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ABSTRACT 

This paper proposes and explores the use of a partially adaptive estimation technique to improve the reliability 

of the inferences made from multiple regression models when the dependent variable is not normally 

distributed. The relevance of this technique for agricultural economics research is evaluated through Monte 

Carlo simulation and two mainstream applications: A time-series analysis of agricultural commodity prices 

and an empirical model of the West Texas cotton basis.  It is concluded that, given non-normality, this 

technique can substantially reduce the magnitude of the standard errors of the slope parameter estimators in 

relation to OLS, GLS and other least squares based estimation procedures, in practice, allowing for more 

precise inferences about the existence, sign and magnitude of the effects of the independent variables on the 

dependent variable of interest. In addition, the technique produces confidence intervals for the dependent 

variable forecasts that are more efficient and consistent with the observed data.  

Key Words: Efficient regression models, partially adaptive estimation, non-normality, skewness, 

heteroskedasticity, autocorrelation.
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 Multiple regression models are used in applied agricultural economics research with two main 

purposes: forecasting and making statistical inferences about the effect of exogenous variables on the 

dependent variable. Efficient estimation of the model coefficients is important in both cases. Slope 

parameter estimators with lower standard errors represent more precise measurements of the magnitude of 

the impacts of the exogenous variables on the dependent variable, and produce more reliable predictions.  

 Ordinary least squares (OLS) is widely used in empirical work because if the model’s error term is 

normally, independently and identically distributed (n.i.i.d.), OLS yields the most efficient unbiased 

estimators for the model’s coefficients, i.e. no other technique can produce unbiased slope parameter 

estimators with lower standard errors. Maximum likelihood (ML) based on the n.i.i.d. assumption is 

equivalent to OLS. Generalized least squares (GLS) can be used to improve estimating efficiency relative 

to OLS when the error term is heteroskedastic, autocorrelated or both. Even more efficient slope parameter 

estimators can be obtained in this case through ML, by specifying a likelihood function in which the error 

term is assumed normal, but not i.i.d. (Judge et al.). This is commonly known as “correcting” for 

heteroskedasticity or autocorrelation. 

 If the dependent variable and, thus, the error term is a continuous but not normally distributed 

variable, however, OLS (in the i.i.d.-error case) or normal-error ML (in the non-i.i.d.-error case) is not the 

most efficient way of estimating the slope parameters of a multiple regression model (Judge et al.). Since 

non-normal dependent variables are not uncommon in applied modeling work, Goldfeld and Quandt argue 

vehemently against the continued reliance on the assumption of error term normality for estimating 

regressions. Three approaches are currently available for estimating multiple regression models under non-

normality: robust, partially adaptive, and adaptive estimation (McDonald and White). 

 Robust estimators are based on minimizing some function of a scale-adjusted error term that gives 

less weight to large error values. They can be asymptotically more efficient than OLS when the tails of the 

underlying error term distribution are “thicker” than the normal (McDonald and Newey). Least Absolute 

Deviation (LAD) is an example of a robust estimator that is asymptotically more efficient than OLS for 
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many thick-tailed error-term distributions. Other robust estimators include the M and the L-estimators 

(Bickel, 1976; Mosteller and Tukey, 1977; Bierens, 1981; and Dielmam and Pfaffenberger, 1982; Joiner 

and Hall, 1983). Fully adaptive estimators involve non-parametric estimates of the derivative of the log of 

the unknown density. They have the advantage of being asymptotically efficient, as the maximum likelihood 

estimator obtained using knowledge of the actual error term distribution. Given that the correct error term 

distribution is seldom known, fully adaptive estimation should be preferred when working with large 

samples, since it would produce the lowest possible standard errors. Examples of fully adaptive estimators 

include Hsieh and Manski’s Adaptive Maximum Likelihood (AML) estimator, which is based on a normal 

kernel density; and Newey’s generalized method of moments estimator. For more details about these 

techniques please see McDonald and White. The more favorable asymptotic properties of fully adaptive 

estimators, however, are meaningless when working with small samples. 

 Partially adaptive estimators are ML estimators based on specific families of error term 

distributions, in hopes that the assumed family is flexible enough to accommodate the shape of the true 

unknown distribution of the error. Partially adaptive estimators based on the t distribution (Prucha and 

Kelejian), the generalized t (McDonald and Newey), and the generalized beta distribution (McDonald and 

White) have been explored in the econometrics literature. Partially adaptive estimators are asymptotically 

efficient only if the true error term distribution belongs to the family of the assumed distribution. 

 However, McDonald and White show that partially adaptive estimators based on assuming a 

flexible family of densities that can accommodate a wide variety of distributional shapes can substantially 

outperform OLS and all available robust and fully adaptive estimators in small sample applications 

involving non-normal errors. In other words, when estimating a multiple regression model with a 

continuous but non-normally distributed dependent variable and a small sample size, a partially adaptive 

estimator based on a flexible distribution that can reasonably approximate the true underlying error term 

distribution would likely produce slope parameter estimators with the lowest possible standard errors, 

potentially much lower than OLS. 
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 Intuitively, and improved modeling of the error term distribution, i.e. of the distribution of the 

deviations from the observations from the multiple regression hyper plane, allows for a higher degree of 

certainty about the location of the hyper plane, i.e. about the parameters determining that location. If, for 

example, the error term distribution is substantially right skewed, OLS (which implicitly assumes a 

normally distributed error) cannot account for the extreme positive deviations that characterize right-

skewness. As a result, the location of the regression hyper plane would be less certain that when assuming 

an error term distribution that can account for these deviations. 

 The use of partially adaptive procedures for increasing slope parameter estimation efficiency 

through a more precise modeling of the error term distribution, however, has not been explored in the 

agricultural economics literature. Given the importance of obtaining more precise estimates of a model 

parameters for forecasting and statistical inferences, partially adaptive estimation techniques could be very 

useful in applied agricultural economics research. Applied researchers are increasingly better trained in 

basic econometric techniques, including the standard maximum likelihood estimation procedures required to 

implement partially adaptive estimation. This should facilitate the adoption of more efficient modeling 

techniques by applied researchers. 

 However, a practical shortcoming of the available partially adaptive estimators is that they were 

not designed to model heteroskedasticity or autocorrelation. Since, in addition to inefficient slope parameter 

estimators, unchecked heteroskedasticity or autocorrelation leads to biased and inconsistent standard error 

estimators, this limits the applicability of partially adaptive estimation when the error term is non-normally 

distributed and non-i.i.d. In other words, an applied researcher concerned about efficiency would have to 

choose between partially adaptive estimation or “correcting” for the non-i.i.d. error. In addition, available 

partially adaptive estimators cannot be straightforwardly used in multiple-equation (i.e. seemingly unrelated 

equation –SUR–) set up, which is a common procedure to increase estimation efficiency in relation to OLS. 

 This paper addresses the former issues by proposing and evaluating the theoretical and empirical 

performance of a partially adaptive estimator that can jointly model error term non-normality, 
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heteroskedasticity and/or autocorrelation in single and multiple equation specifications. The technique is 

based on assuming that an expanded form of the Johnson SU family of distributions (Johnson, Kotz, and 

Balakrishnan) can approximate the true underlying error term distribution. The Johnson SU family has been 

previously applied by Ramirez to simulate non-normally distributed yield and price distributions for 

agricultural risk analysis. Through Monte Carlo simulation assuming a variety of scenarios, it is shown 

that when the underlying error term is non-normally distributed and non-i.i.d., the proposed estimator can 

substantially increase slope parameter estimation efficiency in comparison to OLS, GLS (normal-error 

ML), and all other partially adaptive estimators available in the econometrics literature. The proposed 

technique is also validated and illustrated through two agricultural time series modeling applications. 

The Estimator 

The proposed partially adaptive estimator is obtained by assuming that the model’s error term (U) 

follows the following expanded form of the Johnson SU family of distributions: 

(1) Y = Xβ + U,  

(2) U = σ{sinh(ΘV)−F(Θ,µ)}/{ΘG(Θ,µ)}, V ∼  N(µ,1), 

F(Θ,µ) = E[sinh(ΘV)] = exp(Θ2/2)sinh(Θµ), and 

G(Θ,µ) = [{exp(Θ2)−1}{exp(Θ2)cosh(−2Θµ)+1}/2Θ2]1/2; 

where Y is an n×1 vector of observations on the dependent variable; X is an n×k matrix of observations on 

k independent variables including an intercept; β is a k×1 vector of intercept and slope coefficients; 

−∞<Θ<∞, −∞<µ<∞, and σ>0 are transformation parameters; and sinh(x) and cosh(x) are the hyperbolic 

sine and cosine functions, respectively. Using the results of Johnson, Kotz and Balakrishnan (pp. 34-38) it 

can be shown that in the model defined above: 

(3) E[U] = 0,   Var[U] = σ2, 

Skew[U] = E[U3] = S(Θ,µ) = −1/4w½(w−1)2[w{w+2}sinh(3Ω)+3sinh(Ω)]/G(Θ,µ)3/2, 

Kurt[U] = E[U4] = K(Θ,µ) = {1/8{w−1}2[w2{w4+2w3+3w2−3}cosh(4Ω)+4w2{w+2} 

cosh(2Ω)+3{2w+1}]/G(Θ,µ)2}−3; 
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where w = exp(Θ2) and Ω = −Θµ. The equations in (3) indicate that, in this model specification, Xβ solely 

determines E[Y], σ2 independently controls Var[U], and µ and Θ determine error term skewness and 

kurtosis. Thus, standard heteroskedastic specifications can be introduced by making σ2 a function of the 

variables influencing Var[U], without affecting the E[Y] or the error term skewness or kurtosis. Evaluation 

of Skew[U] and Kurt[U] shows that if Θ≠0 but µ=0 the distribution of U is kurtotic (i.e. “fat-tailed”) but 

symmetric. The sign of Θ is irrelevant, but higher values of Θ cause increased kurtosis. If Θ≠0 and µ>0, U 

has a kurtotic and right-skewed distribution, while µ<0 results in a kurtotic but left skewed distribution. 

Higher values of µ increase both skewness and kurtosis, but kurtosis can be scaled back by reducing |Θ|. 

In short, a wide variety of right and left skewness-kurtosis coefficient combinations can be 

obtained by altering the values of these two parameters. Also, if µ=0, S(Θ,µ)=0, and the former becomes 

symmetric but kurtotic error term model. Further, as Θ goes to zero, U approaches σV, Var[U] approaches 

σ2 and K(Θ,0) also becomes zero, indicating that the normal-error regression model is nested to this non-

normal error model. As a result, in applied regression analysis, if the error term is normally distributed, 

both µ and Θ would approach zero and the proposed estimator for the slope parameter vector β would be 

the same as OLS. Also, the null hypothesis of error term normality  (i.e. OLS) vs. the alternative of non-

normality can be tested as Ho: Θ=0 and µ=0 vs. Ha: Θ≠0 and µ≠0. The null hypothesis of symmetric non-

normality versus the alternative of asymmetric non-normality is Ho: Θ≠0 and µ=0 vs. Ha: Θ≠0 and µ≠0. 

To specify a non-normally distributed and autocorrelated error term model, consider a model with 

an n×1 error term vector U, which is normally distributed but not i.i.d. Following Judge, et al., let Φ = σ2ψ 

be the covariance matrix of the error term vector, P be an n×n matrix such as P’P = ψ-1, Y* = PY (an n×1 

vector), and X* = PX (an n×k matrix), where Y and X are the vector and matrix of original dependent and 

independent variables. Given the choice of P, the transformed error term U* = PU = P(Y−Xβ) = 

(PY−PXβ) = (Y*−X*B) is i.i.d. Under the assumption of normality, the log-likelihood function that has to 

be maximized in order to estimate a multiple regression model with non-i.i.d. errors then is: 

(4) NLLj = −(n/2)ln(σ2) −0.5×ln |ψ| −(U*’U*/2σ2). 
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A regression model that can accommodate non-normality (kurtosis and right or left skewness), and 

autocorrelation and/or heteroskedasticity, is finally obtained by applying the transformation in equation (2) 

to U*. When the error term vector U = (Y−Xβ), is autocorrelated, a first transformation is used to obtain a 

non-autocorrelated error term U* = PU = (PY−PXβ) = (Y*−X*β). This is then transformed to a normal 

error term vector V through equation (2). If U is only heteroskedastic, P is an n×n identity matrix. The 

concentrated log-likelihood function to be maximized in order to estimate this model’s parameters is:

                                                    n                  n                                           
(5) NNLL =  −0.5×ln |ψ| + Σ  ln(Gi) −Σ 0.5×Hi

2 }; where: 
                                                   i=1             i=1 
 

Gi = G(Θ,µ)(1+Ri
2)-1/2/σ;         Hi = {sinh–1(Ri)/Θ}−µ;         Ri = {G(Θ,µ)ΘUi*/σ}+F(Θ,µ); 

and i=1,…,n refers to the observations, sinh–1(x) = ln{x+(1+x2)1/2} is the inverse hyperbolic sine function, 

and F(Θ,µ) is as given in equation (2). The first and second terms in equation (5) are the natural logs of the 

Jacobians of the first and second transformations, respectively. Hi is the inverse of the transformation to 

normality in equation (2). If the error term is believed to be autocorrelated, P and |ψ| must be specified to 

make equation (5) operational. Judge, et al. derives P and |ψ| for first- and higher-order autoregressive 

processes. As before, in this autocorrelated specification, E[Y]= Xβ and Var[U]= σ2ψ. Thus, σ2 can still 

be used to model systematic changes in the variance of U across the observations without affecting 

skewness or kurtosis. 

The multiple equation (SUR) equivalent of equation (5) is obtained by applying a set of normality 

transformations [equation (2)] to a set of m “transformed” n×1 non-normal random errors, Uj* = 

Yj*−Xj*βj (j=1,...,m), where Yj*=PjYj, Xj*=PjXj, and Yj and Xj are the original vectors and matrices of 

dependent and independent variables, respectively. As in the single equation case, the transformed set of 

random vectors Vj follow a multivariate normal distribution with means µj (j=1,...,m) and covariance 

matrix Σ. The non-diagonal elements of Σ (ρjk) account for the correlation between the error terms of the m 

equations. The concentrated log-likelihood function for this model is a straightforward multivariate 

extension of equation (5): 
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                                                                  m                   n   m                         n   m 
(6) MNNLL = { −(n/2)×ln|Σ| −0.5×∑[ln(|ψj|)] +∑  ∑ [ln(Gji)] −0.5×∑  ∑ [{Hi*(Σ-1)}.*Hi]}; 

                                                           j=1               i=1 j=1                      i=1 j=1 
                            
where Σ is an m×m matrix with unit diagonal elements and non-diagonal elements ρjk; Gji is as defined in 

equation (5) if Yj (and thus Yj*) is not normally distributed or Gji=σj
-1 if Yj is normally distributed; and Hi 

is a 1xm row vector with elements Hji (j=1,...,m) also defined in equation (5) if Yj is not normally 

distributed and Hji=(Yji*–Xji*βj)/σj if Yj is normally distributed. The operator * indicates a matrix 

multiplication; and .* indicates an element-by-element matrix multiplication. 

 The multivariate log-likelihood function {equation (6)} simply links m univariate functions 

[equation (5)] through the cross-error term correlation matrix Σ. As in the normal error case, if some of the 

m dependent variables of interest are correlated to each other, using equation (6) to jointly estimate the βj 

vectors should result in an improved efficiency in comparison with the case where they are estimated 

separately. Maximum likelihood estimation is conducted by finding the values of the parameters (Θj, µ j, βj, 

and those in the Σ, Pj, and ψj matrices) that maximize the log-likelihood function [equation (6)]. This is 

achieved through numerical optimization procedures, such as the Newton-Raphson algorithm, which are 

available in most econometric software packages, including Gauss 386i. These pre-programmed procedures 

only require a few standard command lines and the log-likelihood function. In addition to parameter estimates, 

they provide standard errors based on a numerical estimate of the Hessian matrix of this function. 

Monte Carlo Simulation Analysis 

 The sample design used by Hsieh and Manski, Newey, and McDonald and White was adopted for 

the Monte Carlo simulation to ensure comparability with previous results. For the first phase of the 

simulation, the regression model is given by: 

(7) Yji = βj0 + βj1Xji + Uji = -1 + Xji + Uji (j=1); 

where the explanatory variable Xji = 1 with a probability of 0.5 and Xji = 0 with a probability of 0.5. Xji is 

also assumed to be statistically independent of Uji. Thus, each model can be interpreted as estimating a shift 

parameter that separates two identical distributions except for a location parameter. The specifications for 
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the error term distribution are taken from McDonald and White: (a) Normal {N(0,1)}; (b) Mixture of 

normals or variance-contaminated normal {0.9*N(0,1/9) +0.1*N(0,9)}; and (c) Lognormal. The 

distributions were re-scaled and shifted, when necessary, to be drawn from a parent population with unitary 

variance and zero mean. One thousand samples of size 50 were generated for each simulation experiment, 

using the same X’s for each sample. For the second phase of the simulation, first order autocorrelation was 

induced by multiplying each of the simulated error terms by the inverse of the P matrix defined above, for 

two different ρ values of 0.5 and 0.8. Heteroskedasticity was induced by multiplying the errors by I+0.5, 

where I is a binomial index variable taking values of zero or one with equal probability. For modeling 

purposes I is assumed to be a known qualitative factor that shifts the variance of the dependent variable 

from 0.5 to 1.5. In both cases the error term distributions maintain a zero mean and unit variance.  

Simulation Results and Estimator Performance 

 As in previous studies (McDonald and White; Newey; Hsieh and Manski) the root mean squared 

error (RMSE) of the slope estimators is used as the criteria for comparing the relative performance of 

different estimators. The results of McDonald and White  for three underlying error term distributions: 

normal, kutotic-only and kurtotic and skewed (Table 1), are used as a basis for comparison. Under OLS, 

the RMSE of the slope estimators is always around 0.28. When the true error term is i.i.d. normal, the 

proposed estimator, yields maximum likelihood parameter estimates for Θ and µ that are zero or not 

statistically different from zero, and slope estimates that are identical to those from OLS. Most of the 

estimators explored in McDonald and White perform similarly or slightly worse than OLS, as expected, 

since OLS is the most efficient estimator under i.i.d. normal error-term conditions. 

 The variance-contaminated normal implies a symmetric unimodal but thick-tailed error-term 

distribution with a kurtosis coefficient of approximately 20 in this case. The proposed estimator performs 

relatively well in estimating the slope coefficient (β2), with a RMSE of 0.115 (Table 2). Nine other 

estimating techniques provide comparable efficiency levels, but none produces a RMSE lower than 0.11 

(Table 1).  
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 A log-normal error term distribution is unimodal but not symmetric. It exhibits positive degrees of 

kurtosis and skewness. The RMSE of the proposed slope-parameter estimator is 0.050, approximately 20% 

of the RMSE of the OLS estimator. According to McDonald and White criteria, this is an “impressive” 

performance, only comparable to the EGB2’s 0.05 RMSE. All other alternative estimation techniques 

produce RMSE’s of 0.11 and above.  

 In summary, the estimator proposed in this study performs very favorably in comparison with the 

16 estimating techniques evaluated by McDonald and White according to the standards applied by these 

authors and independently established in previous studies (Newey; Hsieh and Manski). It clearly excels 

when the underlying error-term distribution is asymmetric. This implies a potential for efficiency gains 

when using the proposed estimator under conditions of error-term non-normality and 

heteroskedasticity/autocorrelation, or in a disturbance related equations set up. 

 When the variance-contaminated error-terms are simulated to be heteroskedastic, the slope 

estimation efficiency (i.e. the RMSEs) of the EGB2 and of the proposed estimator are not substantially 

affected, and the modeling of heteroskedasticity with the proposed estimator, by letting σ =α1+α2I (where I 

is the binomial index variable known to affect the error-term variance), only produces modest efficiency 

gains (Table 2). Under log-normal heteroskedastic errors, however, the EGB2 and the i.i.d form of the 

proposed estimator are substantially less efficient in comparison to the log-normal homoscedastic scenario. 

Their RMSEs increase from 0.054 and 0.050 to 0.117 and 0.104, respectively. In contrast, a RMSE of 

0.202 is obtained when estimating a heteroskedastic but normally distributed error-term model specification 

by maximum likelihood. The modeling of heteroskedasticicy with the non-i.i.d. form of the proposed 

estimator recovers the lost estimation efficiency gains. The resulting RMSE of 0.052 is 25% of the RMSE 

obtained with the heteroskedastic normal model.  

 In contrast, failure to model autocorrelation (ρ=0.5 and ρ=0.8) reduces the slope estimation 

efficiency of all estimators. The RMSEs increase to 0.320 and 0.388, respectively, when OLS is used 

under a variance-contaminated autocorretaled error-term, and to 0.334 and 0.439 under a log-normal 
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autocorrelated error-term. The i.i.d. form of the proposed estimator limits those RMSE increases to 0.141 

and 0.188 (variance-contaminated autocorrelated), and to 0.126 and 0.260 (log-normal autocorrelated). 

Comparable RMSEs are found under the EGB2. 

In short, the efficiency gains in the estimation of the slope parameter resulting from the use of 

either the EGB2 or the i.i.d. from of the proposed estimator, in relation to OLS, are reduced to about 50% 

if the underlying error-term is non-normally distributed and autocorrelated. The relative reduction is even 

more severe in comparison to the standard maximum likelihood autocorrelated normal-error estimator and, 

in the 0.8 autocorrelation log-normal error term scenario, the later is actually more efficient (Table 2). This 

illustrates the importance of a partially adaptive estimator that can account for both error term non-

normality and autocorrelation/ heteroskedasticity: The autocorrelated form of the proposed estimator fully 

recovers the efficiency losses, producing slope-estimator RMSEs that are similar to those obtained under 

the i.i.d. non-normal underlying error-term scenarios. These RMSEs are 50 to 75% lower than those 

obtained with the standard maximum likelihood autocorrelated normal estimator and 25 to 80% lower than 

those obtained under the EGB2 or the i.i.d. form of the proposed estimator (Table 2). 

Agricultural Economics Applications 

Simple Time Series Models of Agricultural Commodity Prices 

 An issue of interest for agricultural economists is whether real commodity prices have been declining 

through time and if price variability has changed over time making the production of a particular crop more risky. 

Both, the normal-error regression model and the proposed partially adaptive (i.e. non-normal error) regression 

model are used to analyze this issue in the case of annual (1950-1999) U.S. corn and soybean prices. 

 The two price series are adjusted for inflation to the year 2000 using the producer price index for all 

agricultural products (USDA/NASS, http://www.usda.gov /nass/, March 2001). Both series are stationary 

according to augmented Dickey-Fuller unit root tests. OLS models assuming second-degree polynomial time 

trends (i.e. Xβ = β0 + β1 t + β2t
2; t=1,…,50) are first estimated using Gauss 386i lreg procedure (Table 3). 

Durbin-Watson tests indicate first order positive autocorrelation in both cases. Therefore, standard tenth-order 
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autoregressive models are estimated using Gauss 386i autoreg procedure. Since the autocorrelation parameter 

estimates decrease in size and the second and higher-order autocorrelation coefficients are not statistically 

different from zero at the 10% level, it is concluded that a first order autoregressive [AR(1)] error term 

specification is sufficient to correct for autocorrelation. 

 The estimated AR(1) models are presented in Table 3. Note that, although the autocorrelation 

coefficients are statistically significant at the 1% level in both the corn and soybean price models, the standard 

error estimates for the estimators of the slope parameters βc1, βc2, βs1, and βs2 are larger under the AR(1) models. 

This is a common occurrence in applied modeling work, not withstanding of the fact that, under non-

independently distributed errors, the AR(1) slope parameter estimators are theoretically more efficient than OLS. 

The cause of this apparent contradiction is that, in the presence of autocorrelation, the OLS standard error 

estimators are biased, generally downwards, i.e. the OLS standard error estimates tend to underestimate the 

correct standard errors and, thus, are not reliable. 

 Theoretically, if corn and soybean prices are correlated through time, more efficient slope parameter 

estimators can be obtained by estimating the two models jointly, using a seemingly unrelated regression (SUR) 

procedure. This procedure is available in Gauss, SAS, and other statistical analysis software under the 

assumption of independently distributed errors, but not under autocorrelated errors. However, the log-likelihood 

function used to estimate such a model (available from the authors upon request) is a straightforward bivariate 

extension of equation (4). In the case of the soybean price model, the estimated standard errors for the estimators 

of the regression slope parameters are moderately lower under this SUR-AR(1) procedure, but they are slightly 

higher in the corn price model. The overall efficiency gains from SUR estimation are likely limited by the low 

corn-soybean price correlation coefficient estimate under the assumption of error term normality. The SUR-

AR(1) model is then expanded to evaluate if the variances of the price distributions have been changing through 

time. The two most common time-dependent heteroskedastic specifications are evaluated: 

(8) σj = σj0 + σj1t, and σj
2 = σj0 + σj1t, t = 1,…,50, j = c and s; 

which make the standard deviation or the variance of the corn and soybean price distributions linear 
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functions of time, respectively. Likelihood ratio and t tests do not reject Ho: σj1 = 0 at the 20% level of 

statistical significance, suggesting that the error terms are homoskedastic in both cases. Since βc1 and βc2 are not 

statistically significant at the 20% level, and second degree polynomial regression specifications are 

susceptible to multicollinearity, a final model [NSUR-AR(1)] is estimated without  βc2 (Table 3), in which 

the linear time-trend parameter βc1 is statistically different from zero at the 5% level. 

 The NSUR-AR(1) model is the most statistically efficient model currently achievable by an applied 

researcher dealing with the simple issue of whether real commodity prices have been declining over time. 

However, the previously discussed Monte Carlo simulation results suggest that the non-normal regression 

modeling techniques described above offer the potential for increased efficiency, i.e. slope parameter 

estimators with lower standard errors. The NSUR-AR(1) model is expanded to allow for the possibility of 

error term skewness and kurtosis. This expanded model [NNSUR-AR(1)] is estimated by maximizing the 

concentrated log-likelihood function given in equation (6), setting m=2. This log-likelihood is a function of 

the same parameters as the NSUR-AR(1) model, plus the parameters accounting a potential non-normality in 

the error term distributions of the corn (Θc and µ c) and soybean (Θs and µ s) models. 

 The statistical significance of the non-normality parameters is verified through the most reliable 

likelihood ratio tests. The concentrated log-likelihood function for the NSUR-AR(1) model reaches a 

maximum value of 36.92, versus 52.55 in the case of the NNSUR-AR(1) model. Thus, the likelihood ratio 

test statistic for Ho: Θc=µ c=Θs=µ s=0 is χ2
(4) = -2×(36.92-52.55) = 31.26 allows for rejection of Ho at the 

1% level. The non-normal SUR-AR(1) regression model is statistically superior to the normal SUR-AR(1) 

model. If the NNSUR-AR(1) model is restricted to only allow for non-normality in the error term of the corn 

price regression, the maximum value of the log-likelihood function decreases from 52.55 to 42.89, resulting a χ2
(2) 

test statistic of -2×(42.89-52.55) = 19.32, and rejection of Ho: Θs=µ s=0 at the 1% level. Alternatively, the χ2
(2) 

test statistic for Ho: Θc=µ c=0 is -2×(46.12-52.55) = 12.86 rejects Ho at the 1% level as well. The previous 

results indicate that the error terms of both the corn and the soybean price models are non-normally distributed. 
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 The powerful D’Agostino-Pearson omnibus (K2) normality test can be applied to the OLS 

residuals to confirm these results. This test is based on a standardized combination of the well-known 

skewness and kurtosis coefficients, which, on the one hand, allows for rejection of the null hypothesis of 

normality on either count (skewness or kurtosis) and, on the other, it avoids the “double jeopardy” of 

separate skewness and kurtosis tests. The K2 statistic is 11.93 for the corn price residuals and 8.26 for the 

soybean price residuals. Since under the null hypothesis of normality K2 is distributed as a χ2
(2), normality is 

rejected at the 1% significance level in both cases. Non-normal error term models are strongly justified.

However, the estimated value for the skewness parameter in the corn model (µ c) is very low (-0.0539) and 

statistically insignificant at the 20% level. A likelihood ratio test (χ2
(1) = -2×(52.54-52.55) = 0.02) confirms 

this result. Therefore, µ c is set equal to zero in the final NNSUR-AR(1) model (Table 3). 

As explained earlier, µ c=0 implies that the distribution of the error term in the corn model is 

kurtotic but not skewed, while the positive sign of the parameter estimate for µ s indicates positive, i.e. right 

skewness in the error term distribution of the soybean model. The specific skewness and kurtosis coefficients, 

calculated using the formulas in equation (3), are 0 and 22.20 (corn), and 2.08 and 8.61 (soybeans), respectively. 

Right skewness, i.e. upward price spikes that are relatively more pronounced than lower price occurrences, is not 

a surprising finding, and can be visually perceived on a scatter plot of the soybean price data (Figure 1).  The 

simulation results are empirically validated in this case: The estimated standard errors for the slope parameter 

estimators, are substantially lower under the non-normal model (0.39, 2.81, and 5.30 vs. 0.56, 3.83 and 7.50 

under the normal), which means that the proposed partially adaptive estimator allows for much narrower (i.e. 

more precise) confidence intervals for the rates of decreases of corn and soybean prices through time.  

 Confidence intervals for the price occurrences involve the uncertainty in the estimation of all of the 

model parameters as well as the estimated error term distribution. These are obtained by applying the 

numerical technique of Krinsky and Rob. This technique is based on the asymptotic properties of the ML 

estimators, i.e. on the fact that they are normally distributed, consistent, and with known covariance matrix. 

It uses the same principle applied to construct confidence intervals for the true parameter values to 
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numerically simulate the probability distribution from which they could have been drawn. Specifically, let 

i

^
Γ  be the kx1 vector of maximum likelihood estimators for Γ i, the vector of true population parameters 

underlying the normal (i=N, k=10) or the non-normal (i=NN, k=14) regression model, and 
^

][
^

iCM Γ be the 

estimated covariance matrix for i

^
Γ . Then, the joint probability distribution of i

^
Γ  is simulated by:  

(9) Si = Z x Chol(
^

][
^

iCM Γ ) + i

~
Γ , 

where Z is an mxk matrix of independently distributed standard normal random variables, Chol(.) denotes the 

Cholesky decomposition, and i

~
Γ  the kx1 vector of parameter estimates obtained from i

^
Γ . Equation (9) yields 

an mxk matrix of random variables with mean i

~
Γ  and covariance matrix 

^
][

^
iCM Γ . Since, under a correct 

model specification, i

^
Γ  is a consistent estimator for Γ i and 

^
][

^
iCM Γ  is a consistent estimator for 

^
][ iCM Γ , Si 

is a theoretically correct probabilistic statement about Γ i.  Thus, the boundaries of a (1-α)% confidence 

interval for the expected price under the normal (non-normal) model at time period t can be obtained by 

extracting the m sets of simulated parameter values from SN (SNN), using them to obtain m “predicted” price 

values for time t, and finding the (α/2) x mth and the [(1-α)+α/2] x mth largest of these m price values. 

 Confidence intervals for the actual price realizations require simulation of m error term draws as well. 

In the case of the normal regression model, these are obtained by extracting the m simulated values for the 

standard deviation parameter (σc or σs) from SN and multiplying them by m independent draws from a 

standard normal random variable.  In the case of the non-normal model, the m sets of simulated values for σc, 

µ c and Θc (or σs, µ s and Θs) have to be extracted from SNN and coupled with m independent standard normal 

draws. Then, m non-normal error term values are simulated by applying equation (2). The final step in 

constructing the boundaries of a (1-α)% confidence interval for the actual price observations is to add the m 

simulated error term values to the corresponding m price “predictions” and find the (α/2) x mth and the [(1-
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α)+α/2] x mth largest of the resulting m simulated price realization values. The former process is programmed 

in Gauss 386i with m=100,000 and repeated for t=0,…49 under the normal and non-normal corn and soybean 

price models. The resulting boundaries are joined to obtain (1-α)% confidence bands for the 50 individual 

price predictions and for the 50 individual price realizations observed from 1951 to 2000. 

 The 95% confidence bands for the soybean price predictions, i.e. for the expected soybean prices, and 

for the actual price occurrences under the normal and non-normal regression models are presented in Figures 1 

and 2. The predictions, and the corresponding confidence bands, do not follow the typical curvilinear shape of 

a second-degree polynomial in this case because they are autocorrelated predictions (Judge, et al., p. 316). The 

95% bands for the 50 soybean price predictions under the normal model show an average width of $0.714/bu 

versus $0.557/bu under the non-normal model, i.e. they are 28% wider, on average. The 95% confidence 

bands for the 50 corn price predictions are 35% wider under the normal model than under the non-normal 

model, on average. An evaluation of the 80% to 95% confidence bands for both price series finds similar (28% 

to 35%) average percentage width differences at all 16 certainty levels. 

 In short, the non-normal models produce more precise predictions for the corn and soybean prices to 

be expected at any given year. Realistic confidence bands for the actual price occurrences, however, are as 

important in applied research. Figures 1 and 2 also show the 95% confidence bands for the soybean price 

occurrences under the normal and non-normal models. In the normal case (Figure 1), the bands are wider than 

those constructed for the predictions, but they are still symmetric about the price predictions. This is due to the 

addition of the normally distributed error term. Note that two of the price realizations exceed the upper bound 

while none is located even close to the lower bound, versus the theoretically required number of 1.25.   

 Examination of the 80 to 95% confidence bands reveals that, from 83% to 95%, no observations are 

left below the lower bounds, and only two are beneath the 80% band versus the theoretically required number 

of five (Table 4). When all of the 16 confidence bands are considered, only five out of a theoretically required 

total of 50 observations are found below the lower bounds, while 58 are above the upper bounds (Table 4). 

The assumption of error term normality, which causes these confidence bands to be symmetric, appears 
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incompatible with the soybean price data. The confidence bands for the soybean price occurrences under the 

non-normal model (Figure 2) are markedly non-symmetric about the predictions, reflecting the kurtosis and 

right-skewness of the estimated error term distribution. The 95% band leaves one observation above and one 

below its boundaries (1.25 required). The, 90, 85 and 80% bands leave three and two, five and three, and six 

and four observations below and above their boundaries, respectively, vs. the theoretically required numbers of 

2.5, 3.75 and five, respectively. When all of the 16 confidence bands are considered, 59 and 42 observations 

are found below and above their lower bounds, respectively, versus the theoretically required number of 50 

(Table 4). Compatibility with the data is improved by lower bounds that are consistently higher than their 

normal counterparts, and thus closer to the low price occurrences, combined with upper bounds that become 

relatively higher than the normal bounds at reduced α levels (Table 2 and Figures 1 vs. 2). The non-normal 

confidence bands are also narrower than the normal bands, on average and up to the 93% confidence interval. 

 On average, the 16 non-normal confidence bands for the corn price occurrences also appear more 

compatible with the observed data than the bands under the normal-error model, leaving 52 and 46 

observations below and above their lower bounds, respectively, vs. 28 and 45, respectively. They are also 

narrower than the normal bands on average and up to the 93% confidence interval (Table 4). 

 The fact that the non-normal models result in confidence bands that are more consistent with the 

observed data is important given the many empirical applications of confidence intervals. It also provides for 

an intuitive explanation of the more precise slope parameter and dependent variable predictions afforded by the 

non-normal models. That is, the degree of uncertainty about the location of the true regression line (or hyper 

plane in the multiple regression case) is reduced by an improved accounting of the phenomena causing the data 

deviations form the line (or hyper plane), i.e. by the improved modeling of the error term distribution. 

An Empirical Model of the West Texas Cotton Basis 

 Another issue of importance to agricultural economists is the behavior of the basis in a futures 

market, and measuring the impact of market and policy factors on the level and variability of the basis 

(Seamon and Kahl). For the purposes of this study, the monthly (January 1980 to December 2000) West 
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Texas cotton basis is defined as the difference between the West Texas cash price and the U.S. futures 

cotton price for the September contract. 

Several factors have been hypothesized to affect this basis, including the monthly Texas, U.S., and 

foreign production (TXP, USP, and FP) and beginning stocks (TXBS, USP, and FBS); monthly foreign 

mill use (FMU); the U.S. price of rayon (PR); the opportunity cost of storage (STRC), as measured by 

Seamon and Kahl; transportation costs measured by the monthly U.S. railroad index for farm products 

(RRI); seasonal effects measured by dummy variables representing the planting (SD=0 for March to July) 

versus the harvesting and marketing seasons (SD=1 for August to February); and agricultural policy 

effects measured by dummy variables for the pre 1985 farm bill years (PD=1 from 1980 to 1985 and zero 

otherwise), the 1985 farm bill period (PD1=1 from 1986 to 1995 and zero otherwise), and the post 1996 

farm bill era (PD2=1 from 1996 to 2001 and zero otherwise). 

 All of the variables discussed above are stationary according to the augmented Dickey-Fuller unit 

root test, with the exception of the price of rayon. The first difference in the price of rayon (FDPR), which 

is stationary, is therefore used instead of PR. A Durbin-Watson test based on the OLS residuals reveals 

first-order positive autocorrelation. The autocorrelation function of the OLS residuals is steadily 

decreasing, while the partial autocorrelations become statistically insignificant at lag five. When a tenth-

order autoregressive model is estimated using Gauss 386i autoreg procedure, the autocorrelation parameter 

estimates decrease in size and the fifth and higher-order coefficients are not statistically different from zero at the 

10% level. Thus, it is concluded that a fourth-order autoregressive [AR(4)] error term specification is sufficient to 

correct for autocorrelation. 

 The standard maximum likelihood procedures outlined above [equation (4)] are then used to estimate an 

AR(4) model under the assumption of error term normality and heteroskedasticity [NHAR(4)], shifting the 

variance of the error term (σ2) by σ2
SD, σ2

PD1, and σ2
PD2, according to the seasonal and policy dummies (Table 5). 

As in previous econometric analysis of regional basis, most of the regression parameters are insignificant. With 

the exception of SD, the relatively large standard errors of the slope parameter estimators make it impossible to 
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ascertain the direction and magnitude of the impact of the proposed explanatory variables on the basis, with 

reasonable statistical certainty. 

 The NHAR(4) model is then extended to account for error term non-normality [NNHAR(4)]. In this 

case, Ramirez and Shonkwiler’s proposed procedures are expanded by letting the first non-normality parameter 

(Θ) shift by ΘSD, ΘPD1, and ΘPD2, according to the seasonal and policy dummies. Since Θ affects both Skew[U] 

and Kurt[U] [equation (3)], this model specification assumes an error term distribution that can have a different 

variance, skewness and kurtosis depending on the season and policy period. The slope parameter estimators under 

this NNHAR(4) model exhibit substantially lower standard errors than their normal-error counterparts (Table 5), 

empirically validating the previously discussed Monte Carlo simulation results again. Final [FNHAR(4) and 

FNNHAR(4)] models are obtained by excluding the transportation cost (RRI) and 1996-2001 policy period 

(PD2) variables from the regression equation, since they show the lowest levels of statistical significance in both 

of the initial models and their corresponding parameter estimates bear incorrect signs. 

 All parameter estimates in the final models have the signs that would be expected from theory (Nelson). 

The estimates for the standard errors of the slope parameter estimators are again all higher under the normal 

model. Eight of the eleven standard error estimates are over 70% higher; and six are more than twice as high as in 

the non-normal model. On average, the standard error estimates under the NHAR(4) model are 99.6% higher. As 

a result, in the NNHAR(4) model, six regression parameters are statistically significant at the 1% level, and two 

more at the 5% level, while only one regression parameter is statistically significant under the NHAR(4) model. 

 These remarkable estimation efficiency gains are related to the substantial 70.47 increase in the 

maximum log-likelihood function value obtained by the modeling of non-normality. To put this number into 

perspective, recall that an increase of just χ2
(4,0.01)÷2 = 6.64 is required for the likelihood ratio test to reject the null 

hypothesis that all non-normality parameters are equal to zero and conclude that the NNHAR(4) model represents 

a statistically significant improvement over the NHAR(4) model. Such a large log-likelihood value increase is an 

unmistakable indication that the observed basis data (Figure 3) is much more likely to have been generated by the 

non-normal than by the normal-error model. The D’Agostino-Pearson normality test applied to the OLS 
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residuals rejects the null hypothesis of error term normality at the 1% level, supporting this conclusion. 

 The confidence bands for the basis predictions and occurrences are generated using the same numerical 

procedures described in the case of the corn and soybean price models. As before, few key summary statistics 

about the bands are more revealing than their graphical presentation. As a result of the larger standard errors, the 

80 to 99% confidence bands for the predictions from the normal model are, on average, 63% wider than those 

from the non-normal model, i.e. the later produces substantially more precise predictions of the West Texas 

cotton basis. As in the corn and soybean price models, the NNHAR(4) confidence bands for the actual basis 

occurrences are more “efficient” and theoretically consistent than the bands from the normal model (Table 6). 

They are more efficient in the sense that they are substantially narrower (7.306 vs. 9.643 basis points), on 

average, and at all 20 α levels evaluated, although, as before, they approach the width of the normal bands the 

lowest α of 0.01. At the same time, the 80 to 99% non-normal confidence bands are more theoretically consistent 

since the numbers of observations found below and above their lower and upper bounds are much closer to the 

theoretically expected numbers (Table 6). The more reliable non-normal confidence bands of the West Texas 

cotton basis are clearly useful for applied research and decision making about futures contracting.  

 Another interesting and original byproduct of the NNHAR(4) model is the finding that, in addition to 

affecting the mean and variance, policy and seasonal variables can also shift the skewness and kurtosis of the 

error term distribution and, thus, of the conditional distribution of an economic time series. The estimated 

conditional distributions of the West Texas cotton basis for the two seasons under the three policy periods in 

the analysis are presented in Figures 4 and 5, assuming the average values for all other explanatory variables 

during the corresponding season and policy period. 

 Note the substantial kurtosis and right skewness of the distributions during the March to July planting 

season. In the current, post-1985 Farm Bill period, for example, the distribution shows a mean of –2.62 and a 

standard deviation of 2.83. It implies a 0.3% (5%) probability of a basis realization that is less (more) than 

one standard deviation from the mean, versus the 16% expected under a normal distribution. The conditional 

distributions of the West Texas cotton basis before and during the 1985 Farm Bill period had estimated means 
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of –5.77 and –1.46 points, and standard deviations of 3.55 and 3.07, respectively. They were somewhat less 

kurtotic and asymmetric, with implied probabilities of basis realizations below (above) one standard deviation 

from their means of 5.9% and 7.1% (9.1% and 10.3%), respectively. In short, the probability of a high 

positive basis during the planting season was much higher during the 1985 Farm Bill period, and it is almost 

negligible in the current policy period, as it could be inferred from the data (Figure 3). 

 The estimated conditional distributions of the West Texas cotton basis during the harvesting and 

marketing season (Figure 5) are nearly normal under all the three policy periods analyzed. They show lower 

means (–6.08 vs. –5.77, –2.43 vs. –1.46, and –3.74 vs. –2.62, respectively) and standard deviations (2.64 vs. 

3.55, 2.13 vs. 3.07, and 1.59 vs. 2.83, respectively) than during the planting season. Because of the stronger 

non-normality in the August-to-February distributions, however, these reduced standard deviations do not 

imply a lower overall degree of dispersion in the distribution of the basis in this case (Figures 4 and 5). 

 This is empirically important since, under error term non-normality, normal-error models such as the 

NHAR(4), provide consistent estimates for the error term variance (note the similarity in the variance 

estimates from the FNHAR(4) and the FNNHAR(4) models in Table 5), which would be misinterpreted as 

appropriate measures of the degree of dispersion of the distribution. For example, from the relatively large 

negative value of the variance shifter for the harvesting and marketing season (σ2
SD) in the FNHAR(4) model, 

one would falsely conclude that the distribution of the basis during this season exhibits a much lower overall 

degree of dispersion about its mean value. 

Concluding Remarks 

 Agricultural economics research often involves the estimation of regression models with a limited 

amount of data, and more precise and realistic statistical inferences from these models are always useful. 

As illustrated above, the non-normal error multiple regression model evaluated in this study can provide for 

substantially more precise and realistic statistical inferences than the currently available estimation 

techniques that assume normality. Since many dependent variables of interest to agricultural economists, 

such as commodity prices, crop acreage, yields, product supply, profits, etc., are likely non-normally 
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distributed, this could become an important tool in agricultural economics research. The theory and 

examples above also suggest that the degree of improvement over the normal-error models depends on how 

much the true error term distribution deviates from normality and on how well the non-normal error term 

distribution on which the partially adaptive estimation procedure is based approximates the true data-

generating distribution. This is why very flexible distributions, such as the expanded form of the Johnson 

SU family, should be preferred for partially adaptive estimation. The applications above also illustrate that 

proposed technique could be useful if the estimated models will be used to simulate conditional probability 

distributions for the dependent variable, which are often used for economic risk analysis. 
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Table 1. Root Mean Squared Error (RMSE) of slope estimators (sample size = 50; number of samples = 

500). Source: McDonald and White (1993).  

 Underlying Error-Term  Underlying Error-Term 

Estimation 

Technique 

Normal Normal 

Mixture 

Log-

Normal 

Estimation 

Technique 

Normal Normal 

Mixture 

Log-

Normal 

OLS 0.28 0.28 0.28 Huber 1, c=1 0.29 0.14 0.16 

LAD 0.35 0.13 0.17 Huber 1, c=1.5 0.28 0.16 0.18 

BT 0.29 0.14 0.18 Huber 1, c=2 0.28 0.19 0.20 

GT 0.30 0.12 0.12 Huber 2 c=1 0.56 0.12 0.12 

T 0.28 0.11 0.12 Huber 2 c=1.5 0.41 0.11 0.15 

BT, p≥1 0.29 0.13 0.17 Huber 2 c=2 0.32 0.13 0.16 

GT, p≥1 0.30 0.12 0.12 Manski (AML) 0.28 0.12 0.13 

EGB2(p=q) 0.28 0.12 0.15 Newey (j) 0.30 0.12 0.11 

EGB2 0.29 0.12 0.05 Proposed 0.28 0.11 0.05 

 

Notes: OLS is the Ordinary Least Squares estimator; LAD is the Least Absolute Deviations estimator 

(Gentle, 1997); BT is the power exponential or Box-Tiao estimator (Zeckhauser and Thompson, 1970), GT 

is a partially adaptive estimator based on the generalized t distribution (McDonald and Newey, 1984, 

1988); t is a partially adaptive estimator based on the Student’s t distribution; EGB2 is a partially adaptive 

estimator based on the exponential generalized beta distribution of the second kind; Huber 1 and 2 refer to 

the estimators proposed by Huber (1964) and Huber (1981); Manski (AML) is the adaptive maximum 

likelihood estimator advanced by Hsieh and Manski (1987) based on a normal kernel density; and Newey 

(j) is the generalized method of moments estimator with j moments used in estimation (Newey, 1988). For 

more details about the former estimation techniques please see McDonald and White (1993).  
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Table 2: RMSE of the 1000-sample slope-parameter estimates under eigth underlying error-term 

distributions and the normal and the proposed partially adaptive estimator alternatives.  

 Normal Estimators EGB2 Proposed Estimator 

Underlying 
Distribution 

i.i.d. Heter. Autoc. i.i.d. i.i.d. Heter. Autoc. 

i.i.d. Var. Cont. 
Normal 

0.284 -- -- 0.126 0.115 -- -- 

i.i.d. Log- 
Normal 

0.291 -- -- 0.054 0.050 -- -- 

Het. Var. Cont. 
Normal 

0.293 0.212 -- 0.125 0.112 0.107 -- 

Het. Log- 
Normal 

0.281 0.202 -- 0.117 0.104 0.052 -- 

0.5 Aut. Var. 
Cont. Normal 

0.320 -- 0.260 0.149 
 

0.141 -- 0.114 

0.8 Aut. Var. 
Cont. Normal 

0.388 -- 0.208 0.195 0.188 -- 0.098 

0.5 Aut. Log- 
Normal 

0.334 -- 0.238 0.143 0.126 -- 0.053 

0.8 Aut. Log- 
Normal 

0.439 -- 0.219 0.299 0.260  -- 0.051 
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Table 3. Parameter estimates, standard error estimates, and statistical significance of parameters of normal 

and non-normal error regression models for corn and soybean prices. 

 OLS AR(1) SUR-AR(1) NSUR-AR(1) NNSUR-AR(1) 

 Par. Est. S.E. Est. Par. Est. S.E. Est. Par. Est. S.E. Est. Par. Est. S.E. Est. Par. Est. S.E. Est. 

θC -- -- -- -- -- -- -- -- 0.9446 0.2875** 

µ C -- -- -- -- -- -- -- -- -- -- 

BC0 3.0840 0.1423** 3.0860 0.2263** 3.0817** 0.2273 3.1351 0.1600** 3.1722 0.1065** 

BC1 -1.5611 1.3432ns -1.4552 2.1317ns -1.4237ns 2.1879 -2.1217 0.5563** -2.3509 0.3929** 

BC2 -1.0001 2.6509ns -1.3787 4.1937ns -1.4244ns 4.3186 -- -- -- -- 

σC 0.3490 -- 0.2811 -- 0.2818** 0.0282 0.2821 0.0282** 0.2990 0.0804** 

ρC -- -- 0.5460 0.1185** 0.5347** 0.1111 0.5353 0.1112** 0.5688 0.0987** 

θS -- -- -- -- -- -- -- -- 0.5677 0.1600** 

µ S -- -- -- -- -- -- -- -- 15.7161 5.0376** 

BS0 5.2544 0.3246** 5.3045 0.4998** 5.2899 0.4291** 5.3262 0.4172** 5.3607 0.3347** 

BS1 11.8443 3.0636** 11.5373 4.7101** 11.6223 4.0533** 11.1429 3.8273** 10.1967 2.8094** 

BS2 -25.4146 6.0462** -25.0758 9.2701** -25.1588 7.9850** -24.1720 7.4968** -21.4259 5.3032** 

σS 0.7960 -- 0.6587 -- 0.6645 0.0677** 0.6645 0.0677** 0.7369 0.1603** 

ρS -- -- 0.5132 0.1214** 0.4066 0.1227** 0.4073 0.1232** 0.4484 0.0763** 

ρCS -- -- -- -- 0.3598 0.1310** 0.3597 0.1311** 0.4644 0.1158** 
   MVCLF 33.86 MVCLF 36.98 MVCLF 36.92 MVCLF 52.54 

R2 R2
C=0.44 R2

S=0.28 R2
C=0.61 R2

S=0.48 R2
C=0.61 R2

S=0.47 R2
C=0.61 R2

S=0.47 R2
C=0.61R2

S=0.47 
 
Notes: MVCLF stands for the maximum value reached by the concentrated log-likelihood function. Par. 

Est. and S.E. Est. refer to the parameter and standard error estimates, respectively. The parameter and 

standard error estimates corresponding to BC1 and BS1, and to BC2 and BS2 have been divided by 100 and 

10000, respectively. * and ** denote statistical significance and the 90 and 95% level, respectively, 

according to two-tailed t tests. The R2’s are calculated by dividing the regression sums of squares (based on 

the autocorrelated {AR(1)} predictions) by the total sums of squares, i.e. it are the square of the correlation 

coefficients between the AR(1) predictions and the observed corn (c) and soybean (s) prices. 
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Table 4*. Select statistics about the 80 to 95% confidence bands for the price occurrences under the normal and 

non-normal corn and soybean price models. 

 Normal Corn Price Model Non-Normal Corn Price Model 
%CI TR# #ULB #OUB ALB AUB AWCB #ULB #OUB ALB AUB AWCB 
80% 5.00 4 3 2.249 2.993 0.744 7 3 2.315 2.910 0.595 
81% 4.75 3 3 2.240 3.001 0.761 7 3 2.305 2.920 0.615 
82% 4.50 3 3 2.231 3.010 0.779 7 3 2.294 2.931 0.636 
83% 4.25 2 3 2.222 3.019 0.797 7 3 2.283 2.942 0.659 
84% 4.00 2 3 2.213 3.029 0.817 5 3 2.270 2.955 0.684 
85% 3.75 2 3 2.202 3.039 0.837 4 3 2.257 2.968 0.711 
86% 3.50 2 3 2.191 3.050 0.859 4 3 2.243 2.982 0.740 
87% 3.25 2 3 2.180 3.061 0.881 2 3 2.227 2.998 0.771 
88% 3.00 1 3 2.168 3.074 0.905 2 3 2.210 3.015 0.806 
89% 2.75 1 3 2.155 3.087 0.931 2 3 2.191 3.035 0.844 
90% 2.50 1 3 2.141 3.100 0.959 1 3 2.169 3.056 0.887 
91% 2.25 1 3 2.126 3.116 0.989 1 3 2.145 3.080 0.935 
92% 2.00 1 3 2.109 3.132 1.023 1 3 2.117 3.108 0.991 
93% 1.75 1 2 2.091 3.151 1.060 1 3 2.085 3.141 1.056 
94% 1.50 1 2 2.070 3.171 1.101 1 2 2.046 3.180 1.134 
95% 1.25 1 2 2.047 3.195 1.149 0 2 1.998 3.228 1.230 

Sum/Ave 50 28 45 2.165 3.077 0.912 52 46 2.197 3.028 0.831 
  Normal Soybean Price Model Non-Normal Soybean Price Model 

%CI #TR #ULB #OUB ALB AUB AWCB #ULB #OUB ALB AUB AWCB 
80% 5.00 2 5 5.220 6.989 1.768 6 4 5.410 7.001 1.592 
81% 4.75 2 5 5.200 7.009 1.809 5 4 5.401 7.035 1.634 
82% 4.50 1 5 5.179 7.030 1.851 5 4 5.391 7.071 1.680 
83% 4.25 0 5 5.157 7.052 1.895 5 4 5.382 7.110 1.728 
84% 4.00 0 5 5.134 7.075 1.941 5 4 5.372 7.151 1.779 
85% 3.75 0 5 5.109 7.099 1.990 5 3 5.362 7.195 1.833 
86% 3.50 0 4 5.083 7.125 2.041 5 3 5.351 7.243 1.891 
87% 3.25 0 4 5.057 7.152 2.095 5 2 5.340 7.295 1.955 
88% 3.00 0 3 5.028 7.181 2.153 4 2 5.328 7.352 2.024 
89% 2.75 0 3 4.997 7.212 2.214 3 2 5.316 7.414 2.098 
90% 2.50 0 3 4.964 7.245 2.280 3 2 5.303 7.483 2.180 
91% 2.25 0 3 4.929 7.280 2.352 3 2 5.289 7.561 2.272 
92% 2.00 0 2 4.889 7.320 2.432 2 2 5.273 7.650 2.377 
93% 1.75 0 2 4.844 7.364 2.520 1 2 5.256 7.752 2.496 
94% 1.50 0 2 4.795 7.413 2.618 1 1 5.237 7.875 2.637 
95% 1.25 0 2 4.738 7.470 2.732 1 1 5.216 8.021 2.805 

Sum/Ave 50 5 58 5.020 7.189 2.168 59 42 5.327 7.388 2.061 
 
*See notes below Table 5 for the definitions of the labels and summary statistics presented in Table 2. 
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Table 5. Parameter estimates, standard error estimates, and statistical significance of parameters of normal and 

non-normal error regression models for the West Texas cotton basis. 

  NHAR(4) NNHAR(4) FNHAR(4) FNNHAR(4) 
Par. Var. P.E. S.E. P.E. S.E. P.E. S.E. P.E. S.E. 

ρ1  -- 0.9807 0.06871 0.96261 0.027201 0.98904 0.065931 0.95853 0.027731 
ρ2  -- -0.2385 0.09652 -0.13640 0.041901 -0.24666 0.093581 -0.13685 0.042441 
ρ3  -- 0.1319  0.0975 0.13418 0.045181 0.13667  0.09606 0.13438 0.046021 
ρ4  -- -0.1073 0.06123 -0.15764 0.037321 -0.11249 0.060173 -0.15605 0.036821 
B0  -- -14.5204 12.2673 -13.7478 8.60659 -18.26522 7.848872 -11.83432 6.663783 
B1 TXP 0.1930 0.5159 -0.11620 0.13143 0.18625 0.46566 -0.12095 0.12967 
B2 USP 0.3022 0.2476 0.31761 0.143032 0.33011 0.23807 0.34039 0.084531 
B3 FP 0.0913 0.1452 0.23745 0.088691 0.10201 0.13689 0.24439 0.067821 
B4 TXBS -0.3323 0.3043 -0.47715 0.258153 -0.32229 0.29186 -0.48446 0.245362 
B5 USBS 0.1800 0.3508 0.52388 0.165761 0.18375 0.34317 0.55098 0.155911 
B6 FBS 0.0162 0.1053 0.16266 0.068242 0.03877 0.10515 0.17332 0.044361 
B7 FMU -0.0361 0.3599 -0.26306 0.113202 0.02261 0.17314 -0.26656 0.102231 
B8 RRI 0.0146 0.1479 0.03185 0.08302 -- --   
B9 STRC -1.4566 1.2934 -1.15475 1.26164 -1.35748 1.25214 -1.13765 1.23339 
B10 FDPR 1.0527 0.6739 0.43163 0.47683 1.03744 0.67141 0.35747 0.38805 
B11 SD -1.0991 0.42251 -0.69499 0.236551 -1.06572 0.414102 -0.63615 0.181151 
B12 PD1 2.1954 2.3614 1.85166 1.84490 1.29106 1.15962 2.38576 1.115272 
B13 PD2 1.1976 2.6599 -0.85989 2.30983 -- --   
σ2  -- 16.0036 2.89671 11.35527  4.134771 16.13068 3.003591 10.95924 3.634001 
σ2

SD SD -11.3179 2.81221 -5.82120 3.87761 -11.50518 2.778151 -5.42047 3.343203 
σ2

PD1 PD1 -0.3919 1.3692 -1.76188 1.42804 -0.38268 1.54083 -1.80659 1.40307 
σ2

PD2 PD2 -3.4360 1.00001 -3.91090 1.351651 -3.35245 1.021571 -3.89927 1.339511 
Θ  -- -- -- 0.95789 0.225141 -- -- 0.93976 0.200771 
µ  -- -- -- 0.69869 0.250171 -- -- 0.72557 0.261771 
ΘSD SD -- -- -1.21066 0.308111 -- -- -1.19269 0.291551 
ΘPD1 PD1 -- -- 0.02153  0.19116 -- --   
ΘPD2 PD2 -- -- 0.57618 0.193201 -- -- 0.57207 0.171901 
MVLLF -352.820  -282.353  -352.964  -282.448  
R2 0.77  0.77  0.77  0.77  
 
Notes: NHAR(4), NNHAR(4), FNHAR(4) and FNNHAR(4) refer to the initial normal and non-normal and to the 

final normal and non-normal heteroskedastic fourth-order autoregressive models; the parameters (Par.) and 

variables (Var.) are as defined in the text; P.E. and S.E. refers to the parameter and standard error estimates; 1, 2, 

and 3 denote statistical significance at the 1%, 5% and 10% level, respectively, according to two-tailed t-tests; 

MVLLF refers to the maximum value reached by the model’s concentrated log-likelihood function; and the R2 is 

calculated by dividing the regression sum of squares (based on the autocorrelated {AR(4)} predictions) by the 

total sum of squares, i.e. it is the square of the correlation coefficient between the AR(4) predictions and the 

observed basis values. 
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Table 6. Select statistics about the 80 to 99% confidence bands for the basis occurrences under the final normal 

{FNHAR(4)} and non-normal {FNNHAR(4)} West Texas cotton basis models. 

 FNHAR(4) MODEL FNNHAR(4) MODEL 
%CI TR# #ULB #OUB ALB AUB AWCB #ULB #OUB ALB AUB AWCB 
80% 25.20 11 14 -6.483 0.697 7.180 21 27 -5.241 -0.456 4.785 
81% 23.94 11 14 -6.566 0.779 7.345 19 24 -5.290 -0.370 4.920 
82% 22.68 10 13 -6.652 0.865 7.516 19 22 -5.342 -0.278 5.064 
83% 21.42 9 11 -6.741 0.954 7.695 19 21 -5.396 -0.181 5.215 
84% 20.16 9 11 -6.835 1.048 7.883 18 20 -5.453 -0.076 5.377 
85% 18.90 9 11 -6.934 1.146 8.081 17 20 -5.512 0.035 5.547 
86% 17.64 9 11 -7.038 1.250 8.289 17 18 -5.577 0.156 5.733 
87% 16.38 9 11 -7.149 1.361 8.509 16 15 -5.645 0.287 5.932 
88% 15.12 7 8 -7.267 1.477 8.744 16 15 -5.719 0.431 6.150 
89% 13.86 7 8 -7.392 1.601 8.994 16 14 -5.799 0.589 6.389 
90% 12.60 5 7 -7.525 1.736 9.261 15 12 -5.886 0.764 6.650 
91% 11.34 3 7 -7.672 1.882 9.554 14 12 -5.981 0.960 6.941 
92% 10.08 3 7 -7.833 2.041 9.874 11 10 -6.089 1.185 7.274 
93% 8.82 3 7 -8.012 2.219 10.230 7 9 -6.210 1.446 7.656 
94% 7.56 3 5 -8.213 2.418 10.631 5 8 -6.350 1.753 8.104 
95% 6.30 3 5 -8.447 2.649 11.096 5 7 -6.518 2.132 8.649 
96% 5.04 3 4 -8.722 2.923 11.644 5 4 -6.725 2.613 9.338 
97% 3.78 2 4 -9.065 3.263 12.328 3 4 -6.997 3.274 10.271 
98% 2.52 2 1 -9.531 3.724 13.255 2 2 -7.399 4.288 11.687 
99% 1.26 1 1 -10.28 4.473 14.755 1 1 -8.143 6.291 14.434 

Sum/ 
Ave 265 119 160 -7.718 1.925 9.643 246 265 -6.064 1.242 7.306 

 
Notes: #TR refers to the number of observations that would be theoretically required to be below and above the 

boundaries of the confidence band; #ULB and #OUB are the actual numbers found under and over the lower and 

upper bounds, respectively; ALB, AUB, and AWCB stand for the average of the n=50 lower and upper bounds 

and widths of the 50 confidence intervals comprising each of the 16 bands, respectively; and Sum/Ave. refer to the 

sums (for #TR, #ULB, and #OUB) or averages (for ABL, AUB, and AWCB) across the 16 confidence bands. 
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Figure 1: 95% Confidence Bands for the Soybean Price Predictions and 
Occurrences vs. Data under the Normal Regression Model 
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Figure 2: 95% Confidence Bands for the Soybean Price Predictions and 
Occurrences vs. Data under the Non-Normal Regression Model 
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Figure 3: Monthly 1980-2001 West Texas Cotton Basis Data
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Figure 4: Estimated Probability Distributions for the West Texas 
March-to-July Cotton Basis for three Policy Periods
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Figure 5: Estimated Probability Distributions for the West Texas 
August-to-February Cotton Basis for three Policy Periods
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