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Estimating The Opportunity Cost of Recreation Time in An
Integrable 2-Constraint Count Demand Model

Introduction

The value of natural assets is often assessed, in part, using models of consumer behavior
relating to the asset that reflect an individual's constraints on choice and opportunities for
consumption. When the behavior of interest is recreational use, often the substitution
between sites is important to measuring the value of the asset and any given site. A
common approach used is the random utility model, which predicts the probability of a
site being chosen on a given choice occasion. As an alternative, the demand systems
popularized in the literature on demands for market goods have been recently been
applied to the recreation demand and nonmarket valuation setting (e.g., Fugii et al.;
Shaikh and Larson).

While the flexible functional forms often used in market demand analysis are
attractive for their ease of use and familiarity to economists working with market goods,
some interesting nuances arise in their application to the nonmarket setting. One of these
is in the measurement of the total worth, or “access value,” of the activity being
consumed. It is not uncommon for recreation demands to be price-inelastic at the
observed levels of consumption. Depending on the demand system being used, this can
lead to problems with measuring access value.

For example, in the Almost Ideal Demand System (Deaton and Muellbauer),
whose focus is explaining budget shares and elasticities, some ranges of parameter values
imply that budget share increases with price, which leads to to an infinite Hicksian choke

price (not, by itself, necessarily a problem) and an infinite willingness to pay for access.



In the Linear Expenditure System (Stone) applied to the nonmarket goods setting, the
parameter interpreted as a “subsistence quantity” of each good may be negative, and in
fact must be negative for access value to be finite (Kling). Another, more commonly
used functional form in empirical practice, the Cobb-Douglas demand system (LaFrance
1986), implies that goods are necessities, with infinite access values, when they are own
price-inelastic.

In each of these demand systems, the findings of infinite access value for some
parameter ranges are artifacts of the convergence properties of the demand systems as
own price for a good rises and quantity consumed goes to zero. This problem diminishes
their appeal for empirical nonmarket valuation where determining the total value of
resource-based activities is the goal.

In contrast, the “semilog” demand system, which relates log of quantity consumed
to the levels of the independent variables, has finite access values, even though the
Hicksian choke price is infinite and quantity consumed goes to zero only in the limit.
This makes the semilog model a more attractive option for empirical recreation demand
analysis, and it is often used in single equation models. However, LaFrance (1990) has
shown that demand systems based on this functional form are quite restrictive, with
cross-price effects that are either zero or the same across all goods, and income effects
that are also either zero or the same for all goods.

This paper proposes a variation of the semilog demand system, the “Double
Semilog” (DS) system, which retains its attractive features with respect to measuring
access values, while achieving somewhat greater flexibility with respect to cross-price
and income elasticities. The key differences between the DS and semilog systems are (a)
each good can have a different income elasticity in the DS system, whereas all goods
have the same income elasticity in the semilog system; and (b) elasticities for price and
quality in the DS system are essentially the elasticities in the semilog system with the

addition of an income elasticity adjustment.



The first part of the paper develops the basic demand system and its properties,
then the its implementation in situations where both time and money are important
constraints on demand (as is usually the case with recreation demand) is discussed.
Finally, the DS demand system is illustrated using data on whalewatching in northern
California. The empirical model jointly estimates the shadow value of leisure time and
the 2-constraint whalewatching demand system for three sites in proximity to one
another.

The demand model estimates are in conformity with the integrability conditions,
and are highly significant for two of the three sites, with expected signs on quality effects
and on the price-income relationships for all three. The marginal value of time implied
by the model estimates is about $6/hr, with a range in the sample from about $0.50 per
hour to $13/hour. The demand parameters imply finite access values in spite of demands
being price-inelastic at baseline prices and quantities, which illustrates a potential

advantage of the DS system relative to some of the other flexible forms.

The Model

The DS model begins with an expenditure function of the form
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e(p”u) = 0(pM) - | —e + (1)
where p! = p;/0(p,M) are normalized prices, with 6(p,M) being any function of prices
and income that is homogeneous of degree 1 in (p,M). The use of normalized prices and
income imposes the desired homogeneity properties on demands, expenditure, and

indirect utility (LaFrance and Hanemann).

One can also define the normalized expenditure function as
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Equation (2) can be rewritten to solve for the indirect utility function
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where M" = M/f(p,M) is normalized income. From equation (3), it can be seen that in
this model, the utility index is strictly positive.
Differentiating (2) with respect to p’, the Hicksian demands are
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and the corresponding Marshallian demands, obtained by substituting in the indirect
utility function (3), are

Yo+2_7P]

x;(p",M") = (B; — vi)e + BM". (5)

These Marshallian demands have a functional form that is a hybrid of the semilog and
linear demand functions: the price effects are similar to those of the semilog system
while the income effects are linear. Notably, the income effects 3; in (5) are not
restricted as they are in the semilog demand system, where they must all take on a single

value.



In the DS system, the Marshallian income slope is 9x;(p",M")/OM" = j3;, so that
each good has a separate income effect (3;), unlike the semilog demand system, where all
income effects must be the same. The income elasticity for good i is, then,
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where «; = p;x;/M is the Marshallian budget share of good i. Each good has an

independent income effect, unlike the semilog system, where all income effects must be

equal.
The Marshallian own- and cross-price elasticities ¢;; and ¢;; are, respectively,
€ = (@™ pi
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where o; = p;'x;/M" is the budget share of good i. Noting, from (6), that 3;p!'/c; is the

income elasticity for good 1, (7) and (8) can also be written as
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In comparing these to the own- and cross-price elasticities of the standard semilog model
(Table 1), both have an extra term involving own income elasticity (1 — ¢;3,/) which
allows more flexibility in the values the elasticities can take.

As with the semilog system, in the DS system the own- and cross- price

elasticities have the relative relationship within a given Marshalian demand,

€ijl€ik = VP VkP

though it has greater flexibility in the elasticity of a given price in own demand relative to

other demands,
€ijl€r; = [1 - eiM}/[l - EkM]

which depends on the income elasticities of both goods. In the semilog system, by
contrast, €;;/e; = 1.

While (6)-(8) indicate that the DS system has a greater flexibility in
representation of Marshallian elasticities, it still embodies some restrictions, due to its
relatively simple functional forms for estimation and relatively small number of
parameters to be estimated. From (9) and (10), it can be seen that the own- and cross-
price elasticities of demand for good 1 are related to the income elasticity; this

relationship is



As always in specifying empirical demand and valuation systems, the tradeoff is between
flexibility and relative ease of use and estimation. The DS system largely preserves the
convenience and usefulness for measuring access values of the semilog system, while

increasing its flexibility to represent price and income effects on demand.
Adding Quality Effects on Demand

A convenient way to represent quality effects is to allow the price coefficients to vary
with quality. In (5), one can define 7; = vjo + 7;. - z;, and substituting these into (5),
each site demand function is a function of own- and substitute site quality levels. With
this addition, the own-quality slopes are
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The sign of the Marshallian own-quality slope of demand, which is expected to be
positive, depends not only on the quality parameter -;,but also the magnitude of

normalized price p}' relative to (5; — ;).

The Marshallian own-quality elasticities,

€. =& &
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can be written as



€iz; = YizZi - (1 — Bipi/ag)pi — V/(Bi-vi)],

= %:.2; - (1 — ea)pi — V(Bi-7)], (12)

where «; is the budget share of good i. Again, in comparison with the semilog demand
system where quality enters in a similar way (Table 1), the semilog own quality elasticity
has additional terms involving €, and (3;-7;), which gives increased flexibility.

The Marshallian cross-quality slopes are given by

+ j ';
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and the Marshallian cross-quality elasticities are
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Similarly to the price effects, the cross-quality effect in the DS system has an extra term,
(1 — €;m), relative to the semilog system (Table 1). Combining (12) and (13) with (11),
the full set of relationships between quality, price, and income effects within a given

demand function are
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Welfare Measurement

As noted in the Introduction, a principal purpose of introducing the DS model is to
evaluate its use for the purposes of measuring access value, the take-it-or-leave-it
measure of the worth of recreational opportunities. This welfare measure, when applied
to the value of a particular site, is defined as a change in price from a reference level p!
to infinity, which causes quantity consumed to change from the baseline level x! to zero.

Welfare measures for smaller changes in price that leave the individual
consuming the good before and after the price change are also often of interest.
However, because they are straightforward to calculate in the DS model, as with other
models, so they are not pursued further in this paper. Instead, price elasticities of
whalewatching demand at the observed price and quality levels are presented. A similar
approach is taken for quality effects, since they too are straightforward to evaluate in the
DS and other models.

In general the integrability conditions for the model are satisfied for the following

ranges of the income (/3;) and own-price (v;) parameters:

(@B <0, v <0
b)Bi=0,v<0
()3 >0, v <0
(d) B > 0,7 > f

For the purpose of measuring access values, in the different parameter ranges the DS

model has characteristics similar to those of the other common demand systems. For
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parameter ranges (a) and (d), where sgn(v;) = sgn(3;), the model has finite “choke”
prices and access values, similar to the linear demand system or the LES system with
negative subsistence quantities. For parameter range (b), it resembles the semilog
demand system and the AIDS or Constant Elasticity systems with own price-elastic
demands, in that the “choke” price is infinite but access value is always finite. For range
(c), the model resembles the LES system with positive subsistence quantities in that

demand converges to a positive quantity as own price goes infinite.?
Choke Prices

When finite [i.e., when sgn(3;) = sgn(v;)], the normalized Hicksian choke price p; is
defined implicitly as

>-Bip]

n0
pZ‘”)e%+;Wp’“ + ﬁiueﬁf@?*p?)e T =0, (15)
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where sgn(3;) = sgn(;). The Hicksian demand now depends explicitly on the vector of
qualities z = (z1,...,z,) at different sites since the price coefficients v; = vjo + ;. - Z;
depend on quality. Using the indirect utility function (3) evaluated at initial prices p™°
and M" to identify the utility index w, the choke price p; can be written explicitly in

terms of observables as

~n __ _n0 1 M"—x{/y;
pi = pi + Yi—Pi ln{ M —x0/; } (16)
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where x{ = (3; — yi)e + B;M" is the Marshallian demand at initial prices.
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In contrast, where it exists and is finite [i.e., for (3; — v;)8; < 0], the normalized

Marshallian choke price p;"sets Marshallian demand to zero, so is defined implicitly as

m n n 70+Z’Ykpz n
Xl(pl p,i,Z,U) = (ﬂl - F)/i)e’yp' C ki + ﬁlM = 0,

and simplifies to a form similar to (16),
p" = p" + ﬁln{ﬂw} (17
Access Value and Consumer's Surplus

Access value for good i is defined as the change in expenditure resulting from the price

change p; —p?’; i.e.,
AV = e(p;, p.z,u) — e(pi?, p,z,u)
= 6@?7 pzli,Z,U,) — M. (18)

Using the indirect utility function (3) evaluated at initial prices p"° and M" to identify

the utility index u, the expenditure function evaluated at the choke price for good i is

n0

e(p;, p.z,u) = O(p,M) - [ N e%"@?7"70)ewwz“/jpj

+ (M + e”°+z”kpzo) I@ipI")] (19)
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Using (19) in (18) and simplifying, access value can be written as

_ Bitw ) Biti ) 0 M —x{/; i
AV = BEEM" — | BEEMT — X))y, } {M,L_Xg/ﬁi } (20)
The Marshallian consumer's surplus approximation to access value is the integral
of the Marshallian demand over the interval (p; )

0+27P]

AVM = pr;,’}) [(ﬂi — 7)€ + @‘Mn} dp;

which, when integrated and simplified, can be expressed as
AVM = x0/y; — @ M- ln{m} 21)

The DS Model with Two Constraints on Choice

The foregoing discussion developed the new DS system in terms of a money expenditure
function only, which is appropriate for standard money-constrained choice problems that
are used in most areas of demand analysis. When choice is constrained by time in
addition to money, as is likely with most recreational activities, a two-constraint version
of the model is needed. The properties of two-constraint choice models have been
discussed elsewhere (Bockstael, Hanemann, and Strand; Larson and Shaikh 2001).

particular, Larson and Shaikh (2001) have identified the parameter restrictions on
demand systems that follow from the assumption that time is costly. It is straightforward

to show that the Marshallian demand system in (5) satisfies these conditions.
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Two-constraint demand systems have two expenditure functions dual to indirect
utility: one is the money expenditure function given the time budget and utility level, and
the other is the time expenditure function given money budget and utility. In the DS
system with two constraints on choice, the money expenditure function is

of
I (22)

e(p"z,u) = B(p,M) - [ _ el
which is similar to (5), with two major differences:

(a) the normalized prices p!' in (5) are replaced by “full” prices plf =p’+p" -t
p" is the normalized value of time,® and t? = t;/4)(t,T) and T" = T/2)(t,T) are time price
and time budget normalized by the deflator ¢)(t,T), which is homogeneous of degree 1 in
(t.T);

(b) it has an additional term involving the normalized value of time and time
budget, — p" - T".

The Hicksian and Marshallian demands are obtained from the two-constraint
money expenditure function (22) in the usual way, viz., by differentiating with respect to
money price and initializing the utility term in terms of full budget and full prices. The
functional form of the Marshallian demand system in (5) is unaffected, though the money
prices p; and money budget M" are replaced by full prices p; and full budget M/.
Similarly, if the normalized shadow value of time is independent of budget arguments
(which satisfies the homogeneity requirements for it), the Hicksian and Marshallian
access values have the same functional form as (20) and (21), with M/ replacing M".*

Empirically, the marginal value of time can be treated in at least three ways. If
the individual is jointly choosing labor supply and recreation demands, the marginal
value of time is equated to an observable parameter (the marginal wage) which can be

used in its place (Becker; Bockstael et al.) The second is to identify it through auxiliary
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choices, such as the labor supply decision if that is predetermined with respect to the
recreation choices (Heckman; Feather and Shaw). The third is to treat it as endogenous
to the recreation choices and to estimate it jointly with recreation demands (McConnell
and Strand; Larson and Shaikh 2002). In this case, the marginal value of time function
must satisfy the requirements of choice subject to two constraints (Larson and Shaikh
2001).

The strategy here is to use a simple version of the latter approach, where the
normalized marginal value of time is constant, which satisfies the homogeneity
requirements with respect to money and time budget arguments. This also implies that
the “absolute” marginal value of time, scaled to the levels of actual budgets and prices,
varies across people if they have different prices or budget levels. The reason is that the

relationship between the relative and absolute marginal values of time is

p(p’taMaT) = pn ' 9(p,M)/Q/)(t,T), (23)

that is, the absolute marginal value of time is the relative marginal value of time scaled
by the ratio of the deflators used to normalize the money and time budgets (Larson and
Shaikh 2001). The end result is an estimate of the marginal value of time for each person
that is a constant dollar hour per hour, similar to the approach taken in Hausman et al.,
with the per-hour value varying across the sample according to each person's time and

money budgets.

Data

The data used to illustrate the model are from on-site intercepts of whale-watchers at

three sites in Northern California during the winter of 1991-92. Whalewatching is an
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increasingly-popular form of winter recreation in California and along much of the rest of
the western coasts of the United States and Canada.

The annual migration of gray whales along the coast, from summer feeding
grounds in the Bering Sea off Alaska to the Gulf of Mexico for calving, is well-
documented and publicized in the popular media. The southward migration runs closer
to shore and may last for a period of 1-4 weeks, peaking in mid-December in central and
Northern California. In the northward migration, whales travel farther offshore and its
peak occurs in March. In many ports along the coast, offering whalewatching cruises is
an important supplement to the winter incomes of fishing guides, party boat operators,
and other boat owners. In addition to regularly-scheduled boat cruises and tours in ports
up and down the coast, there are many opportunities for shore-based viewing of the
migration from major headlands and promontories.

Two sites, Point Reyes and Half Moon Bay, are in the San Francisco area, with
Point Reyes to the north of the Golden Gate Bridge and Half Moon Bay on the Pacific
coast south of San Francisco. The third site, Monterey, is further to the south, some 110
miles from San Francisco. As these data are discussed in some detail elsewhere (Loomis
and Larson), a relatively brief description is provided here.

Gray whale migration occurs on the Pacific coast in the winter months. The
southward migration from the Bering Sea to Mexico generally occurs from November to
January followed by several months of the return trip north. The whales travel very close
to the shore and swim at about 3-5 miles per hour, making them very visible from the
shore or a boat. Whales are viewed from the shore at Point Reyes, and predominantly
from boats in Half Moon Bay and Monterey. The boat trips normally consist of a 2-4
hour excursion to view whales. Since the survey took place during the whale migration,
which is in the winter months, most people were on the coast for the primary purpose of

whale watching and not summer beach activities.
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Each site visit has both a money price (p;) and a time price (t;). The money travel
costs include round trip vehicle cost per mile, plus other travel expenses. On-site time is
considered largely exogenous because most of the whalewatching at two of the three
sites, Monterey and Half Moon Bay, occurs on boat trips of fixed length. Variations in
onsite time are relatively small at the third site, Point Reyes, and in all cases
whalewatching was a day trip activity. Household income before taxes was the money
budget variable, and the respondent's time spent not working is the leisure time budget;
this is obtained from the average hours worked per week and the number of days of paid
vacation per year. The money and time budget levels for each individual were used as
the deflators, so normalized money price of site j is p = p;/M, normalized time price of
site j is t} = t;/T, normalized money and time prices are M" =1 = T", full prices are
p]f =pj + p" - t7, and full budget is M/ =1+ p", with p" estimated as a constant. The
quality variable, z;, is the number of whales vistors to each site expect to see. Table 2
provides a summary description of these variables for each of the three sites.

The system of Marshallian demands in (5), with full prices and full budget
variables, was estimated for the three Northern California whalewatching sites (Point
Reyes, Half Moon Bay, and Monterey) via maximum likelihood, using Gauss MAXLIK
Version 4.0.22. Because the data represented visitors intercepted at the sites (i.e., those
with positive quantities), the demand errors are likely to be truncated and this must be
taken account of in estimation. If one writes the latent demand for site i as

Yo+ vp]

x{(p! MP) = (B — vi)e + M/ + ¢, (23)

then a positive quantity x;(p/,M/) is observed when x}(p/,M/) > 0, or when

Yo+ 0]

€ > —[(Bi —vi)e + B;M].
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Due to the truncation, the expectation of ¢; is not zero and must be accounted for in

estimation (Heckman; Greene). The inverse mills ratio

E{eile; > 0} = ¢(w;)/P(-w;)

Yo+ p]

with w; = — [(8; — Vi)e + 3iM/], was included in an additional regressor in

estimating the demand systems (5) to assure that the estimation error has expectation

zero.?

Results

The estimation results are presented in Table 3. The estimates for all three sites satisfy
the integrability conditions for the parameters to represent a valid demand model, and the
price, quality, and budget parameters are highly significant for the Point Reyes and
Monterey trips, though not so for Half Moon. The model predicts the actual mean trips at
each site relatively well: the predicted (actual) trips for Point Reyes was 2.16 (2.25), for
Half Moon it was 1.15 (1.43), and for Monterey it was 1.64 (1.78). The Half Moon
results are not too surprising in light of the relatively small number of people intercepted
there (72) relative to the other sites, and the fact that there is less variation in the number
of trips taken there.® The Pt. Reyes and Monterey results, though, illustrate some of the
interesting features of the DS model.

First, the budget parameters (3; are the only ones whose sign directly indicates the
direction of impact of the corresponding demand slope. The significant coefficients (3,
and (3) indicate that demand at Point Reyes has a positive income effect, while at

Monterey it has a negative income effect. The finding of negative income effects is



18

relatively common in recreation demand, and probably reflects the cross-sectional pattern
of usage by different income groups at a point in time more than the changes in an
individual's consumption as his or her income increases.

For the quality and price parameters, the signs do not indicate the direction of
impact, since the own- and cross-elasticities with respect to quality depend not only on
the ;. but also on the income elasticities [equations (12) and (13)]. The own- and cross-
elasticities with respect to price depend on both the income and quality effects in addition
to the ~y;o[equations (9) and (10)], since y; = vjo + ;. - Z.

The sample means of elasticities at observed price, quality, and budget levels are
presented in Table 4.7 Because these are Marshallian elasticities, the price elasticities are
not perfectly symmetric, though their signs are.® All three demands are own-price
inelastic, with elasticities ranging from -.1 at Point Reyes to -.55 at Monterey. As noted
in the Introduction, it is this own-price inelasticity that invalidates the use of several
common and/or flexible functional forms for measuring access values. The pattern of
cross-price elasticities suggests that Point Reyes and Monterey are substitutes; the
insignificant Half Moon price coefficient means its substitution relationship with the
other sites cannot be determined.

The income elasticity estimates, interestingly, suggest that demand is highly
income elastic at all sites. As noted above, this is likely reflecting the relative patterns of
visitation by income groups in the different areas: in Point Reyes, those with higher
budgets for leisure activities (higher income, more leisure time, or both) go more
frequently, while in Monterey, those with lower leisure budgets go less often.

The own-quality elasticities for each site (Table 4) are all positive, as one would
expect, and are larger in magnitude than the cross-site quality elasticities. Magnitudes of
the own-quality elasticity for Point Reyes and Monterey, the two sites with significant

quality effects, are large relative to the cross-effects. The elasticities of .06 and .10,
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respectively, mean that a doubling of expected sightings would yield 6% and 10%
increases in trips taken to Point Reyes and Monterey, respectively.

A final point about the estimation results concerns the marginal value of time,
which is significant at the 10% level (1-tailed test) in Table 3. This parameter was
estimated with a squared transformation to impose the requirement that the marginal
value of time is nonnegative, and the estimate of -0.7778 implies that the relative
marginal value of time is .605 for everyone (Table 5). Rescaling by the ratio of deflators
M/T, the absolute marginal value of time is, on average, $5.87 per hour, and varies from
a low of $0.45/hr. to a high of $13.60/hr. in the sample.

Access value estimates are presented in Table 6. The consumer's surplus
estimates of willingness to pay for access at prevailing price conditions are $779 for
Point Reyes and $129 for Monterey, while the compensating variation estimates are $834
and $126, respectively. The magnitudes of the Hicksian and Marshallian measures are
close, reflecting a small overall income effect at each site, despite the fact that demands
are income elastic; also, the compensating variation measure is larger at Point Reyes,
since it is a normal good, while consumer's surplus is larger at Monterey, because of its
negative income effect. Measured relative to the mean number of trips, the access value
on a per trip basis is approximately $779/2.16 ~ $360/trip at Point Reyes, and about
$129/1.64 ~ $79/trip at Monterey. While the range in per-trip values may seem a bit
large, in fact it is consistent with the difference in prices of whalewatching and in income
elasticities at the two sites. Because most trips in Monterey are taken on boats, the price
of a whalewatching trip is higher than at Point Reyes; because of this, access value will
be lower at Monterey, all else equal. Similarly, the pattern of visitation being heavier

among those with lower leisure budgets at Monterey suggests willingness to pay is lower.
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Conclusions

This paper has introduced and illustrated a new empirical demand system that may be of
some use in measuring access values for recreation activities that are commonly price-
inelastic. Like the standard “semilog” demand system which relates demand covariates
to log-quantities, the “double semilog” or DS system generates finite access values, or
total consumer's surplus, estimates for own-price inelastic demands. This does not occur
with several other common and/or flexible demand forms, including the Almost Ideal
Demand System, the Linear Expenditure System, and the Cobb-Douglas demand models.
In addition, the DS model has somewhat greater flexibility than does the semilog system
to represent price, quality and income elasticities. Each demand has a separate income
coefficient in the DS model, while all income coefficients are the same in the semilog
model. Similarly, the price and quality elasticities in the DS model involve more
parameters, including the income elasticity in every case and, for own-quality effects,
additional parameters beyond that.

The model was developed initially for the standard single-constraint setting, then
extended to the case of two binding constraints on choice, as is often expected with
consumption of time-intensive goods such as recreation. The marginal value of time is a
parameter or function that can be estimated jointly within the model, provided it meets
certain homogeneity requirements implied by the two-constraint choice theory, or it can
be assumed to be predetermined as is common in many other recreation demand studies.

An illustration of the model is provided, using data on whalewatching in Northern
California at a system of 3 sites in relatively close proximity that one might expect act as
substitutes in consumption. The demand model satisfies the integrability conditions, and
estimates for two of the three sites, Point Reyes and Monterey, are highly significant with
the expected signs. The estimated marginal value of time is approximately $5.90 per

hour, with a range from $0.45/hr to $14/hr. Despite the fact that demands are highly
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price-inelastic, the model readily produces access value estimates of approximately $360
per trip for Point Reyes and $79 per trip for Monterey. Several characteristics of demand
that differ between the two sites suggest that this difference in per-trip values is plausible.

Several directions for further work are suggested by these results. It may be
possible to estimate a more flexible individual-specific normalized value of time within
the model, consistent with the two-constraint choice requirements. Using a count rather
than continuous demand error may improve the estimates further, though the available
count data estimators for systems of more than two goods are somewhat inflexible with
respect to the cross-equation covariances. Finally, it may also be possible to further
improve the flexibility of the demand model itself through the introduction of additional
parameters, though this may come at the cost of greater difficulty in using the model to
evaluate access values analytically or in finding global maxima of the likelihood

function.
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Footnotes

1. “Choke” prices are the minimum prices that choke off demand to zero; thus they are
the price on the demand curve (whether Hicksian or Marshallian) for which
quantity equals zero. In measuring access values, Hicksian choke prices are used;
they are infinite for models where quantity consumed approaches zero
asymptotically with price.

2. This latter case is the problemmatic one, for all demand systems, as it implies the
good is a necessity, which is implausible for specific recreation activities; thus
one would not expect to see this case in practice.

3. The normalized marginal value of time, p"(p,t,M,T), is the ratio of the marginal utility
of time and the marginal utility of money in the normalized choice model and, as
such, is potentially a function of all variables in the choice problem. Larson and
Shaikh (2001) show that p"(p,t,M,T,s) is homogeneous of degree zero in (p,M),
(t,T), and (p,t, M,T).

4. With p"independent of the budget arguments, one can measure the money
compensating variation of welfare change either as a difference in the money
expenditure function or as a difference in full expenditure, since the term p" - T"
does not change with money prices.

5. Because the truncation was at the same threshold, 0, it is not possible to estimate a
scale coefficient so it is normalized to 1.

6. This was typically the case for other demand models explored using these data as
well.

7. To give a sense for variation in these elasticities due to differences in demand
covariates, the standard errors of the sample means are also provided in Table 4.

8. The corresponding Hicksian elasticities (not shown) are symmetric as expected and

required by theory.
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Table 1. A Comparison of Marshallian Elasticities in the Semilog and
Double Semilog Models

Elasticity _ Semilog Double Semilog
Income(e;;,) GM" GiM"/x;
Own Price (i) vipy Yip; (1 — €im)
Cross Price (j) VP Yip; (1 — €im)
Own Quality (i) Vi-Zip} YizZi - (1 — €im)[p; — 1/(Bi-7i)]

Cross Quality (j) Vj-2iD Yj22iPj - (1 — €im)



Table 2. Quantities, Prices, and Qualities by Site

Variable Mean Std Dev Minimum Maximum

Point Reyes (N=258)

Actual Trips 22519  2.8230 1.0000  40.0000
Normalized Money Price  0.0010  0.0036 0.0000 0.0488
Normalized Time Price 0.0005  0.0005 0.0000 0.0049
Expected Sightings 4.1938  6.8532 0.0000  50.0000
Predicted Trips 2.1616  0.5450 -0.7509 5.0324

Half Moon Bay (N=72)

Actual Trips 1.4306 1.0322 1.0000 8.0000
Normalized Money Price  0.0015  0.0019 0.0003 0.0136
Normalized Time Price 0.0008  0.0002 0.0004 0.0015
Expected Sightings 9.6944  9.7730 0.0000  50.0000
Predicted Trips 1.1572  0.0484 1.0942 1.4350

Monterey (N=102)

Actual Trips 1.7843  2.4439 1.0000  24.0000
Normalized Money Price  0.0022  0.0042 0.0001 0.0402
Normalized Time Price 0.0009  0.0006 0.0001 0.0028
Expected Sightings 13.0588 10.6006 0.0000  50.0000
Predicted Trips 1.6444  0.6305 -1.1666 3.4718



Table 3. Estimation Results
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Asymptotic
Variable Parameter _Estimate Std. Error

Pt. Reyes Price Y10 16.3725 5.464
Pt. Reyes Sightings Y1z -0.0637 -9.664
Pt. Reyes Budget Slope o3t 6.8902 2.214
Half Moon Price Y20 3.8157 1.227
Half Moon Sightings Yoz -0.0026 -0.297
Half Moon Budget Slope 52 1.7373 1.208
Monterey Price Y30 -17.4486 -5.936
Monterey Sightings Y32 -0.0350 -4.968
Monterey Budget Slope B3 -6.3731 -2.125
Value of Time Constant /Pt -0.7778 -1.518

Pseudo R? 0.421

Mean log-likelihood -6.05

Number of cases 432



Table 4. Price, Income, and Quality Elasticity Estimates

Elasticity of With Respect to Price at With Respect
Trips to Point Reyes Half Moon  Monterey to Income
Point Reyes -0.1009 -0.0336 0.1960 6.1263
(0.0230)° (0.0071) (0.0284) (0.104)
Half Moon -0.0884 -0.1193 0.0767 3.7578
(0.0275) (0.0294) (0.0155) (0.032)
Monterey 0.2095 0.1499 -0.5571 -14.1127
(0.0448) (0.0265) (0.1503) (1.262)
Elasticity of With Respect to Expected Sightings at
Trips to Point Reyes Half Moon Monterey
Point Reyes 0.0612 0.0000 0.0015
(0.0053) (9.62E-06) (0.0002)
Half Moon 0.0004 0.0052 0.0007
(7.22E-05) (0.0008) (0.0001)
Monterey -0.0021 -0.0001 0.0961
(0.0005) (3.37E-05) (0.0216)

“Standard errors of the means in parentheses



Table 5. Normalized and Absolute Shadow Values of Time (N=432)

Shadow Value of Time Mean Std Dev Minimum Maximum
Normalized 0.6050 0.0000 0.6050 0.6050
Absolute ($/hr) 5.8698 3.2893 0.4507 13.6010

Table 6. Hicksian and Marshallian estimates of Access Value

Welfare Measure of Access Value

Site? Consumer's Surplus Compensating Variation
Point Reyes 779.09 833.98
(36.74)" (42.56)
Monterey 128.71 125.58
(6.96) (6.72)

“Estimates not provided for Half Moon as demand coeffients are insignificant.
bStandard errors of the mean in parentheses.
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