents topologies of this system for which an interior steady state solution

exists.1  The isocline is represented by the dome shaped curve while all other dotted
!

X =0

curves represent the isocline for different parameterizations of the system.
!

Y=0

The number and variety of admissible representations is of limited relevance to policy

design since many of the topologies share common types of steady states and stabilit y

properties.  It is shown in Rondeau (1997) that if parameter values result in a unique interior

steady state (panels D, F, G, and H ), the long term equili brium is a saddle point.   In this

context, the optimal policy is to follow a unique manifold leading to the steady state.  On the

other hand, when a diagram has three equili bria, a central unstable node or spiral is

outflanked by two saddle points.  These topologies are more challenging to analyze but richer

in economic interpretation and we focus on them for the remainder of the paper.

3. Competing Trajectories and Multiple Equilibria: Choosing the Right Path

For a study of systems with multiple equili bria, it is useful to consider Figure 2 which

is a complete diagram of Figure 1C (X"  >X # ), as well as Figures 3 and 4 which elaborate on

Figure 1A (X" <X # ).  In all cases, the pair (X" ,Y" ) is interior to F(X) indicating not only that a

marginal animal can be undesirable, but also that the profit maximizing rate of harvesting
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is smaller than the natural rate of growth of the predator population at X
$

 [i.e. Y
$

<F(X
$

)]. 

3.1 Globally Optimal Solution When a Single Spiral Leads to a Saddle Point

Inspection of Figures 2 and 3 reveals that from any initial condition X0 % [0,Xsup] it

is possible to adopt harvesting plans leading to either X1&  or  X3& .  Adapting some of the

methods introduced by Davidson and Harris (1981) and Tahvonen and Salo (1996) we make

use of the properties of the maximized Hamiltonian to identify the globally optimal solution.

From our assumptions on V(X), D(X), N(Y), and F(X) and by (1') to (3), it holds piecewise

continuously that:

[ ] ( ) ( ) ( )[ ]− = −





− + −− − = − −d

dt
e e

d

dt
 e V X D X N Y e  Y t t  t  tδ δ δ δδ δ λ

' ' ' (
The last term is equal to zero in all periods.   Integrating both sides and dividing by )  yields

( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( )[ ]

      

  1 /δ λ δV X D X N Y N Y F X Y e V X D X N Y dtY
t

0 0 0 0 0 0 0
0

− + + + − = − +−
∞

∫

This equation simply states that on trajectories leading to a steady state, the net

present value of a wildli fe management program is equal to receiving, at every instant and

forever, the value given by the Hamiltonian for the initial stock and harvesting levels.  

Define, M(X0 ,Y0)=(1/ * ){V(X0)- D(X0)+N(Y0)+[NY(Y0)+ + ] [F(X0)-Y0] }, set , =0 (for an

interior path) and take the partial derivative with respect to Y0.  The result indicates the effect

of increasing the initial rate of harvesting on the net present value of a program leading to

a steady state.  The direction of this effect is dependent on the value of Y relative to F(X0):

<0 for Y0<F(X0)-
M/

-
Y0 = (1/ ) )Nyy[F(X0)-Y0] . =0 for Y0=F(X0) (6)

>0 for Y0>F(X0) 
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For a given initial stock level X0, the value of an optimal management program is decreasing

in Y if Y0<F(X0) and increasing if Y0>F(X0).  This result establishes that when more than one

adjustment paths can be chosen in systems such as those in Figures 2 and 3, the lower

trajectories leading to X3/  are globally optimal.

3.2 Globally Optimal Solution When Two Spirals Lead to Separate Saddle Points 

In the topology of Figure 4, either saddle point can be reached from initial stock

levels in the vicinity of (X2/ ,Y2/ ).  In addition, on trajectories leading to either steady state

multiple candidate initial harvesting levels define several alternative time paths.  To find the

globally optimal trajectory, define Xsup as the largest stock level on the path leading to

(X1/ ,Y1/ ) (call it “path 1").  It can be shown that none of the candidates before Xsup on path

1 can be optimal initi al harvesting levels. The argument relies first on (6), from which we

establish that trajectories starting on the outer portion of any given spiral are superior to those

starting in the interior; and second, on the fact that the change in the value of the maximized

Hamiltonian resulting from a change in X0 along a trajectory is given by dM(X0,Y0)/dX0 =

Ny(Y0)<0. The sign of this derivative is negative since it can be shown that path 1 lies

entirely above Y
0

.  With Nyy<0, the value of a management program decreases at a slower rate

as one moves the initial population and harvesting levels along the lower portion of path 1,

than it increases on the portion of the path above F(X).  As a result, any program beginning

before (Xsup, Ysup) on path 1 is dominated by the alternative sequence beginning after it.  With

a parallel argument, we find that any management plan beginning before (X inf, Y inf) is inferior

to a program beginning after it.    
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Determining the globally optimal solution still requires choosing which of path 1 or

3 maximizes welfare for initial stocks between X inf and Xsup.  Suppose that the initial stock

level is X inf. By (6), we conclude that the path with the highest initial harvesting level is

optimal.  On the other hand, if the initial stock is Xsup the path with the smallest initial

harvesting is preferred.  Since from X inf  it is optimal to take the high path toward (X11 ,Y11 )
and from Xsup it is optimal to take the lower path to (X31 ,Y3 1 ), there exists a criti cal stock

located between X inf and Xsup, below which it is optimal to adopt path 1 and above which

path 3 is preferred. The system represented by Figure 4 has therefore two basins of attraction.

4. Properties of Optimal Population Recovery and Control Programs

Reintroduction and Supplementation. Under certain conditions preventing the

existence of interior steady states, it is not beneficial to reintroduce a predator to its former

habitat.  From the expressions defining the dynamical system, a steady state population  must

solve [ 2 -Fx(X)]=[Vx(X)-Dx(X)]/N’ (F(X)).  Since F( 3 ) is continuous and single peaked with

F(0)=F(1)=0, the marginal benefits from harvesting can only take a limited range of values

in the interval [Ny(F(0)), Ny(F(Xmsy))].  If 1) F(Xmsy)<Y
4

; 2) the marginal net non-consumptive

benefits of the first animal, Vx(0)-Dx(0), are suff iciently small (or negative); and 3) the

discount rate is greater than the marginal growth rate of the first unit of the stock [ 5 >Fx(0)]

then, no interior steady state exists.  Since the cost of reintroducing the first animal is always

greater than the benefits from harvesting it, these conditions ensure that it will never be
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2  By assumption, N( 6 ) is continuous at Y=0 with Ny(0)>0 and Nyy(0)<0.  This

ensures that the marginal cost of reintroducing the first (pair of) animal(s) is larger then

the marginal benefits from harvesting the first unit. Empirical observations support this

observation.  The average cost of a U.S. Fish and Wildli fe Service’s recovery plan

exceeds $3 milli on (1994).  The ten most expensive programs cost between $29 and $88

milli on.  Species recovery also imposes indirect costs such as restrictions on forestry.

beneficial to reintroduce the species.2  These conditions are naturally related to the conditions

under which it is optimal to harvest a species to extinction in conventional harvesting models

as found by Clark (1973), Cropper et al. (1979) and Cropper (1988).

Conservation, Harvesting and Pest Control.  In the situations ill ustrated in Figures

2 to 4, the reintroduction and supplementation of a population of predators is optimal.  The

initial supplementation phase driven by high marginal non-consumptive benefits is followed

by an instant of conservation “during” which the population is self-regulated.  As the

population increases naturally, the optimally managed population would be removed from

the list of protected species and become the subject of harvesting, albeit at suff iciently low

levels to allow continued population growth.  From then on, society will benefit from the

consumption of animal products as well as from and the amenity value of the stock.

However, regardless of the steady state population the species is ultimately headed for, the

fact that the equili brium harvesting rate is above Y7  implies that pest control activities will

become inevitable.

Costly population control would start before X reaches the level X7  at which an

additional animal is considered a nuisance (see Rondeau for a proof). This result has intuitive

appeal. As the stock increases, the net present value of future losses associated with a
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marginal animal grows and eventually causes the shadow price to go from positive to

negative.  By equation (1), this change in the sign µ corresponds precisely to the instant at

which  it becomes optimal to incur net harvesting costs to control the population’s rate of

growth. At that instant marginal animals would still yield positive instantaneous net benefits.

Nonetheless, the prospect of their “offsprings” infli cting future damage makes it optimal to

restrict growth, even at a cost to society.  Once the shadow price has signaled the beginning

of pest control, society will i ncur control costs forever in order to lower the growth rate and

limit the damage infli cted by the population.

  Earlier efforts to boost natural productivity may then be seen as foolish and unfair.

But it should not be so.  Additional inspection of the conditions maximizing the value of a

program along the optimal path reveals that the instant when the shadow price changes from

positive to negative coincides precisely to the time when the present value of the forward

portion of the control program is maximized.  That is, dM(X0,Y0)/dX0=Ny(Y0), and setting

this expression to zero and using 1' implies Ny(Y
8

)=0=µ. 

Thus, the intergenerational distribution of costs and benefits is li kely to be unequal

and hinder the timely implementation of optimal management decisions. Current generations

may not want to pay the high cost of reintroduction and supplementation, resulting in

extinction or sub-optimal conservation efforts.  If the species subsists, following generations

enjoying the non-consumptive benefits of a recovering population may not wish to curb its

growth, leaving more distant generations with a larger than optimal population that imposes

high damage rates and requires costly control. Unfortunately, there is littl e room for errors

given the unstable properties of the system and the absence of self-correcting mechanisms.
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Final Remarks  

The model of predator management developed in this paper differs substantially from

conventional models of renewable resources.  It allows species reintroduction and other 

enhancement programs, conflicts between animals and humans, and the possibilit y of

profitable harvesting as well as costly pest control. Yet, typical solutions have emerged

where a single optimal trajectory leads to a saddle point steady state.  In addition, the

conditions under which reintroduction should not take place are extensions of the conditions

leading to optimal extinction in those conventional resource harvesting models.

Less orthodox solutions have also emerged where a change in the sign of the shadow

price makes the Hamiltonian non-concave.  In these cases, the optimal management plan is

only one of several possible equili brium paths.  When the reintroduction and

supplementation of endangered predators are beneficial, the optimal policy is one of

controlled but rapid initial population increase.  Notwithstanding this initial prescription, the

model also calls for active population control well before the animal reaches its nuisance

level.  This policy is justified by the costs that large future populations of predators may

impose.  Its timing corresponds precisely to a change in the sign of the shadow price.

 The analysis underscores the importance of long term planning for the optimal

management of predators.  The results li kely extend to other species such as the white-tailed

deer, bison, or fox that carry diseases or can cause injury to humans.  The model offers a test-

bench for case studies of the management of such populations. Nonetheless, the analysis

leaves unresolved the daunting questions raised by distributional inequities and the political

challenges they pose for the timely implementation of eff icient management policies.
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Figure 1.  Topologies and Bifurcations
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