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Introduction 

Dairy has long been a highly regulated industry in the United States and in other developed 

countries.  However, in the early 1990s the US dairy industry entered a period of domestic 

and trade policy reform.  Three major policy events—the 1994 North American Free Trade 

Agreement (NAFTA), the 1995 Uruguay Round Agreement (URA), and the 1996 Federal 

Agriculture Improvement and Reform Act (FAIR)—represented a significant modification 

of previous policies by opening up markets and limiting government price support.  

Although the extent to which these efforts will be carried forward in future policies (e.g., 

the next round of WTO negotiations and Farm Bill) is uncertain in the current political 

environment, these changes retain significant potential to influence world dairy trade.   

In addition to trade and domestic policy reform, technological developments in the dairy 

and food processing industries will take on a greater importance in coming years.  Current 

microfiltration technologies permit the fractionation of milk into its basic nutritive 

components:  proteins, fats, lactose and minerals (Rizvi, 1987; Rizvi and Bhasker, 1995).  

These basic building blocks of milk are already being used to build customized products 

for industries as diverse as medicine and pharmaceuticals, health foods, and specialized 
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food preparations and ingredients.  Component separation is ubiquitous in the world dairy 

industry, and already the basic milk fractions are being further separated into various 

specialty products.  Separation allows dairy processing companies to formulate products 

that can be transported more cheaply, stored for longer periods, and reformulated into a 

variety of customized food ingredients and value-added products.  These developments 

will place tremendous pressure on policies aimed at pricing milk and protecting domestic 

producers.  Technological change in dairy processing thus has the potential to markedly 

alter dairy trade patterns over the next two decades.  The implications of future component 

separation technologies and product formulations for world and U.S. dairy markets has not 

previously been studied, so the potential impacts are unknown. 

Many of the analytical models developed to date fail to account for important facets that 

determine prices, trade patterns, and competitiveness in the dairy industry today, at least 

for analyses of product-specific trade policies such as those likely to be negotiated under 

the next WTO round.  The limitations of previous models are discussed in detail in Bishop 

et al. (1994).  The characteristics of the world dairy industry that should be addressed in a 

model of dairy trade are summarized in Table 1.  First, the characteristics of milk and dairy 

products make product-specific trade modeling a challenge.  One characteristic is jointness 

in production.  That is, milk is viewed by dairy processors as a combination of components 

(e.g., fat, proteins, and lactose) that can be (and are) separated and recombined in 

numerous product forms.  This implies that economic models of dairy product trade must 

include sufficient disaggregation of dairy components, and explicit balancing constraints 

for each component.   
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Related to the need to account for component separation is the observation that much dairy 

trade is in “intermediate products.”  That is, dairy products processed from milk received at 

one location frequently are transported to another location and are used to make a different 

dairy product.  An example is the use of nonfat dry milk in cheese manufacturing.  Trade 

in intermediate products is a significant portion of total world trade, although an exact 

accounting is difficult to determine.  In the mid-1990s, however, more than half of dairy 

product trade consisted of milk powders, butter and related products, and casein-type 

products, all of which have potential uses in manufacturing other dairy products.  The 

importance of intermediate product trade nearly always implies that an explicit 

“processing” sector needs to be specified in dairy trade models.  The political importance 

of the dairy sector in most countries also has resulted in a plethora of government 

interventions in dairy production, marketing and trade.  Thus, any product-specific model 

of dairy trade must be able to account for a full range of domestic and trade policy 

instruments regulating both prices (e.g., support prices) and quantities (e.g., tariff-rate 

quotas and quantitative export subsidy limits).  In particular, it is highly useful (if not 

essential) for product-specific models to address discriminatory ad valorem tariffs (tariffs 

that vary by country of origin), the principal mechanism for trade liberalization through 

“tariffication” under the last round of WTO negotiations.   

A few recently constructed models (e.g., Cox and Zhu, 1997) have incorporated a higher 

degree of component and product disaggregation than the dairy trade models commonly in 

use a decade ago (e.g., OECD, 1991; Baker, 1991).  However, even recently developed 

dairy trade models do not include explicit representation of flows of intermediate dairy 

products (i.e., those used in subsequent dairy processing) among countries.  Modeling of 



Nicholson and Bishop 2001 AAEA Meetings Selected Paper 

 4 

ad valorem tariffs by Cox and Zhu (1997) relies upon iterative solution of the model with 

unit tariffs.  The use of a mixed complementarity framework has great potential to 

incorporate characteristics of dairy trade not yet adequately addressed by existing 

empirical models.  These characteristics include direct modeling of ad valorem tariffs, 

imperfectly competitive international markets (including state trading enterprises such as 

the New Zealand Dairy Board), nonlinearities in component balance equations due to 

variations in raw milk component content by region, and development of new intermediate 

products that circumvent existing trade barriers. 

The objectives of this paper are to describe a model of world dairy trade using the mixed 

complementarity approach, and to discuss its advantages over existing model formulations.  

We focus on the development of the model structure that accounts for relevant factors 

influencing dairy trade, and contrast our structure with that of previous modeling efforts.  

Empirical implementation of our model structure is ongoing, so no numerical results are 

presented herein.  Our model is a joint-input (i.e., multiple-component), multiple-product 

spatial trade model.  Conceptually, the model derives an equilibrium across spatially 

dispersed markets for raw milk and the range of products derived from milk.  In 

equilibrium, prices are related across regions and market levels subject to transfer costs, 

policy, and institutional impediments.  The model includes an explicit representation of the 

dairy processing sector in each supply region.  As a result, the equilibrium conditions 

ensure that milk component quantities are balanced, and that currently feasible technical 

relationships in dairy processing are maintained.   
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The model explicitly incorporates key trade policies such as product-specific tariffs, 

quotas, and export subsidy limitations.  Domestic economic policies that can be specified 

as restrictions on prices or quantities, such as price supports or production quotas, are 

included where these have a material impact and are quantifiable.  The structure 

incorporates multilateral and bilateral agreements.  The complementarity framework 

readily allows the computational innovations related to imperfect competition of 

Hashimoto (1984) and Kolstad and Burris (1986) to be implemented in a full scale applied 

model (Ferris and Pang, 1995).  The outcomes of various strategies that might be 

employed by state trading enterprises focusing on exports (e.g., in New Zealand) and 

imports (e.g., in Mexico and China) can be analyzed within this framework.  Although our 

structure is specific to dairy products, the MCP approach has great potential for a broad 

range of product-specific trade analyses (Harrison et al., 1997). 

The Mixed Complementarity Problem 

The complementarity problem is essentially a way to find a solution to a square system of 

nonlinear equations.  As Ferris and Munson (2000) note, the complementarity problem 

adds a “combinatorial twist” to the classic square system of nonlinear equations.  Of 2n 

equalities in a system, a subset n will be chosen that will hold as equalities.  More 

formally, the nonlinear complementarity problem (NCP) can be specified as: 

 
Thus, only one of the inequalities is satisfied as an equality, or equivalently for individual 

components, zi Fi(z)=0.  This property is typically referred to as zi being “complementary” 
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to Fi(z).  As an extension to this NCP, we may sometimes wish to specify certain 

“intermediate” variables, for example, yi, where 

Then the NCP then becomes 

The problem now involves a mixture of equations (for the yi) and complementarity 

contstraints.  The “mixed” nature of this problem results in the name mixed 

complementarity problem.  More formally, following Ferris and Munson (2000) the mixed 

complementarity problem can be defined as: 

Given lower bounds l ∈  {ℜ  ∩ {−∞}} n, upper bounds u ∈  {ℜ  ∩ {∞}} n, and a function 

F:ℜ n →ℜ n, find z ∈  :ℜ n such that precisely one of the following holds for each i ∈  

{1,…n}: 

Fi(z) = 0  and  li ≤ zi ≤ ui 

Fi(z) > 0  and  zi = li 

Fi(z) < 0  and  zi = ui . 

Often in trade modeling, non-negativity constraints will be appropriate, implying that li = 

0.  Note also that if li = zi = ui, then the function Fi(z) is unrestricted and can be omitted 

from the model. 
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In the typical simple spatial price equilibrium (Samuelson, 1952; Takayama and Judge, 

1964) model with unit transportation costs and no other trade barriers, a nonlinear 

objective function is maximized subject to a set of constraints to calculate a market 

equilibrium.  When the objective function is formulated in terms of inverse demand and 

supply functions, the model variables are the quantity produced in each region, the quantity 

demanded in each region, and the quantity shipped from each supply region to each 

demand region.  The “dual” values in this formulation are the supply and demand prices in 

each region.  In contrast, the MCP framework permits the construction of models with 

explicit representation of both prices and quantities as variables.  For example, the basic 

spatial price equilibrium (SPE) model would be expressed as: 
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The MCP framework exploits Kuhn-Tucker complementary slackness conditions to 

provide an explicit representation of both ‘primal’ and ‘dual’ variables in the model 

structure.  Although primal-dual methods also exploit this complementarity, the MCP 

approach can be extended to create new problems for which no equivalent optimization 

problem exists.  For example, Nicholson et al. (1994) have shown that the SPE model with 

discriminatory ad valorem tariffs (i.e., tariffs on imports that differ by exporting region) 

cannot be directly solved using an optimization model, because the value of the tariff 

depends on the endogenously-determined supply price1.  In the MCP framework, this is 

easily handled by modifying the condition relating supply and demand prices as follows: 

 

where the τ represent ad valorem tariffs imposed by demand region j on imports from 

supply region i.  The essential points are that both price and quantity values can be 

simultaneously and directly constrained, and that relationships among these variables need 

not conform to the first-order conditions of an optimization problem.   

Because both prices and quantities can be simultaneously constrained, policy instruments 

that target prices or quantities (e.g., price supports, ad valorem tariffs, tariff rate quotas) 

can be modeled simultaneously and directly.  Complementarity also makes mute the issue 

of integrability (e.g., the need for symmetry of cross-price terms in demand equations) 

which is a major restriction required by many of the algorithms for solving conventional 

optimization problems.  For the world dairy industry, the relevant set of spatial price 

equilibrium conditions can be formulated and solved as a mixed complementarity problem 

                                                           
1 As noted earlier, however, it is possible to iteratively solve the SPE as an optimization problem to obtain 
unit tariff values equivalent to the applicable ad valorem tariffs. 
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(MCP) to yield supply and demand prices and quantities, milk component values, and 

interregional dairy product trade flows.   

The World Dairy Trade Model Formulation 

In this section, we provide a detailed mathematical description of the MCP model 

equations and variables.  To help place the mathematics into perspective, a conceptual 

representation is provided for a simplified two-region, three product version of the model 

(Figure 1).  Milk produced (circle) in region 1 can flow to processing plants in regions 1 or 

2. In countries that have a raw milk supply quota, milk production can not exceed the 

quota quantity.  The arrows connecting the raw milk supply and processing plants 

(triangles) represent raw milk assembly flows.  In the processing sector, milk components 

are balanced.  As a result, milk components, in the form of intermediate products, move 

between the plants.  All intermediate and final products can potentially be traded between 

regions.  Government policies and support programs (e.g., tariffs, quotas, tariff-rate quotas, 

export subsidies and price supports) are primarily administered through the processing 

sector.  The label “final product trade” applies to the arrows connecting processing to 

demand both within a region and across regions.  Products are demanded at wholesale 

level by “consumers” and the non-dairy industry (squares). 

For the mathematical representation of the model, the sets, or indices, upon which the 

model is specified are as follows: 

Regions: R = {i,j | i,j = (1, 2, ..., J)}. 

Products: P = (k,k′,k′′  | k,k′,k′′  = (1, 2, ..., K)}. IP∈ P denotes the set of intermediate 

products and FP∈ P denotes the set of final products. This specification 
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enables, but does not require, a product to be both an intermediate and a 

final product. k = FP∈ P also denotes processing plant types, i.e. plant types 

correspond to final product types. Conversely, intermediate products must 

be produced at a final product plant type.  The intermediate product 

shipments allowable in the model are summarized in Table 2. 

Components: C = {m | m = (1, 2, ..., M)}. 

Quota levels: L = {l | l = (1, 2, ..., L)}. 

The parameters in the model are defined as: 

αi = slope coefficient in raw milk supply function in region i; 

εi = own price elasticity of raw milk supply in region i; 

βik = slope coefficient in demand function in region i for product k∈ FP; 

ηik = own price elasticity in demand function in region i for product k∈ FP; 

ψim = proportion of milk component m contained in raw milk in region i; 

δkm = proportion of milk component m contained in intermediate product k∈ IP; 

γikm = proportion of milk component m contained in final product k∈ FP in 

region i; 

tcijk = per unit transportation cost to ship product k from region i to region j; 

tcrij = per unit transportation cost to ship raw milk from region i to region j; 

pcik = constant per unit processing cost for product k in region i; 

tijkl = per unit import tariff imposed on the lth level of the quota schedule by 

region j on imports of product k from region i; 
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τijkl = ad valorem import tariff imposed on the lth level of the quota schedule by 

region j on imports of product k from region i; 

sijk = per unit export subsidy imposed by region i on exports of product k to 

region j; 

rqi = raw milk supply quota in region i; 

bqijkl = bilateral import quota imposed by region j on the lth level of the quota 

schedule on imports of product k from region i; 

mqjkl = multilateral import quota imposed by region j on the lth level of the quota 

schedule on imports of product k from all regions; and 

svik = maximum export volume of product k that region i may subsidize. 

The variables in the model are defined as: 

QRMi = quantity of raw milk produced in region i; 

QCRikm = quantity of milk component m received at plant type k∈ FP in region i, and 

which arrives at the plant in the form of raw milk, i.e. it is also possible for 

components to arrive at plants in the form of intermediate products; 

QCPikm = quantity of milk component m processed at plant type k∈ FP in region i. If 

components are processed, it implies they are used in the production of final 

products; 

QPPik = quantity of product type k produced in region i. Unlike components that are 

processed at plants, the quantity of product produced at a plant is defined 

on all k, i.e. k∈ IP and k∈ FP. This distinction between processing and 

producing is somewhat artificial and can be confusing. It is really only 

necessary to allow processing costs to be applied per unit of product; 

QFPik = quantity of final product k∈ FP demanded in region i; 
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XRMijk = quantity of raw milk shipped from region i to plant type k∈ FP in region j; 

XIPik′jk′′kl  = quantity of intermediate product k∈ IP shipped from plant type k′∈ FP in 

region i to plant type k′′∈ FP in region j, on the lth level of the quota 

schedule. There is only a single non-binding level to the quota schedule for 

all intra-regional shipments, i.e. when i = j; (See Table 2) 

XFPijkl = quantity of final product k∈ FP (shipped from plant type k∈ FP) in region i 

to region j, on the lth level of the quota schedule. There is only a single non-

binding level to the quota schedule for all intra-regional shipments, 

i.e. when i = j; 

PRMi = market price of raw milk in region i; 

PCRikm = market price of milk component m received at plant type k∈ FP in region i; 

PCIikm = market price of milk component m in interplant transfers of intermediate 

products at plant type k∈ FP in region i; 

PCPikm = market price of milk component m processed at plant type k∈ FP in region i; 

PRQi = market price of raw milk production quota in region i; 

PQPik = market price of processing product type k in region i; 

PXSik = market price of quantitative restriction on subsidized exports of product 

type k from region i; 

PMQikl = market price of the multilateral import quota imposed by region i on 

imports of product k on the lth level of the quota schedule; 

PBQijkl = market price of the bilateral import quota imposed by region j on imports of 

product k from region i on the lth level of the quota schedule; and 

PFPik = market price of final product k demanded in region i. 
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Employing the notation set out above, the model is defined as follows: 
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In order to exploit complementary slackness when solving the model, it is necessary to 

associate each equation with its complementary variable. The complementarity pairings are 

defined as follows: 

Equation Variable  Equation Variable 

(1) PRM  (11) QRM 

(2) PCR  (12) XRM 

(3) PCI  (13) QCR 

(4) PCP  (14) XIP 

(5) PQP  (15) QCP 

(6) PFP  (16) QPP 

(7) PRQ  (17) XFP 

(8) PXS  (18) QFP 

(9) PMQ    

(10) PBQ    
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Some notes to explain the model are warranted.  Equations (1) through (6) are essentially 

the underlying “primal” constraints. Together with an appropriate objective function, they 

would constitute an NLP formulation of the classic Samuelson-Takayama-Judge SPE type 

of model. Equations (7) through (10) are policy conditions, again, operating on the 

quantity or primal variables. Equations (10) through (18) are the “dual” conditions in the 

MCP formulation of the model. Alternatively, they can be thought of as zero profit, or 

arbitrage, conditions. 

The raw milk supply and final product demand functions, equations (11) and (18) 

respectively, are inverted for convenience. In other words, the first term in (11) yields the 

supply price, while the right-hand side of (18) yields demand prices. 

We now briefly describe each equation in turn. Equation (1) simply says that the quantity 

of raw milk produced in region i must exceed the quantity shipped to plants. While raw 

milk is theoretically able to cross regional boundaries, it is expensive to transport large 

distances, and may encounter hygiene-related barriers to trade. Equation (2) translates the 

raw milk delivered to plants into a quantity of m milk components. Even when raw milk is 

shipped interregionally, it is the composition of milk at the point of supply, and the 

quantity of milk shipped, which determines the quantity of each milk component received 

at plants. Equation (3) appears quite complex; it is the component balancing constraint 

associated with interplant shipments of intermediate products. It says that for each of the m 

component types in milk, the quantity received at a plant in the form of raw milk, plus the 

quantity received in the form of interplant shipments, must be greater than or equal to the 

quantity shipped out as interplant shipments, plus the quantity processed into final 
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products. Equation (4) is another balancing constraint. It ensures that the quantity of each 

milk component shipped out of a plant in the form of final products does not exceed the 

quantity actually processed at that plant. Equation (5) is included in the model for 

convenience; it allows us to compute the variable QPP so that we can assign processing 

costs on a per unit of product (final or intermediate) basis, rather than trying to estimate 

such cost on a component basis. Equation (6) simply says that the quantity of final product 

demanded in a region can be no more than the quantity shipped to that region (including 

from itself). 

Equation (7) imposes raw milk supply quotas where they exist; equation (8) imposes 

quantitative restrictions on subsidized exports; and equations (9) and (10) impose, 

respectively, multilateral and bilateral import quotas. As already alluded to, the import 

quota schedule can have many levels or steps to it. The sum of all bilateral import quotas 

that any region may impose is, by definition, less than or equal to (usually less than) that 

region’s multilateral import quota. Incidentally, the tariffs associated with each step of the 

tariff-rate quota schedule must be monotonically increasing. 

Equation (11) states that for each region, the raw milk supply price plus the raw milk 

supply quota value must be greater than or equal to the market price of raw milk. 

Equation (12) says that the market price of raw milk plus the cost of shipping milk to a 

plant must be at least as great as the price of milk at the plant. The plant price of milk is 

computed from the sum of the component values each multiplied by their respective 

composition parameters. Equation (13) requires that the price of a milk component, m, at 

the point of receipt at a plant is equal to or greater than its price when transferred 
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elsewhere as an intermediate product shipment. Equations (14) and (17) are similar; (14) is 

the zero profit condition for intermediate products while (17) is the same condition for 

final products. Essentially, they specify the wedges that exist between prices at plants 

and/or plants and demand markets in terms of import tariffs (ad valorem and specific), 

export subsidies, transportation costs, and quota rental values. It is these two constraints 

that enable discriminatory ad valorem tariffs to be modeled (τijkl is defined bilaterally). As 

noted earlier, this is not possible in an NLP formulation. 

Like equation (13), (15) is just an accounting identity that emerges from the underlying 

profit maximizing behavior assumed on the part of processing firms. Equation (16) says 

that the per unit cost of processing each product type must be greater than or equal to the 

market price of that processing activity. Finally, equation (18) requires that, for each 

region, the market price of a final product is consistent with the quantity of that product 

demanded and the specified inverse demand function.  Government purchase prices for 

specific products can be established by fixing lower bounds on the price variable PFP.  

The MCP can be solved in GAMS using the PATH solver (Dirske and Ferris, 1995; Ferris 

and Munson, 2000), and can be more computationally efficient than optimization 

formulations for some problems.   

Data Considerations 

Although the focus of this paper is on the mathematical structure of the model, a brief 

discussion of data is relevant.  The data requirements of our model present a significant 

challenge due to the high degree of disaggregation in product, spatial, and policy 
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dimensions.  These data and potential sources are summarized in Table 3. The data 

required can be categorized as economic parameters, technical parameters, and policy or 

institutional parameters.  Secondary sources can be used to obtain many of these 

parameters, although in some cases available data must be used to develop estimates of the 

necessary coefficients.  Key sources for the required information are appropriate country-

level agencies and the relevant literature.  International agencies that collate data are also 

sources, e.g., WTO and APEC.  As a last resort, the popular sources such as FAO and 

OECD can be used.  Despite the challenges, Nicholson (1996) has shown the feasibility of 

collecting and assessing the detailed information on dairy production, processing, and 

consumption required for a model of the type proposed. 

Conclusion 

The world dairy industry currently faces major domestic and trade policy reform and 

technological changes that have the potential to markedly alter existing dairy trade 

patterns.  To adequately analyze this potential, current dairy trade models must be 

modified to incorporate additional essential characteristics of the industry.  This paper has 

described the mathematical structure of a mixed complementarity formulation that includes 

many of these essential characteristics, demonstrating the potential of a MCP to extend 

product-specific dairy trade modeling in relevant directions.   
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Figure 1.  Simplified Conceptual Representation of the World Dairy Trade Model 
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Table 1. Minimum Characteristics Required for Modeling Dairy Trade 
 

Characteristic Example of representation in a dairy trade model 

Jointness in production, 
component disaggregation 

Dairy products characterized as two or more components (e.g., 
fat, protein and other solids), not as milk equivalents. 

Intermediate products Allow dairy products traded among processing firms (e.g., milk 
powders, butteroil, whey powders) to be manufactured and 
traded in addition to products for final demand. 

Explicit processing sector For each region, specify a processing plant or plants.  Plants 
serve to mediate supplies of raw milk and intermediate products 
to meet final demands.  Model constraints ensure that milk 
component inflows and outflows are balanced, and that currently 
feasible technical relationships in dairy processing are 
maintained. 

Trade policy specificity Tariffs (ad valorem and unit, discriminatory and non-
discriminatory), quotas, TRQs and export subsidies modeled 
explicitly for specific dairy products, rather than aggregated 
measures.  Trade policies modeled with constraints on the price 
and quantity relationships in model formulation. 

Domestic policy specificity Key price supports, production quotas, and price controls in the 
dairy sector modeled with constraints on prices and quantities in 
the model formulation. 

Bilateral trade flows Use of price-responsive domestic supply and demand functions, 
rather than excess supply and demand functions, allows regions 
to switch from net importer (exporter) to net exporter (importer) 

Alternative market 
structure assumptions 

Market imperfections of the types described in Hashimoto 
(1984) and Kolstad and Burris (1986) with relevance to 
examination of STEs modeled as constraints in the model  
formulation. 

Product disaggregation Examine intermediate and final dairy product types, rather than 
the small number in many previous models. 

Regional disaggregation Specify at least 10 production, processing, and consumption 
regions, based on the importance of countries in current world 
production, consumption, or trade. 
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Table 2: Interplant (Intermediate Product) Shipments Allowed in the World Dairy 
Trade Model  

Intermediate product type From plant type To plant type 

Skim Milk Powder (SMP)1 SMP  Cheese 
SMP  SMP  Fluid 
SMP  SMP  Soft products 
Whole Milk Powder (WMP) WMP Cheese 
WMP WMP Fluid 
WMP WMP Soft products 
Anhydrous Milk Fat (AMF) Butter Fluid 
AMF Butter Soft products 
Cream Fluid Butter 
Cream Fluid WMP 
Cream SMP Butter 
Cream SMP WMP 
Cream WMP Butter 
Skim milk Casein Cheese 
Skim milk Casein Fluid 
Skim milk Casein Soft products 
Skim milk Casein SMP 
Skim milk Butter Casein 
Skim milk Butter Cheese 
Skim milk Butter Fluid 
Skim milk Butter Soft products 
Skim milk Butter SMP 
Skim milk WMP Casein 
Skim milk WMP Cheese 
Skim milk WMP Fluid 
Skim milk WMP Soft products 
Skim milk WMP SMP 
Butter milk Butter Soft products 
Butter milk Butter WMP 
 
1 The intermediate product skim milk powder, for example, can flow from a skim milk 

powder plant to a cheese plant, a fluid plant and a soft product plant. Intermediate 
product anhydrous milk fat is processed in a butter plant. It can flow from a butter plant 
to a plant for fluids and to a soft product plant. 
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Table 3.  Data Requirements for the World Dairy Trade Model 

Type of data Examples Sources 

Economic parameters   
Supply elasticities Raw milk, inputs (grain) 

and complementary 
outputs (sheep, beef) 

Existing estimates (e.g., 
SWOPSIM, FAO), 
academic and government 
literature in each region 

Demand elasticities Final products, income Existing estimates (e.g., 
SWOPSIM, FAO), 
academic and government 
literature in each region 

Price-quantity pairs in base period Raw milk and final 
products 

FAO, national statistics, 
EU Commission, ABARE 

Transformation costs Processing costs for 
intermediate and final 
products 

Academic, government, 
and industry sources in 
each region, contacts with 
key dairy industry leaders 

Transportation costs Milk hauling, ocean freight 
(refrigerated vs. non-
refrigerated; container vs. 
pallet), land-based 
transportation costs for 
manufactured products 

Key industry contacts 

Technical parameters   
Product composition Component content of raw 

milk, intermediate 
products, and final 
products 

USDA, FAO and national 
statistics data to construct 
component balances for 
key regions; contacts with 
dairy industry leaders 

Transformation coefficients Yield relationships in dairy 
processing, possibilities for 
interplant shipments and 
joint production 

Same as above. 

Institutional and policy parameters   
Tariffs Traded dairy products by 

region (including 
discriminatory tariffs) 

U.S. Department of 
Commerce, APEC, 
national agencies, fee-
based sources 

Quotas Traded dairy products Same as above 
Export subsidies Subsidized exports National and regional 

policy documents 
Levels of domestic price and 
quantity-related policy instruments 

Support prices and 
associated government 
purchases, production 
quotas, retail price controls 

National and regional 
policy documents 

 


