Highway Investment and Induced Vehicle Emissions

You Zhou
you.zhou@email.wsu.edu
PhD student, School of Economic Sciences
Washington State University, Pullman, WA 99163

Selected Poster prepared for presentation at the
2015 Agricultural & Applied Economics Association and Western Agricultural Economics
Association Joint Annual Meeting, San Francisco, CA, July 26-28

Copyright 2015 by You Zhou. All rights reserved. Readers may make verbatim copies of this
document for non-commercial purposes by any means, provided that this copyright notice
appears on all such copies.
Highway Investment and Induced Vehicle Emissions

You Zhou
School of Economic Sciences, Washington State University

Background

- Roads are essential for economic mobility. A reliable and efficient transportation system can increase productivity, promote exports, integrate the regional economies, and ensure smooth movement of goods.
- 32% of America’s major roads are in poor or mediocre condition.
- Environmental issues related to public infrastructure projects are a significant concern for policy-makers. Transportation activities are the main source for CO2 and NOx.
- Transportation sector accounts for 28% U.S. Greenhouse Gas emissions. Within the sector, passenger vehicle and freight truck account for 56% and 22% of total transport emissions.

Figure: States’ Pavement Conditions in 2007

Pavement Conditions by State, 2007

Note: above figure shows the percentage of roads are in poor or mediocre condition by states.

Objectives

- Build a theoretical model to explain the impact of highway investment on passenger and freight emissions.
- Empirically test the theoretical predictions and quantify the effects.

Theoretical Model

Two-stage general equilibrium model:

- Stage 1: government chooses highway spending to maximize social welfare which consisting of consumer’s utility and producer’s profit.
- Stage 2: consumer and producer maximize own interests given highway quality.

Empirical Strategy

- Testable empirical relationship is a system of two equations:
 \[Z_1 = \alpha_1 + \beta_1 x_1 + \gamma_1 x_2 + \delta_1 x_3 + \epsilon_1 \]
 \[Z_2 = \alpha_2 + \beta_2 x_1 + \gamma_2 x_2 + \delta_2 x_3 + \epsilon_2 \]
- The system of two equations is estimated using Seemingly Unrelated Regression (SURE).
- Lane mile of rural and urban roads, rural and urban, as proxies for \(\epsilon_1 \) and \(\epsilon_2 \).
- GDP per land area, scale, as proxy for \(\epsilon_1 \); income per capita, income, as proxy for \(\epsilon_2 \).

Empirical Results

- Government highway expenditures have adverse effects on freight emissions.
- The effect of government highway expenditures on passenger emissions is ambiguous, depending on the value of time on freight and passenger driving.
- The determinants of freight emission (\(Z_1 \)) include:
 - Government spending on highway (\(\alpha_1 \)),
 - Value of time on freight (\(\beta_1 \)) and passenger driving (\(\gamma_1 \)),
 - Unit emission of freight truck (\(\delta_1 \)).
- The determinants of passenger emission per capita (\(Z_2 \)) include:
 - Government spending on highway per capita (\(\alpha_2 \)),
 - Value of time on freight (\(\beta_2 \)) and passenger driving (\(\gamma_2 \)),
 - Unit emission of passenger vehicle (\(\delta_2 \)).

Theoretical Results

- Highway investment raises both freight and passenger emissions, but the effect on freight is significantly higher than passenger.
- The scale effect increases freight emissions but reduces passenger emissions per capita while the income effect has the opposite effects.

Data

- Balanced panel dataset for the 48 contiguous states from 1995 to 2011
- CO2 emitted from heavy-duty and passenger vehicle (US Environmental Agency)
- State government expenditure on highway (US Census)

Table 1: Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight emission</td>
<td>million metric tons</td>
<td>7,347</td>
<td>.717</td>
<td>.676</td>
<td>50.635</td>
</tr>
<tr>
<td>Passenger emission per capita</td>
<td>metric tons</td>
<td>3.835</td>
<td>.668</td>
<td>2.162</td>
<td>6.916</td>
</tr>
<tr>
<td>Highway spending</td>
<td>billion dollars</td>
<td>1.683</td>
<td>1.615</td>
<td>.157</td>
<td>13.327</td>
</tr>
<tr>
<td>Highway spending per capita</td>
<td>thousand dollars</td>
<td>.338</td>
<td>.127</td>
<td>.139</td>
<td>1.012</td>
</tr>
<tr>
<td>Scale</td>
<td>million dollars per square mile</td>
<td>8.109</td>
<td>12.375</td>
<td>.120</td>
<td>68.543</td>
</tr>
<tr>
<td>Income</td>
<td>thousand dollars</td>
<td>32.171</td>
<td>7.559</td>
<td>17.375</td>
<td>57.547</td>
</tr>
<tr>
<td>Rural</td>
<td>thousand miles</td>
<td>128.699</td>
<td>80.299</td>
<td>2.499</td>
<td>459.250</td>
</tr>
<tr>
<td>Urban</td>
<td>thousand miles</td>
<td>44.115</td>
<td>48.788</td>
<td>2.810</td>
<td>231.499</td>
</tr>
</tbody>
</table>

Empirical Results

- A 1% increase in highway spending raises freight emissions and passenger emissions by 0.36% and 0.04%, respectively.
- A 1% increase in scale effect raises freight emissions by 0.10% but reduces passenger emissions per capita by 0.25%.
- A 1% increase in income effect reduces freight emissions by 3.11% but raises passenger emissions per capita by 2.35%.

Table 2: Results for Freight and Passenger Emissions

<table>
<thead>
<tr>
<th>Estimation Type</th>
<th>Separate OLS Estimation</th>
<th>SUR Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Type</td>
<td>Freighter</td>
<td>Passenger</td>
</tr>
<tr>
<td>Highways</td>
<td>(1.549)***</td>
<td>(1.305)**</td>
</tr>
<tr>
<td>Scale</td>
<td>(.149)***</td>
<td>(.140)***</td>
</tr>
<tr>
<td>Income</td>
<td>(0.071)**</td>
<td>(.030)**</td>
</tr>
<tr>
<td>Rural</td>
<td>(.001)**</td>
<td>(.000)**</td>
</tr>
<tr>
<td>Urban</td>
<td>(.001)**</td>
<td>(.000)**</td>
</tr>
</tbody>
</table>

Year and state dummies Yes Yes Yes Yes

Observations | 816 816 816 816

Note: * P value<0.1; ** P value<0.05; *** P value<0.001