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The Dynamics of Reintroducing, Supplementing and Controlling

Endangered Predator Populations

A dynamic model is developed to analyzethe reintroduction d endangered predators. Norn-
conwexities and the cndtions under which reintroduction is sub-optimal are studied.
Following reintroduction, costly popuation control shoud be initiated before marginad
animalsmpaose net costs, providingan ecnamic interpretationto changesinthesign o the

shadow price.
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The Dynamics of Reintroducing, Supplementing and Controlling

Endangered Predator Populations

Thereintroduction d locdly extirpated spedesandthe suppementation d threaened
popuations are increasingly relied uponin efforts to ensure the continued existence of
animalsin danger of extinction. Whil e they provide nonconsumptive benefits, popuation
recmvery plansare ontroversial whenthey involvethereturn of predators. Strongoppasition
to the reintroduction d wolves to Yellowstone, the southwestern United States, the
AdirondacksandMaine(Stevens, 1997%; and o GrizZiestoldaho(MadCradkenetal., 1999
aretestimony to thefeasof locd popuations, andthe danger posed by predators. Coyotes,
cougarsand bolrascauselossesof livestock estimated at $65milli on per yea (GAO, 1995.
Alli gator, coyotes and mourtain lions occasionaly attad and kill humans and the number
of such attacksisontherise (Kenworthy, 1997. InFlorida, authoritiesreceve 15,000cdls
annually from residents requesting the removal of Alli gators (Kenworthy, 1997.

Whil e soci ety may benefit from the protedionof endangered predators, reestabli shing
self-sustaining popuationsimpli esthepotential for popuationgrowth andincreased conflict
with humans. Y et, the intertemporal analysis of costs and benefits from wildlife with the
patential to harm humans is notably absent from the literature.

In this paper, an optimal control model of wil dlife management is constructed to
analyzethe tharaderisticsof efficient popuationreavery andcontrol programs. Themodel
is designed to acammodate management strategies ranging from reintroduction to costly
popuation control of a spedes for which additional animals may be ether desirable or

undesirable. After apresentation d themodel, | explorethe charaderisticsof the dynamicd
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system. Because of the predator’s patential to harm as well as benefit society, the shadow
price of the popuation is alowed to be ather positive or negative, creaing multiple
equili briawhich are studied in order to determine the optimal solution to the model. The
conditi onsunder which speaesreintroductionisunecnamica andthe properties of optimal
wil dlifemanagement plansarethen dscussed. Concluding remarks simmarizethefindings.
1. Model Essentials

The ohyjediveof abenevolent wil dlife manager isto chocse asequenceof harvesting
rates to maximize the discourted flow of net benefits from wil dlife:
T | e V09 N -Dpopa

Sutied to  X=F(X)-Y ()
Yoins Y < Yoo

min—

X>0 X(0)=X, given

where the time index, t, has been suppressed from X and Y for convenience & is the
discount rate, X isthe popuation d apredator spedes expressed asaproportion o carrying
cgoadty, and Y is the rate of harvestingwhere Y ., < Y()< Yoo Ymin <O, Y100, A
negative harvest rateindicaes sipdementation o thepopuation. Throughou, it is assumed
that Y., is aifficiently largeto be eonamicdly irrelevant. V(X) and D(X) areincreasing and
respedively strictly concave and strictly convex functions measuring the rates of
nonconsumptive benefits and damage to society when the popuationlevel is X. N(Y) isa
strictly concave and single-peaked function indicaing the net benefits from harvesting
wildlifeat rate Y. The maximum of thisfunctionis Y>0 with N(Y<0)< 0, N(0)=0, N >0 for

Y<Y, N/(Y)=0,and N,<0 for Y>Y. For Y <0, N(Y) represents the st of suppgementation,
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which, given ou assumptions, isincreasing at an increasing rate (in negative Y). Thetaking
of animals beyondY would rever be part of the solutionin astandard harvesting mode! but
must be entertained here since alarge stock can have detrimental effeds on welfare.
Harvesting ratesabove Y will beinterpreted as“ pest” control. It isalso convenient to define
X={X:V(X)-D,(X)=0} asthe (unique) popuationlevel at which the damage caised by an
additional unit of the stock equalsthe nonconsumptive benefitsrecaved from it. The law of
motionfor the animal popuationisgivenby X=F(X)-\ wherethenatural rateof growth,
F(X), has F(0)=F(1)=0 and F(X)>0 for 0<X<1.

2. Necessary Conditions and Phase Space
We show elsewhere (Rondeau, 1997 that a solution to (P) exists. Forming the
currentvalueHamiltonan ¢ =V (X) = D(X) + N(Y) + p[F (X ) — Y]andtheLagrangean

£ =3 +NY —Y,;,) the necessry condtions for an ogtimal tragjedory are given by

N, -H +A=0 (1)

p-dp=-[V,-D,+pf] (2)

X=F(X)-Y ©)

lim e‘&X(t) ut) =0 (%)
t-

X(0)=X, (5)

aswell as by the slacknesscondtions A(Y-Y ,;,)=0, 2>0. Sincewe dlow the net benefits
from amarginal unit of the stock and the marginal return on tarvesting to be ather positive
or negative, the sign of the costate variable L isnot restricted. It istherefore possblefor the
Lagrangean to be nonconcave and (1) to (5) are nat sufficient for amaximum (Kamien and

Schwartz, 1991). Combining (1) with the sladkness condtion, we obtain that Y=Y, if
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N,(Y )<t and Y=Y* if N,(Y*)=u (1). Note from 1'that harvesting beyond pofitability
will be optimal whenever the wstate variable is negative.

The dynamicd system of thisproblem inthe X-Y spaceisgiven by equations(3) and
(after manipulation d equationsland 2 Y = [—VX +D, +N (3-F,) —)\]/N -

Figure 1 presentstopdogiesof this s/stem for which aninterior stealy state solution
exists.! The X =0 isoclineis represented by the dome shaped curve while dl other dotted
curves represent the Y=0 isocline for different parameterizations of the system.

Thenumber and variety of admisgblerepresentationsisof limited relevanceto pdicy
design since many of the topdogies share mmmon types of stealy states and stability
properties. Itis siownin Rondeau (1997 that if parameter valuesresult in auniqueinterior
steady state (panels D, F, G, and H ), the long term equili brium isa saddle paint. In this
context, the optimal palicy isto foll ow aunique manifold leading to the steady state. Onthe
other hand, when a diagram has three euilibria, a centra unstable node or spird is
outflanked by two saddepaints. Thesetopdogiesaremore dhall engingto analyzebut richer
in econamic interpretation and we focus on them for the remainder of the paper.
3. Competing Trajectories and Multiple Equilibria: Choosing the Right Path

For astudy of systemswith multi ple equili bria, it isuseful to consider Figure2which
isa cmplete diagram of Figure 1C (X >X;), aswell as Figures 3 and 4which elaborate on
Figure 1A (X<X;). Inall cases, thepair (X,Y) isinterior to F(X) indicating not only that a

marginal animal can be undesirable, but also that the profit maximizing rate of harvesting

L All simulations use V(X) = p(1-€®); D(X)=cX%; N(Y) = bY-zY% and
F(X)=rX(1-X). Constants are paositive. Systems smulated using Mathematica3.01.



is snall er than the natural rate of growth of the predator popuationat X [i.e. Y<F(X)].
3.1 Globally Optimal Solution When a Single Spiral L eadsto a Saddle Point
Inspedion of Figures 2 and 3revedsthat from any initial condtion X, €[0,Xg,] it

is posgble to adopt harvesting plans leading to either X, or X;°. Adapting some of the
methodsintroduced by DavidsonandHarris (1981 and Tahvonen and Salo (1996 we make
use of the properties of the maximized Hamiltonian to identify the globall y optimal solution.
From our assumptionson V(X), D(X), N(Y), and F(X) and by (1) to (3), it holds piecevise
continuowsly that:

- j—t[e‘5‘,7(?] = %-?ﬁ 97 53D 5e7tv (X))~ D(X) + N(Y]] —e ™A Y

dt H

Thelast term isequal to zero in al periods. Integrating bath sidesand dviding by é yields

1/6[V(X0) ~D(X,) + N(YO)] +[NY(Y0)+7\O][F(XO)—YO] :;fe-&[v(x)— D(X) + N(Y)]dt

This equation simply states that on trajedories leading to a steady state, the net
present value of awil dlife management program is equal to recaving, at every instant and
forever, the value given by the Hamiltonian for the initial stock and harvesting levels.

Define, M(X, ,Yo)= (L/6)Y{V(Xy)- D(Xo)+ N(Yo)+ [ N((Yo)+ A1 [F(X,)-Yo] }, set A=0 (for an
interior path) andtakethe partial derivativewithrespedtoY,. Theresultindicaestheeffed
of increasing theinitial rate of harvesting on the net present value of a program leading to

astealy state. Thediredion d thiseffed isdependent onthe value of Y relative to F(X,):

<0 for Y <F(X,)
OMIAY o = (US)N,[F(Xo)-Y (] { =0 for Y ,=F(X,) (6)
>0 for Y >F(X,)
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For agiveninitia stock level X, thevalue of an ogima management program isdeaeasing
inY if Y <F(X,) andincreasingif Y >F(X,). Thisresult establi shesthat when morethan ore
adjustment paths can be dhosen in systems sich as those in Figures 2 and 3, the lower
trajedories lealing to X;” are globally optimal.
3.2 Globally Optimal Solution When Two Spirals L ead to Separate Saddle Points

In the topdogy of Figure 4, either sadde point can be readed from initial stock
levelsin the vicinity of (X,7,Y,"). Inaddition, ontrgjedories lealing to either stealy state
multi ple candidateinitial harvesting levels define several alternativetime paths. Tofindthe
globally optimal trajedory, define X,,, as the largest stock level on the path leading to
(X1, Y7) (cdl it “path 1"). It can be shown that nore of the candidates before X, on fath
1 can be optimal initial harvesting levels. The agument relies first on (6), from which we
establi shthat trgjedories garting ontheouter portion d any given spiral aresuperior tothose
starting in theinterior; and seand, onthefad that the cdhange in the value of the maximized
Hamiltonian resulting from a dhange in X, along atrgedory isgiven by dM(X,,Y o)/dX,=
N,(Y,)<0. The sign o this derivative is negative since it can be shown that path 1 lies
entirely above’Y. With N, <0, the value of amanagement program deaeases at aslower rate
as ore movestheinitia popuationand harvesting levels along the lower portion d path 1,
than it increases onthe portion d the path above F(X). Asaresult, any program beginning
before (X, Y ) ON pEth lisdominated by the dternative sequencebeginning after it. With
aparall el argument, wefindthat any management plan beginning before (X, Y ) isinferior

to a program beginning after it.
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Determining the globally optimal solutionstill requires choasing which of path 1 a
3 maximizes welfare for initial stocks between X and X, Suppcsethat theinitial stock
level is X, ;. By (6), we conclude that the path with the highest initial harvesting level is
optimal. On the other hand, if the initid stock is X, the path with the smallest initial
harvesting is preferred. Sincefrom X;; it isoptimal to take the high path toward (X,”,Y ;")
and from X, it is optimal to take the lower path to (X;",Y;7), there exists a aiticd stock
located between X, and X,,, below which it is optimal to adopt path 1 and above which
path 3ispreferred. The system represented by Figure 4 hasthereforetwo basinsof attraction.

4. Properties of Optimal Population Recovery and Control Programs

Reintroduction and Supfementation. Under cetain conditions preventing the
existence of interior steady states, it isnat beneficial to reintroduce apredator to its former
habitat. From the expressionsdefining the dynamicd system, asteady state popuation must
solve [0-F(X)]=[V(X)-D,(X)]/N' (F(X)). SinceF(e) is continuows and single pesked with
F(0)=F(1)=0, the marginal benefits from harvesting can ony take alimited range of vaues
intheinterval [N,(F(0)), N,(F(X,))]. If 1) F(X,,,)<Y; 2) themarginal net non-consumptive
benefits of the first animal, V,(0)-D,(0), are sufficiently small (or negative); and 3 the
discourt rateis greder than the marginal growth rate of thefirst unit of the stock [6>F,(0)]
then, nointerior steady state exists. Sincethe ast of reintroducing thefirst animal isalways

greder than the benefits from harvesting it, these condtions ensure that it will never be



8

beneficial toreintroducethespedes.? These mndtionsarenaturall y related to the conditions
under whichitisoptimal to harvest aspedesto extinctionin conventional harvesting models
asfound ty Clark (1973, Cropper et al. (1979 and Cropper (1988.

Conservation, Harvesting andPest Control. Inthe situationsill ustrated in Figures
2 to 4,thereintroduction and supplementation d apopuation o predatorsisoptimal. The
initial suppdementation phasedriven by high marginal non-consumptive benefitsisfoll owed
by an instant of conservation “during” which the popdation is =if-regulated. As the
popdationincreases naturally, the optimally managed popuation would be removed from
thelist of proteded spedes and lbecome the subjed of harvesting, albeit at sufficiently low
levels to allow continued popuation growth. From then on,society will benefit from the
consumption of animal products as well as from and the amenity value of the stock.
However, regardlessof the stealy state popuation the spedesis ultimately headed for, the
fad that the eguili brium harvesting rate is above Y implies that pest control adivities will
become inevitable.

Costly population control would start before X reades the level X at which an
additional animal isconsidered anuisance(seeRondeaufor aproaf). Thisresult hasintuitive

apped. As the stock increases, the net present value of future losses associated with a

2 By assuumption, N(e) is continuous at Y =0 with N,(0)>0 and N, (0)<0. This
ensures that the marginal cost of reintroducing the first (pair of) animal(s) islarger then
the marginal benefits from harvesting the first unit. Empirica observations suppat this
observation. The average st of aU.S. Fish and Wildlife Service sremvery plan
exceals $3 million (1994). The ten most expensive programs cost between $29and $88
million. Spedesremvery aso imposesindired costs such as restrictions on forestry.
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margina animal grows and eventually causes the shadow price to go from positive to
negative. By equation (1), this change in the sign 1 corresponds predsely to the instant at
which it beaomes optimal to incur net harvesting costs to control the popuation’s rate of
growth. At that instant marginal animalswould still yield pasiti veinstantaneous net benefits.
Nonetheless the prosped of their “off springs” infli cting future damage makesit optimal to
restrict growth, even at a st to society. Oncethe shadow pricehas sgnaled the beginning
of pest control, society will i ncur control costsforever in order to lower the growth rate and
limit the damage inflicted by the popuation.

Earlier efforts to bocst natural productivity may then be seen as fodlish and urfair.
But it shoud na be so. Additional inspedion d the cndtions maximizing the value of a
program along the optimal path revedsthat the instant when the shadow price dangesfrom
pasitive to negative wincides predsely to the time when the present value of the forward
portion d the control program is maximized. That is, dM(X,,Y ()/dX=N,(Y ), and setting
this expressonto zero and wsing 1' implies N,(Y)=0=L.

Thus, the intergenerational distribution d costs and benefitsislikely to be unequal
andhinder thetimely implementation o optima management dedsions. Current generations
may not want to pay the high cost of reintroduction and suppgementation, resulting in
extinctionor sub-optimal conservationefforts. If thespedes subsists, foll owing generations
enjoying the non-consumptive benefits of arecovering popuation may not wish to curb its
growth, leaving more distant generationswith alarger than ogtimal popuationthat impaoses
high damage rates and requires costly control. Unfortunately, there islittl e room for errors

given the unstable properties of the system and the ésence of self-correding medanisms.
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Final Remarks

Themoded of predator management devel opedinthispaper diff ers sibstantially from
conventional models of renewable resources. It allows gedes reintroduction and aher
enhancement programs, conflicts between animals and humans, and the paossbility of
profitable harvesting as well as costly pest control. Yet, typicd solutions have emerged
where a single optimal trgedory leads to a saddle point stealy state. In addition, the
condtionsunder whichreintroductionshoud not take place ae extensionsof the cmndtions
leading to optimal extinctionin those mnwventional resource harvesting models.

Lessorthodox solutions have a so emerged where a diangeinthesign of the shadow
price makes the Hamiltonian nonconcave. Inthese caes, the optimal management planis
only ore of several possble equilibrium paths.  When the reintroduction and
supdementation of endangered predators are beneficial, the optimal padlicy is one of
controlled but rapid initial popuationincrease. Notwithstanding thisinitial prescription,the
model also cdls for adive popuation control well before the animal readies its nuisance
level. This pdicy isjustified by the @sts that large future popuations of predators may
impaose. Itstiming corresponds predsely to a dhangein the sign of the shadow price

The analysis underscores the importance of long term planning for the optimal
management of predators. Theresultslikely extendto ather spedes such asthe white-tail ed
dee, bison, a fox that carry diseasesor can causeinjury to humans. Themodel off ersatest-
bench for case studies of the management of such popuations. Nonetheless the analysis
leaves unresolved the daunting questions raised by distributional i nequiti esandthe paliticd

challenges they pose for the timely implementation d efficient management padlicies.



11

Figure 1. Topologiesand Bifurcations
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