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Introduction 

Agricultural economists face a variety of challenges when analyzing agricultural commodity 

markets because agricultural prices and production depend so much on biological and socio-

economic factors.  These factors are highly variable from year to year and difficult to predict.  

They have often been modeled as random walk processes [Mercer and Smith (1959); Cheng and 

Deets (1971); and Cogley (1990)], but other models with trends and cycles have also been 

suggested.  

One such model is fractal geometry, proposed in the 1960s by Benoit Mandelbrot.  Fractal 

geometry helps scientists describe natural systems in terms of a few simple rules.  Although there 

is no all-encompassing and final definition of fractality, it can be summarized as follows:  A fractal 

is a set of systematic rules that governs the properties of an object or phenomenon through time 

and space.  It is self-similar in that smaller pieces of a system are related to the whole, and it has 

fractional dimension.  Fractals represent a new way to study the irregularity and roughness of 

shapes that have not been described successfully by classical paradigms based on Euclidean 

geometry.  

Not just shapes, but economic time series too can be treated as fractals.  Economic 

variables are governed frequently by complex nonlinear dynamic processes.  These processes can 

lead to persistent long-term dependence and non-periodic cyclical patterns with abrupt changes in 

trend.  The resulting time series manifest fractal structures over a range of time scales.  Their 

defining characteristics are self-similarity, long-term memory, and fractional dimension, all of 

which can be detected using two well-established models – fractional Brownian motion and the 

stable distribution.  Some characteristics of economic time series such as long-term memory and 

abrupt large changes have been explained and detected using the two models already [Mandelbrot 
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(1963b); Falconer (1990); Peters (1994)], but a comprehensive study of agricultural cash prices has 

not been performed. 

Prices cannot be fractal if the efficient market hypothesis is strictly true.  The semi-strong 

form of the efficient market hypothesis says that current prices reflect all public information, 

including market fundamentals and price history.  Thus, only new information causes a 

movement of prices.  In an efficient market, one market participant cannot have an advantage 

over others and reap excess profits because prices reflect all known information, and the large 

number of investors ensures that the prices are fair.  In the financial markets, therefore, prices 

have usually been assumed to follow some variant of a random walk.  However, the random walk 

version of the efficient market hypothesis has been proven to fit real market data poorly in many 

cases.1  An alternative hypothesis is needed. 

Efforts to discover a suitable alternative to the efficient market hypothesis have been spent 

analyzing the empirical non-normality, fat-tails, and high-peakedness behavior of financial data,2 

resulting in the fractal market hypothesis, explained most clearly by Peters (1994, 1996).  The fractal 

market hypothesis requires that market participants maintain heterogeneous investment horizons.  

News ripples through a market as groups of investors react in turn, causing self-similarity at 

different time scales and long-term persistent effects.  Sudden crashes occur when investors with 

different horizons experience reductions in liquidity simultaneously.  Sudden booms result when 

the opposite occurs.  The fractal market hypothesis is a refinement of the efficient market 

hypothesis that has resulted in a much broader and richer understanding of market behavior by 

incorporating heterogeneity among investors. 

Economists have applied the fractal market hypothesis to financial markets, but little 

attention has been given to commodity cash prices.  One notable exception is Barkoulas, Labys, 
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and Onochie (1997), who tested for long-term memory across a variety of commodity prices using 

a fractional integration model.  Results of their study suggested that commodity cash prices are 

fractal.  However, the data set in their study is limited to 408 observations, and they tested only 

one property of fractals, long-term dependence.  Therefore, a more comprehensive test with a 

larger number of observations is needed.  

 The main objective of this study is to analyze the fractal structure underlying the time 

series of major agricultural commodity cash prices in the United States.  Fractal analysis provides 

a better tool for understanding and forecasting future cash prices, explaining fluctuations in 

commodity prices, and adding insight into the nonlinear dynamics of cash prices.  This study 

provides specific contributions in three areas.  First, the market structure underlying the fractal 

geometry in cash price series will be explained.  Second, the existence of long-term memory, 

whether persistent or anti-persistent, will be tested.  Last, implications of the stable distribution 

will be examined. 

Fractals and Economic Time Series 

The introduction of fractal geometry is one of the defining events in contemporary science.  

Using fractals, scientists are able to describe natural systems in terms of a few simple rules.  Using 

fractal geometry, one can create the image of natural objects such as snow crystals, trees, 

coastlines, clouds, or human brains with just a few equations.  Euclidean geometry fails in 

providing simple rules for many natural shapes because natural objects are so irregular that they 

cannot be described by small numbers of geometric shapes.  Natural objects are not simply rough-

wrought versions of Euclidean polyhedra.  Thus, mathematicians have had difficulty in 

determining – or even defining – the length, area, and dimension of natural objects, which share 

some properties with artificial constructs such as the Sierpinski gasket. 
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The Sierpinski gasket is a triangle that has an infinite number of smaller triangles within it, 

a finite object with an infinite number of objects within itself.  It is the limit of the sequence 

pictured in Figure 1.  Describing the gasket in terms of Euclidean geometry is an overwhelming 

task, since infinitely many shapes are needed to describe all the triangles in the gasket.  The gasket 

is not a line, and at the same time it is not quite a plane because it has holes within it, which 

means that the Sierpinski gasket is neither one-dimensional nor two-dimensional.  Its dimension is 

between one and two: it has fractional dimension.  Physical scientists have proved that many 

natural objects have fractional dimension, and the dimension of the Sierpinski gasket is 1.58. 

Another main underlying property of fractals is self-similarity.  If an object can be 

subdivided into arbitrarily small pieces and each of the subsections is a small replica of the whole, 

then the object is said to be self-similar.  Subsections of a fractal structure are similar in some sense 

to the entire structure.  The Sierpinski gasket is self-similar because the shape is made up of subsets 

that look like the whole.  No matter how small the pieces are formed by breaking down the 

structure, each of the pieces contains no less detail than the whole.  The shape is fractal because it 

exhibits fractional dimension and self-similarity.   

In nature, disordered structures and random processes are self-similar on certain length and 

time scales.  So-called random fractals are commonplace in nature.  They can be found in sunspot 

numbers, precipitation records, and S&P 500 returns.  Although economic time series are 

influenced by human activities, they too can be described as random fractals.  Consider a time 

series of prices that looks like a jagged line.  The plot is neither straight, nor does it fill a plane.  It 

is thus not one-dimensional, and at the same time it is not two-dimensional.  Its dimension is 

between one and two: its dimension is fractional.  Further, if we draw graphs of daily, weekly, 
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and monthly returns and they look somewhat the same, then they exhibit self-similarity in time.  

We may therefore think of economic time series as fractals. 

Fractal Structure of Commodity Cash Prices 

Most market data do not follow random walk processes.  They exhibit long-term memory, 

leptokurticity, and nonperiodic cycles, implying that they may be fractal.3  Long-term memory 

means that observations are not independent.  Each observation is affected by all the events that 

preceded it.  If a series exhibits long-term memory, then there is persistent temporal dependence 

even between distant observations.  A time series that exhibits persistent dependence has a 

tendency to move away from its mean in one direction for a long time before it changes direction, 

and once it changes direction, it moves in the other direction for another long time.  

Leptokurticity means that the distributions of time series are non-normal; they have high 

peakedness and fat tails.  Peters (1994, 1996) explained that leptokurticity can be described as a 

black noise process, which is characterized by long-term persistency with sudden catastrophic 

changes of trend.  Black noise exhibits correlation among distant observations and abrupt 

discontinuous moves up and down that cause the frequency distribution to have high peaks and 

fat tails. 

Studies of nonlinear dynamic models such as Brock (1986) and Mackey (1989) and of 

extended cyclical analysis such as Burton (1993) and Yang and Brorsen (1991) have explained the 

complex, irregular movements and embodied fractal behavior in cash prices.  They also found that 

demand and supply forces are important for cash price determination.  Random fractal shocks to 

the supply and demand for agricultural commodities could induce fractal structure in cash prices.  

Dependence or reversals in cash prices can occur because of supply lags in annual planting periods, 

perennial gestation periods, or inventory holdings.  Business cycles can induce similar fluctuations.   
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According to studies of commodity prices such as Hall, Brorsen, and Irwin (1989), 

Williams and Wright (1991), and Chambers and Bailey (1996), the time series of commodity cash 

prices have two common features.  First, they display considerable positive autocorrelation; 

periods with high prices tend to follow periods with high prices and low prices to follow low 

prices.  Second, they have spikes – periods when the price jumps abruptly to a very high level or 

low level relative to its long-run average.  Thus, a hypothesis that there are fractal processes in the 

time series of agricultural commodity cash prices receives some empirical support from the data.  

Next we turn to theory.  

Theoretical Support for Fractal Properties  

Theoretical support for fractality in commodity prices is based on agent-level heterogeneity.  If all 

information had the same impact on all market participants, there would be no liquidity.  

However, market participants are not homogeneous.  New information is not available to all 

investors simultaneously and investors do not have equal perceptual abilities.  The sequential 

revelation of information modeled by Copeland (1976) suggests that individuals shift their demand 

curves sequentially as new information is revealed to them.  Heiner (1983) proposed that the 

response of each individual investor to new information should depend on environmental 

uncertainty and the agent's ability to understand and react to market events.  Kaen and Rosenman 

(1986) tested Heiner's proposition and found that agents or groups of agents will switch behavior 

at different times and the resulting asynchronous switching will cause persistent demand 

movements and, eventually, sudden directional changes.  

The importance of information depends also on the trading horizons of market 

participants.  Market participants who trade simultaneously in a market may still have different 

trading horizons.  They have information from both technical analysis and market fundamentals.  
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Short-term inventory holders may act primarily on technical analysis, while longer-term market 

positions held by hedgers and industry managers are more likely to depend on fundamentals.  

Likewise, the information important for each trading horizon can differ.  Market participants 

with different trading horizons and different information sets are the sources of each other’s 

liquidity and the stability of markets.  

 For example, a daily trader who confronts a regime of high volatility in his trading 

horizon will often find that the trading activities of other market participants with longer- and 

shorter-term trading horizons will lessen the volatility he faces.  In this fashion, whenever there 

are numerous market participants who have different trading horizons than those who are in 

crisis, the market will be stabilized.  All market participants share a similar risk level once an 

adjustment is made for the scale of trading horizons, and the shared risk causes the frequency 

distributions of price series at different trading horizons to look similar.  The result is self-

similarity.  

Self-similarity may break down if a market becomes unstable at many time scales 

simultaneously.  Investors with long trading horizons leave the market or become short-term 

traders, and the market becomes asymmetric with respect to trading horizons.  This situation 

might occur when market participants with long-term trading horizons feel that fundamental 

information is unreliable or if they anticipate an economic or political crisis.  Then, trading 

horizons are shortened and an extremely high level of short-term volatility can exist.  However, if 

market participants with different trading horizons symmetrically coexist, a panic at one horizon 

can be absorbed by other trading horizons.  On the other hand, if the entire market has the same 

trading horizon, the market becomes entirely unstable – liquidity weakens and a panic may 

follow.  During panics, the market often skips over prices, and prices change abruptly.  Fat tails 
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appear in the frequency distribution of prices and self-similarity becomes weaker [Peters (1994)]. 

  The fractal market hypothesis refines the Efficient Market Hypothesis by incorporating 

heterogeneity of investment horizons.  The resulting price distributions exhibit short- and long-

term dependence, self-similarity, sudden spurts of volatility, and abrupt changes of trend.  These 

are the same properties discovered in empirical cash price series, and they are the same properties 

embodied by fractals.  They can be detected and measured statistically. 

Statistical Tools for Detecting Fractals 

Two well-established generalizations of Brownian motion are known to be fractal.  One is 

fractional Brownian motion (FBM) and the other is the stable distribution.4  Mandelbrot and Van 

Ness (1968) introduced FBM, which has normally distributed but non-independent increments.  

The two most widely used empirical methods for studying FBM are rescaled range (R/S) and 

fractional integration models.  R/S tests can detect long-term dependence in time series and, using 

different time scales, can detect self-similarity.  Fractional integration models describe both long-

term memory and short-term memory directly, whereas R/S analysis describes long-term memory 

indirectly.  The purpose of this study is to detect long-term memory, rather than trying to 

forecast future values, so a fractional integration model is inappropriate; R/S analysis is the proper 

way to test for FBM. 

The stable distribution was developed by Paul Levy in the 1920s by relaxing the finite 

variance condition of Brownian motion.  It has infinite (undefined) variance, and it is 

discontinuous except for the special case of Brownian motion.  In the 1960s, it was studied 

extensively by Fama (1965a, 1965b) and Mandelbrot (1963a), and it has since become one of the 

most important fractal models [Falconer (1990)].  The stable distribution has four parameters, 

which can be estimated through the characteristic function of the stable distribution.5  The 
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parameter estimates can confirm whether the distribution of a random variable corresponds to a 

Normal distribution or to a broader set of fractal distributions.  Using the same estimation 

procedures at different time scales one can detect self-similarity of the random variable.  With the 

two models, R/S and the stable distribution, one can test for several important properties of 

fractals: long-term memory, self-similarity, fractional dimension, and black noise.   

Rescaled Range 

Rescaled Range (R/S) analysis was first proposed by Hurst (1951) and subsequently refined and 

applied to economic time series in a series of studies by Mandelbrot (1963a, 1963b, and 1972).  The 

analysis proceeds from two basic principles: dependence between periods and fractional Brownian 

motion.  R/S analysis provides a valuable statistic called the Hurst exponent, H.  

A generalized formula for Brownian motion implies the following equation: 

(1) E[(Xt+∆t - Xt) (Xt - X0)] = 0.5((t+∆t)2H - (t)2H - (∆t)2H), 

where the increments Xt+∆t – Xt are stationary, implying that the increments have probability 

distribution independent of t.  The distribution functions specified by FBM do not have 

independent increments except in the case of Brownian motion (H = 0.5).  If H = 0.5, then the 

value of (1) is zero, implying independent increments, but if H ≠ 0.5, then the value is non-zero 

and increments of {Xt} are dependent.   Specifically, if H > 0.5, (1) has positive sign and the 

process tends to persist in the future as it has in the past.  If H < 0.5, then (1) has a negative sign 

and the series tends to reverse itself more frequently than a random walk.  The positive effect is 

known as persistence, and the negative, anti-persistence. 

Greene and Fielitz (1977) developed the relationship between the Hurst exponent and 

fractal dimension.  The fractal dimension is calculated by measuring the jaggedness of a series.  

The fractal dimension of a random-walk process is 1.5.  The fractal dimension of a straight line is 
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1.0, and that of a geometric plane is 2.0.  Thus, the fractal dimension of a random walk would be 

halfway between a line and a plane.  The more jagged time series are, the closer their fractal 

dimensions approach two [Mandelbrot (1982)].  The Hurst exponent H can be converted into a 

fractal dimension, D, using the formula: 

(2) D = 2 – H.  

Thus if H = 0.5, then D = 1.5.   

The rescaled range is the range of partial sums of deviations of a time series from its mean, 

rescaled by its standard deviation.  Using the rescaled range, the Hurst exponent is estimated by 

the following formula: 

(3) ln (R/S) i,T  = ln (a) + H ln (Ti) + εi,T, 

The steps are based on Mandelbrot and Taqqu (1979); Lo (1991); Peters (1994); and Corazza, 

Malliaris, and Nardelli (1997).  Mandelbrot and Wallis (1969) showed that the R/S analysis is 

appropriate even when a distribution exhibits a great deal of skewness and kurtosis.  Mandelbrot 

(1972) argued that R/S analysis can detect non-periodic cycles, even when the periods exceed the 

length of the observed time series.  Mandelbrot and Taqqu (1979) proved the almost-sure 

convergence of the R/S statistic for stochastic processes with infinite variance.  However, Lo 

(1991) showed that standard R/S analysis is biased toward accepting the null hypothesis of long-

term dependence because it is sensitive to short-term dependence.  He suggested a modified 

version of R/S analysis that can detect long-term dependence in the presence of short-term 

dependence.  Details of the approach are provided in the Appendix.   

The Stable Distribution 

Mandelbrot (1963a, 1963b) and Fama (1963, 1965a) suggested that the distributions of stock 

returns are significantly different from normality and that the non-normality might be captured 
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by the stable distribution.  Subsequent studies of financial data have found distributions that are 

leptokurtic and incompatible with the Gaussian assumption.  The stable distribution’s ability to 

explain observed leptokurtic behavior has been tested through the stability-under-addition test 

using the characteristic exponent, α, of the stable distribution [Fama and Roll (1971); Fielitz and 

Rozelle (1983)].6   

The estimated parameters of the stable distribution tell us about the behavior of the series: 

skewness, peakedness, location, and scale.  There are three special cases where one can write down 

closed form expressions for the density of the stable distributions and verify directly that they are 

stable: normal, Cauchy, and Levy distributions.7  Other than these three distributions, there are 

no known closed form expressions for general stable densities.  Instead, the stable distribution is 

characterized by its characteristic functional form as follows: 

(4) F(t) = exp[  i δt - |γ t|α  ( 1 + jβ sgn(t) w(t, α) ) ], 

where w(t, α) = -tan(απ/2) if α = 1, otherwise w(t, α) = (2/π) log(t). 

The function has four parameters; α, β, δ, and γ.  α ∈ (0, 2) is the characteristic exponent 

that accounts for the relative importance of the tails.  It measures the peakedness of the 

distribution as well as the fatness of the tails.  If α = 2, then the distribution is Normal with finite 

mean and variance.  When α ∈ (1, 2), the random variable has finite mean.  β ∈ [-1, 1] is the 

skewness parameter.  In particular, when β = 0, the distribution is symmetric.  When β = +1, the 

distribution is fat-tailed to the right, or skewed to the right.  The degree of right skewness 

increases as β approaches to +1, and vice versa.  As α approaches 2, β loses its effect and the 

distribution approaches the symmetric normal distribution regardless of the value of β.  γ ∈ (0, 

+∞) is the scale parameter.  It compresses or extends the distribution from the point δ.  δ ∈ (-∞, 

+∞) is the location parameter.  It shifts the distribution to the left or right. 
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If tails of a distribution are heavier than exponential, it is said that the distribution has 

heavy tails, or fat tails.  The result of the fat tails is that not all moments may exist.  When 

distributions have sufficiently long tails, the first few moments will not characterize the 

distribution because they diverge.  Under fat tails, mean and variance may be undefined or infinite 

and therefore unsuited to effective description of a distribution.  Cornew, Town, and Crowson 

(1984) produced a mathematical proof that moments may be undefined for distributions with fat 

tails.  

McCulloch's (1986) methodology is adopted to estimate the initial values of four 

parameters of the stable distributions.  With the quantile estimators as initial approximations to 

the parameters, a constrained quasi-Newton method is used to maximize the log-likelihood 

function for an i.i.d. stable sample of X1, X2, …, Xn as follows: 

(5) l(ω)  =  ∑i log f(Xi|ω), 

where f(Xi|ω) is the density function of a stable distribution, ω denotes the parameter vector by ω 

= (α, β, γ, δ) in a parameter space Ω = (0, 2] × [-1, 1] × (0, +∞) × (-∞, +∞), and the quasi-Newton 

method is constrained by the parameter space. 

 To estimate the parameters by maximizing the log-likelihood function, f(Xi|ω) must be 

computed for each observation i.  There have been several efforts to compute stable densities, such 

as Holt and Crow (1975); Panton (1992); and Nolan (1997).  Among them, Nolan (1997) provides 

an efficient numerical computation method for stable densities and distribution functions.  This 

study adopts Nolan's methodology.  

 DuMouchel (1973) showed that when ω0 is on the interior of the parameter space Ω, the 

maximum likelihood estimator follows the standard theory so that it is consistent and 

asymptotically normal.  If ω is near the boundary of Ω, the finite sample behavior of the estimator 
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is not precisely known, because the distribution of the estimator may be skewed away from the 

boundary.  Further, in this case, the asymptotic normal distribution of the estimator tends to be a 

degenerate distribution at the boundary point, making it super-efficient. 

 Many studies using the stable distribution have not performed any empirical tests fitting 

the distribution to real data, and it is necessary to have some means of assessing whether the 

resulting fit is reasonable.  One method to determine whether the data are consistent with the 

stable distribution is to plot a smoothed density of the data and compare it with the fitted stable 

density alongside the fitted normal density, as proposed by Nolan (1999).  Clear multiple modes 

or gaps in the smoothed density are evidence that the data do not come from a stable distribution.  

For comparison, the data are smoothed using a Gaussian kernel [Pagan and Hong (1990) and 

Campbell, Lo, and MacKinlay (1997)].  The density plots indicate whether the fitted stable density 

matches the real data better than the fitted normal density near the mode and tails of the 

distribution.  If the leptokurtosis and skewness are better described by the stable density than by 

the normal density, then the data set is clearly non-normal. 

Another test is based on self-similarity because the stable distribution is fractal.  If a series 

fits the stable distribution, then other frequencies of the series also must, and the estimated values 

of the four parameters of the stable distribution must be statistically indistinguishable at all 

frequencies.  The self-similarity test embodies the theorems of Mandelbrot and Taqqu (1979) and 

of Falconer (1990).   

Empirical Results  

Data 

The time series data used in this study are agricultural commodity cash prices from the Chicago 

Board of Trade (CBOT), Kansas City (KC), and New York Board of Trade (NYBOT).  The data 



 14 

include broilers, cocoa, coffee, corn, large white eggs, Kansas City wheat, oats, soybeans, soybean 

meal, soybean oil, spring wheat, sugar #11, wheat, and wheat #1 cash prices.  The series are daily, 

and most begin on August 28, 1992 and end on March 8, 2000.  Soybean oil starts on June 2, 1969; 

spring wheat starts on February 1, 1983; and broilers and large white eggs begin on December 1, 

1991.  The number of observations is 7,766 for soybean oil; 4,325 for spring wheat; 2,068 for 

broilers and large white eggs; and 1,888 for other commodities.  The time series are longer than 

those of previous studies conducted to detect long-term memory in financial data, such as Hall, 

Brorsen, and Irwin (1989); Pan, Liu, and Bastin (1996); and Barkoulas, Labys, and Onochie (1997).   

The results of unit root tests are available from the authors.  Except for broilers, large 

white eggs, and soybean oil, most of the series have a unit root process in levels, indicating that 

they are non-stationary.  In practice, original price series usually have a unit-root process, while 

transformations such as log-returns do not have a unit root.  To confirm that the transformed 

series are stationary, the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992) test is performed.  

The null of stationarity is not rejected for any of the log-return series. 

Empirical Results: The R/S Analysis 

To estimate the Hurst exponent, log-return series of the commodity cash prices are used.  It is 

important to use return series because R/S analysis is only appropriate for stationary series.  

Estimates using the original non-stationary series would be biased upward because the original 

series is "smoother" than the transformed stationary series.  

Table 1 summarizes the Hurst exponent estimates obtained from the classical and modified 

R/S analyses at different time scales.  Most of the estimates fall on the positive, persistent long-

term memory side, greater than 0.5, although some estimates are not statistically distinguishable 

from 0.5.  Broilers and eggs fall on the negative, anti-persistent long-term memory side, less than 
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0.5.  The pattern of estimates supports the premise that most cash price series exhibit persistent 

long-term memory, a key characteristic of fractals. 

There is one more property of fractals to be examined: fractional dimension.  Fractional 

dimension measures the jaggedness of a series, and the estimates of H can be converted into a 

fractal dimension.  The results are displayed in Table 2.  The fractal dimensions of most series are 

clearly less than 1.5.  They are closer to a straight line than a random walk is.  Measured in this 

way, all the series have fractional dimension, another important property of fractals. 

Empirical Results: The Stable Distribution 

The parameters, α̂ , β̂ , γ̂ , and δ̂ , are estimated using the quantile method.  Initial estimates are 

used as an approximation to maximize the log-likelihood function corresponding to (5).  To 

calculate the stable density for the price distributions, Nolan's (1997) method is used.  Further, to 

generate confidence intervals, a covariance matrix is calculated [DuMouchel (1973)].  

 The results of fitting the stable distribution to the cash price series are reported in Table 3.  

The α̂  values are not close to 2; they lie between 1.260 and 1.775, implying the distributions are 

not normal.  The values of α̂  for eggs and oats are less than 1.0, which indicates that the shapes of 

their distributions are quite different from those of other commodities.  The results show that 

none of the series fit well to the normal distribution, but their distributions bear out a more 

generalized one, the stable distribution.   

If the series are fractal, they must also exhibit self-similarity.  To check for self-similarity, 

the estimation was repeated for weekly frequency data (n = 5), and bi-weekly frequency data (n = 

10).  The values of α̂  are similar at all three time scales n = 1, n = 5, and n = 10.  Within a 95% 

confidence interval they are statistically indistinguishable, and therefore the hypothesis of self-

similarity cannot be rejected. 
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Daily eggs prices exhibit anti-persistency.  An anti-persistent process is mean-reverting, 

however not every mean-reverting process is anti-persistent.  Mean-reversion implies that the 

mean is state-dependent and varies with time, thus there is no fixed or finite mean.  The α̂  for 

daily eggs series suggests that the mean cannot be used as a location parameter in the distribution 

of daily eggs series.  Since α̂  is less than 1.0, the mean cannot be defined. 

Plotting the smoothed density, the fitted stable density, and the fitted normal density 

together helps determine how well the stable distribution describes the data.  One such plot is 

displayed in Figure 2, and the others are available from the authors.  In the figure, there are no 

clear multiple modes or gaps.  The density plots admit two interpretations.  First, none of the 

series seem to have a high degree of asymmetry or skewness.  Second, a normal distribution 

cannot explain the leptokurticity of the series.  The plot suggests that the normal distribution 

cannot capture the behavior of the agricultural cash prices as well as the stable distribution can. 

Implications and Conclusions 

Most economic price series have two properties – long-term dependence and leptokurticity – that 

are among the representative characteristics of fractals.  Long-term memory can be detected and 

quantified through using R/S analysis, and leptokurticity can be modeled using the stable 

distribution.  The time series of major agricultural commodity cash prices in the U.S. have been 

analyzed to detect fractal structure.  Empirical results indicate evidence of long-term memory, 

fractional dimension, and self-similarity, suggesting that the price series have fractal structure.  

The following implications can be drawn from the results.  

First, the empirical results suggest that the Efficient Market Hypothesis is inappropriate 

for the analysis of agricultural commodity markets.  The fractal market hypothesis may be a 

suitable alternative for the Efficient Market Hypothesis in this case.  Second, self-similarity allows 
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the behavior of low frequencies such as annual or monthly to be predicted by looking at high 

frequencies such as daily or weekly.  Third, since there is long-term dependence in the agricultural 

cash prices, it is possible to forecast more accurately by including long-term memory in univariate 

time series models such as ARIMA.  Fractional integration models have been developed, such as 

fractionally integrated ARMA (ARFIMA) and fractionally integrated GARCH (FIGARCH).  

These models can improve price forecasting because the models consider both short-term and 

long-term dependence at the same time.  Geweke and Porter-Hudak (1983) confirmed that 

ARFIMA models provide substantially more reliable out-of-sample forecasts than do more 

conventional procedures such as ARIMA. 

Last, without being proven, it has frequently been assumed in studies of commodity and 

financial markets that price distributions are Gaussian with finite mean and variance.  This study 

has shown that agricultural cash price series do not bear out the Gaussian assumption; instead, 

they are more appropriately fitted to the stable distribution.  It was also found that most of the 

cash price series have α less than 2.0 but greater than 1.0, which suggests that variance is undefined 

or infinite.  Therefore, sample variances are inappropriate measures of dispersion.  The eggs and 

oats series have α less than 1.0, indicating that there is no stable mean for them, and thus sample 

mean is not a good representative of location for those series.  Therefore, using first and second 

moments might lead to misleading results in an economic analysis if we confirm that a series has 

fractal structure.  If so, then alternative measures of location and dispersion are needed.  Estimates 

from the stable distribution may be suitable for such purposes.   

However, this study has some limitations.  In the modified R/S analysis, choosing the 

truncation lag q is troublesome.  When q is large relative to sample size, the finite-sample 

distribution of the estimator can be radically different from its asymptotic limit.  On the other 
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hand, when q is too small some substantial autocorrelation beyond q is not captured in the 

weighted sum.  Thus, special care should be taken when choosing the truncation lag, and further 

research is needed to provide a more sophisticated rule for choosing the lag q for any data 

generating assumption.  Although we can use the δ and γ of the stable distribution to substitute 

for the mean and standard deviation in case of infinite or undefined moments, the validity of this 

approach requires further study.   

The value of this study lies in several areas.  Previous work with commodity price 

distributions and the fractal market hypothesis provide empirical and theoretical justifications for 

exploring fractality in agricultural commodity prices.  A long data set of prices for several 

agricultural commodities was constructed and a comprehensive look at fractality was undertaken.  

Two different models used to detect fractality in financial data were applied to the price series.  

Results from both models confirmed that the price series are fractal.  Long-term dependence and 

self-similarity were indicated, which may allow future studies to predict behavior of a frequency 

even when the frequency affords few observations.  The location and scale parameters of the stable 

distribution were proposed as suitable candidates to replace undefined mean and variance in future 

work on market risk and returns.  Ultimately this work may lead to a better understanding of 

commodity price distributions and the behavior of market participants.  
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Table 1. 

Results of Estimating the Hurst Exponent, H. 
 

Variables H1,0 H1,q H5.0 H5,q H10,0 H10,q 

 
Broilers  

Cocoa  

Coffee  

Corn  

Large White Eggs  

Kansas City Wheat 

Oats  

Soybeans 

Soybean Meal 

Soybean Oil 

Spring Wheat 

Sugar #11  

Wheat  

Wheat #1  

 
0.5229 

0.5398 

0.5995* 

0.6465* 

0.3723* 

0.5801* 

0.5530 

0.5858* 

0.5983* 

0.5736* 

0.5389 

0.5413 

0.5835* 

0.6282* 

 
0.4732 

0.5236 

0.5994* 

0.6384* 

0.3171* 

0.5741* 

0.5271 

0.5646* 

0.5742* 

0.5579* 

0.5203 

0.5399* 

0.5540* 

0.6204* 

 
0.4655 

0.5984* 

0.6518* 

0.6841* 

0.4062* 

0.6242* 

0.5704 

0.6217* 

0.6299* 

0.5656 

0.5446 

0.6003* 

0.6424* 

0.6678* 

 
0.4308* 

0.5856* 

0.6347* 

0.6592* 

0.3793* 

0.6016 

0.5703 

0.5834* 

0.6003* 

0.5474 

0.5279 

0.5832* 

0.6275* 

0.6503* 

 
0.4351* 

0.6185* 

0.6612* 

0.6946* 

0.4119* 

0.6554* 

0.5826* 

0.6224* 

0.6377* 

0.5693 

0.5902* 

0.5856* 

0.6292* 

0.6942* 

 
0.3637* 

0.6120* 

0.6485* 

0.6614* 

0.3890* 

0.6232* 

0.5753 

0.5917* 

0.6322* 

0.5408 

0.5619 

0.5702* 

0.6173* 

0.6688* 

 

The first and second columns are Ĥ  for the time scale n = 1, assuming respectively short-term 
independence and dependence.  When assuming short-term independence, the exponents are estimated 
using the classical R/S analysis.  Otherwise, they are estimated using the modified R/S analysis.  The third 

and fourth columns are for Ĥ  when the time scale is n = 5, weekly frequency, and the fifth and last 

columns are for Ĥ  when time scale is n = 10, bi-weekly frequency, also assuming respectively 
independence and dependence.   
 
* indicates that the value’s difference from 0.5 is statistically significant at the 5% level. 
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Table 2. 

Fractional Dimension, D. 
 

Variables Daily Weekly Bi-Weekly 

 
Broilers  

Cocoa  

Coffee  

Corn  

Large White Eggs  

Kansas City Wheat 

Oats  

Soybeans 

Soybean Meal 

Soybean Oil 

Spring Wheat 

Sugar #11  

Wheat  

Wheat #1 Cash  

           

 
1.4561 

1.4429 

1.3950 

1.3634 

1.6455 

1.4201 

1.4521 

1.4311 

1.4200 

1.4467 

1.4569 

1.4422 

1.4223 

1.3786 

 
1.4861 

1.4585 

1.3952 

1.3825 

1.6233 

1.4202 

1.4525 

1.4392 

1.4281 

1.4577 

1.4591 

1.4661 

1.4326 

1.3850 

 
1.3932 

1.3864 

1.3633 

1.3846 

1.4882 

1.3850 

1.4348 

1.4076 

1.4543 

1.4146 

1.3900 

1.3940 

1.3225 

1.3784 

 
1.4285 

1.4053 

1.3795 

1.4064 

1.4984 

1.3983 

1.4350 

1.4201 

1.4616 

1.4344 

1.4032 

1.4269 

1.3311 

1.3945 

 
1.3277 

1.3237 

1.3284 

1.3182 

1.3846 

1.3417 

1.3982 

1.3874 

1.3744 

1.4398 

1.3885 

1.3481 

1.2693 

1.3829 

 
1.3695 

1.3449 

1.3439 

1.3522 

1.4147 

1.3497 

1.3993 

1.4004 

1.3986 

1.4404 

1.3910 

1.4034 

1.2905 

1.3930 

 
The first and second columns are values of D, fractional dimension coefficient, that are calculated from 
respectively H1,0 and H1,q.  The third and fourth columns are for weekly frequency and calculated from H5,0 

and H5,q.  The fifth and last columns are for bi-weekly frequency and are calculated from H10,0 and H10,q. 
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Table 3. 

Estimated Parameters of the Stable Distribution.  
 

Variables Characteristic 
Exponent α 

Skewness 
Parameter β 

Scale Parameter 
γ 

Location 
Parameter δ 

 
Broilers  

Cocoa  

Coffee  

Corn  

Large White Eggs 

Kansas City Wheat 

Oats  

Soybeans 

Soybean Meal 

Soybean Oil 

Spring Wheat 

Sugar #11  

Wheat  

Wheat #1 Cash  

 
1.646(0.067) 

1.775(0.063) 

1.260(0.068) 

1.583(0.071) 

0.617(0.039) 

1.649(0.070) 

0.624(0.042) 

1.596(0.072) 

1.523(0.072) 

1.466(0.035) 

1.421(0.047) 

1.671(0.069) 

1.773(0.076) 

1.548(0.084) 

 
-0.019(0.168) 

 0.347(0.228) 

 0.004(0.104) 

-0.062(0.156) 

 0.225(0.053) 

 0.091(0.178) 

-0.103(0.057) 

-0.019(0.160) 

 0.085(0.141) 

 0.073(0.064) 

 0.003(0.082) 

-0.054(0.184) 

 0.126(0.278) 

 0.242(0.169) 

 
  0.526(0.022) 

13.985(0.574) 

  1.540(0.086) 

  1.999(0.093) 

  0.095(0.008) 

  3.323(0.149) 

  0.363(0.036) 

  4.303(0.200) 

  1.488(0.072) 

  0.216(0.003) 

  2.956(0.099) 

  0.108(0.004) 

  3.797(0.186) 

  2.488(0.138) 

 
  0.009(0.040) 

 -1.477(1.103) 

 -0.772(0.115) 

  0.998(0.159) 

 -0.009(0.004) 

 -0.127(0.266) 

  0.456(0.168) 

  0.169(0.344) 

 -0.066(0.118) 

 -0.010(0.008) 

  0.036(0.152) 

  0.004(0.008) 

 -0.122(0.354) 

  0.406(0.233) 

 
The values in parentheses are estimates of the 95% confidence interval deviates for the parameter estimates. 
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Figure 1 

Construction of The Sierpinski Gasket* 
 

* This figure is adapted from Frame (1996).
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Note: The solid black line denotes the stable fitted density, the dotted line denotes the empirical 
smoothed data density, and the solid grey line denotes the Normal fitted density. 
 

Figure 2  

Kansas City Wheat 
Comparison of Density Plots 
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Appendix 

Consider sample returns X1, X2, …, XN and fix sub-time series of length T, where T is less than or 

equal to N.  Determine all possible non-overlapping sub-time series Xi,T and for every sub-time 

series, calculate the sample mean Xm
i,T.  Calculate cumulative sums of deviations for each sub-time 

series:  Xs
i,T = Σj ( Xj,i,T - Xm

i,T ), where Xj,i denotes each observation of sub-time series Xi,T.  

Calculate the rescaled range statistic: 

(A-1)  (R/S)i,T = (1/Si,T) [ Max ( Xs
i,T ) - Min ( Xs

i,T ) ], 

where Si,T is the standard deviation of sub-time series Xi,T. 

Between (R/S)i,T and Ti, there is a mathematical relationship such that  

(A-2)  (R/S)i,T  ~ ( a * Ti )H. 

Based on equation (A-2), fit OLS to the following log equation with error εi,T to estimate H: 

(A-3)  ln (R/S) i,T  = ln (a) + H ln (Ti) + εi,T. 

Equation (A-2) could be specified in other ways than the log-linear relationship and still be 

consistent with the asymptotic relationship underlying it.  For example, nonlinear least squares 

can be used for the equation to estimate H instead of taking the log on both sides.   

Since the maximum of the sum of all deviations, Xs
i,T, is always nonnegative and the 

minimum is always nonpositive, the rescaled range is always nonnegative.  By using several 

different starting points, average values of R/S may be computed for various lags.  This estimation 

of H makes no assumption about the shape of the underlying distribution.  The intercept of the 

regression, ln (a), is just a constant that has no particular meaning in this specific case.  

Lo (1991) modified the R/S statistic by using R/Sb
i,T such that 

(A-4)  (R/Sb)i,T  =  (1/Sb
i,T) [ Max ( Xs

i,T ) - Min ( Xs
i,T ) ], 

where  Sb
i,T   ≡  Si,T  + 2 Σk wk(q) rb

k,    for k = 1, 2, …,q. 
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wk(q)  ≡  1 –  k / ( q+1 ),    q < T. 

rb
k  = (1/T) Σj ( Xj,i - Xm

i,T ) ( Xj-k,i - Xm
i,T ),    for j = k+1, k+2, …, T. 

wk(q) is the weight of lag q.  

rb
k is the usual covariance estimators of X.   

The modified R/S statistic differs from the classical R/S statistic only in its denominator, adding 

the weights wk(q) and covariance estimators to the standard deviation.  The weight is suggested by 

Newey and West (1987), and q is the truncation lag.  By allowing q to increase with the number of 

observations N but at a slower rate than N, the modified standard deviation Sb
i,T adjusts 

appropriately for general forms of short-term dependence.  In the modified R/S, a troublesome 

job is choosing the truncation lag q.  Andrews (1991) showed that when q becomes large relative 

to the sample size N, the finite-sample distribution of the estimator can be radically different from 

its asymptotic limit.  However, the value chosen for q must not be too small, since the 

autocorrelation beyond lag q may be substantial and should be included in the weighted sum.  The 

truncation lag thus must be chosen with some consideration of the data at hand. Andrews (1991) 

provided a data-dependent rule for choosing q.  Andrews's (1991) data-dependent formula is q  ≡  

int[ (3⋅n / 2)1/3 ⋅ (2⋅ρ / (1 - ρ2))2/3 ], where int denotes the greatest integer less than or equal to the 

value of [⋅], n is the number of observations, and ρ is the first-order autocorrelation coefficient of 

the series.  
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Endnotes 

1 See Mandelbrot (1963a); Fama (1965b); Cornew, Town, and Crowson (1984); Helms and 

Martell (1985); So (1987); Kao and Ma (1992); Booth and Tse (1995); Corrazza, Malliaris, and 

Nardelli (1997); and Barkoulas, Labys, and Onochie (1997).   

2 For example, see Fama (1965a); Fama and Roll (1971); Fielitz and Rozelle (1983); Hall, 

Brorsen, Irwin (1989); Gribbin, Harris, and Lau (1992); McCulloch (1996); Nolan and Panorska 

(1997); and Nolan (1999).   

3 For examples, see Grossman and Stiglitz (1980); DeCoster, Labys, and Mitchell (1992); 

Sunder (1992); Kao and Ma (1992); Fung and Lo (1993); Bollerslev and Mikkelsen (1996); 

Barkoulas, Labys, and Onochie (1997); and Breidt, Crato, and Lima (1998).   

4 The word stable is used because the shape is stable or unchanged under the sums of same 

type processes.  That is, if two independent random variables with the same type of distribution 

are combined linearly, then the resulting distribution is also a random variable with the same 

type.  There are several different names for the stable distribution: Pareto-Levy distribution, stable 

Paretian distribution, stable family distribution, fractal distribution, and stable distribution.   

5 The characteristic function is the Fourier transform of a random variable y, i.e., 

E[exp(i⋅t⋅y)] for t, where t is any real number and i denotes the square root of -1.  The Fourier 

transform is used to define the stable distributions, since with certain exceptions the probability 

distribution of the stable processes cannot be specified directly. 

6 Since a stable distribution is invariant under addition, the distribution of sums of the stable 

distribution is also a stable distribution with the same values of α [Fama (1963)].  The estimated 

values of the α must be equal across the sums, provided that the underlying leptokurtic 

distribution is stable. 
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7 Setting α = 2, β = 0, δ = µ, and γ = σ2/2 yields the characteristic function of the normal 

distribution.  The EMH essentially says that α must equal 2, i.e., the Gaussian assumption.  But 

the fractal market hypothesis does not give any restriction, i.e., α can range from 1 to 2.  That is a 

significant difference between the two market hypotheses.  Cauchy distribution is the case with α 

= 1, β = 0, γ ∈ (0, +∞), and δ ∈ (-∞, +∞).  Levy distribution is the case with α = 1/2, β = 1, γ ∈ 

(0, +∞), and δ ∈ (-∞, +∞).   


