Do Analysts Forecast the Ending Stocks or the USDA Forecasts?

Jinzhi Xiao
280D Heady Hall
Department of Economics
Iowa State University
Ames, IA 50011, USA
jzxiao@iastate.edu

Sergio H. Lence
368E Heady Hall
Department of Economics
Iowa State University
Ames, IA 50011, USA
shlence@iastate.edu

Chad E. Hart
478F Heady Hall
Department of Economics
Iowa State University
Ames, IA 50011, USA
chart@iastate.edu

Copyright 2015 by Jinzhi Xiao, Sergio H. Lence and Chad E. Hart. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Do Analysts Forecast the Crop Ending Stocks or the USDA Forecasts?
Jinzhii Xiao, Sergio Lence & Chad Hart*
Department of Economics, Iowa State University

Overview
Both USDA and private analysts provide monthly crop ending stocks forecasts. • Previous studies on agricultural forecasts make different assumptions on forecast target. • Private analysts compete with government agency in forecasting the target outcome. (e.g., Egelkraut et al., 2003) • Private forecasts are targeting government forecasts. (e.g., McKenzie, 2008) • But does that matter to find out the true forecast target of private analysts? • Does that matter to find out the true forecast target?

Panels of forecasts of US ending stocks for corn & soybean from marketing years 2003/04 through 2013/14

Monthly USDA forecasts (source: WASDE Reports)

Private forecasts are targeting government forecasts. (outcome. because of not much difference.
• In other fixed-event forecasts where the forecast horizons are short, it is overlooked because of not much difference.
• But there are 17 forecasts in a marketing year for corn and soybean, difference could be large.
• Xiao et al. (2014) find that both USDA and analysts are inefficient in forecasting the ending stocks. It is possible that analysts are actually forecasting USDA forecasts.

Objective
Analyze forecast structure, test for efficiency when the two types of forecasts are treated as forecasting each other, and investigate whether they are Forecast of Forecasts (FoF)

Data
Panels of forecasts of US ending stocks for corn & soybean from marketing years 2003/04 through 2013/14 • Monthly USDA forecasts (source: WASDE Reports) • Combined analysts’ forecasts: Average and median

Research to Date Findings
• For corn, USDA forecasts are FoF of next analysts’ forecasts, but are inefficient. • For corn, analysts’ forecasts are FoF of next USDA forecasts, but are inefficient. • For soybean, USDA forecasts are directly targeting ending stocks, but are inefficient. • For soybean, analysts’ forecasts are FoF of next USDA forecasts and they are efficient forecasts.

Model
We focus on forecast revisions and build a model based on Clements et al. (2007) to jointly test the efficiency of USDA forecasts (\hat{Y}_{t+1}) and representative analysts’ forecasts (\hat{Y}_{t+1}), where t represents the marketing year, n represents the forecast horizon, i.e. the number of months between the forecast and the ending stocks. The null hypotheses are $H_0: \hat{Y}_{t+1}$ are efficient forecasts of Y_{t+1}, $H_0: \hat{Y}_{t+1}$ are efficient forecasts of Y_{t+1}. The parameters are estimated in the following system

$$\begin{align*}
\Delta Y_{t} &= \alpha_0 + \alpha_1 (\Delta Y_{t-1} - \bar{Y}_{t-1}) + \beta_1 (\Delta Y_{t-2} - \bar{Y}_{t-2}) + \beta_2 (\Delta Y_{t-3} - \bar{Y}_{t-3}) + \epsilon_t \\
\Delta Y_{t+1} &= \alpha_0 + \alpha_1 (\Delta Y_{t+1} - \bar{Y}_{t+1}) + \beta_1 (\Delta Y_{t+2} - \bar{Y}_{t+2}) + \beta_2 (\Delta Y_{t+3} - \bar{Y}_{t+3}) + \epsilon_{t+1} \\
\Delta Y_{t+2} &= \alpha_0 + \alpha_1 (\Delta Y_{t+2} - \bar{Y}_{t+2}) + \beta_1 (\Delta Y_{t+3} - \bar{Y}_{t+3}) + \beta_2 \Delta Y_{t+1} + \epsilon_{t+2} \\
\Delta Y_{t+3} &= \alpha_0 + \alpha_1 (\Delta Y_{t+3} - \bar{Y}_{t+3}) + \beta_1 \Delta Y_{t+2} + \beta_2 \Delta Y_{t+1} + \epsilon_{t+3} \\
\end{align*}$$

If $\beta_2 = \beta_1 \neq 0$, then \hat{Y}_{t+1} are efficient forecasts of Y_{t+1}. If $\beta_2 = \beta_1 = 0$, then \hat{Y}_{t+1} are efficient forecasts of \hat{Y}_{t+1}.
• α_0 and β_0 are coefficients of the constant terms. They measure whether forecast revisions are biased in one direction.
• β_1 and β_2 are coefficients representing the relationship of dependent forecast revisions and their immediately preceding forecast revisions. They can be interpreted as conditional forecast encompassing tests.
• α_0 and β_0 are coefficients representing the relationship of dependent forecast revisions and their past forecast revisions. They measure whether forecast revisions immediately incorporate all new information or adjust slowly.
• k is monthly shocks, which represent errors outside of forecaster’s control, i.e. unforecastable. The variances of ϵ_t are assumed to be different based on the alternating forecast structure.
• ϵ’s are forecaster’s idiosyncratic errors. The variances of ϵ_{t+1} and ϵ_{t+2} are assumed to be different.

Advantages of the model:
• Proposed an estimation framework where forecast revisions are linked.
• Introduced a detailed error covariance matrix allowing both heteroskedasticity and auto-correlations.
• Designed MCMC methods to estimate the system and parameters are fully explained by the data.

Model

Research to Date Findings

Estimation

<table>
<thead>
<tr>
<th></th>
<th>Corn Mean (St. dev.)</th>
<th>Soybean Mean (St. dev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_0</td>
<td>0.0013 (0.0026)</td>
<td>-0.0242 (0.0066)**</td>
</tr>
<tr>
<td>β_1A</td>
<td>0.0380 (0.0435)</td>
<td>0.6359 (0.1346)**</td>
</tr>
<tr>
<td>β_2A</td>
<td>-0.1124 (0.0498)**</td>
<td>0.4165 (0.0765)**</td>
</tr>
<tr>
<td>α_0</td>
<td>0.0101 (0.0043)</td>
<td>0.0707 (0.0065)</td>
</tr>
<tr>
<td>β_1B</td>
<td>-0.0631 (0.0691)</td>
<td>0.0618 (0.0694)</td>
</tr>
<tr>
<td>β_2B</td>
<td>0.1613 (0.0568)**</td>
<td>0.0682 (0.0582)</td>
</tr>
</tbody>
</table>

Shock (range)

Shock (range)	0.0094 – 0.2725	0.0198 – 0.3103
σ_0	0.0208 – 0.1396	0.0263 – 0.1573

Idiosyncratic

σ_1A	0.0166 (0.0001)**	0.0577 (0.0006)**
σ_1B	0.0065 (0.0004)**	0.0108 (0.0001)**

References:

*Jinzhii Xiao is a Ph.D. candidate, Sergio Lence is Professor and Marlin Cole Chair in International Agricultural Economics, Chad Hart is Associate Professor. All three authors are in the Department of Economics at Iowa State University.
Contact Information: Jinzhii Xiao, jzxiao@iastate.edu; Sergio Lence, shlence@iastate.edu; Chad Hart,chart@iastate.edu.