Disruptive Policy Impacts on Biodiesel Investment: The Third Leg in 3-T Policy

Shen Liu
Graduate Research Assistant
Department of Agricultural and Applied Economics
308 Conner Hall, The University of Georgia
Athens, GA 30602
Phone: (706) 207-4874
Email: shenliu1@uga.edu

Gregory J. Colson
Associate Professor
Department of Agricultural and Applied Economics
314-E Conner Hall, The University of Georgia
Athens, GA 30602
Phone: (706) 583-0616
Email: gcolson@uga.edu

Michael E. Wetzstein
Professor
Department of Agricultural Economics
639 Krannert Building, Purdue University
West Lafayette, IN 47907
Phone: (765) 494-4244
Email: MWetzste@purdue.edu

Copyright 2015 by Shen Liu, Gregory Colson, and Michael Wetzstein. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.
Disruptive Policy Impacts on Biodiesel Investment: The Third Leg in 3-T Policy
Shen Liu¹, Gregory Colson¹, and Michael Wetzstein²
¹Department of Agricultural and Applied Economics, The University of Georgia
²Department of Agricultural Economics, Purdue University

RESEARCH GOAL
The 3-Ts in policy are type, timing, and transience.
- Type — determining the correct kind of policies.
 (e.g., standards, subsidies, or taxes)
- Timing — when a policy should be instigated.
- Transience — the length and consistency of a policy.
The literature is void in presenting research directed toward the transience of energy policies.

Considering transience, empirical results demonstrate the importance of consistent policies underlying the likely adoption of alternative energy. Specifically, the U.S. production of biodiesel is investigated under shifting, on and off again, federal tax credits.

HYPOTHESIS
Hypothesis: The inconsistent tax credits lead to market uncertainty, which have a pronounced negative impact on the decisions to invest in a biodiesel refinery.
1) If there exists a high probability of a tax credit being implemented in the near future, then biodiesel investors will want to delay investment.
2) With a current tax credit, as the probability of the credit being withdrawn increases, biodiesel investors will want to capitalize on this tax credit before it is withdrawn.

POLICY
U.S. Biodiesel Subsidies
The two programs that affect the demand for U.S. biofuels are:
- Renewable Fuel Standard (RFS)
- Blender Tax Credit (BTC).

<table>
<thead>
<tr>
<th>Year</th>
<th>Biodiesel Mandate (billion gallons)</th>
<th>Tax Credit Existence ($1.00 per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>2006</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>2007</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>2008</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>2009</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>2010</td>
<td>1.15</td>
<td>No</td>
</tr>
<tr>
<td>2011</td>
<td>0.80</td>
<td>Yes</td>
</tr>
<tr>
<td>2012</td>
<td>1.00</td>
<td>No</td>
</tr>
<tr>
<td>2013</td>
<td>1.28</td>
<td>Yes</td>
</tr>
<tr>
<td>2014</td>
<td>1.28</td>
<td>No</td>
</tr>
<tr>
<td>2015</td>
<td>1.28</td>
<td>No</td>
</tr>
</tbody>
</table>

The history of government policy uncertainty coupled with annual changes in the RFS does not provide a stable policy platform for a young and maturing biodiesel industry. Such inconsistent policy has the potential of disrupting investment by limiting biodiesel producers’ access to financing.

DATA
- Weekly biodiesel price series ($/gallon) from the USDA Agricultural Marketing Service
- From January 4, 2008 through June 27, 2014
- Normalized by the Producer Price Index (PPI) for crude material

RESULTS
Considering the ten year 2005 to 2014 period:
- The tax credit was implemented for five consecutive years from 2005 to 2009. After that, there are three transitions from having to not having a tax credit, which are from 2009 to 2010, 2011 to 2012, and 2013 to 2014.
 \[\lambda_{tax} = \frac{1}{t} \text{tax credit at Year } t \]
- There are two transitions from not having to having a tax credit, which are from 2010 to 2011 and 2012 to 2013. The tax credit would be implemented within the next year when the tax credit was not in effect this year.
 \[\lambda_{tax} = \frac{1}{t} \text{tax credit at Year } t \]
- The investment in biodiesel was always questionable without a tax credit, but the likelihood of the implementation of a credit in the near future markedly increases the barrier to current investment.
 \[\lambda_{tax} = \frac{1}{t} \text{tax credit at Year } t \]
- With a close to 50% probability the tax credit will be withdrawn, this does not greatly increase the likelihood of currently adopting.

CONCLUSIONS
- The results addressing the transience consideration support the hypothesis of time inconsistent government policies (tax credits) do lead to market uncertainty. This does appear to have a pronounced negative impact on the decisions to invest in a biodiesel refinery.
- However, the results indicate a consistent policy switching regime may not be that disruptive. It is the policy uncertainty that drives the option pricing thresholds and a consistent policy switching does not increase the uncertainty.
- Even a consistent policy switching regime is likely to result in economic inefficiency. These inefficiency take the form of both scale and investment inefficiencies. Scale inefficiency are in terms of determining production level in response to changing policies and investment inefficiency is in terms of annual disjoint biodiesel investment levels.

CONTACT INFORMATION
Shen Liu
Department of Agricultural and Applied Economics
The University of Georgia
Athens, GA 30602
Phone: (706) 207-4874 Email: shenliu1@uga.edu

METHODOLOGY
Incorporating Poisson processes into a real options model
Assumptions
- The net price (price minus variable cost of production) per gallon of biodiesel follows a geometric Brownian motion.
- The policy switching regime of the discontinuous federal tax credit of $1.00 per gallon of biodiesel is modeled as a Poisson jump process.
- Starting with a state when the credit is not in effect, the probability that it will be implemented in the next short interval of time \(dt \) is \(\lambda dt \), and when the credit is initially in effect, the corresponding probability that it will be withdrawn is \(\lambda dt \).

\[\begin{align*}
\text{No Tax Credit} & \quad \text{Wait to enter} & \quad \text{Effective Tax Credit} & \quad \text{Wait to enter} & \quad \text{Enter} \\
\text{Tax Credit} & \quad \text{Wait to enter} & \quad \text{Effective Tax Credit} & \quad \text{Wait to enter} & \quad \text{Enter}
\end{align*} \]

- Over an interval of low prices, a biodiesel refinery will not be initiated regardless if the tax credit is allowed.
- Over a higher price interval, the refinery will be initiated with a tax credit and not without. The hope is the possibility of a future tax credit.
- Beyond this interval, regardless of the tax policy, the biodiesel refinery will be built.

The threshold price \(P_0 \) increases with the probability of enactment \(\lambda_1 \). Even when the tax credit is not in place, there is a slight decreasing trend in \(P_0 \) as the probability of removal \(\lambda_0 \) increases.

The threshold price \(P_1 \) decreases as the probability of removal \(\lambda_0 \) increases. Even when the tax credit is in effect, there is a marked increase in \(P_1 \) as the probability of implemented \(\lambda_1 \) increases.