Information Networks and their Role in Threshold Public Goods Games: An Experimental Study

Ursula W. Kreitmair, Simanti Banerjee, James M. Walker

1 School of Public and Environmental Affairs, Indiana University
2 Vincent and Elinor Ostrom Workshop in Political Theory and Policy Analysis
3 Department of Agricultural Economics, University of Nebraska, Lincoln
4 Department of Economics, Indiana University
* Corresponding Author (ukreitma@indiana.edu)

Selected Poster prepared for presentation at the

Copyright 2015 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Information Networks and their Role in Threshold Public Goods Games: An Experimental Study

Ursula W. Kreitmair1,* , Simanti Banerjee2,3, James M. Walker2,4

1 School of Public and Environmental Affairs, Indiana University
2 Vincent and Elinor Ostrom Workshop in Political Theory and Policy Analysis
3 Department of Agricultural Economics, University of Nebraska-Lincoln
4 Department of Economics, Indiana University
* Corresponding Author (kreitmair@indiana.edu)

INTRODUCTION

- Many public goods are provided in discrete quantities and require raising funds beyond a threshold.
- Social networks important – information exchange between social peers impacts donation behavior
- We use laboratory experiments to study role of social networks through which individuals share information on meeting public goods funding thresholds.

Primary Questions

- Does denser information networks influence fundraising success?
- Does impact of information networks depend on donor income levels?
- Does peer information impact individual decisions?

EXPERIMENTAL DESIGN & IMPLEMENTATION

Table 1: Experimental Treatments with 2x2 between-subjects design

<table>
<thead>
<tr>
<th>Endowment Level</th>
<th>Information Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW (30 tokens)</td>
<td>LOCAL</td>
</tr>
<tr>
<td>HIGH (50 tokens)</td>
<td>COMPLETE</td>
</tr>
</tbody>
</table>

Information Network Treatment Diagrams (Line segments indicate information neighborhoods)

- Data for 24 groups (6 groups per treatment)
- Subjects randomly assigned to groups of six (N=6) & Subject ID
- ID determined information neighborhoods (see diagram) and remained unchanged during experiment.
- Data collected at Indiana University in Spring 2015

RESULTS

GROUP CONTRIBUTION BEHAVIOUR

Figure 1: Group Contribution in tokens

- Tokens not donated yield private return \(p \)
- If \(m_i \geq T \) (a threshold level) public good is provided yielding payoff \(b \) to every \(i \)
- If \(m_i < T \) public good not provided and all tokens refunded
- Contributions beyond \(T \) receive no additional payoffs

Nash Equilibria of Game

- Social Optimum: Threshold met exactly
- Free-riding Equilibrium: No one contributes
- Inefficient Nash Equilibrium: Threshold not met and no individual can unilaterally contribute to meet \(T \)

Information Neighborhoods

- \(I_i \) is information relationship between individuals
- \(\sum I_i \) receives information on \(I \)'s contribution
- \(I \)'s information neighborhood is set of individuals linked to her: \(\sum I_i = \{ j : I_i = 1 \} \)
- Average “viewable contributions” therefore: \(\frac{1}{\sum I_i} \sum m_i \)

Figure 2: Group Efficiency

IMPACT OF NETWORK & ENDOWMENT ON MEETING THRESHOLD

Table 2: RE Logit Regression of Group Contributions

<table>
<thead>
<tr>
<th>Threshold</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>HIGH</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Constant	\(1.07^{**} \)	\(1.08^{**} \)	\(1.08^{**} \)	\(1.08^{**} \)
LOCAL dummy	\(-1.27^{**} \)	\(-1.17^{**} \)	\(-0.97^{**} \)	\(-0.74^{**} \)
Last period distance to \(T \)	\(0.18^{**} \)	\(0.28^{**} \)	\(0.28^{**} \)	\(0.28^{**} \)
\(\Delta \) in Viewable Contributions	\(0.41 \)	\(0.83^{**} \)	\(0.83^{**} \)	\(0.83^{**} \)
Observations	240	240	240	240

IMPACT OF INFO. NEIGHBORS ON \(\Delta \) IN INDIVIDUAL CONTRIBUTIONS

Table 3: RE Regression of \(\Delta \) in Ind. Contributions Given \(e \)

<table>
<thead>
<tr>
<th>Threshold</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>(\Delta) in Viewable Contributions</td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>(\Delta) in Viewable Contributions</td>
<td></td>
</tr>
<tr>
<td>(1^{**})</td>
<td>(0.25)</td>
<td>(0.66^{**})</td>
</tr>
</tbody>
</table>

Independent Variable	(1)	(2)
LOCAL dummy	\(0.56 \)	\(0.76 \)
\(\Delta \) in Viewable Contributions	\(0.41 \)	\(0.83^{**} \)
\(\Delta \) in Viewable Contributions	\(0.41 \)	\(0.83^{**} \)
Observations	576	576

SUMMARY OF RESULTS

- Impact of Networks and Income on Equilibrium Selection (Table 2)
 - HIGH groups likely to contribute beyond threshold.
 - More equitable distribution of contributions in COMPLETE treatments.
 - COMPLETE information reduces tendency of HIGH groups to over-contribute.

- Impact of Information Neighbors on Contributions (Table 3)
 - Individuals increase contributions when threshold not met in previous round.
 - Contributions in LOW groups unaffected by information of social peers.
 - In HIGH-COMPLETE groups, contributions increase when average viewable contributions decrease.

IMPLICATIONS AND FUTURE WORK

- Implications
 - Information about social peers influence threshold public goods funding campaigns success.
 - Information about more peers may lead to greater equitable contributions.
 - Richer donors are more affected by their peers when they have more information
 - Fund drives more efficient (with less wasteful contributions) if rich donor groups have more information
 - Individuals contributing smaller endowment shares more likely to top up contribution shortfalls.

- Future Work
 - In current decision models returned if threshold not met
 - I.e. no payoff risk to individuals
 - Peer information may impact outcomes differently with payoff risk
 - No uncertainty about delivery of public good benefits if threshold met

- New Treatments
 - No refund – Tokens lost if threshold not met.
 - Uncertainty about public good provision – Even if \(T \) is met, public good provided with probability < 1

Acknowledgements

- Funding was provided by the Vincent and Elinor Ostrom Workshop in Political Theory and Policy Analysis, Indiana University