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Stochastic Technology, Risk Preferences and Adoption of Site-specific Technologies

Abstract

This paper develops a model of farmer decision-making to examine the extent to which
uncertainties about the performance of site-specific technologies (SSTs) and about the weather
impact the value of these technologies. The model uses the jointly estimated risk and technology
parameters to examine the impacts of SSTs on returns and nitrogen pollution. The availability of
uncertain soil information and production uncertainty can lead risk-averse farmers to apply more
fertilizers and generate more pollution. Ignoring the impact of uncertainty and risk preferences of
farmers leads to a significant overestimation of the economic and environmental benefits of
SSTs and underestimation of the required subsidy for inducing adoption of SSTs. The model that
accounts for uncertainties about soil conditions and production as well as risk preferences of
farmers provides an explanation for the low observed adoption rates of SSTs. Improvements in
the accuracy of SSTs have the potential to increase the incentives for adoption.

Key words. spatial variability, risk preferences, joint estimation, uncertainty, technology
adoption, nitrogen runoff.



Conventional whole-field management practices apply fertilizers at a single rate
uniformly across an entire field. These practices can lead to over-application of fertilizers on
some parts of the field and under-application on other parts of the field because soil conditions
tend to vary within the field. This can result in lower crop yields than potentialy possible in
under-supplied areas of the field and wasted inputs and nutrient runoff from the over-supplied
areas of the field. Growing concerns about water quality degradation caused by nutrient runoff
from fields have led to an interest in finding improved nutrient management techniques that
farmers would be willing to adopt voluntarily (or be induced to adopt through cost-share
subsidies). Site-specific technologies (SSTs) have generated interest as an improved
management technique with the potential to provide both environmental benefits and economic
benefits to farmers. SSTs gather detailed information about the soil conditions at a sub-field
level, such as nutrient content and potential yields, and utilize that to precisely determine
fertilizer application rates that vary across the field to match the spatial variability in the soil
conditions. SSTs include grid-based soil sampling, yield monitors that provide yield maps for the
field and computerized variable rate fertilizer spreaders.

Severa studies have shown the potential for SSTs to reduce input use, increase crop
yields and reduce residues of polluting inputs in soils relative to conventional management
practices (Thrikawala et a.; Khanna, 1sik and Winter-Nelson). Many studies have also evaluated
the profitability of SSTs for corn production (see surveys by Lambert and Lowenberg-DeBoer;
Swinton and Lowenberg-DeBoer). These studies show that the profitability of SSTs depends on
the extent of spatial variability of the soil conditions (Babcock and Pautsch; Schnitkey, Hopkins,
and Tweseten; Khanna, 1sk and Winter-Nelson), the size of the field (Thrikawala et al.), the

extent of rainfall (English, Mahajanashetti, and Roberts; Fixen and Reetz) and uncertainty about



output prices (Khanna, Isik and Winter-Nelson). These results are based on the assumption that
adoption of SSTs leads to complete certainty about soil conditions and fertilizer needs of the soil.
They also assume that yields are deterministic and farmers are risk-neutral.

However, there continues to be considerable uncertainty about the capability of SSTs to
accurately measure nutrient content of soils and yields. Yield monitor and soil testing
measurements are often subject to technical difficulties and errors, which can lead to errors in
maps of potential yield and soil nutrient content of the field (Searcy et al.; Lowenberg-DeBoer
and Hallman; Babcock, Carriquiry and Stern). Farmers also face other sources of uncertainty
such as production (yield) uncertainty due to weather that has been shown to influence input
application decisions by risk-neutral farmers (Babcock; Babcock and Shogren; Just and Pope)
and risk-averse farmers (Ramaswami; Pope and Kramer; 1sik). Annual variations in rainfall and
temperature can lead to variations in yield of 20% above or below the potential for the same field
(Bullock and Bullock) and the impact of the westher varies across different parts of the field.
Uncertainty about production and soil conditions may offset the gains achieved from more
precise application of inputs and thus the benefits of SSTs. These uncertainties are likely to
increase the variability of returns with SSTs more than those with conventional practices that are
based on average conditions in the field. This could reduce incentives for switching to SSTs by
risk-averse farmers.

The purpose of this paper is to develop a framework of farmer decison-making to
analyze the impacts of risk preferences and uncertainties about weather and soil conditions on
adoption of SSTs. The paper also analyzes the implications of adoption of SSTs for the potential
they offer for reducing nitrogen pollution under uncertainty and risk aversion. To the extent that

uncertainty and risk-aversion create disincentives for adoption of SSTs and for reducing nitrogen



use, adoption of SSTs may be induced by providing subsidies, through programs such as the
Environmental Quality Incentives Program. This paper examines the implications of uncertainty
and risk-aversion for the design of cost-share subsidies to induce adoption of SSTs. We
implement this framework by first estimating the stochastic technology and risk preference
parameters jointly, using survey data from farmers in OtterLake Watershed in Illinois. These risk
and technology parameters are then incorporated into a micro-level utility maximization model
to simulate the impacts of risk aversion and uncertainty on adoption decisions and to analyze
their implications for the cost-share subsidies needed to induce adoption.

There is a large theoretical literature showing that risk aversion, in the presence of
various types of uncertainties, can influence input use (Ramaswami; Pope and Kramer; Leathers
and Quiggin; Karagiannis, 1sik) and technology adoption decisions (Feder; Robison and Barry;
Just and Zilberman). These studies have used whole-field analysis, assuming that there is no
variability in nutrient content and soil quality within the field. The empirical literature analyzing
the impact of uncertainty and risk aversion on production decisions has also been based on
whole-field analysis only and has either estimated stochastic production functions without
estimating utility function parameters and used those in a smulation to examine the impact of
risk on input use (Dai, Fletcher, and Lee; Lambert) or estimated the coefficients of risk aversion
(Bar-shira, Just and Zilberman). Joint estimation of stochastic technology and risk preferences
has been done by a few studies only (Love and Buccola; Saha, Shumway and Talpaz;, Saha;
Bontems and Thomas) and is preferred because it leads to gains in efficiency of estimation of
risk and technology parameters. Most of these studies have however, imposed restrictive
assumptions on the utility function. Love and Buccola used an exponential utility function that

imposes constant absolute risk aversion. Bontems and Thomas used a power utility function that



imposes constant relative risk aversion. Saha, Shumway and Talpaz proposed the use of a more
flexible utility function that does not restrict risk preferences. Although this method does not
impose any restriction on producers’ risk preference, it is difficult to obtain tractable results with
a larger input set or more flexible functional forms since it requires numerical integration over
the production error term (Saha). We, therefore, use the nonlinear mean standard deviation utility
function, proposed by Saha, which does not put any restriction on risk preferences and does not
require numerical integration while jointly estimating the risk and technology parameters. With
the exception of Bontems and Thomas, none of these studies have used these jointly estimated
parameters in a simulation model to examine their implications for input use and/or technology
adoption decisions. Bontems and Thomas consider a model of sequential nitrogen application
under risk to compute the value of information about nitrogen availability in the soil and risk
premium in corn production assuming constant relative risk aversion. In this paper, we estimate
the risk preferences and technology parameters without imposing restrictive assumptions on the
utility function. We also analyze the extent to which the impact of risk aversion and uncertainty
varies across heterogeneous farmers.

While SSTs are making it possible for farmers to do variable rate input applications
within the field, the gains in expected profits due to adoption of SSTs depend on spatial
variability of the soil conditions within the field as well as uncertainties about the performance of
the technology and about weather. This paper shows how spatial variability in the field can
mitigate the extent to which risk aversion and uncertainty can influence adoption of SSTs.
Ignoring the impact of uncertainty and risk preferences of farmers could lead to overestimation
of economic and environmental benefits of SSTs and underestimation of the required subsidies

to induce adoption of SSTs.



Theoretical M odél

Consider a farmer with a fixed land holding A. Suppose that the land can be divided into

M homogeneous sites of size A such that %A =A. The farmer has a choice of two

technologies, conventional practices and SSTs, represented by superscripts C and S respectively.

The constant returns to scale production function is represented by y, = f(x,z) +u., where x
is the applied input per acre, z isthe level of soil attribute (nutrient content) per acre at sitei, 'y,
is yield per acre, and u, is a random error term with mean zero and Var (u,) =exp(pBx). This
variance specification, introduced by Harvey and used by Asche and Tveteras, ensures positive
output variance that is a function of the fertilizers applied. It represents the effect of uncertainty
due to the weather, which affects production using both conventional practices and SSTs. An
input is said to be risk increasing (decreasing) if 8 > (<)0 under uncertainty about weather. It is
assumed that f, >0, f,>0,and f,, <0.Thesignof f,, can be negative or positive depending
on whether the applied input and the soil attribute are substitutes or complements. If z represents
soil fertility, such as soil nitrate level, it is a substitute for applied nitrogen and f,, is negative
because an increase in soil nutrient level results in a decrease in the marginal product of input X.
On the other hand, if z represents organic matter in the soil (which determines the quality of the
soil and its potential crop yields), f,, could be positive, since higher quality soils allow plants to
use nitrogen more effectively and increase the marginal product of nitrogen. It is assumed that z
varies within the field with mean z and variance &2. The input price w and output price P are
assumed that known with certainty.

With conventional practices, the farmer lacks information about the distribution of the

soil attribute within the field and uses a representative sample of soil tests to estimate the average



soil attribute level in the field. The farmer then chooses a single rate of input application per

acre, x°, for the whole field given the average soil attribute level. This approach to determining
the input application rate is also referred to as the averaging approach (Khanna, 1sik and Winter-

Nelson; Babcock and Pautch). In the presence of uncertainty about the average soil attribute

level, the farmer considers the production function to be represented by y, = f(x,z,ze%) +u,,

where €€ is arandom variable with mean zero and variance (af )2 :

Adoption of SSTs imposes a fixed cost of K to undertake detailed soil testing and
investment in variable rate technologies. This enables the application of the input at a varying
rate, x;, at each site in the field given the measured level of the soil attribute at that site. However,
even adoption of SSTs cannot provide complete and accurate information about soil conditions.
With SSTs the production function is represented by: y, = f(x,z,z€°%) +u,, where €° is a

S
£

random variable with mean zero and variance (0 )2 that varies proportionally with the level of

the soil attribute. The first-order approximation of this function is y =f(x,z)+
f (x,z)z&® +u , which is similar to the Just-Pope production function, y = f(x,2z) + h(x)u. In
the case of the Just-Pope specification, the risk increasing (decreasing) effect of an input is
represented by h, > (<)0 and represents the effect of production uncertainty. In this paper, the

risk increasing (decreasing) effect of an input under uncertainty about soil conditions is
represented by f, > (<)0 and depends on whether x and z are substitutes or complements.
Decision Problem under Uncertainty

We model the farmer’s decision to adopt SSTs using a procedure proposed by Meyer.

The decision criterion, U (71,0) assumes that an agent’s optimal choice is made by ranking



aternatives through a preference function defined over the first-two moments of the random

payoff, mean 17 and standard deviation o with U, >0 and U, <0. The farmer maximizes:
m?xU(nCH(nS—nC—K),JC+I(as—ac)) (1)

where | is the technology choice (1 for adoption of SSTs, O for non-adoption);

n° :%A(Pf(xc,i)—vwc);ﬂs :%A(F’f(xi,zi)-wi):

2

0 = AP(exp(Bx°) + (071, ,2))?)*; and 0° = PQ%A (exp(Bx) + (052 1.(2, % ))Z)Ef .
The utility-maximizing adoption decision is obtained by finding the utility-maximizing

levels of input use with adoption of SSTs and with conventional practices and then comparing

the maximized expected utility with each technology. Assuming an internal solution, x© >0 and
x. >0, the uniform input application under conventional practices is determined such that
U, (07°/ax®)+U, (90°/ax° ) =0, leading to:

Pf,(x°,2) -w—- R(11°,0°)/0° P2(B/2exp(BxC) + (20 C)? £,(x°,2) F,(x°,2))=0  (2)
where subscripts denote partial derivatives, and R(1°,0°)=-U_ /U, >0 since U, <0
represents the risk attitude. Under SST's, the first-order condition of the maximization problem is
used to obtain the input levels at a point in the field as:

PFL(%.2) ~w=R(T%,0%)/0° P?(B/2exp(Bx) + (052)* 1,(2. %) (2.%))=0. (3

The impact of uncertainty and risk aversion on input use arises from the existence of a
margina risk premium, which is the wedge between the input cost and the expected margina
product at the optimal input use (Ramaswami; Pope and Kramer). A risk-averse farmer uses
more (less) of an input having a negative (positive) marginal risk premium. The marginal risk

premium under SSTs could be greater than that under conventional practices depending on the



variability of returns and the magnitude of risk aversion parameters. Even if there were no soil
uncertainty, the impact of uncertainty and risk aversion on input use could differ with
conventional practices and SSTs because of differences in the magnitude of risk aversion and in
the marginal product of x at each site relative to that under average soil conditions.

We now examine the impact of soil uncertainty on input use in the field with adoption of

SST's and conventional practices by totally differentiating (2) and (3) to obtain:

dx°®
C
&

dd(;(‘s = %R(HS,JS)PZi f_ and

:B_lcR(nC,JC)PZfXZ (4)

where B <0 isthe second-order condition. Equation (4) is negative (positive) if the input is risk
increasing (decreasing) represented by f,, >(<)0. Thus, an increase in the degree of uncertainty

about soil conditions increases (decreases) the use of a risk-decreasing (risk-increasing) input
with both conventional and site-specific practices.
Field-Level Impact of Adoption of SSTs on Input Use and Quasi-rents

The first-order conditions in (2) and (3) are used to determine the impact of adoption of
SSTs on input use and quasi-rents. To obtain the difference in input use between SSTs and

conventional practices, we assume for simplicity that there is no production uncertainty and

equate the first-order conditions': f,(x,,z)-R%0,zf,(z,x)= f (x°,z2°)-R°a’# ,(x°,2).

Define the elasticity of marginal product with respect to z as DMF% and
X Xi’Zi

c It (x%,2) . , - i :

O :W. Under uncertainty about soil conditions, these elasticities are negative

(positive) when the input is risk decreasing (increasing) represented by f, <(>)0. Use [J,;, and

! In the empirical application of the model however, we consider the case where production uncertainty is present
both by itself and together with uncertainty about soil conditions.



0° to obtan f(x ,;)(1—@5): fx(xc,z)(l—qoc), where  @°*=R%°0,<1 and
¢° =R®0; 0°<1. By using a first-order Taylor series expansion around z and x° we obtain

the difference in input use at sitei as:

f(p°-¢%) f (z-2) 1, _.,d?x
_C [T —_x J—— - R 5
T f (1-@°) f 2(Z 2 dz’ ®)

where the derivatives of the production function are evaluated at z and x°; and d?x/dz® isthe

2
[
total second derivative of x with respect to z given by 3 > = %fxzfxZZ o 0
Z4 [ [

This is consistent with the results obtained by Katz, and by Hennessy and Babcock. The sign of
d?x/dz* depends on the signs of third own- and cross derivatives of the production function and

could be positive or negative. Aggregating (5) over al the sites in the field, the per-acre

difference in the input use between SSTs and conventional practicesis:

- _x (@ ~¢)
s g Al ot AT e ¢ ?

The change in input use with adoption depends on the second and third own and cross
derivatives of the production function as well as on the degree of risk aversion and magnitude of
uncertainty about soil conditions with conventional practices and SSTs. Its magnitude also

depends on the gpatial variability in z across the field. The first term in (6) could be positive or
negative depending on the sign of d?x/dz® . The second term is negative (positive) if ¢° > ¢°
(@° <¢°) for al i. Under certainty and risk-neutrality (R =0), the difference in the mean input

useis given by Ax = %02 3 X | If all the third derivatives of the production function are equal to
ra

zero, d’x/dz? =0. In that case, adoption of SSTs does not affect the mean input use, i.e.,

10



Ax =0, as shown by Hennessy and Babcock. However, with risk aversion and uncertainty about
soil conditions, adoption of SSTs affects the mean input use even when the third derivatives of

the production function are zero. In this case, the difference in mean input use is

s _ . C
AXx = 1 Z A f.(@ (‘DS ) The difference in the mean input use could be positive or negative
Al fxx (1_ q0| )

depending on the values of R®%,0°,00,,,R%,0°, and C°. Note that even with g° <ag’, Ax
could be positive or negative. This is because R® could be greater than R®and 0°>0,, for
some i, and 0°<0,, for others. An increase in ¢ leads to a decrease (increase) in Ax if the

input is risk decreasing (increasing). On the other hand, an increase in o increases (decreases)
Ax if theinput isrisk decreasing (increasing).
When there is no uncertainty about soil conditions with adoption of SSTs (@° =0),

Ax=-f @°/f, , indicating that adoption of SSTs reduces (increases) the use of a risk
decreasing (increasing) input. However, under risk aversion and uncertainty about soil conditions
with SSTs, adoption of SSTs could lead to an increase or decrease in the mean input use even
with zero third derivatives of the production function, unlike the case obtained under certainty
about SSTs and risk-neutrality by Hennessy and Babcock.

The quasi-rent difference between SSTs and conventional practices is obtained by: (a)
taking a second-order Taylor series expansion of the production function around z and x©, (b)

plugging (6) into this approximation, and (c) aggregating over all sites. The per-acre difference

in the quasi-rents between SSTs and conventional practices is then estimated as:

_-PHL v () < HE —¢%)7 +2(¢° -(/JC)(/JC(l—(p.S)%l
Amr=——1[d fxz - Aﬂ 2 (7)
21w B ) A % H L-o°)

11



When there is no uncertainty about soil conditions with adoption of SSTs (@° =0), the per-acre
quasi-rent differential is An——[d (qo ) ]>0 which is greater than (7). Thus,

Adoption of SSTs always leads to an increase in the quasi-rent differential under certainty about
soil conditions with SSTs. An increase in the degree of uncertainty about soil conditions with

conventional practices (¢°) increases the quasi-rent differential. Note that when there is no

2

-p5(f,)

uncertainty about soil conditions A= T

. The quasi-rent differential increases with

XX
an increase in the variability of the soil attribute within the field, an increase in output price, and
an increase in the concavity of the production function.

Ceteris paribus, an increase in risk aversion and/or degree of uncertainty about soil
conditions with SSTs increases the value of ¢° in (7), thereby decreasing the quasi-rent
differential. This impact, however, varies with the nature of input and value of the elasticity of
margina product. Risk aversion and uncertainty about soil conditions have a greater impact on
the quasi-rent differential if the input is risk increasing, i.e., f., > 0. The higher the elasticity of
marginal product, [, , the higher is the absolute value of (@°), and therefore the higher the

impact of risk aversion and uncertainty on the quasi-rent differential.

Adoption Decision and Cost-share Subsidy
Using the utility-maximizing input rates, the farmer adopts SSTs if U((nS -K), as)>
u (nc , ac). Otherwise, the farmer would continue to use conventional practices. The incentives

to adopt SST's are a positive monotonic transformation of the increase in the expected utility with
adoption. Expected utility increases with an increase in the returns from adoption and a decrease

in the cost of adoption. As shown above, the returns from adoption of SSTs, in turn, increase

12



with an increase in the variability of soil attribute within the field. Incentives to adopt decrease as
the variability of returns with SSTs increase, which occurs with an increase in the degree of
uncertainty about soil conditions. These results indicate that an improvement in the accuracy of
SSTs has the potential to increase the incentives for adoption of SSTs, particularly by risk averse
farmers.

A cost-share subsidy may be used to induce adoption of SSTs when it is not otherwise
profitable to adopt. When there is no uncertainty about soil conditions with risk neutrality, the
required cost-share subsidy to induce adoption of SSTs is the difference between the cost of

P52 (f,,f

XX

investment and the returns when the former is greater than the latter, i.e., K + . Thus,

the incentive payment a farmer needs to induce adoption of the technology depends on field-
specific factors such as spatia variability and the characteristics of the production function and
economic variables such as output price.

The required subsidy to induce adoption of SSTs under uncertainty about soil conditions
and risk aversion is given by: K -Am+U ‘1[U ((ns - K, as)] -U ‘1[U (nc, ac)]. Thus, the
required subsidy depends on the magnitude of uncertainty about soil conditions and risk aversion
(utility function parameters), and the distribution of soil characteristics within the field. The
magnitude of the impact of uncertainty and risk aversion on the returns with adoption of SSTs,
adoption decision and required cost-share subsidies to induce adoption of SSTs is an empirical
question and we examine that by developing an empirical model applied using data for Illinois.
Empirical Method

To operationalize the framework developed above, we assume the following flexible

utility function proposed by Saha:

13



U(mo)=mn’-ag’ (8)
where 17 and o are defined above; and 8 >0 and y are parameters. This function, also called a
nonlinear mean standard deviation utility function, provides flexibility in representing alternative
risk preferences (Meyer). With this utility function, the risk attitude measure is given by the
marginal utility ratio of the utility function, R(rt,0) = (y/0)m°a¥™. Risk aversion, neutrdlity,
and affinity correspond to 8 >0, 8 =0, and 6 <0, respectively. In the case of risk aversion, the
magnitude of R(71,0) represents the degree of risk aversion. Decreasing absolute risk aversion,
constant absolute risk aversion, and increasing absolute risk aversion are represented by 6 >0,
6 =1, and 6 <1 while decreasing relative risk aversion, constant relative risk aversion, and
increasing relative risk aversion are represented by 6 >y, 6 =y, and 0 <y, respectively. The
widely used linear mean-standard deviation model is a refutable special case of the MSD
function, wherein y=1and 6 =1.

The farmer observes past realization of the random returns to form a perception about the
mean and standard deviation of the return distribution. Prior to the availability of SSTs all
farmers use conventional practices and choose input use by maximizing (8) to find input
application rates as:

Pf, (x°,2) —W=(y/9)n‘1‘90yP2(/3/2exp([3xC) +(z07)? fz(xc,z)fxz(xc,z)). 9)
If the farmer isrisk neutrdl, i.e., y =0, the right-hand side of (9) is zero and the above first-order
condition simply equates the expected marginal product to the input price.

To solve the model numerically we need to estimate the utility function and production
function parameters. We obtain these parameters econometrically by specifying a production

function y= f(x,z,a) +u, where Var(u) =exp(x) as assumed in our theoretical model above

14



with a and [ representing vectors of technology parameters. We obtain the first-order
conditions in (9) for three inputs, nitrogen, phosphorus and potassium, which are then estimated
jointly with the production function. The implicit estimation form of (9) is obtained by taking

logarithms as:

In[(P 1, (x,.z;;a) - w, )/ (B/2exp(Bx,) + (z,0E)* £,(x,.2;;a) . (x,,2,:0))] = In(y/6)

(10)
=2InP, =(1-6)Inm; ~yIno, +w, =0

where the subscript j corresponds to the jth observation; cw, denotes the error in optimization; and
(05)? :Q/ar(yj)—exp(ﬁxj))/(zjfz(xj,zj;a))z. The expression for g° is derived from the

variance of y (y=f(x°,z)+ f,(x°,2)ze€ +u). For efficiency gains, the system of three
equations defined by (10) can be estimated together with the production function while
recognizing the potential for correlated errors across the set of four equations.

To determine the technology structure severa specifications of the Just-Pope function
were estimated. These include the trandog, Cobb-Douglas, and quadratic production functions.
To keep our empirical model consistent with the theoretical framework above, we restricted the
choice of specification to functions with a non-zero second derivative for all levels of input-use.
Thus, linear-plateau and quadratic plateau functions were not used. Using Pollack and Wales
likelihood dominance criterion for testing non-nested hypothesis and Akaike's information
criterion of model selection, the quadratic function was found to dominate the transog and
Cobb-Douglas functions. Since the estimation procedure described above yields a nonlinear
system of equations, convergence to a final set of estimates is difficult. Success in convergence
and log likelihood dominance were key criteria in selection of the production technology. Using

Pollack and Wales likelihood dominance criterion for testing non-nested hypothesis and

15



Akaike's information criterion of model selection, the quadratic function was found to dominate
the transdog and Cobb-Douglas functions.
The following quadratic production function specification for three inputs; nitrogen (N),
phosphorous (H) and potassium (K), and soil attribute, average potential yield, (Z) was chosen:
y=a,N+a, N*+a,H+a,,H* +a,K+a, K*+a,Z +a,,Z° +a,ZN+u  (11)
where Var (u) = exp(B, + ByN + B, H + B, K). In many areas, such as lllinois, soil nitrate tests

have not been found to be successful in accurately measuring and predicting the available
nitrogen in the soil. Recommendations for nitrogen application are instead based on the soil
types in the field that determines its average maximum potential yield (Illinois Agronomy
Handbook; Khanna, Isik and Winter-Nelson). We therefore include this average potential yield
as an explanatory variable in the production function. We aso examined the validity of including
interaction terms between each type of fertilizer and average potential yield of the field. Only the
interaction term between nitrogen and average potential yield was found to be significant; hence
the other interaction terms were not included in the regression equation. The estimation of three
first-order conditions obtained in (10) jointly with (11) provides efficient estimates of utility and
production function parameters, with correlated errors and cross equation restrictions imposed
during estimation.
The Data Set

The data set used to estimate the risk and technology parameters is obtained from a
survey of farmers in the OtterLake watershed in Macoupin County, Illinois. All the farmers in
the watershed, that includes about 7,370 acres of cropland, were contacted to obtain information
about their field boundaries and about their yield and input application decisions at the field level

for two years, 1993 and 1994. A 60% response rate limited our sample to 99 fields (covering
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3,799 acres). All the fields were being cultivated using conventional practices. The survey
provides data on the use of nitrogen, phosphorous and potassium, crop yields, average potential
yields, average dlope, topsoil thickness, and total soil thickness of each field. The spatial
distribution of potential yields within each of the field boundaries was obtained using digitized
soil maps. Each soil type has an associated estimate of corn yield potential (Olson and Lang).
These maps provide distributions of soil quality represented by the potential crop yields. The
summary statistics of the variables used in the estimation are given in Table 1.
Estimation Results

The nonlinear three-stage least squares procedure was used to jointly estimate (10) and
(11), with the observations related to physical soil characteristics, total soil thickness, surface soil
thickness and slope, being the exogenous variables (instruments) in the system. Initial values of
the parameters in the system are crucial for obtaining convergence with a non-linear system of
equations. These initia values of the production function are obtained using maximum
likelihood estimation methods that provide a set of consistent estimates. The results from the
joint estimation provide technology (a, ) and risk preference parameters (6,y). Most of the
parameters of the mean and variance part of the production function are significant at 1% level
(Table 2). The signs of the parameters in the term determining the variance of yield show how
nitrogen, phosphorous, and potassium affect the variability of output.

The negative signs on the coefficients 3, and (,, show that nitrogen and phosphorous
are risk-decreasing inputs, while potassium is a risk-increasing input ( 3, >0) under production
uncertainty. Therefore, an increase in the use of nitrogen and phosphorous leads to a decrease in

the variability of output while an increase in potassum use results in an increase in the

variability of output. This is different from risk increasing/decreasing effect of an input with
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respect to uncertainty about soil conditions. In the literature, the empirical evidence with respect
to risk-fertilizer relationship (under production uncertainty) is mixed. For example, Lambert
found nitrogen to be risk decreasing with respect to production uncertainty while Nelson and
Preckel and Love and Buccola found nitrogen to be risk increasing. Love and Buccola found
phosphorous to be risk reducing while Nelson and Preckel found it to be risk increasing. On the
other hand, potassium has been found to be risk increasing (Nelson and Preckel; Love and
Buccola). The results from this study are similar to those of Lambert for nitrogen, Love and
Buccola for phosphorous, and Nelson and Preckel and Love and Buccola for potassium. The
implication of the results from this study is that a risk-averse farmer tends to increase the
application of nitrogen and phosphorous while he tends to decrease the application of potassium
under production uncertainty. The coefficient of the interaction term, a,, given in Table 2 is
negative and statistically significant, indicating that soil quality represented by potentia yield
and applied nitrogen are substitutes each other. Since a,, <0, nitrogen is considered to be a
risk-decreasing input under uncertainty about soil conditions when SSTs are adopted.

The risk-preference parameters given in Table 2, 6 and y, are found to be significantly
greater than zero and equal to 1.13 and 1.64 respectively, rejecting the null hypothesis of risk-
neutrality. Risk-neutrality would obtain as a special case if the parameter 6 approaches one and
y approaches zero. The measure of risk aversion evaluated at the sample means is equal to 1.48
and shows that the degree of risk aversion does differ among farmers as shown in Table 2. The
estimated risk-preference parameters are close to those found by Saha. To analyze the nature of
risk aversion, several hypothesis tests are employed. First, the most commonly used linear mean

standard deviation hypothesis, H,:68 =y =1, is tested. The null hypothesis of linear mean

standard deviation is rejected in favor of presence of nonlinear mean standard deviation. We also
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test whether farmers exhibit constant absolute risk aversion, H,:8 =1. The null hypothesis of
constant absolute risk aversion is rejected. Another hypothesis tested is whether the farmers’ risk
preference is represented by constant relative risk aversion, i.e., H, :0 =y . The null hypothesis
of constant relative risk aversion is also rejected. This implies that farmers in the OtterLake
watershed exhibit decreasing absolute risk aversion and increasing relative risk aversion since
6 >1 and 6 <y . These findings are supported in the literature by a number of studies (Wolf and
Pohlman; Saha, Shumway and Talpaz; Saha; Bar-Shira, Just and Zilberman). For example,
decreasing absolute risk aversion and increasing relative risk aversion were also found by Saha,
Shumway and Talpaz, and Saha for risk preferences of Kansas wheat producers and Bar-Shira,
Just and Zilberman for risk preferences of Isragli farmers.
Economic and Environmental I mpacts of SSTsunder Uncertainty

The risk and technology parameters obtained above are used to examine the potential
incentives for adoption of SSTs and its implications for fertilizer use by developing a smulation
model. As shown in the theoretical model, the potentia incentives for adoption of SSTs depend

upon the uncertainty about soil conditions. The standard deviation of the random variable related

to the uncertainty about soil conditions with conventional practices (o) is estimated using
(05)? =(Var(y) - exp(Bx))/(zf ,(x°,2))* for each field. The vaue of o varies across the

fields and is equal to 0.199 at the sample mean. The noise in the soil characteristics (£°) with

adoption of SSTs is assumed to vary with the level of potential yield (z&®). The standard
deviation of this random variable (o) is assumed to be 0.1. This value implies that standard

deviation of the level of the soil attribute is equal to 0.1z, indicating that the level of potential

yield could be 10% more or less than the measured level due to the measurement errors. For
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instance, for a section of the field with a true potential yield of 130 bushels/acre (that is unknown
to the farmer), the farmer would consider it to lie, with a 68.3% probability, between 117 and
143 bushels/acre (which represent one-standard deviation levels on either side of the true level).

Because there is no information about distribution of soil fertility level (phosphorous and
potassium) in the fields examined here, two dternative distributions of phosphorous and
potassium (25% and 50% coefficients of variation) are generated using a Beta distribution as in
Khanna, 1sk, and Winter-Nelson. This study does not consider the possibility of measuring
residual nitrogen in the soils (lllinois Agronomy Handbook; Khanna, Isik, and Winter-Nelson).
However, nitrogen application rates vary with variations in the potential yields across the fields.

We examine the environmental implications of SSTs in terms of reducing nitrogen
pollution. It is assumed that 0.75 Ibs. of the applied nitrogen are absorbed by a bushel of corn
and corn stover and that all excess nitrogen in the soil is available for leaching (Barry, Goorahoo
and Goss; Khanna, 1sk and Winter-Nelson). Thus, polluting run-off of the applied nitrogen per
acreisgivenby r = N-0.75y.

We assume that the farmer hires professional custom services for variable rate fertilizer
applications. The per-acre cost of soil testing and mapping is assumed to be $1.6 while the
annual cost of variable rate fertilizer application is $5.0 per acre (lllini FS). Thus, the per-acre
annual cost of adopting SSTs is $6.6. This value is within the range of $3/acre and $10/acre that
is typicaly cited for the cost of SSTs (Swinton and Lowenberg-DeBoer). Prices of nitrogen,
phosphorus and potassium are assumed to be $0.2/Ib, $0.24/Ib and $0.13/Ib, respectively while
price of corn is set to $2.5 per bushel (as in Khanna, 1sk and Winter-Nelson; Pautsch, Babcock,

and Breidt).
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Quasi-rent Differentials under Risk-neutrality

The empirical model first examines the farm-level impacts of adoption of SSTs under
risk-neutrality for the 99 fields with 25% coefficient of variations in the soil fertility
distributions. In this simulation, adoption of SSTs is assumed to completely eliminate uncertainty
about soil conditions, while conventional practices do involve uncertainty about soil conditions.
Quasi-rents (revenue minus variable fertilizer costs) with conventional practices and SSTs are
estimated by maximizing expected profits to find the optimal fertilizer applications. Table 3
presents the per-acre quasi-rent differentials of SSTs over conventional practices. The per-acre
quasi-rent differentials with 25% coefficient of variations in the soil fertility distributions range
between $3.1 and $18.2 across the fields examined here and the average quasi-rent differentia is
$10.0 per acre?. Comparing the expected quasi-rent differentials to the per-acre costs of adoption
($6.4) indicates that it would be optimal to adopt SSTs on 85.8% of the fields considered here
under certainty about soil conditions with SSTs and risk-neutrality.

To examine the magnitude of the effect of the parameters of the distribution of potential
yields on per-acre quas-rent differentials of SSTs, Am, as shown by (7) we estimate the
following regression for these 99 fields:

AT=6.168-0.04Z +0.2465 +w  R*=0.76 (12)

(5.05) (0.01)* (0.03)*
where J isthe standard deviation of the potentia yield distributions; standard errors are given in
parenthesis; and * indicates that the estimated coefficient is significant at 1% level. It shows that

fields with higher variability in soil quality distributions and a lower average level have higher

2 We also examined the impacts of an increase in the variability of soil fertility distribution on the quasi-rent
differentials. An increase in the coefficient of variation from 25% to 50% leads to an increase in the per-acre quasi-
rent differentials from $10 per acre to $12.3 per acre. Throughout the rest of the paper, we report results obtained
with 25% coefficient of variation, which is reasonable because soil samples collected in the fields of the two Illinois
farmsindicate that coefficient of variations of soil fertility distributions range between 22% and 45% (Ochai et a.)
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quasi-rent differentials than others. Fields with lower average potentia yield are likely to gain
more from adopting SSTs. This could be because fields with lower quality soils and a lower
average potential yield also have greater variability in soil types as observed by Babcock and
Pautsch for fieldsin lowa.

We now incorporate uncertainty about soil conditions with SSTs into the model with
risk-neutrality. Under uncertainty about soil conditions with both SSTs and conventional
practices and risk-neutrality, the quasi-rents of conventional practices and SSTs are estimated by
maximizing expected profits. The per-acre quasi-rent differentials now vary between $2.7 and
$15.3 across the fields. Comparing the quasi-rent differentials under certainty to those under
uncertainty about soil conditions with SSTs we find that incorporation of uncertainty into the
model leads to a reduction in the quasi-rent differentials. The average quasi-rent differential
decreases from $10.0 per acre under certainty about SSTs and risk-neutrality to $8.5 per acre
under uncertainty about soil conditions with SSTs and risk-neutrality. This occurs because
uncertainty about soil conditions leads to an increase in the use of al fertilizers considered here,
which increases the input costs and therefore reduces the quasi-rent differentias. In this case,

77.7% of the fields would find it to be profitable to adopt SSTs. We aso examined the impact of
an increase in oS on the value of SSTs. An increase in ¢ from 0.1 to 0.15 decreases the

average quasi-rent differentials from $8.5 per acre to $6.7 per acre.
Quasi-rent Differentials under Uncertainty and Risk-Aversion

We first examine the impacts of SSTs on the quasi-rent differentials under risk aversion
with production uncertainty and uncertainty about soil conditions with conventional practices.
We assume that there is certainty about soil conditions with SSTs. We find in this case that per-

acre quasi-rent differentials range from $1.7 to $10.8 across the fields examined here (Table 3).
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The average quasi-rent differential decreased from $10.0 per acre under certainty and risk-
neutrality to $6.5 per acre under production uncertainty and risk aversion. Risk aversion and
production uncertainty result in a decrease in the quasi-rent differentials of all the fields since the
applications of nitrogen and phosphorous increase while the application of potassium decreases.
This increases fertilizer costs more than the revenue gains from increases in crop yields. Under
production uncertainty and risk aversion, only 41.4% of the fields would switch from
conventional practicesto SSTs.

We now add uncertainty about soil conditions with SSTs to the model and present the
results in Table 3. Uncertainty about soil conditions along with production uncertainty cause
risk-averse farmers to increase the use of nitrogen and phosphorous and decrease the use of
potassum. The average quasi-rent differential decreased from $10.0 per acre under certainty
about soil conditions with SSTs to $5.0 per acre under uncertainty about production and soil
conditions. The addition of uncertainty about soil conditions with SSTs to the model leads to
further reductions in the quasi-rent differentials. Comparison of the expected utility with SSTs to
that with conventional practices indicates that it would be optimal to adopt SSTs on only 15.2%
of the fields considered here. Thus, risk aversion and uncertainties about soil conditions and
production result in a substantial decrease in the quasi-rent differentials and adoption rates of
SSTs. This implies that ignoring uncertainty about soil conditions with SSTs and production
would lead to overestimation of the quasi-rent differentials and adoption rates of SSTs.
Environmental Implications of SSTs under Uncertainty

We now examine the impact of adoption of SSTs on nitrogen pollution generation. Under
risk-neutrality and complete certainty about soil conditions with SSTs, adoption of SSTs leads to

a reduction in the nitrogen pollution generation compared to the level with conventional
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application practices on all fields. Pollution reduction with adoption of SSTs as compared to
conventional practices ranges between 1.1% and 42.3% across the fields (Table 4). Under
uncertainty about soil conditions and risk-neutrality, pollution reduction with adoption of SSTs
ranges between 0.8% and 40.9% across the fields. Average per acre pollution reductions with
adoption of SSTs decreases from 19.8% under certainty about soil conditions with SSTs to
16.3% under uncertainty about soil conditions. Under production uncertainty and risk aversion,
pollution reduction decreases substantially compared to the case of certainty and risk-neutrality.
Adoption of SSTs now reduces nitrogen pollution between 0.5% and 24.7% across the fields.
Average reduction in nitrogen pollution with adoption of SSTs decreases from 19.8% under
certainty about soil conditions with SSTs to 12.5% under production uncertainty and risk
aversion. This occurs because adoption of SSTs leads to an increase in the application of
nitrogen and phosphorous while it leads to a decrease in potassium use. These changes in
fertilizer use do not lead to a significant increase in crop yields and therefore in input uptake by
crops to offset the increases in the nitrogen use. Hence, nitrogen pollution with adoption of SSTs
increases substantialy relative to the case with no uncertainty. However, it is still lower than that
with conventional practices on most of the fields.

Pollution reduction under uncertainty about production and soil conditions is much lower
than in the case of certainty about soil conditions with SSTs and risk-neutrality and on a few
fields pollution increases with adoption of SSTs (Table 4). This occurs because uncertainty about
soil conditions results in an increase in the nitrogen application while crop yields obtained do not
increase as much to offset the increase in the application of nitrogen due to changes in other
inputs. Therefore, adoption of SSTs could lead to an increase in the nitrogen pollution under

uncertainty about soil conditions and risk aversion. Average reduction in nitrogen pollution with
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adoption of SSTs decreases from 19.8% under certainty about soil conditions with SSTs and
risk-neutrality to 8.3% under both production and soil conditions uncertainty with risk aversion.
Hence, ignoring uncertainty about soil conditions and production would lead to overestimation
of nitrogen pollution reduction with SSTs.
Cost-share Subsidies Under Uncertainty and Risk Aversion

Table 4 also presents the cost-share subsidy required to induce adoption of SSTs. The
required subsidies to induce adoption of SSTs vary across heterogeneous fields as shown above.
Under risk-neutrality and no uncertainty about soil conditions with SSTs, the quasi-rent
differentials of most of the fields examined here exceed the per-acre cost of adoption; thus there
is need for cost-share subsidies to induce adoption of SSTs for only a few fields. The average
subsidy as a percentage of the total cost in this case is 5.2%. Under uncertainty about soil
conditions and risk-neutrality, average subsidy required to adopt SSTs increases to 6%.
However, under production uncertainty and risk aversion, a much higher subsidy is necessary to
induce adoption of SSTs. The average subsidy rate estimated as a percentage of the cost of
adoption of SSTs is 23.2%. The average subsidy rates required increased from 5.2% under
certainty about soil conditions with SSTs and risk-neutrality to 50.1% under uncertainty about
production and soil conditions. Under uncertainty and risk-aversion, higher subsidies are
necessary to induce adoption of SSTs due to the need to compensate for the risk premium, which
also varies across heterogeneous farmers.
Conclusions

This paper develops a model of farmer-decision making to analyze the incentives for
adoption of a technology that provides information about spatial variability in nutrient

availability within a field and enables corresponding variable rate applications of fertilizers
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within that field. It examines the extent to which risk aversion and uncertainties about production
and the accuracy of the technology have impacts on input applications and adoption decisions of
SSTs and how these impacts vary with the characteristics of the soil distribution in the field. The
paper also examines the potential policy relevance of considering uncertainty and risk-aversion
by examining the design of cost-share subsidies to achieve reductions in nitrogen pollution. By
taking into account uncertainty about soil conditions and production as well as risk preferences,
it provides an explanation for the low observed adoption rates of SSTs among farmers.

The model uses jointly estimated risk and technology parameters to estimate the impacts
of SSTs on returns and nitrogen pollution generation. The quasi-rent differentials vary across the
fields due to the differences in soil quality distributions. The gain in quasi-rents from SSTs is
higher on fields with low potential yield and high spatial variability. Adoption of SSTs under
uncertainty about production and soil conditions would lead risk-averse farmers to apply more
fertilizers and generate more pollution on the fields with low variability in soil quality
distribution. Ignoring the impact of uncertainty about soil conditions with SSTs and risk
preferences leads to a significant overestimation of the economic and environmental benefits of
SST's and underestimation of the required cost-share subsidies for adoption of SSTs. Improving
the technical accuracy of SSTs through reducing the uncertainty about soil conditions has the
potential to improve the economic and environmental benefits of SSTs as well as to increase the
incentives for adoption of SSTs.

The results obtained herein show that SSTs have the potentia to reduce nitrogen
pollution relative to conventional practices but in the presence of uncertainty about weather and
soil conditions in the field, the incentives to over-apply nitrogen can considerably reduce the

environmental gains from SSTs. Hence, improved information about weather patterns and
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reduced uncertainty about technical accuracy of SSTs would enable better realization of the
potential benefits of SSTs. While the feasibility of reducing these uncertainties and their costs
are not examined here, this paper shows that the potential benefits of reducing these uncertainties
should include both the private benefits for farmers through increased profits from adoption and

the social benefits through reduced nitrate run-off from agricultural production practices.
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Table 1. Summary Statistics on Data Used to Estimate the Risk and Technology Parameters’

Variables Mean (Standard Deviation)
Yield (bushel per acre) 158.17(30.72)
Potential Yield (bushel per acre) 163.41(22.11)
Nitrogen (pounds per acre) 172.09(47.40)
Phosphorous (pounds per acre) 61.45(47.57)
Potassium (pounds per acre) 106.96(71.01)
Surface Soil Thickness (inches) 8.06 (1.42)

Total Soil Thickness (inches) 63.07 (11.63)

Slope (%) 5.54 (5.27)

&The number of observationsis 198.
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Table 2. Parameter Estimates and Test Results

Parameter Description Estimate

ay Production Function 1.166(0.3489)*
a,, Parameters-Mean” -0.009(0.0029)*
a,, 0.5268(0.1361)*
P -0.0047(0.0013)*
Uik 0.2243(0.0576)*
ok -0.0011(0.0002)*
ay; 1.0244(0.2526)*
0>z -0.0022(0.0012)***
Tz -0.0009(0.00042)* *
By Production Fun(_:tion -0.0041(0.0014)*
B, Parameters-Variance® -0.0142(0.0032)*
B 0.00859(0.0049)* *
Bo 6.7054(0.5971)*

6 Utility Function Parameters’ 1.1263(0.0204)*

y 1.63676(0.0304)*
H,:80=y=1 Linear MSD Model® 2780.226(0.000)
H,:0=1 CARA Preferences’ 6.1912(0.000)
H,:0=y CRRA Preferences’ 29.6256(0.000)
R(rT,0) evaluated at the Risk Aversion Measure® 1.479(0.423)*
sample mean

*Significant at 1%. ** Significant at 5%. *** Significant at 10%.

Standard errors in parentheses.

® Asymptotic Chi-square square statistics, P-value in parentheses,

Constant Absolute Risk Aversion, asymptotic t-statistics, P-value in parentheses.
dConstant Relative Risk Aversion, asymptotic t-statistics, P-value in parentheses.
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Table 3. Per Acre Quasi-rent Differentials of SSTs, Adoption Rates, and Difference in Risk

Premiums®
Certainty Uncertainty : Uncertainty
About Soil | About Soil S;g‘;r‘ﬁi'r?t” about
Conditions Conditions and Risky Production
with SSTsand with SSTs Aversion and Sail
Risk- and Risk- Conditions
Neutrality Neutrality with Risk
Aversion
Min 3.1 2.7 1.7 1.1
Quas-rent
Differentials | Average 10.0 8.5 6.5 5.0
($ Per Acre) | (Standard (3.3) (3.0) (1.7) (1.6)
Deviation)
M ax 18.2 15.3 10.8 7.6
Adoption 85.8 77.8 41.4 15.2
Rates (%)"

& Coefficient of variations in the soil fertility distributions is 25%. Conventional application practices
involve uncertainty about soil conditions.

b Represents the percentage of the 99 fields that would switch from conventional practices to SSTs after
taking into account the costs of adopting SSTs.
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Table 4. Percentage Per Acre Nitrogen Pollution Reductions with Adoption of SSTs as
Compared to the Pollution Level under Conventional Practices and Required Cost-

Share Subsidies®
Certainty Uncertainty : Uncertainty
About Soil | About Soil | [roduction about
Conditions | Conditions and Risky Production
with SSTs with SSTs Aversion and Soil
and Risk- and Risk- Conditions
Neutrality Neutrality with Risk
Aversion®
Min 11 0.8 0.5 -2.0
Percentage
Nitrogen Average
Pollution (Standard 19.8 16.3 125 8.3
Reductions | Deviation) (7.9 (7.7) (6.6) (6.0)
with SSTs
M ax 42.3 40.9 24.7 19.0
Required Min 0.0 0.0 0.0 0.0
Cost-Share
Subsidies as Average 52 6.0 23.2 50.1
Percentage (Standard (4.8) (5.5 (9.0 (9.8)
of Total Deviation)
Costs (%) 53.0 59.1 74.2 83.3
M ax

& Coefficient of variations in the soil fertility distributions is 25%. Conventional application practices

involve uncertainty about soil conditions.
®Negative numbers indicate that adoption of SSTs increases nitrogen pollution.
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