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Technological Change and Risk Management: 

An Application to the Economics of Corn Production 
 

 
1. Introduction 

Technological change has contributed to large increases in agricultural productivity (e.g., 

Ball et al.; Brennan; Masters et al.; Byerlee). Besides improving productivity, technological 

change has also affected production risk (e.g., Antle and Crissman; Binswanger and Barah). 

While genetic improvements have increased mean crop yields, they have also affected yield 

variability. For example, while the green revolution generated increases in both mean and 

variance of yield, Traxler et al. found that the post-green revolution era exhibited both slower 

mean yield growth and declining yield risk. This latter effect can be attributed in part to genetic 

improvements targeted to improved pest and disease resistance.   

The interest in risk issues is motivated by the empirical evidence that most farmers are 

risk averse (e.g., Lin et al.; Binswanger; Antle, 1987; Saha et al.). It suggests that technological 

change can also generate benefits by reducing the farmers’ exposure to production risk. In 

addition, the empirical evidence indicates that most farmers exhibit decreasing absolute risk 

aversion (DARA) (e.g., Binswanger; Chavas and Holt). This implies that farmers are averse to 

“downside risk” (Antle, 1987). Intuitively, this means that farmers are especially averse to being 

exposed to unexpectedly low returns (e.g., due to crop failure). This has motivated research on 

the role of downside risk in risk management, including the “safety first” approach (e.g., 

Roumasset). Much research has analyzed agricultural risk. This includes the mean-variance 

investigation of input effects (e.g., Just and Pope), and technology (e.g., Traxler et al.). Yet, the 

influence of technological change on downside risk exposure (e.g., on the probability of crop 

failure) remains poorly understood.  There is a need to refine our understanding of the linkages 

between technological change and exposure to risk and downside risk in agriculture, with 

implications for the cost of private risk bearing. 
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There is evidence of a significant increase in yield variability over the last few decades 

(e.g., Thompson; Ramirez). Part of this increase appears due to climate changes (Baker et al.) 

suggesting that farmers are now facing greater production uncertainty. With accumulations of 

greenhouse gases (e.g., CO2) contributing to global warming (IPCC; Houghton and Woodwell; 

NOAA), climatic changes have implications for farmers’ risk exposure. Considering that the 

impacts of climate change are region-specific (IPCC), it is of interest to examine how the linkages 

between climate, technology and production risk vary across regions.      

This study presents an economic analysis of risk exposure in corn production and corn 

profitability at the edge of the Corn Belt. Following Antle (1983) and Antle and Goodger, our 

analysis of production risk involves a moment-based approach. We extend the mean-variance 

analysis presented in Just and Pope, and Traxler et al. by also examining the third central moment 

(the skewness) of the relevant random variables. Under risk aversion, decision makers are 

adversely affected by a higher variance of returns. And under downside risk aversion, the welfare 

of decision makers is positively (negatively) affected by an increase (decrease) in skewness of 

returns. This paper examines the effects of technological change on the mean, variance and 

skewness of corn yield and corn profitability, as they evolve under technological progress. 

Relying on Pratt’s risk premium (as a measure of the cost of private risk bearing), we define 

technological progress to be risk-increasing (risk-decreasing) if it increases (decreases) the 

relative risk premium. We investigate empirically the tradeoff between risk (measured by both 

second and third central moments) and expected profit, with a special focus on the degree of 

farmers’ exposure to downside risk.     

The analysis is applied to corn yield and corn profitability using time series data (1974-

1997) from several research stations in Wisconsin.  The panel structure of the data enables us to 

investigate the implications of risk (including downside risk) associated with corn profitability on 

farmers’ welfare over time and across space. Econometric estimates are obtained for the first 

three central moments (mean, variance, and skewness) of the distribution of corn yield, corn 
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moisture, and corn profit.  The empirical evidence shows how the trade off between expected 

return and risk has evolved over time and across sites. Our results indicate that technological 

progress has contributed to reducing risk exposure, although such effects vary across space. They 

also stress the importance of relative maturity of corn hybrid as a means of managing production 

risk. Finally, they document the role and evolution of downside risk exposure, and its 

implications for the cost of risk.  

This paper is organized as follows.  Section 2 presents a conceptual framework of 

decision making under risk. Under the expected utility model, we analyze the effects of 

technology and input use on production risk, profitability. We use the properties of the relative 

risk premium to characterize the effects of technology on risk exposure. We also rely on a 

moment-based approach to approximate the risk premium. This guides our econometric 

specification for empirical research. The data and application of the model to corn are discussed 

in section 4. Sections 5 and 6 present the empirical analysis. We analyze how the choice of corn 

hybrid maturity affects corn yield and corn prof itability, focusing on its effects on expected value, 

variance as well as skewness. Corn hybrid maturity is found to have statistically significant 

effects on production risk. This implies that the choice of hybrid maturity is an important risk 

management tool for farmers. We also find evidence that technological change contributes to a 

significant reduction in risk exposure through its effects on the variance as well as skewness of 

profit. In other words, besides increasing yield, technological progress also lower farmers’ 

exposure to both risk and downside risk. However, these effects are found to vary between farm 

types and across space. Finally, concluding remarks are presented in section 7. 

 

2. Conceptual Framework  

 Consider a farm producing Y = (Y1, Y2,…, Yn), a vector of outputs under uncertainty.  

Under technology t, farm production of output Yi is represented by the stochastic functions Yi = 
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Ai ⋅ yi(xi, t, e), where Ai is the acreage of the i-th commodity, yi(⋅) is the corresponding production 

per acre, xi is a vector of inputs used to produce yi, and e  is a vector of stochastic factors that are 

not known to the decision maker at the time when the input decisions are made. The vector of 

stochastic factors e is treated as a random variable with a given probability distribution G. The 

vector e  includes unpredictable weather effects as well as the effects of pest and diseases on farm 

production. Similarly, under technology t, farm production cost in producing the i-th commodity 

is represented by the stochastic function [Ai ⋅ Ci(xi, t, e)], where Ci(xi, t, e) is the cost per acre, 

depending of input choices xi, technology t, and production uncertainty e . Note that this allows 

for cost to depend directly on yield, e.g., Ci = ci(yi(xi, t, e), xi, t, e). Examples of ex post costs that 

vary with output include storage cost and drying cost. By denoting pi the price of output Yi, total 

profit associated with farm activities Y is  

 π = ∑
=

n

1i
{Ai ⋅ [pi ⋅ yi(xi, t, e) – Ci(xi, t, e)]},  (1) 

subject to ∑
=

n

1i
Ai = A, where A denotes total acreage available for farm production. The price of 

output, pi, can also introduce a stochastic market environment in the analysis. This allows for 

price and weather uncertainty, as well as technology effects in production decisions. Assume that 

inputs are chosen to maximize the expect utility of profit EU(π), where E is the expectation 

operator based on the information available at the time decisions are made. The von Neumann-

Morgenstern utility function U(π) represents the risk preferences of the decision maker, with 

∂U/∂π > 0. Then, we can characterize farm decision-making by the optimization problem: Max 

{EU(π)}, where profit π is given in (1). The cost of private risk bearing can be measured by the 

sure amount R satisfying  

EU(π) = U[E(π) – R], (2) 

where [E(π) – R] is the certainty equivalent of profit (Pratt). The value R defined in (2) is the risk 

premium measuring the largest amount of money the decision maker is willing to pay to replace 
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the random variable π by its expected value E(π). It is a monetary measure of the implicit cost of 

private risk bearing. In this context, for non-degenerate risk, risk aversion implies that R > 0, i.e. 

that the decision maker always prefers a riskless world. This corresponds to a concave utility 

function: ∂2U/∂π2 < 0 (Pratt).  

From equation (2), maximizing expected utility is equivalent to maximizing the certainty 

equivalent, E[π(x, t, ⋅)] – R(x, t). In general, the certainty equivalent, E[π(x, t, ⋅)] – R(x, t), 

depends on input use x and technology t. Of particular interest are the effects of input use x and 

technology t on risk exposure. An input x is said to be risk-increasing (risk-decreasing) if ∂R(x, 

t)/∂x > 0 (< 0), i.e. if it increases (decreases) the cost of private risk bearing (e.g., Ramaswami). 

Assuming an interior solution, and using the first-order necessary condition ∂[E(π)-R]/∂x = 0, this 

can be expressed equivalently through the effects on the relative risk premium: R(x, t)/[E(π(x, t, ⋅) 

– R(x, t)]. In other words, at the optimum, input x is risk-increasing (risk-decreasing) if it tends to 

increase (decrease) the relative risk premium: 
x

t),R())t,,(E(
t),R(

∂









−⋅π

∂
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x

 > 0 (< 0).  

In a similar fashion, we propose to investigate the effects of technological change on risk 

exposure. We consider the case of technological progress associated with an increase in the 

technology index t, such that ∂[E(π(x, t, ⋅) – R(x, t)]/∂t > 0.  

 

Definition: Under risk aversion (where R > 0), technological progress is said to be risk-increasing 

(risk-decreasing) if 
t

t),R())t,,(E(
t),R(

∂









−⋅π
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xx
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 > 0 (< 0).    

 

Assuming that E(π) > 0, E(π) - R > 0, and R > 0, this definition implies that technological 

progress is risk-increasing (risk decreasing) if ∂ln[R(x, t)]/∂t > (<) ∂ln[Eπ(x, t)]/∂t, i.e., if 
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technological progress tends to increase the risk premium relatively more (less) than expected 

return. Note that this characterization of linkages between technology and risk exposure depends 

on risk preferences as they influence the cost of private risk bearing R. This suggests a need to 

assess the risk premium R.  

While R can always be obtained as an implicit solution to equation (2), this requires 

knowing both the utility function U(π) and the probability distribution of π. Given the empirical 

difficulties in obtaining this information, it will be useful to develop some simple approximation 

to R. Under differentiability, take a first order Taylor series expansion on the right-hand side of 

(2) with respect to R, and a m-th order Taylor series expansion on the left-hand side of (2) with 

respect to π. In the neighborhood of the riskless case (where π = E(π)), this gives the following 

approximation to the risk premium R 

R ≅ 











∑ π−π⋅−⋅
=

m

2j
1

j)](E[E
!j

jU
U
1

, (3) 

where U j = ))(E(
U

j

j

π
π∂

∂
is the j-th derivative of U with respect to profit π, evaluated at E(π), j = 1, 

…, m, m ≥ 2. Note that E[π - E(π)]j is the j-th central moment of π. Thus, expression (3) provides 

an approximate measure of the risk premium as a function of the first m central moments of 

profit. This starts with the variance of π (when j = 2), but it can also include higher moments 

(e.g., skewness when j = 3). This provides a framework to assess the relative importance of each 

moment in the cost of risk. Under risk neutrality, the utility function U(π) is linear, the risk 

premium R is zero, and maximizing (2) reduces to maximizing the sum of expected profit 

E[ ∑
=

n

1i
πi(xi, t, e)].  However, under risk aversion, ∂2U/∂π2 < 0 (Pratt), implying that the risk 

premium R tends to increase with the variance of profit. And under downside risk aversion, 

∂3U/∂π3 > 0, implying that the third central moment becomes relevant: decision-makers prefer a 

positive skewness as it reduces their exposure to downside risk (e.g., Antle, 1987). 
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The model just presented is quite general: it includes multiple sources of uncertainty 

associated with different productions. However, one may sometimes want to focus on the 

uncertainty associated with a particular production. This is the empirical case presented below, 

where we focus on corn production. In this case, we want to adapt the above analysis. For that 

purpose, assume that we want to focus on the first commodity (i = 1). Let π = ∑
=

n

1i
[Ai ⋅ πi], where 

π i = pi ⋅ yi(xi, t, e i) – Ci(xi, t, ei) denotes profit per acre of the i-th commodity. Note that (∑ ε
=

n

1i
i )j = 

∑ ε⋅⋅⋅ε⋅ε n21 j
n

j
2

j
1

n21 !j!...j!j
!j

, where j1, j2, …, jn are non-negative integers satisfying ∑
=

n

1i
ij = j. 

Letting ε i = [Ai ⋅ (πi – E(πi))], it follows that the risk premium R can be approximated by 

R ≅ 











∑ δ+µ⋅⋅−⋅
=

π

m
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jj

j
11 ]A[

!j

jU
U
1

, (3’) 

where µjπ = E[(π1 – E(π1))
j] is the j-th central moment of profit per acre of the first commodity, 

π1, and δj = ∑
<

ε⋅⋅⋅ε⋅ε
jj

j
n

j
2

j
1

n211

n21

!j!...j!j
!j

, j = 2, …, m. Expression (3’) relates the risk premium R 

to the first m central moments of π1, while the δj’s account for the effects of risky returns 

associated with other production activities. It follows that the certainty equivalent of profit can be 

approximated as 

E(π) – R ≅ ∑
=

n

1i
[Ai ⋅ E(πi)] - 












∑ δ+µ⋅⋅−⋅
=

π ]A[
!j

jU
U
1 m

2j
jj

j
11 . (4) 

Equation (4) identifies the components of the certainty equivalent directly associated with 

the first commodity. They are: A1 ⋅ µ1 - 











∑ µ⋅⋅−⋅
=

π

m

2j
j

j
11 ]A[

!j

jU
U
1

, where µ1 = E(π1). This shows 

the direct effects of the first m moments of the distribution of profit π1, µjπ, j = 1, …, m, on the 

certainty equivalent. Note that equation (4) applies under very general conditions.  It only 
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requires that the first m moments of π are finite. As such, it allows for many probability 

distribution functions for the random variables e , thus providing a flexible representation of the 

uncertainty.  

 

3. Econometric Specification 

This section discusses the econometric specification used below in our empirical 

investigation of the distribution of corn yield, moisture and profit. Let µ1π(x1, t) = Eπ1(x1, t, e) 

denote the mean profit or first moment of profit per acre of the first commodity. And let µjπ(x1, t) 

= E[(π1(x1, t, e) - µ1π(x1, t))
j] be the j-th central moment of π1, j = 2, …, m, conditional on input 

decisions x1 and on technology t. Equation (4) shows how the certainty equivalent of profit 

depends on the mean profit µ1π(x1, t), on the variance of profit, µ2π(x1, t), on the skewness of 

profit µ3π(x1, t), etc., and on other interaction effects across activities. This suggests a need to 

estimate the moments of profit µjπ(x1, t), j = 1, 2, 3….  For that purpose, we specify a parametric 

form for each µjπ and estimate the corresponding parameters.  Let µjπ = fj(x1, t, ββ j), where ββ j is a 

vector of parameters representing the effects of x1 and t on the j-th moment of profit µjπ, j = 1, 2, 

3 ….  Then, consider the econometric model 

π1 = f1(x1, t, ββ1) + v1π (5) 

where v1π is an error term distributed with mean zero, E(v1π) = 0. Then, treating (x1, t) as 

exogenous variables, equation (5) represents a standard regression model where the parameters ββ1 

can be consistently estimated by the least squares method. Let ββ1
LS be the least squares estimator 

of ββ 1 in (5), giving the least squares residual v1π
LS = π1 - f1(x1, t, ββ 1

LS). Consider the following 

model specification 

(v1π
LS)2 = f2(x1, t, ββ2) + v2π.  (6) 

Then, the least squares estimation of (6) gives ββ2
e, a consistent estimator of ββ 2 (Antle, 1983). It 

follows that f2(x1, t, ββ2
e) is a consistent estimator of Var(v1π). In the presence of 
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heteroscedasticity, this provides a basis for re-estimating equation (5) by generalized least 

squares. The resulting estimator ββ 1
GLS is consistent, asymptotically efficient, and asymptotically 

normal. This provides the estimator of expected profit reported below. Next, define v1π
GLS = π1 - 

f1(x1, t, ββ 1
GLS) and consider 

 (v1π
GLS)j = fj(x1, t, ββ j) + vjπ, j ≥ 2, (6’) 

Since v1π
GLS is a consistent estimator of v1π, it follows that the least squares estimator of ββ j in (6’) 

is consistent and asymptotically normal for j ≥ 2 (Antle, 1983; Antle and Goodger). However, 

noting that Var(vjπ) = f2j – (fj)
2, the standard errors of ββj need to be corrected for 

heteroscedasticity. For that purpose, we implement the procedure proposed by White to obtain 

consistent estimates of the standard errors of ββj in (6’). This provides the empirical framework 

used below in the investigation of the distribution of profit (measured through its mean, variance, 

and skewness) as it changes with technology t and the input choices x1.   

Farm profit π1 is a function of input choice x1, technology t, and uncertainty e .  As 

indicated in equation (1), it will be of interest to decompose the effects of (x1, t, e) on farm profit 

π1 into two main effects: (i) production effects through the production function y1(x1, t, e); and (ii) 

cost effects through the cost function C1(x1, t, e).1 Both functions are stochastic because they 

depend on the random variables e.  Following the moment-based approach, they can each be 

represented by their central moments: mean, variance, skewness, etc.  The empirical analysis of 

these moments can be conducted in a way similar to the approach just discussed for the profit 

function.  For example, the central moments of the production function y1(x1, t, e) can be 

parameterized as E(y1) = µ1y = g1(x1, t, αα 1) for the expected value of yield, E[(y1 - µ1y)
2] = µ2y = 

g2(x1, t, αα 2) for the variance of yield, E[(y1 - µ1y)
3] = µ3y = g3(x1, t, αα 3) for the skewness of yield, 

etc.  Following the estimation method discussed above, the parameters of the functions gj(x1, t, 

αα j), j = 1, 2, …, can be consistently estimated.  Similarly, the central moments of the function 

C1(x1, t, e) can be parameterized as E(C1) = µ1c = h1(x1, t, γγ1) for expected cost, E[(C1 - µ1c)
2] = µ2c 
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= h2(x1, t, γγ2) for the variance of cost, E[(C1 - µ1c)
3] = µ3c = h3(x1, t, γγ3) for the skewness of cost, 

etc.  Again, the parameters of the functions hj(x1, t, γγ j), j = 1, 2, …, can be consistently estimated 

as discussed above. 

 

4. An Application to Corn 

 We apply the conceptual framework developed in the previous sections to corn 

production, with a focus on the risk implications of production uncertainty. In particular, we 

examine the effects of technology and climate change at the edge of Corn Belt.  First, 

Mendelsohn et al. has argued that the effects of climatic change are expected to be more 

significant in marginal areas around the Corn Belt. Second, characterizing the implications of 

technological change at the edge of the Corn Belt allows us to examine the differential effects of 

technological change on corn production over space.    

 Our analysis relies on corn production and cost data obtained from three research stations 

in Wisconsin: Arlington, Marshfield and Spooner. The Arlington research station is in Southern 

Wisconsin, Spooner is in Northern Wisconsin, while Marshfield is in Central Wisconsin. The 

Arlington station is located in the Northern Corn Belt. As such, the data from Arlington provide 

information on the effects of technology and climatic changes on corn production and costs in the 

Corn Belt.  In contrast, Marshfield and Spooner are outside the Corn Belt. This means that the 

data from Marshfield and Spooner provide useful information on technology and climate effects 

in more marginal areas for corn production.    

As one moves north in Wisconsin, corn yields decline as the length of the growing season 

gets shorter.  To deal with this shorter growing season, farmers in Northern Wisconsin plant 

short-season corn hybrids for at least two reasons: 1/ they give a higher probability of reaching 

maturity before the end of the growing season; and 2/ they require lower drying costs. These 

trade-offs are evaluated below. The data set consists of 24 years (1974-1997) of yield and relative 
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maturity2 (RM) information generated from long-term studies of corn yields conducted by the 

University of Wisconsin Agricultural Experiment Station. These agronomic trial studies were 

designed to measure corn hybrid performance. They measured yield and grain moisture for a 

range of corn hybrids. Because other inputs (including cultural practices) were uniformly 

administrated during the experiment at each site, yield variations in each location are mainly due 

to the choice of hybrid maturity, genetic improvements and uncontrollable factors (mainly 

weather effects). This provides a basis of evaluating the evolution of the distribution of corn yield 

and cost over time and across space.   

Table 1 summarizes the data for the Arlington, Marshfield and Spooner research stations.  

Number of observations (N), average GDD (Growing Degree Days)3 and its standard deviation, 

average yield (bu/acre), average corn moisture at harvest (percent) and the range of maturity 

rating (RM) for each location are presented.  As expected, as one moves north, average GDD 

declines. Below, we will examine the evolution of GDD as a proxy measure of climate change. 

The average yield over the sample period decreases as one moves north. Relative maturity ranges 

from 85 to 120 in the south, and from 70 to 110 in the north, reflecting the different climatic 

conditions. 

 

5. Estimation Results 
 
Focusing on the first three central moments of the distribution of corn yield, corn 

moisture, GDDs (Growing Degree Days) and corn profit, this section presents an empirical 

investigation of (i) the determinants of the distribution of corn yield, (ii) the distribution of GDDs 

and its trend, (iii) the factors affecting the moisture of corn grain at harvest, and (iv) the 

distribution of corn profit and its evolution (both over time and across space).   
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5.1. Mean, variance, and skewness of corn yield   

As discussed in section 3, we estimate the factors influencing the mean, variance, and 

skewness of corn yield. First, we consider the stochastic production function representing corn 

yield, y1 = g1(x1, t, αα 1) + v1y, where v1y is an error term distributed with mean zero. The expected 

yield function g1(⋅) is specified and estimated as a linear function of relative maturity (RM), the 

square of relative maturity (RM2), and a time trend (T). The introduction of RM2 allows for 

possible nonlinear relationship between relative maturity and corn yield. The time trend T 

captures two effects: the impact of technological change (e.g., genetic progress)4 on yield 

(Cardwell), as well as the impact of climatic change (Baker et al.; Mendelsohn et al.). The error 

term v1y accounts for unobserved weather effects and other uncontrollable factors affecting corn 

yield.   

Second, we consider the variance of yield: µ2y = g2(x1, t, αα 2) + v2y. We specify and 

estimate the variance of corn yield as a linear function of relative maturity (RM) and a time trend 

(T).  Third, we investigate the skewness of yield: µ3y = g3(x1, t, αα 3) + v3y. This function is 

estimated using a linear specification with relative maturity (RM) and a time trend (T) as 

explanatory variables. 

The econometric results are reported in Table 2. From Table 2-A, the coefficient 

estimates in the expected yield equation have anticipated signs and a high level of significance. 

First, the coefficients associated with RM are all statistically significant.  In all three sites, we 

find a positive and concave relationship between relative maturity and corn yield: long season 

hybrids tend to produce higher expected yield.  Second, the coefficients of time trend (T) are all 

statistically significant at the 1% level. The positive signs of the coefficients indicate that 

expected corn yield increases over time. As discussed, this measures the joint effects of climate 

change and productivity growth due to genetic and technological improvements. It is noted that 
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the magnitude of the time trend effects increases as one moves north, identifying slightly 

heterogeneous effects of technology and climate changes on expected corn yield.   

Table 2-B reports estimation results for the variance of yield. The fairly low R2 value 

suggests that a large part of the variance remains unexplained. However, the variance of yield 

tends to increase over time. While not significant in Arlington, this effect becomes positive and 

significant as one moves north. This suggests that technological and climatic changes have 

increased production risk for corn at the edge of the Corn Belt (but possibly not within the Corn 

Belt).   

The estimation results for the skewness of yield is reported in Table 2-C.  We found no 

evidence of statistically significant relationship between relative maturity and the skewness of 

yield.  While the choice of relative maturity is relevant in dealing with production risk (as 

measured by the variance of yield), it suggests that RM choice does not affect exposure to 

downside yield uncertainty.  At Arlington, positive and significant time trend suggests that 

technology and climate changes tend to increase the skewness of yield.  This implies that 

exposure to downside yield risk has declined over time at Arlington.  However, these effects are 

not statistically significant outside the Corn Belt (Marshfield and Spooner). 

Next, we investigate the nature of the exposure to downside yield risk. For that purpose, 

we tested the null hypothesis that the yield distribution is symmetric, using a Wald statistic.  The 

skewness coefficient measuring symmetry of the distribution is defined as β1 = (f3)
2/(f2)

3, where fi 

is the i-th central moment of yield (Greene, p310). Under the null hypothesis of symmetry (β1 = 

0), the test statistic W = N ⋅ (β1
e/6) is distributed χ2(1). We tested for symmetry at each site for 

different values of RM and at different time periods. For Arlington and Marshfield, the test 

results imply that, in most cases, the null hypothesis of symmetry is rejected at the 5 percent 

significance level. The test results then provide evidence that the distribution of yield is skewed to 

the left (corresponding to a significant exposure to downside risk) in Arlington and Marshfield. 
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As one moves north (Spooner), the null is rejected regardless of the maturity length of corn 

hybrids. Thus, in general, we find evidence that the distribution of yield is skewed to the left, 

implying a significant exposure to downside yield risk. However, one exception is at Arlington, 

where we failed to reject the null for medium-season hybrids in the 1990s, while we rejected the 

null for the same hybrids in the 1970s and the 1980s. This indicates that yield skewness has 

changed and that the exposure to downside risk has declined over time in Arlington.  

 

5.2. Technological change versus climatic change   

The estimation results discussed in the previous section show some significant increases 

in the mean, variance and skewness of yield over time. The joint effects of technology and 

climate changes on the mean, variance and skewness of corn yield (captured by the time trend T), 

appear to vary across sites. A question of interest is whether we can assess how much of these are 

due to technological change versus climate change.   

To address this question, we consider the evolution of the distributions of Growing 

Degree Days (GDD) at each site.  Since GDD is a temperature-based index providing a summary 

measure of the length of the growing season for corn, we use it as a proxy for climate change. 

Using the moment-based approach discussed in section 3, the mean, variance and skewness of 

GDD are estimated as a linear function of a time trend. The results are presented in Table 3 for 

Arlington, Marshfield and Spooner. As indicated in Table 3-A, the coefficient of the time trend 

(T) in mean GDD equation is positive and statistically significant for Marshfield.  However, it is 

not statistically significant for Arlington and Spooner. Thus, for Arlington and Spooner, there is 

no strong evidence of a longer growing season (as measured by GDD). For these stations, this 

weak evidence of global warming effects suggests that most of the yield trends could be 

attributed to technological change.5 For Marshfield, we find strong evidence of a longer growing 

season. This is consistent with beneficial effects of global warming in the northern fringe of the 

U.S. (Mendelsohn et al.). On the other hand, as indicated in Table 2-A, we also find strong 
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evidence of joint effects of technology and climate changes on productivity gain.  Then, how 

much of productivity gain at Marshfield can be attributed to technological improvement?  

Compared with the annual yield increase of +1.87 bu/acre/year (+1.13 %/year), 0.42% per year 

increase in growing season (associated with an average annual increase in GDD of 11.45°F) is 

reported in Table 3-A.  To the extent that GDD increases are expected to generate proportional 

changes in expected corn yield, this suggests that about 37 percent of productivity gain in 

Marshfield would be attributed to a longer growing season.  This would suggest that 63 percent of 

productivity gain may be associated with technological change.  In a way consistent with 

Thompson (1975, 1986) and Cardwell, this indicates that only a small proportion of yield trend 

can be attributed to evolving weather patterns. Thus, for all three sites, technological progress 

seems the dominant factor influencing productivity trends in corn production.   

Next, we evaluate the impact of climatic change on production risk (as measured by the 

variance of corn yield). Table 3-B reports that the coefficient of the time trend (T) in the variance 

of GDD equation is positive and statistically significant for Arlington and Marshfield. This 

suggests that the growing season has become more unpredictable at Arlington and Marshfield.  

However, the time trend effect is not statistically significant at Spooner. Thus, at Spooner, there is 

no strong evidence that the length of the growing season has become more unpredictable.  This 

suggests that, at the edge of the Corn Belt, it is not clear whether global warming is contributing 

to increased corn yield uncertainty. Yet, significant increases in yield risk have been reported in 

Table 2-B for Spooner. To the extent that they are not associated with climatic fluctuations, such 

changes can be attributed to changing technology. This indicates that, along with higher expected 

yields, improved technologies also bring an increased exposure to production risk (e.g., improved 

short-season hybrids with better average yield but more sensitivity to weather shocks). In 

contrast, in the Corn Belt (Arlington), we find a significant increase in the unpredictability of the 

length of the growing season. Yet, as indicated in Table 2-B, there is no statistical evidence that 

the variance of yield has increased over time in Arlington. These two findings suggest that 
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technological progress in Arlington has contributed to reducing exposure to production risk in the 

Corn Belt. This shows that technological progress interacts with production risk in different ways 

across regions.   

Finally, we inquire about the effects of climatic change on exposure to downside 

production risk. This involves an investigation of the skewness of GDD. As indicated in Table 3-

C, we find no statistical evidence that the skewness of GDD has changed over time. To the extent 

that the time trend captures climate change, this suggests that the impact of climate change on 

exposure to downside risk remains unchanged. Yet, we found statistically significant increase in 

the skewness of corn yield at Arlington. We interpret this to mean that, at Arlington, most of the 

reduction in downside risk can be attributed to technological progress (e.g., due to new hybrids 

that are more resistant to pests and diseases). In all cases, we conclude that technological progress 

seems the dominant factor influencing the evolving distribution of corn yield.  

 

5.3. Mean, variance, and skewness of corn moisture  

This section explores corn grain moisture at harvest. Since the cost of drying depends on 

the moisture of corn grain at harvest, we examine the factors affecting the uncertainty involved in 

drying cost. Expected moisture, variance of moisture, and skewness of moisture are specified and 

estimated. The estimation results are reported in Table 4 for each site. Mean, variance and 

skewness of moisture equations are specified as a linear function of relative maturity RM and a 

time trend T.  Including a time trend allows us to examine the effects of technology and climatic 

changes on the evolution of moisture over time.   

As indicated in Table 4-A, the effects of RM on mean corn grain moisture are positive 

and become significant as one moves north. The variance of moisture also exhibits a positive 

relationship with RM, suggesting that the risk associated with the unpredictability of corn grain 

moisture increases with corn hybrid maturity. This relationship seems to become more important 

as one moves north. As indicated in Table 4-C, we find strong evidence of a statistically 
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significant and positive relationship between RM and the skewness of corn moisture at Arlington 

and Marshfield. This suggests that planting a longer season corn hybrid increases the odds of 

facing high moisture corn at harvest time.   

Next, we evaluate the evolution of the distribution of corn grain moisture.  First, at 

Arlington, the coefficient of the time trend in the expected moisture equation is positive and 

statistically significant. This means that technological progress and climatic change tend to 

increase expected moisture, thereby increasing drying costs. With no evidence of changes in 

climatic trend (Table 3-A), this suggests that most of these effects can be attributed to 

technological progress at Arlington. However, as indicated by the statistically significant and 

negative relationship between time trend and the skewness of moisture (Table 4-C), technological 

progress contributes to lowering the odds of facing high moisture corn at harvest (which would 

reduce drying cost). At Marshfield and Spooner, we find no strong evidence of time trend effects 

on either expected moisture or skewness of moisture. However, note that these sites show 

statistically significant relationships between time trend and the variance of moisture.   

  

5.4. Mean, variance, and skewness of corn profit 

Finally, we explore the implications of technology and uncertainty on corn profit.  We 

measure corn profit as corn revenue minus drying cost on a per acre basis. Corn price is assumed 

to be $2.00 per bushel. 6 The drying cost varies depending on corn moisture at harvest as well as 

farm type. We consider three farm types: a livestock farm where corn is fed directly to livestock 

with no drying; a grain farm using on-farm drying facilities; and a grain farm relying on 

commercial drying.7 The expected value of profit, its variance and its skewness are specified and 

estimated as discussed in section 3. The econometric results are presented in Table 5. Table 5-A 

summarizes the estimation results for expected income by farm type and by location (Arlington, 

Marshfield, and Spooner). The results are consistent with those obtained in the analysis of 

expected yield (see Table 2 and the associated discussion).  For example, the coefficients 
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associated with relative maturity RM and time trend T are statistically significant (except RM2 at 

Arlington for a livestock farm) and have expected signs. They indicate that technological change 

has contributed to increases in expected corn profitability over time, with the rate of increase 

being faster as one moves north. However, the patterns of variance in corn profitability become 

more complex. For example, it is only in Northern Wisconsin (Spooner) that profit risk increases 

significantly over time for all farm types. The rate of increase is largest for the farm using 

commercial drying, and smallest for the livestock farm. In the other locations, the results vary 

across farms types, indicating the significant role of drying cost.  

Using the econometric results presented in Table 5-A, we evaluated the RM value that 

maximizes expected profit. This corresponds to a risk neutral scenario. At Arlington the optimal 

RM equals 125.9 for the livestock farm, 110.9 for on-farm drying, and 98.7 for commercial 

drying. These values are 96.0, 90.1 and 84.9 at Marshfield, and 89.0, 87.3 and 85.3 at Spooner, 

respectively for livestock farm, on-farm drying and commercial drying.  This shows that, as one 

moves north, the drying cost effects are important, and maximum expected profit is achieved at 

lower value of RM. These results indicate that, under commercial drying, switching to lower 

maturity rating provides farmers an opportunity to reduce their drying cost and to increase 

expected profit.   

Next, we evaluate the farmer’s risk exposure. Table 5-B reports statistically significant 

and positive relationship between the variance of profit and relative maturity RM. This suggests a 

trade-off between expected profit and the variance of profit. Table 5-C shows no significant RM 

effects on the skewness of profit. This suggests that RM is not an effective means of controlling 

downside risk. Yet, a Wald test statistic suggests that, in general, the distribution of corn profit is 

not symmetrically distributed. For example, at Arlington and Spooner relative skewness values 

indicate that the distribution of profit is skewed to the left, implying the presence of a significant 

exposure to downside risk. However, in Arlington, we find that the exposure to downside risk has 

decreased over time.  
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6. Economic Implications  

This section discusses the economic implications of our econometric estimates. First, we 

explore whether relative maturity is a risk-increasing or risk-decreasing input. We also investigate 

the relationships between technological progress and risk exposure. Second, we examine the 

relationship between expected corn profit and the cost of risk (as measured by the risk premium), 

and its evolution over time and across space. Finally, we decompose the risk premium into two 

parts: one due to the second moment and the other due to the third moment of corn profit. This 

provides some insights on the relative role of variance versus downside risk exposure (as captured 

by the third moment) in the evaluation of the cost of risk.  

 

6.1 Technology, relative maturity and risk  

The cost of private risk bearing was defined by the risk premium R in equation (2) and 

approximated by equation (3) or (3’). From equation (3’), the risk premium per acre of corn can 

be approximated by 

R1 ≅
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where µjπ is the j-th central moment of corn profit per acre, π1.  Expression (7) shows that the risk 

premium depends on the first m moments of π1 as well as risk preferences U. We have 

information about the first three central moments of π1 (see Table 5). To make use of (7) to 

evaluate the cost of risk, we need to know the decision maker’s risk preferences. Below, we 

present results obtained assuming that the decision maker’s risk preferences exhibit Constant 

Relative Risk Aversion (CRRA), with utility function U(π) = π1-λ, λ > 0 being the relative risk 

aversion coefficient (Pratt). Note that this is consistent with risk aversion (U2 < 0), decreasing 

absolute risk aversion (see Pratt), as well as downside risk aversion (U3 > 0). Given the empirical 
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evidence that most farmers are risk averse (Lin et al.; Binswanger; Antle, 1987; Saha et al.) as 

well as downside risk averse (e.g., Binswanger; Chavas and Holt), this risk preference 

specification seems reasonable. For the purpose of illustration, the results presented below 

correspond to a CRRA coefficient λ = 2.8   

Using the approximate risk premium given in (7), we first examine the relationship 

between relative maturity (RM) and the cost of risk. Evaluated at 1997, we calculated the change 

in the risk premium R1 due to a change in relative maturity (RM). We found that, regardless of 

sites and farm types, the risk premium R1 increased with a longer maturity corn hybrid. This 

implies that relative maturity is a risk-increasing input: a longer relative maturity involves a 

higher cost of risk.  

In a similar fashion, we explored the relationship between technological change and risk. 

In section 2, we defined technological progress to be risk-increasing (or risk-decreasing) 

depending on its impact on the relative risk premium. We used expression (7) to evaluate the 

relative risk premium comparing 1975 with 1994, for each location and each farm type. With one 

exception (commercial farm in Spooner), we found that the relative risk premium was lower in 

the 1995 than in the 1975. We interpret this as strong evidence that technological progress has 

been risk-decreasing. This is consistent with the results reported in Table 5.  

Next, we examine whether these findings are statistically meaningful. First, we tested the 

null hypothesis that RM input has no effect on the risk premium. This is done by calculating the 

change in the risk premium due to a change in RM, and bootstrapping its distribution. The null 

hypothesis that RM has no effect on the risk premium was tested for each farm type and each site. 

Using a 5 percent significance level, we strongly rejected the null hypothesis for each farm type 

at Arlington as well as Spooner. This provides statistical evidence that choosing a lower RM is a 

risk-reducing strategy. At Marshfield, we also rejected the null hypothesis for on-farm storage 

and commercial farm. Again, this provides evidence that short season hybrids generate a lower 

risk premium. However, we failed to reject the null hypothesis for the livestock farm at 
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Marshfield (with a p-value of 0.197).  This shows that risk exposure varies across sites. It also 

illustrates the importance of drying cost in the evaluation of risk management strategies.  

Second, we examined the statistical significance of the time trend T on the relative risk 

premium. The null hypothesis is that the relative risk premium has not changed over time. Again 

we used (7) to bootstrap the distribution of the change in the relative risk premium between 1975 

and 1994. Using a 5 percent significance level, the null hypothesis is strongly rejected for all farm 

types and all RM at Arlington and Marshfield. We interpret this as strong statistical evidence that 

technological progress is risk-reducing at Arlington and Marshfield. However, the tests results 

differ for a commercial farm at Spooner. The p-values were 0.32, 0.779, 0.755 and 0.651 for RM 

= 70, 75, 80, 90, respectively, indicating that we fail to reject the null hypothesis at Spooner. This 

suggests that the linkages between technological change and risk exposure vary across sites as 

well as across farm types. These issues are further discussed next.  

  

6.2. Trade-off between expected profit and risk premium 

The trade-offs between expected profit and the risk premium (obtained from equation (7)) 

are reported in Figures 1-a, 1-b, 1-c by farm type for Arlington, Marshfield and Spooner, 

respectively. They summarize the effects of drying cost and technological progress on the 

expected profit and risk premium by location and by farm type. They also show the evolution of 

the relationship between expected profit and risk premium between the 1970s and the 1990s.  

Each point is obtained by changing corn hybrids and their associated RM ratings (expressed in 

days). The slope of the lines shows how expected corn profit and risk premium relate to each 

other.  For example, the positive slope of frontier functions indicates that expected income cannot 

be increased without also increasing the risk premium. Alternatively, the risk premium cannot be 

reduced without sacrificing expected income. 



 22 

In the Corn Belt (represented by the Arlington site), the growing season is longer. Each 

farm type exhibits a different slope of its frontier function. For example, the livestock farm shows 

relatively large trade-off between expected return and risk premium, whereas the trade-off is less 

pronounced under commercial drying. This means that, under commercial drying, the risk 

premium can be reduced without much reduction in expected profit by choosing hybrids with 

lower relative maturity RM. The relationship indicates that technological progress has allowed 

farmers to significantly reduce their risk premium without much reduction in expected return.  

In contrast, under a short growing season, Spooner (in Northern Wisconsin) shows 

different linkages between technological change and the trade-off between risk premium and 

expected return. There, technological progress has not allowed farmers to reduce their risk 

premium without significant reduction in expected return. Finally, the results obtained in Central 

Wisconsin (Marshfield) are intermediate between the other two sites. The risk premium trade-off 

is not as pronounced as in the north, but more pronounced than in the south.   

 

6.3. Decomposition of the cost of risk 

This section presents a more detailed analysis of the risk premium. We decompose the 

risk premium into its components due to variance versus skewness. Again, this relies on equation 

(7), which relates the risk premium to the second and third central moments of corn profit. 

The decomposition of the risk premium into its second and third moment effects is 

presented in Figures 2-a, 2-b, 2-c by farm type for different sites. In each figure, the horizontal 

axis represents the cost of risk due to the second moment, while the vertical axis measures the 

cost of risk due to the third moment. For all sites and all farm types, a large part of the risk 

premium is attributed to second moment effects.  This is particularly true at Arlington. For 

example, the variance effects consist of 67% (when RM = 85) to 91% (when RM = 120) of the 

risk premium in commercial farm. Each figure shows the relative effectiveness of RM and farm 

type as risk management tools affecting the risk premium.   
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In the Corn Belt (Arlington) where the growing season is longer, lower relative maturity 

RM significantly reduces the cost of risk due to variance.  However, this cannot be achieved 

without increasing the cost of downside risk exposure. Risk exposure is more prominent for the 

commercial farm in the 1970s.  In the 1990s, however, a commercial farm has the least exposure 

to risk attributable to both variance and downside risk.  This suggests that technological progress 

has contributed to reducing risk associated with the unpredictability of corn grain moisture.  For 

the other two farm types, risk improvements also exist, but they are smaller.    

  Interestingly, under a short growing season, Spooner (in Northern Wisconsin) shows 

different evolution patterns of second and third moment effects.  In particular, Figure 2-c 

indicates that, for a commercial farm, technological improvement has shifted the expected return-

risk premium frontier to the northeast direction (as compared to southwest in Arlington).  This 

means that, in Spooner, technology has weakened farmers’ ability to manage risk (especially 

downside risk) in a commercial farm (where drying cost significantly affect the variability of corn 

profit). As one moves north, the third moment effects appear important in evaluating risk of corn-

growing farmers. This illustrates the complex interactions between technological progress and 

risk exposure over space. 

  

7. Summary and Conclusions  

This paper has investigated the distribution of corn yield, grain moisture and profit, with 

a focus on the effects of technology and climate changes on the evolution of trade-off between 

corn profitability and risk.  It used panel data from Wisconsin research stations, covering sites 

from the Corn Belt to the Northern fringe of the U.S.  Using a moment-based approach, our 

empirical analysis examined conditional means, variances and skewness for corn yield, moisture 

and profit in different sites in Wisconsin. It shows how corn yield, moisture and profit have 

evolved over time, and how technology and climate change have affected them across sites.   
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We found evidence that technology and climate changes have increased production risk 

in Central and Northern Wisconsin. But our results also show that, in Southern Wisconsin (in the 

Corn Belt), these changes have increased the skewness of corn yield and contributed to reducing 

exposure to downside risk and to lowering the cost of risk. While we found some evidence of 

climatic changes, such effects appear to be dominated by the impact of technological change. 

Thus, our findings indicate that technological progress has provided improved means of dealing 

with risk in the Corn Belt. This can be attributed in part to genetic improvements targeted to 

improved pest and disease resistance. However, we want to stress that such benefits are found to 

vary across sites.   

Our analysis has stressed the role of risk management in corn production. It has 

emphasized the importance of choosing corn hybrids and their relative maturity as a means of 

managing risk. Also, it highlighted the role of technological progress in risk exposure. The 

analysis of risk premium and expected profit showed that technology and exposure to risk and 

downside risk can interact, and that such effects vary over space. It illustrated the role of 

downside risk exposure in the assessment of technological change in agriculture. Further research 

is needed to evaluate production uncertainty issues for different commodities and in different 

locations.   
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Table 1. Description of Data 

 

GDD 
Relative Maturity (RM) 

(days) Location Na 

Mean Standard 
Deviation 

Average 
Yield 

(bu/acre) 

Average 
Moisture 

(%) Min. Max. 

South Arlington 2484 2852.9 191.9 166.3 25.9 85 120 

Central Marshfield 1591 2645.5 186.6 119.5 27.5 75 110 

North Spooner 2335 2586.5 202.2 109.0 27.9 70 110 

 
a N denotes the number of observations.  
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Table 2. Estimated relationship between yield and RM in Wisconsin 
 
 
A- Expected Yield = g1(RM, RM2, T)  

Parameter  
Location 

 
N 

Constant RM RM2 T 

 
R2 

 
Arlington 

 
2484 

-73.51 
(100.32) 

3.48 
(1.904)* 

-0.014 
(0.009) 

1.86 
(0.068)*** 

 
0.252 

 
Marshfield 

 
1591 

-148.80 
(89.40) 

5.10 
(1.967)*** 

-0.026 
(0.011)** 

1.87 
(0.092)*** 

 
0.250 

 
Spooner 

 
2335 

-531.02 
(90.28)*** 

13.70 
(2.124)*** 

-0.077 
(0.012)*** 

2.18 
(0.085)*** 

 
0.234 

 

B- Variance of Yield = g2(RM, T)  
Parameter  

Location 
 

N 
Constant RM T 

 
R2 

 
Arlington 

 
2484 

-788.71 
(276.3)*** 

11.795 
(2.59)*** 

3.425 
(2.60) 

 
0.0088 

 
Marshfield 

 
1591 

-25.48 
(259.9) 

5.631 
(2.96)* 

7.753 
(2.06)*** 

 
0.010 

 
Spooner 

 
2335 

-533.80 
(350.6) 

13.841 
(4.07)*** 

8.80 
(2.88)*** 

 
0.0067 

 
 

C- Skewness of Yield = g3(RM, T)  
Parameter  

Location 
 

N 
Constant RM T 

 
R2 

 
Arlington 

 
2484 

-17109 
(18890) 

78.29 
(174.04) 

451.51 
(182.37)** 

 
0.0033 

 
Marshfield 

 
1591 

-19848 
(15715) 

256.14 
(179.1) 

-47.15 
(102.9) 

 
0.0001 

 
Spooner 

 
2335 

2427.8 
(24331) 

-102.92 
(283.09) 

45.22 
(185.66) 

 
0.0001 

 
 
Note: Standard errors are provided in parentheses.  N denotes the number of observations.  The symbols *, 
** and *** denote significance at the 10, 5 and 1 percent levels, respectively. 
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Table 3. Estimated relationship between Growing Degree Days (GDD) and T in Wisconsin 

 
A- Expected GDD = d1(T)  

Parameter  
Location 

 
N 

Constant T 

 
R2 

 
Arlington 

 
25 

2868.5 
(59.67)*** 

-1.126 
(4.84) 

 
0.0023 

 
Marshfield 

 
25 

2500.99 
(51.62)*** 

11.45 
(4.12)** 

 
0.212 

 
Spooner 

 
25 

2535.58 
(75.69)*** 

3.742 
(5.33) 

 
0.0201 

  
 
B- Variance of GDD = d2(T)  

Parameter  
Location 

 
N 

Constant T 

 
R2 

 
Arlington 

 
25 

-815.67 
(9597) 

2885.5 
(1055)*** 

 
0.1654 

 
Marshfield 

 
25 

3299.17 
(9213) 

1963.4 
(959.3)** 

 
0.1328 

 
Spooner 

 
25 

30518* 
(16020) 

654.83 
(1235.3) 

 
0.0092 

  
 
C- Skewness of GDD = d3(T)  

Parameter  
Location 

 
N 

Constant T 

 
R2 

 
Arlington 

 
25 

2577741 
(3637943) 

-251988 
(531405) 

 
0.0075 

 
Marshfield 

 
25 

4278078 
(3953626) 

-407019 
(456373) 

 
0.0046 

 
Spooner 

 
25 

-1258625 
(6631540) 

116721 
(533661) 

 
0.0014 

  
Note: Standard errors are provided in parentheses.  N denotes the number of observations.  The symbols *, 
** and *** denote significance at the 10, 5 and 1 percent levels, respectively. 
 



 31 

Table 4. Estimated relationship between corn moisture and RM in Wisconsin 

 
A- Expected Moisture = h1(RM, T) 

Parameter  
Location 

 
N 

Constant RM T 

 
R2 

 
Arlington 

 
2484 

-11.46 
(1.35)*** 

0.309 
(0.013)*** 

0.323 
(0.011)*** 

 
0.371 

 
Marshfield 

 
1591 

0.439 
(1.838) 

0.341 
(0.021)*** 

-0.295 
(0.020)* 

 
0.183 

 
Spooner 

 
2335 

-2.278 
(2.014)*** 

0.362 
(0.024)*** 

-0.024 
(0.0178) 

 
0.091 

 
 
B- Variance of Moisture = h2(RM, T)  

Parameter  
Location 

 
N 

Constant RM T 

 
R2 

 
Arlington 

 
2484 

-42.63 
(8.07)*** 

0.535 
(0.083)*** 

0.023 
(0.089) 

 
0.020 

 
Marshfield 

 
1591 

-77.65 
(15.82)*** 

1.271 
(0.192)*** 

-0.668 
(0.159)*** 

 
0.045 

 
Spooner 

 
2335 

-83.37 
(21.47)*** 

1.156 
(0.250)*** 

1.491 
(0.162)*** 

 
0.040 

 
 
C- Skewness of Moisture = h3(RM, T) 

Parameter  
Location 

 
N 

Constant RM T 

 
R2 

 
Arlington 

 
2484 

-210.55 
(119.7)* 

2.613 
(1.287)** 

-3.106 
(1.327)** 

 
0.0073 

 
Marshfield 

 
1591 

-723.50 
(260.8)** 

8.601 
(3.190)*** 

-1.185 
(2.397) 

 
0.0097 

 
Spooner 

 
2335 

-133.26 
(421.6) 

1.468 
(4.884) 

4.915 
(2.981) 

 
0.0002 

 
 
Note: Standard errors are provided in parentheses.  N denotes the number of observations.  The symbols *, 
** and *** denote statistical significance at 10, 5 and 1% levels, respectively.   
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Table 5. Estimated relationship between profit and RM in Wisconsin 

 
A- Expected Profit = f1(RM, RM2, T)  

Parameter  
Location 

 
Farm Type 

Constant RM RM2 T 

 
R2 

Livestock -147.03 
(200.65) 

6.972 
(3.808)* 

-0.0275 
(0.018) 

3.731 
(0.136)*** 

 
0.252 

On-farm 
 

-127.76 
(193.28) 

7.263 
(3.669)** 

-0.033 
(0.017)* 

2.498 
(0.131)*** 

 
0.134 

 
 
Arlington 

Commercial 
 

-105.43 
(194.35) 

7.493 
(3.692)** 

-0.038 
(0.017)** 

1.285 
(0.132)*** 

 
0.042 

Livestock 
 

-297.61 
(178.80)* 

10.215 
(3.93)*** 

-0.053 
(0.021)** 

3.748 
(0.185)*** 

 
0.249 

On-farm 
 

-284.66 
(173.79) 

10.039 
(3.822)*** 

-0.055 
(0.021)*** 

3.860 
(0.179)*** 

 
0.252 

 
 
Marshfield 

Commercial 
 

-277.49 
(174.87) 

9.999 
(3.845)*** 

-0.058 
(0.021)*** 

3.944 
(0.179)*** 

 
0.247 

Livestock 
 

-1062.0 
(180.56)*** 

27.41 
(4.25)*** 

-0.153 
(0.025)*** 

4.357 
(0.170)*** 

 
0.234 

On-farm 
 

-972.10 
(176.77)*** 

25.51 
(4.16)*** 

-0.146 
(0.024)*** 

4.10 
(0.165)*** 

 
0.218 

 
 
Spooner 

Commercial 
 

-880.47 
(177.62)*** 

23.58 
(4.18)*** 

-0.138 
(0.024)*** 

3.83 
(0.165)*** 

 
0.196 

 
B- Variance of Profit = f2(RM, T) 

Parameter  
Location 

 
Farm Type 

Constant  RM T 

 
R2 

Livestock 
 

-3154.8 
(1105.1)*** 

47.18 
(10.36)*** 

13.70 
(10.39) 

 
0.0088 

On-farm 
 

-3091.6 
(1059.5)*** 

48.42 
(9.97)*** 

-12.34 
(10.84) 

 
0.0091 

 
 
Arlington 

Commercial 
 

-3661.2 
(1122.04)*** 

56.17 
(10.65)*** 

-28.15 
(12.0)** 

 
0.0130 

Livestock 
 

-101.95 
(1039.8) 

22.52 
(11.83)* 

31.01 
(8.25)*** 

 
0.0098 

On-farm 
 

254.29 
(956.31) 

19.90 
(10.87)* 

9.53 
(7.78) 

 
0.0025 

 
 
Marshfield 

Commercial 
 

146.55 
(953.02) 

23.76 
(10.83)** 

-8.33 
(8.33) 

 
0.0015 

Livestock 
 

-2135.2 
(1402.4) 

55.36 
(16.28)*** 

35.20 
(11.53)*** 

 
0.0067 

On-farm 
 

-2412.7 
(1412.9) 

52.72 
(16.45)*** 

61.36 
(10.61)*** 

 
0.0120 

 
 
Spooner 

Commercial 
 

-2999.4 
(1505.1)** 

54.78 
(17.58)*** 

93.34 
(10.28)*** 

 
0.0213 
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C- Skewness of Profit = f2(RM, T) 
Parameter  

Location 
 

Farm Type 
Constant RM T 

 
R2 

Livestock 
 

-136871 
(151125) 

626.35 
(1392.3) 

3612.1 
(1458.9)** 

 
0.0033 

On-farm 
 

-218213 
(142750) 

1083.2 
(1315.5) 

6485.9 
(1524.4)*** 

 
0.0129 

 
 
Arlington 

Commercial 
 

-298163 
(154627)** 

1508.3 
(1449.4) 

9280.6 
(1731.5)*** 

 
0.0214 

Livestock 
 

-158785 
(125725) 

2049.1 
(1432.9) 

-377.18 
(823.18) 

 
0.0001 

On-farm 
 

-35596 
(109204) 

833.25 
(1245.3) 

-1955.9 
(741.6)*** 

 
0.0004 

 
 
Marshfield 

Commercial 
 

108668 
(107465) 

-579.60 
(1228.6) 

-3065.0 
(809.9)*** 

 
0.0039 

Livestock 
 

21982 
(194650) 

-823.34 
(2264.7) 

361.76 
(1485.3) 

 
0.0001 

On-farm 
 

38721 
(198032) 

-352.67 
(2309.6) 

-2296.2 
(1334.8) 

 
0.0007 

 
 
Spooner 

Commercial 
 

36328 
(220540) 

327.78 
(2528.9) 

-4421.0 
(1338.0)*** 

 
0.0012 

 
 
Note: Standard errors of the parameter estimates are in parentheses.
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Figure 1-a. Expected profit and risk premium at Arlington 
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre. 
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Figure 1-b. Expected profit and risk premium at Marshfield 

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22

Risk Premium

E
xp

ec
te

d 
Pr

of
it

Marshfield

Livestock

Livestock

On-farm

On-farm
Commercial

Commercial

75 85 9580

1970s

1990s

 

Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre. 
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Figure 1-c. Expected profit and risk premium at Spooner 
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre. 
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Figure 2-a. Cost of risk due to second and third moments at Arlington 
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre. 
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Figure 2-b. Cost of risk due to second and third moments at Marshfield 
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre. 
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Figure 2-c. Cost of risk due to second and third moments at Spooner 
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Note: Numbers above each frontier denote maturity days. Unit of measurement: $/acre. 
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Footnotes 
                                                                 
1  For simplicity, we focus our attention on production and cost uncertainty.  This neglects the 

possible effects of price uncertainty.  Incorporating price risk into the analysis would be 
straightforward.  

2 Corn relative maturity is measured using the “Minnesota relative maturity rating”, a 
standardized index characterizing the number of days it typically takes each corn hybrid to 
reach maturity. 

 
3 GDD is a temperature-based index commonly used as a summary measure of the length of the 

growing season for corn.  For example, for a given location and growing season, the GDD 
index for corn is defined as GDD = ∑i {(1/2)[max(Tmini , 50) + min(Tmaxi, 86)] - 50}, where 
Tmini (Tmaxi) is the minimal (maximal) temperature on day i (in degree F).  It reflects the 
absence of appreciable corn growth for temperatures below 50°F or above 86°F. 

4 More informative measures of technology can possibly replace time trend. For example, genetic 
improvements can be directly measured by different hybrids applied. However, it is not 
included in our analysis. This is because the number of hybrids is very large and the hybrids 
change over time in our data. For example, some of the hybrids used in the early part of the 
sample are no longer present in the later part. This makes it difficult to find any simple way of 
incorporating the hybrid information in our analysis beyond their relative maturity rating, RM. 

 
5 This requires the impacts of other factors that potentially explain the proportion of the time 

trend not associated with weather patterns to be not significant. Including other factors in the 
model would require a more refined analysis of how technological change affects yield 
variations.   

 
6  Thus, the analysis presented below neglects price uncertainty. The sensitivity of our results to 

the price scenario was evaluated.  While higher corn price increased corn profitability, the 
empirical findings presented below were found to be fairly robust to the corn-price scenario. 

7 On a livestock farm, drying cost are zero and corn moisture variations have no impact on 
income.  In contrast, corn drying affects cost under commercial drying, with a drying cost of 
0.03 cent per bushel per percentage moisture in excess of 15.5 percent.  On-farm drying 
represents an intermediate situation, where a drying cost of 0.015 cent per bushel per 
percentage moisture in excess of 15.5 percent. 

 
8 A sensitivity analysis was conducted on the relative risk aversion coefficient λ. We investigated 

the following scenarios: λ = 1, 2, 3, 6. Although the quantitative results varied depending on the 
choice of λ, we found fairly similar qualitative results across scenarios.  

  


