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Abstract 
 
 
Measuring the lower tail of a crop yield distribution is important for managing 
agricultural production risk and rating crop insurance.  Common parametric techniques 
encounter difficulties when attempting to model extreme yield events.  We evaluate and 
compare alternative models based on our candidate distributions for high risk counties.   
 
 
 
 
 
 

 
 



Introduction 

Modeling of yield distributions continues to receive much attention in the crop 

insurance and agricultural risk management literature.  The importance of properly 

modeling yield distributions stems in part from the growing number of public and private 

crop yield and revenue insurance products that have been introduced in recent years 

under the Federal Crop Insurance program.  Accurate assessment of yield distributions, 

particularly their lower tails, is necessary for precise computation of crop insurance 

premium rates.  Inaccurate rates can lead to adverse selection problems and poor actuarial 

performance of the crop insurance program.  Accurate assessment of co-variance 

structures is also paramount for precise rating of the federal government’s Standard 

Reinsurance Agreement, which provides reinsurance for a variety of crop insurance 

products across the USA. 

Which statistical distribution can best explain the behavior of yields remains an 

unsettled question.  An extensive literature has highlighted the challenges associated with 

modeling yields for the rating of crop insurance.  Several well-known parametric models, 

such as the beta distribution (e.g. Nelson and Preckel) or the lognormal distribution (e.g. 

Goowin, Roberts and Coble), are widely applied in this research area.  However, 

Goodwin and Ker, and Ker and Coble argue that beta distribution for crop yields are 

inadequate and propose, instead, nonparametric and semi-parametric methods.  Just and 

Weninger argue that the normal distribution, which has lost favor in recent years for 

modeling yields, remains a reasonable candidate for yield densities because of 

misspecification and data limitation problems.  Other yield distributions have been 

proposed in the empirical literature for modeling yields, including the Weibull 



distribution, variants of the Burr distribution and the standard nonparametric kernel 

method. 

The various distributions that have been proposed each have their own relative 

merits for the modeling of yields.  Most of the candidate distributions are continuous in 

nature and thus encounter problems when attempting to model yield distributions for high 

risk farms or counties that may experience complete crop failure, implying that 

probability mass in stacked on zero.  Unbounded distributions, such as the normal 

distribution, imply the potential for negative yield realizations.  Bounded distributions, 

such as the beta, also have problems in representing very high risk distributions.  The 

beta distribution, for example, tends to flatten and then take on unreasonable “U-shapes” 

when the variance of the distribution rises.  Such shapes for yield distributions are not in 

accordance with our agronomic expectations.  Other problems also exist for many 

parametric distributions commonly used to model yield risks.  For example, some 

distributions are undefined for certain values of the distribution parameters.  This is true 

for the normal and Burr distributions. 

In this paper, we compare and contrast various candidate distributions for the 

modeling of crop yields, particularly with regard to their ability to predict extreme-events 

in agricultural regions where complete crop failures are relatively common.  We focus on 

models based on Burr, beta and nonparametric distributions, with applications to selected 

counties in Texas where extremely low yields occurs with more frequency than is 

experienced in other parts of the country. 

 

 



Modeling Crop Yields Distribution 

A. The Univariate Case  

 Our goal is to estimate conditional yield densities in circumstances in which 

extreme events, such as complete crop failures, are relatively common.  We derive 

maximum likelihood estimates of the parameters of alternative candidate distributions for 

county level yield data and evaluate our results in terms of the credibility of certain 

distributions.  Two measures of goodness of fit, Chi-Square test and Anderson-Darling 

(AD) test, are employed.   

 We employ a two-step estimation process in the modeling yields.  First, in order 

to control for technical progress in crop production, trend yields are estimated using 

ordinary least-squares assuming that trend yields follow a second-order polynomial in 

time.  In particular, we assume that 

  εδδδ +++= 2
210 tty , 

where y  is the yield per planted acre, t  denotes time, and ε  is error term.  All yields are 

then converted to 1982 equivalents.  Alternative parametric distributions are used to 

explain variations in detrendend yields.  The following distributional forms are 

considered: 

Normal distribution 

The probability density function of X is 
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where µ  is mean parameter, and σ  is scale parameter.  

 



Weibull distribution 

The unconditional probability density function of X is 

 ( ) ( ){ } ( ){ }[ ]cc
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where θ  is known lower threshold, σ  is scale parameter, and c  is shape parameter. 

 

Beta distribution 

The unconditional probability density function of X is 
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where θ  is known lower threshold parameter, σ  is scale parameter ( )0>σ , α  is the 

first shape parameter ( )0>α , and β  is the second shape parameter ( )0>β . 

 

Burr distribution 

The cumulative density function is 
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where 1, ≥kc  are real numbers. 

The probability density function 
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Standard nonparametric kernel methods 

The kernel density estimator places a bump or individual kernel at each sample 

realization from the density of interest.  The estimate of the density at any given point in 

the support is simply the sum of the individual kernels at that point. 

The kernel estimate of a density function can be represented as a convolution of 

the sample distribution function with the chosen kernel and thus 

 ( ) ( ) ( )∫ −= udFuxKxf nh
ˆ  

where h  is the bandwidth or smoothing parameter, ( ) ( )huKhuK h 1= , K  is the kernel 

function, and ( )uFn  is the sample distribution function.  K  is assumed to be a square 

integrable symmetric probability density function with a finite second moment and 

compact support.  Denoting ( ) ( )∫= duuKuK 2
2µ  and ( ) ( )∫= duuKKR 2  while letting f  

be the unknown density of interest, standard properties for second order kernels are 
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and thus 
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B. Multivariate Case: Modeling of the Dependence Structure 

 The problem that we encounter in modeling multivariate crop yield distributions 

is that crop yield may have different suitable distribution for each county.    As argued by 

Barry and Ker: 

“strong spatial dependence, an empirical stylized fact, negates 

appealing to central limit theorems (CLTs) for dependent processes 

when considering mean yields.  These theorems require that spatial 

dependence dies off at a sufficiently quick rate or that spatial 

dependence disappears after some finite distance.  While this is 

certainly true for yield data, it is almost never true for the spatial 

region ….” 

Thus, to calculate correlation of crop yield failures across counties, a flexible density 

function is required.  We will posit that the multi-dimensional vector of yield random 

variables denoted { }kyyyY ,,, 21 K=  possesses correlation matrix of Y  is a kk ×  matrix, 

V , which is defined as   
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Data 

Our analysis utilizes NASS county-level yield data collected from the late 1950s 

for major U.S. field crops: corn, soybeans, wheat and cotton.  Let us take upland cotton 

as example.  The major state produced upland cotton in U.S. is Texas, which accounts for 

23.74% of the total planted yield during the 1956-1997.  The existence of extreme event 

yield is defined if the realized yields fall below 60% coverage level of predicted planted 

crop yield.  Most counties with high percentage of extreme-event yield are located in the 

South Texas district.  There are 15 counties included in this district.  To avoid the 

inefficient statistical issue in the paper, all counties with time length less than 30 years 

located in the South Texas district are dropped out.  Only 8 counties, including Brooks, 

Dimmit, Duval, Frio, Jim Hogg, Jim Wells, Live Oak and Zavala, are studied. 

   

Empirical Evidence 

 The sample moments of upland cotton planted yield in Table 1 shows that all 

county-level yields exhibit positive skewness in the South Texas District of Texas, except 

Frio County.  The coefficient of skewness varies from -0.021 to 1.815, which is 

consistent with our argument about extreme-event yield county.  When a county has high 

percentage of extreme-event yield, mass yield tends to stack on left tail of the yield 

density.  In the previous literature, county-level crop yield are considered to be “fatter 

tailed” than standard normal distribution.  However, our data summary indicates that the 

coefficients of kurtosis among all extreme-event yield counties except Duval and Live 

Oak County are near zero or even negative.  For most non-Gaussian random variable, the 

coefficient of kurtosis is nonzero.  In the statistical literature, a random variable that has 



negative kurtosis is called sub-Gaussian and that has positive kurtosis is referred as 

super-Gaussian.   Sub-Gaussian typically specifies a “flat” or “less peaked” probability 

density function.  A reasonable explanation for the contradictory may be addressed by the 

feature of extreme-event yield.   

 The goodness-of-fit tests for alternative distributions are provided in Table 2.  

Surprisingly, Anderson-Darling test rejects the distributions more frequently than Chi-

Square test, especially for the beta distribution.  The upland cotton planted yield beta 

distribution for all counties but Dimmit County are rejected by Anderson-Darling test at 

5% significant level while only 3 counties’ yield beta distributions are rejected by Chi-

square test.  In the panel A and B of Table 2, the Weibull distribution fits the data best 

compared to the normal distribution and the beta distribution.  The Weibull yield 

distribution is rejected for only one county, Live Oak County, which may be explained by 

its discontinuous yield data.  Also, the test results point out that it is more likely to reject 

the normal distribution as a county has relatively high percentage of extreme-event 

planted yield.  That demonstrates the previous finding of positive skewness of yields.  It 

may be appropriate to argue that the percentage of extreme-events in planted yield play 

an essential role in testing the goodness-of-fit for the normal distribution. 

 Figure 1-3 illustrate all county-level extreme-event upland cotton yield densities.  

The histogram of yield data exemplifies that high percentage of extreme-event yield has 

relatively higher amount yield stack on left tail of the density function.  The larger 

percentage of extreme-event yield, the higher positive value of skewness of yield density. 

 

 

 



Table 1: Summary Statistics of Upland Cotton Planted Yield: South Texas District, Texas, 1956-1997 
 
 
County   Code Observation Mean Std Dev Skewness Kurtosis  
 
Brooks 047 42 524.76 299.65  0.656 - 0.527   
Dimmit 127 39 542.52 215.87  0.578  0.513  
Duval 131 42 338.29 249.83  1.815  3.873  
Frio 163 40 501.35 171.69 - 0.021 - 0.467 
Jim Hogg 247 39 520.86 286.36  0.722 - 0.366  
Jim Wells 249 42 306.31 109.79  0.323  0.819  
Live Oak 297 42 345.68 185.89  1.456  2.901  
Zavala 507 42 671.93 158.58  0.427 - 0.420  
 
 
 
 
 
 
 
Table 2: Goodness-of-Fit Tests of Candidate Distributions: Upland Cotton Planted Yield, 1956-1997 
 
 
Panel A.  Normal Weibull Beta  
   % of extreme-event 
County planted yield Chi-Sq P-value Chi-Sq P-value Chi-Sq P-value 
 
Brooks 35.71   9.849  0.020 4.363 0.225   6.954 0.073 
Dimmit 15.38   7.169  0.127 6.091 0.192   8.101 0.088 
Duval 47.62 38.505 < 0.001 8.349 0.080 17.701 0.001 
Frio 20.00   1.816  0.611 1.742 0.628   4.766 0.190 
Jim Hogg 43.59   3.659  0.301 1.422 0.700   4.043 0.257 
Jim Wells 16.67   6.545  0.088 6.312 0.097   9.861 0.020  
Live Oak 30.95 11.952  0.008 7.813 0.050 11.304 0.010 
Zavala   2.38   1.528  0.676 2.091 0.554   4.669 0.198  
 
Panel B.  Normal Weibull Beta  
   % of extreme-event 
County planted yield AD P-value AD P-value AD P-value 
 
Brooks 35.71   0.858  0.025 0.315 > 0.250   1.140  0.008 
Dimmit 15.38   0.316 > 0.250 0.270 > 0.250   0.471 > 0.250 
Duval 47.62   1.995 < 0.005 0.721  0.056   2.755 < 0.001 
Frio 20.00   0.236 > 0.250 0.250 > 0.250   1.134  0.008 
Jim Hogg 43.59   0.963  0.015 0.516  0.197   1.404  0.002 
Jim Wells 16.67   0.376 > 0.250 0.447 > 0.250   1.256  0.003  
Live Oak 30.95   1.302 < 0.005 0.788  0.038   2.307 < 0.001 
Zavala   2.38   0.306 > 0.250 0.443 > 0.250   1.115  0.007  
 
 
 
 
 
 
 



IV. Conclusion 

Although modeling yield densities has been a popular subject in crop insurance, 

the issue of extreme-events has not been extensively explored in the agricultural 

economics literature.  The contribution of this paper is to compare the performance of 

several popular yield densities in circumstances in which extremely yield events are 

relatively common and to provide a method to formally test whether these correlations 

deviate from what would be expected under multivariate extreme-event crop yield 

densities.  Moreover, implications for the modeling of yield risks, including the rating of 

crop insurance contracts, will be offered.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 



Figure 1. County-level Upland Cotton Normal Yield Densities 
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       Curve: Normal (Mu=542. 52 Si gma=215. 87)

P
e
r
c
e
n
t

0

5

10

15

20

25

30

35

40

pyl d_hat

225 375 525 675 825 975 1125

 
 

Curve: Normal (Mu=338. 29 Si gma=249. 83)
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       Curve: Normal (Mu=501. 35 Si gma=171. 69)
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Curve: Normal (Mu=520. 86 Si gma=286. 36)
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      Curve: Normal (Mu=306. 31 Si gma=109. 79)
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Curve: Normal (Mu=345. 68 Si gma=185. 89)
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      Curve: Normal (Mu=671. 93 Si gma=158. 58)
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Figure 2. County-level Upland Cotton Weibull Yield Densities 
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      Curve: Wei bul l (Thet a=0 Shape=2. 7 Scal e=610)
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Curve: Wei bul l (Thet a=0 Shape=1. 4 Scal e=370)
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      Curve: Wei bul l (Thet a=0 Shape=3. 3 Scal e=560)
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Curve: Wei bul l (Thet a=0 Shape=2 Scal e=591)
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Curve: Wei bul l (Thet a=0 Shape=2 Scal e=392)
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Figure 3. County-level Upland Cotton Beta Yield Densities 
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Curve: Bet a(Thet a=0 Scal e=1220 a=0. 85 b=1. 76)
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Curve: Bet a(Thet a=0 Scal e=1220 a=1. 33 b=1. 54)
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Curve: Bet a(Thet a=0 Scal e=970 a=1. 58 b=2. 47)
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