The Economics of Testing for Biotech Grain: Application to StarLink Corn

Demcey Johnson and William Lin
Field Crops Branch
Economic Research Service
U.S. Department of Agriculture

Selected Paper for presentation at the American Agricultural Economics Association Annual Meeting, Denver, Colorado, August 1-4, 2004

Abstract: StarLink corn, a biotech variety not approved for human food use, disrupted the marketing system in 2000 because of inadvertent commingling. Testing protocols have since been established for detection of StarLink in corn shipments to Japan. Domestic food manufacturers, anxious to avoid risks of contamination and product recalls, also test for StarLink kernels. This paper provides an overview of the economics of testing. What are the risks facing buyers and sellers, and how are these influenced by different testing protocols? How do market premiums and discounts, testing costs, and prior beliefs affect the incentives to test? A conceptual model is developed in which sellers can choose whether to pre-test grain prior to shipment. Simulation analysis is used to illustrate the impact of market premiums and other variables on testing incentives and buyer risk.

The authors acknowledge helpful comments from Gerald Plato, William Chambers, Mike Price, and David Skully. Views expressed in this paper are those of the authors and not necessarily those of the Economic Research Service or the U.S. Department of Agriculture.
Introduction

The emergence of markets for non-biotech grains has created demand for grain testing and stimulated development of new testing methods. Buyers who wish to avoid biotech grain can make use of commercially available diagnostic tests. These allow detection of specified transgenic events (DNA or protein) in grain samples with levels of accuracy that have been verified by USDA’s Grain Inspection, Packers, and Stockyards Administration (GIPSA). While statistical aspects of grain testing have been examined previously (see, e.g., Remund et al.), there is relatively little literature on the economic incentives and risks associated with testing for biotech content. This paper places testing within an economic context. What is the economic value of information gained through testing? What are the tradeoffs between testing costs, accuracy, and risks to buyers and sellers? How are risks affected by testing protocols, market premiums and discounts, and agents’ beliefs about the true concentration of biotech content?

The conceptual model is applied to testing for StarLink corn, a biotech variety not approved for food use that became inadvertently commingled with other corn supplies in 2000, leading to product recalls and the disruption of U.S. corn exports.1

The paper begins with a review of statistical concepts and a summary of recent test results for StarLink. We then discuss testing within a Bayesian framework, and present a conceptual model in which sellers can make a strategic choice about whether to test grain prior to shipment. Incentives for testing and implications for buyer risks are investigated in a simulation exercise. The paper concludes with a short discussion of results.

1 See Lin, et al. for analysis of the market and trade impacts of StarLink.
Testing for presence of biotech kernels

In the following discussion, we assume that the buyer’s acceptance of a shipment is contingent on a test indicating zero (or a very low concentration of) biotech kernels. Tests for the presence of biotech kernels involve the binomial distribution. Let \(n \) denote the number of kernels in a random sample, and let \(g \) denote the true concentration of biotech kernels (in a grain lot from which the sample is drawn). The probability of exactly \(x \) biotech kernels in a random sample is

\[
b(x; n, g) = \binom{n}{x} g^x (1 - g)^{n-x} \quad \text{(pdf of binomial distribution).}
\]

The probability of no more than \(x \) biotech kernels in random sample is

\[
B(x; n, g) = \sum_{k=0}^{x} b(k; n, g) \quad \text{(binomial cdf).}
\]

A **qualitative** test establishes the presence or absence of biotech kernels; that is the type most often used by grain traders. (Quantitative tests, which estimate the proportion of biotech kernels in a sample, are much more costly and time consuming.) For a qualitative test, \(x = 0 \) and the chance of acceptance is \(B(0; n, g) \). The chance that grain will be rejected due to presence of biotech kernels is \(1 - B(0; n, g) \). Figure 1 shows the relationship between chance of acceptance and sample size based on a single sample plan.

A single large sample serves the buyer's interest well if the buyer is willing to accept a low concentration of biotech kernels, but not a high concentration. However, under a single sample plan, the risk of rejecting lots that are actually acceptable is greater for the seller with a larger sample size. Decreasing the sample size would lower this risk. Hence, increasing the sample size in a single qualitative test may not serve the best interests of both the buyer and the seller.
Figure 1: Impact of sample size on probability of acceptance.

An alternative is to implement a multiple sample plan. Suppose there are m independent samples, each with n kernels. The buyer agrees to accept the grain if there are no more than r positive test results ($0 \leq r < m$). In this case, the probability of acceptance is

$$B(r; m, q) = \sum_{k=0}^{r} b(k; m, q).$$

where q is the probability of rejecting one sample

$$q = 1 - B(0; n, g).$$

Application to StarLink

For export shipments to Japan, the official testing protocol for StarLink (developed by USDA-GIPSA in consultation with Japanese authorities in November 2000) involves three corn sub-samples ($m=3$) of 800 kernels each. This plan is based on sampling and testing
recommendations of GIPSA and the Food and Drug Administration, but it also reflects the limitations of production and handling processes and current testing technology. At present, the detection sensitivity reaches 0.125 percent (1 StarLink kernel in 800) for most test kits.

Figure 2 shows the chance of accepting grain for alternate values of r. Setting r=0 allows none of the three samples to indicate presence of StarLink. Less stringent requirements (r=1, or r=2) expose the buyer to more risk, as shown in Table 1.

![Figure 2: Probability of acceptance under multiple sample protocol for corn exports.](image)

When no positive results are allowed (r=0), the buyer has 99 percent confidence that the actual StarLink concentration (g) does not exceed 0.19 percent.\(^2\) Put another way, the chance that the concentration exceeds 0.19 percent is no more than 1 percent. For a chosen confidence level,

\(^2\) For the 99% confidence level, the maximum concentration is the value of g that solves B(r;m,q) = 0.01, where q is the probability of rejection for an individual sample, q=1-B(0;n,g). This may be represented graphically in Figure 2.
the maximum concentration rises as the requirement becomes less stringent. When \(r = 3 \), the maximum concentration jumps to 100 percent. When three samples test positive, there can be no meaningful inference about the maximum concentration of StarLink in a corn shipment.

Table 1. Maximum StarLink concentrations based on \(n = 800 \) and \(m = 3 \)

<table>
<thead>
<tr>
<th>(r): allowed number of positive test results</th>
<th>(r): allowed number of positive test results</th>
<th>Maximum concentration (%)</th>
<th>Maximum concentration (%)</th>
<th>Maximum concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>99% confidence</td>
<td>90% confidence</td>
<td>50% confidence</td>
</tr>
<tr>
<td>0</td>
<td>0.19</td>
<td>0.10</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.20</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.71</td>
<td>0.42</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

These calculations require no prior information about the distribution of StarLink in corn being tested. For a chosen confidence level, the maximum concentration level provides a kind of worst-case assessment of buyer risk; it may be substantially higher than the expected concentration of StarLink kernels, given other information. To illustrate this distinction, we use information in Table 2 to derive an estimate of the mean StarLink level in corn tested during the past year. Based on test results, the overall probability of a sample testing positive was

\[
q = \frac{\text{total number of positives}}{\text{total number of samples}} = \frac{138 \cdot (1) + 40 \cdot (2) + 61 \cdot (3)}{17,973} = .007437.
\]

The value of \(g \) that solves\(^3\)

\[
1 - B(0;800, g) = 0.007437
\]

by drawing a horizontal line at prob = 0.01; the maximum concentration is determined by the intersection of this line with an acceptance curve.

\(^3\) This can be done using SOLVER in an Excel spreadsheet.
provides an estimate of the underlying concentration of StarLink kernels. Using this procedure, we estimate the concentration at about 0.00093 percent in the corn tested. This is substantially less than concentration levels shown in Table 1, which reflect no prior information about the distribution of StarLink.

Table 2. Frequency of test results during January 12, 2003 – January 10, 2004*

<table>
<thead>
<tr>
<th>Number of sub-samples testing positive (out of 3)</th>
<th>Number of tests</th>
<th>Share of total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17,734</td>
<td>98.670</td>
</tr>
<tr>
<td>1</td>
<td>138</td>
<td>0.768</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>0.223</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>0.339</td>
</tr>
<tr>
<td>Total:</td>
<td>17,973</td>
<td>100.000</td>
</tr>
</tbody>
</table>

* Based on the testing protocol for StarLink in export shipments (m=3, n=800). Test results reported by FGIS and official agencies. Source: Robert Lijewski, USDA-GIPSA.

For perspective, estimated StarLink concentration levels were about 10-fold higher in the 2000 crop year, based on GIPSA test results.4

Risks to buyers and sellers: a Bayesian perspective

As outlined above, the chance of accepting a shipment of grain is conditional on g, the proportion of biotech (or StarLink) kernels in the population from which the sample is drawn.

We now consider a situation in which g is unknown, but buyers or sellers of grain have prior

4 Source: Larry D. Freese (GIPSA-USDA), personal communication. It should be emphasized that samples submitted to GIPSA for StarLink testing are not from randomly selected lots. Tests are conducted at the request of the applicant.
beliefs that can be represented by probability distributions. Beliefs may be modified (updated) on the basis of test results.

Assume that a buyer has a tolerance level for presence of biotech kernels (which may be arbitrarily close to zero) and that grain is tested before purchase. Based on the test result, the grain will be either accepted or rejected by the buyer. The seller does not have perfect information about the content of biotech kernels, but can assign probabilities to a grain shipment having high or low levels (relative to the buyer’s tolerance). Let \(P(H) \) denote the (subjective) probability of a high level, and \(P(L) \) the probability of a low level. Probabilities that the buyer’s test will indicate ‘accept’ or ‘reject’ are denoted \(P(A) \) and \(P(R) \), respectively. Outcomes can be represented as follows:

<table>
<thead>
<tr>
<th>Test result</th>
<th>Accept (A)</th>
<th>Reject (R)</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotech conc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (L)</td>
<td>(P(L,A))</td>
<td>(P(L,R))</td>
<td>(P(L))</td>
</tr>
<tr>
<td>High (H)</td>
<td>(P(H,A))</td>
<td>(P(H,R))</td>
<td>(P(H))</td>
</tr>
<tr>
<td>Marginal</td>
<td>(P(A))</td>
<td>(P(R))</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Joint probabilities are shown within the box. For example, \(P(L,A) \) is the joint probability of a low concentration and acceptance, and \(P(L,R) \) is the joint probability of low concentration and rejection. Marginal probabilities sum to one, and joint probabilities sum to marginal probabilities.

Conditional probabilities are defined via Bayes’ rule. For example, the conditional probability of \(H \), given \(A \), is given by

\[
P(H \mid A) = \frac{P(H, A)}{P(A)}.
\]

This represents the buyer’s risk—the risk that grain has a high concentration of biotech content despite a favorable test result. Seller’s risk can be interpreted in different ways. From the
seller’s perspective, risk could be represented by $P(R)$, the probability of a rejected shipment (irrespective of the actual concentration), particularly if costs are incurred as a result of the rejection. Another interpretation\(^5\) views seller’s risk as the conditional probability of rejection given low concentration:

$$P(R \mid L) = P(L, R) / P(L).$$

In that case the test has led to the wrong conclusion, e.g., because of sampling error. Buyer and seller risk (in either form) will reflect the testing protocol, the buyer’s tolerance, and prior beliefs about the distribution of biotech kernels.

\section*{Testing and the value of information}

From the buyer’s perspective, the value of information gained from a test could be represented by

$$V = K \cdot [P(H) - P(H \mid A)]$$

where K is the (possibly subjective) unit value of avoiding high levels of biotech kernels, and the expression in brackets is the reduction in buyer risk associated with testing. If the value of information exceeds the unit cost of the test, then testing prior to purchase makes economic sense for the buyer.

Now consider the incentives for sellers. Under what conditions will sellers test grain for biotech content? To explore this question we construct an example in which market premiums and discounts play a role, along with testing costs. Assume that a seller can deliver grain to one of two markets. The first is a premium market (where sales are conditional on test results), and the second is a reserve market (where tests are not conducted). Grain shipped to the premium

\footnote{That is the interpretation given by GIPSA in its web briefing, “Sampling for the Detection of Biotech Grains,” p.7.}
market is tested by the buyer. If biotech kernels are not detected, the buyer accepts the grain and the seller earns a premium value, Y ($/mt$). If the grain is rejected due to biotech content, it must be re-routed to another location where it incurs a discount, D. Alternately, the seller could avoid testing by bypassing the premium market and shipping directly to alternate buyers, where the grain earns a reserve value, Z. Before deciding where to ship the grain, the seller could conduct his/her own test, at cost T ($/mt$), to gain information about odds of buyer acceptance in the premium market. Figure 3 provides a decision tree of the seller's problem, with chance nodes represented by circles and decision nodes by squares.

![Decision Tree](https://www.usda.gov/gipsa/biotech/sample2.htm)

Figure 3: Seller’s Problem as Decision Tree

http://www.usda.gov/gipsa/biotech/sample2.htm

Values denoted Y, -D and Z can be interpreted as net revenue (per unit) for sales to different markets—after deduction of costs.
For plausible parameter values there are three seller strategies to consider. Strategy S1 is to ship directly to the premium market without pre-testing. Strategy S2 is to bypass the premium market and ship to the reserve market. Strategy S3 involves a test prior to shipping, for which the seller incurs a testing cost. If the result is favorable (indicating no biotech content, or ‘accept’), the grain is shipped to the premium market; otherwise it is shipped to the reserve market. Under S3, the probability of acceptance in the premium market is \(P(A_2 \mid A_1) \). That is, the probability of buyer acceptance is conditioned by the first test result (known to the seller only). Expected payoffs for the three seller strategies are shown in Table 4.

Table 4. Expected payoffs and buyer risks under different strategies.

<table>
<thead>
<tr>
<th>Seller strategy</th>
<th>Seller’s expected payoff</th>
<th>Buyer risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>(P(A_2) \cdot Y - P(R_2) \cdot D)</td>
<td>(P(H \mid A_2))</td>
</tr>
<tr>
<td>S2</td>
<td>(Z)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>S3</td>
<td>(P(A_1) \cdot [P(A_2 \mid A_1) \cdot Y - P(R_2 \mid A_1) \cdot D] + P(R_1) \cdot Z - T)</td>
<td>(P(H \mid A_2, A_1))</td>
</tr>
</tbody>
</table>

Table 4 also shows the buyer risk for each strategy. (This is not applicable when the premium market is bypassed, as in S2.) The buyer’s risk is actually lower under S3, i.e.,

\[
P(H \mid A_2, A_1) < P(H \mid A_1)
\]

because under this strategy the grain has been tested twice, and probabilities of ‘high’ levels of biotech kernels are reduced accordingly. This hinges on our assumption that parameters of the underlying probability distribution are not known with certainty, so that successive test results can lead to revision of (subjective) risk assessments.

7 We assume \(Y > Z \), etc. In the tree diagram, dominated strategies are indicated by ‘\(/\)’. For example, it would make no sense for the seller to test grain and, if the test result were favorable, ship to the reserve market where price is lower.
Pre-testing by the seller (S3) works to the advantage of the buyer in the premium market, by lowering risk. However, the seller’s optimal strategy depends on multiple factors, including the premium offered by the buyer (Y), the discount if grain is rejected (D), the reservation price (Z), and the testing cost (T) and testing protocol. Pre-testing is not always optimal from the seller’s perspective.

Figures 4 and 5 illustrate how the premium (Y) could affect expected seller payoffs, holding other parameters fixed. In each figure, cross-over points are marked where returns are equalized across strategies. Thus, payoffs for strategies S1 and S2 are equalized at Y=b; payoffs for S1 and S3 are equalized at Y=a; and payoffs for S2 and S3 are equalized at Y=c. In Figure 4, the range of premiums follows an order where c<b<a. Note that the payoff for S2 is independent of the premium (i.e., the function has zero slope).

In Figure 4, there is a range of premiums (c ≤ Y ≤ a) for which strategy S3 (pre-testing) is optimal. Below that range strategy S2 is optimal, and above it strategy S1 is optimal. When the premium is too low (Y < c), the seller bypasses the premium market. When it is too high (a < Y), the seller maximizes expected return by shipping to the premium market without pre-testing. Figure 5 illustrates a different situation—one in which no premium can induce pre-testing by the seller. That would occur if testing costs were prohibitively high, for example. (Note that cross-over points are now in a different order (a < b < c), relative to Figure 4.)
Figure 4: Seller returns as function of premium, version 1.

Figure 5: Seller return as function of premium, version 2.
Seller strategies carry different implications for buyer risks, as shown in these figures. However, the buyer and seller do not share the same information. They may have different prior beliefs about the distribution of biotech kernels, and results from the seller’s own tests (prior to shipment) are private information. There are aspects of a principal-agent problem in this situation. The principal (buyer) cannot observe whether the agent (seller) has tested grain prior to shipment, and hence does not have equally good information about the risk of high concentration. The buyer influences the incentives for pre-testing through the choice of premium (and testing protocol), but must consider two factors. If the buyer’s premium is too low, the seller will be driven to an alternative market (participation constraint). If the premium is too high, the seller will participate without pre-testing, exposing the buyer to higher risk (incentive compatibility constraint). In the next section, the tradeoff between participation and buyer risk will be explored in a simulation analysis.

Testing for Starlink: A Simulation Analysis

The following analysis uses simulation to represent a universe of potential grain sellers, each with different prior information and opportunity costs. The likely concentration of StarLink kernels (as perceived by potential sellers) is represented by a Weibull distribution. This distribution is characterized by two parameters: β, the shape parameter, and θ, the scale

8 See Gardner, pp. 271-298, for discussion of principal-agent problems using game theory.

9 The Weibull distribution was chosen for illustrative purposes. Its probability density function (pdf) has the form

$$f(x; \theta, \beta) = \frac{\beta}{\theta^\beta} x^{\beta-1} e^{-(x/\theta)^\beta} \quad x > 0$$

with $\beta > 0$ and $\theta > 0$. The cumulative distribution function (cdf) is given by

$$F(x; \theta, \beta) = 1 - e^{-(x/\theta)^\beta} \quad x > 0.$$
parameter. Choosing $\beta=0.4$ and $\theta=3\times10^{-6}$ produces a distribution that is broadly consistent with StarLink test results for the past year.10 However, in the simulation we consider a range of values for the scale parameter. This is meant to reflect differences in the prior beliefs of sellers, with smaller values of θ representing more refined information about the concentration of StarLink in grain available for sale. In the simulation, 500 values of θ are drawn from a uniform distribution, $\theta \sim \text{UNIF}(3\times10^{-6}, 3\times10^{-5})$.

Sellers may also differ in terms of their reservation price (opportunity cost). It seems plausible that sellers with more refined information (lower value of θ) would have a higher reservation price—e.g., to ensure recovery of higher costs associated with quality management. For that reason, we assume that Z, the seller’s reservation price, is a random variable that is negatively correlated with θ. Z is also drawn from a uniform distribution, $Z \sim \text{UNIF}(0, 10)$.

The assumed correlation coefficient is -0.5. Other parameters are fixed. They include T, the unit testing cost ($/\text{mt}$), and D, the unit cost associated with rejected shipments ($/\text{mt}$). Initially we assume $T=0$ and $D=$25. The buyer is assumed to apply the standard testing procedure for export shipments (3 samples of 800 kernels each), and the threshold between ‘low’ and ‘high’ concentrations is 0.01\%.11

The simulation is implemented in an Excel spreadsheet using @Risk software. For each drawing of the random variables (θ, Z), the spreadsheet calculates the range of buyer premiums

10 These parameter values were chosen to be consistent with an expected concentration level of $E(x)=0.001\%$. The implied cumulative probability of StarLink concentrations less than 0.01\% is 0.983, which is reasonably close to the percentage of samples testing negative for StarLink in the past year (Table 2).

11 This is equivalent to 1 kernel in 10,000, which is the limit of detection for currently approved test kits.
that would support different seller strategies, as illustrated above. Risks to buyers are also calculated based on the seller’s prior information and (when applicable) test results.

Simulation results are summarized in Figures 6-8. Each figure shows results for three different testing protocols, of which ‘A0’ is the most stringent (allowing none of the three test samples to be positive for StarLink), and ‘A2’ the least (allowing two samples to test positive). Figure 6 shows how the number of sellers varies with the size of the premium. For each testing protocol, higher premiums attract a larger share of potential sellers to the premium market. For the most stringent protocol, a $10 premium attracts about 40% of potential sellers; less stringent protocols attract higher shares. Participation is complete (100% of potential sellers) for all protocols when the premium reaches $20.

Premiums paid by buyers in the premium market (such as Japan) for StarLink-free corn might differ, depending on end-use. For food-use corn, Japanese buyers presently are willing to pay $8 to $10 per metric ton premium for non-biotech corn that is produced, handled and distributed under identity preservation to avoid potential StarLink commingling. This premium level does not apply to feed-use corn. However, the U.S.-Japan testing protocol for StarLink applies to both food- and feed-use corn.

\[P(A \mid L) \approx \sum_{j=1}^{k} [F(j \cdot h + c) - F((j-1) \cdot h + c)] \cdot B(r; 3, q) \quad \text{where } q = 1 - B(0; 800, j \cdot h). \]

In this calculation, the range of ‘low’ concentration is divided into k equal increments of length h, and c is a lower bound arbitrarily close to zero (e.g., c=0.00001). F() is the Weibull cdf. Calculations of P(A \mid H) are similar. Given conditional probabilities, other relevant probabilities are derived via Bayes’ rule and adding-up properties.

\[P(A \mid L) \approx \sum_{j=1}^{k} [F(j \cdot h + c) - F((j-1) \cdot h + c)] \cdot B(r; 3, q) \quad \text{where } q = 1 - B(0; 800, j \cdot h). \]

In this calculation, the range of ‘low’ concentration is divided into k equal increments of length h, and c is a lower bound arbitrarily close to zero (e.g., c=0.00001). F() is the Weibull cdf. Calculations of P(A \mid H) are similar. Given conditional probabilities, other relevant probabilities are derived via Bayes’ rule and adding-up properties.

12 Conditional probabilities are calculated with discrete approximations. For example, the chance of acceptance given ‘low’ levels of StarLink (relative to buyer’s tolerance) is given by

13 In Figure 6, ‘participation rate’ represents the share of sellers who sell to the premium market.
Figure 6: Impact of premium on rate of seller participation.

Figure 7: Impact of premium on testing by sellers prior to shipment.

Figure 8: Impact of premium on risks to buyers.
Of the sellers who ship to the premium market, not all choose to test grain prior to shipment. Figure 7 shows that the share of sellers who pre-test is highest under the most stringent testing protocol. The share of sellers who pre-test declines with higher premium levels, so that under all protocols there is insufficient incentive for pre-testing when the premium reaches $25.

Figure 8 shows the combined impact of seller numbers (participation rates) and testing decisions on buyer risk. Under the most stringent protocol (A0), average buyer risks increase with the premium. However, under the least stringent protocol (A2), buyer risk falls slightly (for premiums between $5 and $10) before stabilizing. This modest decline in buyer risk is due to the expanded number of sellers.

A more accurate test for StarLink: impact of lot size and testing cost

For comparison, we conducted a simulation using a different testing protocol—one based on a single sample of 10,000 kernels. This represents the most sensitive of commercially available tests for StarLink. Previously, we assumed that testing costs were zero; that is in line with the use of the lateral flow strip test, a protein-based method that is stipulated in the U.S. and Japan StarLink testing protocol. The more sensitive micro-titer well test kit can detect 1 StarLink kernel in 10,000, but this costs more and takes 2-4 hours to complete. The retail cost is around $195 to $200, and the cost charged by private laboratories varies from $35 to $100 per test. A more typical range is between $45 and $75 per test (Kendall).

The size of the corn lot also affects the per-unit cost. Typical lot size varies from about 800 bushels (20.3 metric tons) for a truck load, to 3,570 bushels (100 short tons) for a hopper car,
and to 50,000-55,000 bushels (1,330 metric tons) for a barge. Thus, test cost per metric ton ranges from $3.33 for truck, $0.74 for hopper car, and $0.05 for barge.

Simulation results are shown in Figures 9-11. Impacts of the premium on the number of sellers, share of sellers who pre-test, and buyer risk vary by lot size. Sellers appear to have little incentive to ship to the premium market when the premium falls below $20 per metric ton (Fig. 9). The number of sellers rises as the premium exceeds $20/mt, but this varies by lot size. The number of sellers is highest for barge-size lots, as the test cost is spread over a much larger grain volume. Conversely, the number of sellers is lowest when testing is by truckload.

Sellers find little incentive to pre-test for the presence of StarLink corn in their shipments if the buyer’s premium falls below $15 per metric ton, given positive testing costs (Fig. 10). However, there is interest of pre-testing for barge and hopper car shipments if the premium exceeds $15 or $20 per metric ton. The hike is particularly stiff for barge shipment--over 90 percent of the sellers would pre-test for the presence of StarLink if the premium exceeds $20/mt. Sellers have no incentive to pre-test for truck shipment even if the premium reaches $30/mt due to high per-unit testing costs.

Buyer risk is inversely related to share of sellers who pre-test for the presence of StarLink kernels (Fig. 11). In the case of truck shipments, higher per-unit test cost discourages the sellers from pre-testing; as a result, buyer risk becomes greater. In contrast, lower per-unit testing costs for barge shipments provide extra incentive for the sellers to pre-test, which lowers buyer risk.
Figure 9. Impact of premium on rate of seller participation by lot size

Figure 10. Impact of premium on pre-testing by sellers by lot size

Figure 11. Impact of premium on buyer risk by lot size
Concluding remarks

Tests for the presence of biotech grain expose buyers and sellers to new risks. In combination with premiums and discounts, these risks can be an important aspect of procurement and marketing decisions. Buyers who wish to exclude biotech grains can influence their risk through their choice of testing protocol (e.g., sample size, single vs. multiple sample plans). Buyer risk is also influenced by the size of the price premium offered for non-biotech purchases. Higher premiums can actually add to buyer risk, either because of participation effects (adverse selection of sellers) or because of reduced incentives for seller pre-testing. Risks facing sellers must be viewed in the context of marketing alternatives. Incentives for sellers to test grain prior to shipment depend on a number of factors: applicable premiums and discounts, testing costs, and prior beliefs about the concentration of biotech kernels.

Simulation analysis provides a flexible means for investigating these effects—particularly when there is uncertainty about underlying distributions. In our experiments, simulation was used to represent a universe of potential sellers, each with different prior beliefs and opportunity costs. *Ceteris paribus*, sellers with more refined information about the ‘true’ concentration of biotech kernels have less incentive to test grain prior to shipment. Pre-testing is more advantageous when priors are diffuse.

Estimated concentrations of StarLink in tested corn (based on results collected by official agencies) are now substantially lower than in 2000, when contamination of processed foods was first reported. However, testing protocols remain in effect for export shipments to Japan, and some domestic manufacturers maintain more stringent tests. Commercial test kits can now promise detection of one StarLink kernel in ten thousand, but at a cost that limits their appeal for
bulk grain handlers. This points to the inherent difficulty of satisfying a ‘zero-tolerance’
standard for unapproved biotech events.

References

