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Valuation of agricultural insurance contracts is an important issue in agricultural finance.

More accurate valuation methods can help make private sector involvement in the agri-

cultural insurance industry more efficient by diffusing information and reducing excess

profits or losses on insurance programs. Perhaps more importantly, if the government is

heavily involved in offering and supporting agricultural insurance, as in the U.S., bet-

ter insurance valuation methods can help administrators make more economically sound

choices when they set premiums for insurance contracts.

There are several existing approaches to valuing agricultural insurance contracts. The

oldest, and probably still the most commonly used method in practical applications, is to

value premiums at the present value of the expected indemnity on the insurance contract.

This present value method is flexible and fairly straightforward computationally but

requires a somewhat arbitrary assumption about what discount rate to use in order to

compensate insurers appropriately for taking on the indemnity risk. More recently, option

pricing models from the finance literature have been proposed as a way of overcoming

this weakness and pricing the risks borne by agricultural insurance providers (Turvey

and Amanor-Boadu 1989; Turvey 1992; Stokes, Nayda and English 1997; Yin and Turvey

2003; Stokes and Turvey 2003). The option pricing approach is motivated by the fact that

the indemnity on an insurance contract is essentially equivalent to the payoff on a suitably

defined put option, and so financial option valuation methods can be applied to the

valuation of insurance contracts. The basic Black-Scholes option pricing model has been

applied to agricultural insurance valuation (Turvey and Amanor-Boadu 1989; Turvey

1992), and more recently the arbitrage-based derivative asset pricing models for non-

traded goods has been suggested as a better alternative (Yin and Turvey 2003; Stokes and

Turvey 2003). A final approach that has been used to price indemnity risk in agricultural

insurance models is the general equilibrium representative agent model of Lucas (see Cao

and Wei 2004; and Richards, Manfredo and Sanders 2004). In this model insurance

is priced to include an equilibrium risk premium that is just sufficient to ensure that

no insurance will be purchased given the risk aversion level of the representative agent,

usually assuming constant relative risk aversion preferences and log-normally distributed

risks.

In this paper we argue that all of these existing methods for valuing agricultural

insurance contracts have problems. The present value approach is not a true equilibrium

model because the discount rate (equilibrium price of risk) is an arbitrary and undefined
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parameter. Arbitrage based option pricing models and the Lucas representative agent

model are true equilibrium models but rely on the assumption of complete markets.

That is, these models assume either implicitly or explicitly that the insurance contract

is a redundant asset whose returns can be replicated with a portfolio of other already

existing financial assets, or in the case of the Lucas model that there will be no trade on

insurance contracts even if they are engineered and introduced. For a variety of reasons

that will be explained further below, we believe this complete markets assumption is

particularly unsuitable for pricing agricultural insurance. We also argue that to make

any real progress in developing improved valuation models for agricultural insurance

there is a need to explicitly account for the fact that risk markets in agriculture are

inherently incomplete, and that any agricultural insurance contract being valued will

alter the non-diversifiable risk profile of a significant number of agents.

This paper has three main objectives. The first is to critique the major approaches be-

ing used currently to value agricultural insurance contracts, highlighting their strengths

as well as their limitations and weaknesses. The second objective is to provide an example

of an alternative valuation method that may help overcome some of the problems with

existing methods by accounting explicitly for the incompleteness of the market struc-

ture for agricultural risks. The third objective is to present results from a simulation

study designed to highlight how significant agricultural insurance pricing errors can be

in various situations if the wrong valuation method is applied. The paper proceeds by

addressing each of these objectives in turn.

A Critique of Commonly Used Methods For Pricing Agricultural Insurance

Several methods are currently available to price agricultural insurance contracts. In this

section of the paper we outline some of the most frequently used methods and discuss

their advantages and disadvantages. To keep things simple and concrete we focus the

discussion on crop revenue insurance and begin with an outline of a basic crop revenue

insurance model.

Let time be indexed by t and let:

Yt = an insurable crop revenue index that is realized and observed at harvest period

t when farm revenues are realized and any insurance indemnities are paid;

h(Yt) = the density function for Yt conditional on information available at t − 1;
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Gt = the guaranteed level of the crop revenue index under the insurance contract;

Pt−1(Gt) = the planting period value of an insurance contract written on Yt with

guarantee level Gt;

rt = the risk free rate of interest from t − 1 to t;

βt = 1/(1 + rt) is a the risk free discount factor corresponding to rt;

γt = a loading factor reflecting a risk premium and insurance transaction costs from

t − 1 to t; and

Et = expectation conditional on information available at time t.

The crop revenue insurance contract is a contingent claim that pays out at harvest

time t the difference between a guaranteed level of the revenue index, Gt, and the realized

harvest value of the revenue index, Yt, but only when Yt falls below Gt. The insurance in-

demnity can therefore be written as max(Gt−Yt, 0) while the premium value is Pt−1(Gt).

We assume that the probability distribution h(Yt) is known by all participants and that

insurers can observe farmer effort.1 We now outline and discuss existing models for com-

puting Pt−1(Gt).

Present Value Models

One of the oldest, simplest, and still most commonly used methods for valuing insurance

contracts is to price them at the present value of the expected indemnity on the contract.

This implies:

Pt−1(Gt) = (1 + γt)βtEt−1 [max(Gt − Yt, 0)]

= (1 + γt)βt

∫ Gt

0

(Gt − Yt)h(Yt)dYt.(1)

Notice that βt discounts the expected indemnity back to the planting period at the

risk-free rate, and γt is a loading factor that allows an additional return to insurers

that compensates them for taking on any non-diversifiable risk incurred by holding the

insurance contract and/or for the transactions costs of selling contracts and processing

claims.2 While γt is usually positive or zero it is possible that γt < 0 which would imply

1Alternatively, think of Yt as area revenue so that individual farms have no control over the index.
2Some of the insurance literature models are static and so βt is set to one. However, it would be

inappropriate to ignore discounting in the case of agricultural insurance because of the significant time

lapse often observed between taking out the insurance and paying the premium at planting time and

receiving any indemnity at harvest.
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that the premium does not cover the present value of expected indemnities (the insurance

is being subsidized). This would normally occur only when the government is operating

the insurance program or subsidizing private sector participation. Of course, if we set

γt = 0 (no loading factor) then (1) gives the actuarially fair insurance contract value.

The present value model (1) has some significant advantages for pricing agricultural

insurance. Perhaps the most important is that it is extremely flexible because the for-

mula is straightforward to compute numerically for just about any specification of the

underlying probability distribution h(Yt). The approach can therefore accommodate a

wide range of probability distributions for the insurable revenue index, depending on

what the data actually suggest about the distribution of Yt. Furthermore, the actuarially

fair present value formula (1) with γt = 0 can be rationalized as an equilibrium insurance

premium in a competitive insurance market where insurers are risk-neutral and incur

zero transaction costs (see Rothschild and Stiglitz 1976). In this case, competition under

risk neutrality drives the insurance value to the actuarially fair level. Hence, under the

special assumption that γt = 0 the present value formula (1) prices insurance contracts

as if they were determined in a competitive equilibrium of risk-neutral insurers who are

not subject to transaction costs.

Nevertheless, the present value approach (1) has some fairly obvious weaknesses as

well. Most importantly, the loading factor γt is a free parameter that must be specified

exogenously and somewhat arbitrarily. The loading factor will depend on the equilibrium

price of any non-diversifiable risk that must be taken on when holding the insurance

contract, and on the magnitude of insurer costs. Without further information on the

size of these factors there is no way to pin down the value of γt. Put another way, the

actuarially fair insurance market equilibrium model arising from setting γt = 0 is highly

unrealistic because agricultural insurance contracts typically entail non-diversifiable risk

that must be priced (e.g. Chambers 1989; Skees and Reed 1986; Miranda and Glauber

1997; Duncan and Myers 2000). Therefore, equation (1) does not, in general, provide a

well-defined value for the insurance premium which is consistent with a realistic model

of market equilibrium.

It will be useful for comparisons that follow to derive the present value formula for

the special case of a lognormally distributed revenue index. Under the lognormality

assumption, the integral in (1) can be evaluated to give (see the Appendix of Rubinstein,
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1976):

(2) Pt−1(Gt) = (1 + γt)βt

[
GtN

(
gt − µt

σt

)
− eµt+0.5σ2

t N

(
gt − µt − σ2

t

σt

)]
where N(.) is the cumulative distribution function for the standard normal, gt = log(Gt),

and µt = Et−1(yt) and σ2
t = V art−1(yt) are the mean and variance of yt = log(Yt),

conditional on information available at planting time. This formula has the advantage

that it is easy to compute numerically without resorting to numerical integration or Monte

Carlo methods because N(.) is already compiled and available in most computational

software programs. However, while {βt, Gt, µt, σt} are observable or can be estimated

from past data, the problem of indeterminancy with respect to γt remains.

Despite the fact that the present value model (1) has a free parameter γt and is not

generally consistent with a realistic model of insurance market equilibrium, this approach

continues to be used in many applied studies trying to value agricultural insurance con-

tracts. It is used because it is straightforward computationally and allows for a lot of

flexibility in the form of the underlying probability distribution. In such cases a value for

γt is assigned arbitrarily and sometimes sensitivity analysis is done to determine how the

insurance premium may change with different assumed loading factors. However, dissat-

isfaction with having to define γt arbitrarily has led to a search for alternative insurance

valuation models that do not have this free parameter feature.

The Black-Scholes Model

A European put option gives the buyer the right, but not the obligation, to sell an

underlying asset at a pre-specified strike price and future maturity date. As such, the

contingent payoffs embodied in a put option replicate the payoffs under an insurance

scheme, where the insurance guarantee level is the strike price and the insurable revenue

index plays the role of the underlying asset price. This insight has led to several ap-

plications of the Black-Scholes put option pricing model to value agricultural insurance

contracts (e.g. Turvey and Amanor-Boadu 1989; and Turvey 1992).

The advantage of the Black-Scholes model is that it is a fully articulated equilibrium

asset pricing model, and so it will presumably value options (and hopefully insurance

contracts) at what their equilibrium value would be in competitive financial markets.

The equilibrium notion behind the Black-Scholes model is that if the underlying asset
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the option is written on can be traded continuously on liquid security markets, then it

is possible to construct a continuously adjusted portfolio consisting of the underlying

asset and a risk free bond that exactly replicates the payoff on the option. Then in

competitive equilibrium there should be no pure arbitrage possibilities and so the value

of the replicating portfolio should exactly equal the value of the put. Imposing this

restriction, assuming that the underlying asset price follows a geometric Brownian motion

(so that the price innovation between any two discrete points in time is lognormally

distributed), and assuming there are no transaction costs to trading, leads to the well-

known Black-Scholes formula for the value of a put option written at time t = 0 with a

maturity date of t = 1 (Black and Scholes 1973):

(3) Pt−1(Gt) = βtGtN

(
gt − yt−1 − rt + 0.5σ2

t

σt

)
− Yt−1N

(
gt − yt−1 − rt − 0.5σ2

t

σt

)
.

It is interesting to note that the present value formula under lognormality (2) will be

equivalent to the Black-Scholes formula (3) as long as γt = 0 and µt = yt−1 + rt − 0.5σ2
t .

The first condition implies that there are no risk premia or transaction costs, while the

second implies that the underlying asset price grows at the risk-free rate of interest rt.
3

This is just the well-known “risk neutral valuation” result that the Black-Scholes formula

can be derived by assuming equilibrium in an economy with risk-neutral investors and

no transaction costs, so that all assets are expected to earn the risk-free rate of return.

Then the option value can be obtained by discounting the expected value of the option at

maturity back to the present at the risk-free rate, and then imposing the restriction that

the return on holding the underlying asset also is equal to the risk free rate. It is important

to note that risk neutral valuation does not actually require the true observed growth

rate in the underlying asset value to be equal to the risk-free rate. The underlying asset

may follow any growth rate (consistent with lognormality) but the equilibrium option

value is priced as if the return on the underlying asset equals the risk-free rate. Hence,

risk-neutral valuation is just a simple means of deriving the Black-Scholes formula.

Despite the fact that the Black-Scholes model is a fully articulated equilibrium asset

pricing model, has no free parameters, and is easy to compute, there are several as-

sumptions underlying the model that make it a very questionable approach to valuing

agricultural insurance. First of all, lognormality may not be an appropriate distributional

3To see this, note that under lognormality Et−1(Yt/Yt−1) = eµt+0.5σ2
t−yt−1 . Setting this equal to ert

and taking logarithms implies that µt = yt−1 + rt − 0.5σ2
t .

7



assumption for the insurable revenue index used in the insurance scheme. It is possible

to extend the original Black-Scholes formula to account for non-lognormality (e.g. Mer-

ton 1973; and Rubinstein 1994), though this typically requires numerical integration or

Monte Carlo methods for computation. The simple and commonly used Black-Scholes

formula (3) would, of course, not be appropriate in this case.

Second, and more importantly, the Black-Scholes model prices options (insurance

contracts) as if their value is being determined in a liquid market where agents are

holding the options for investment purposes and can either buy or sell them costlessly

in a liquid secondary market. These assumptions may be reasonable when the model

is being used to price liquid exchange-traded options written on underlying assets that

themselves can be traded freely on liquid financial markets. But this is not the case

for agricultural insurance. Agricultural insurance must be tailored to the needs of local

areas, or even individual farms, and so the costs of engineering these contracts is much

greater than that of standardized financial options. Furthermore, insurance contracts are

issued by insurers and purchased by farmers, and there is generally no secondary market

for trading these contracts. Hence, it is not at all clear that pricing insurance contracts

“as if” frictionless secondary markets exist, as in the Black-Scholes approach, can lead

to reasonable models for agricultural insurance valuation.

Third, and perhaps most importantly, the assumption that the underlying index the

option is written on is the price of an asset that can be continuously traded on liquid

financial markets is fundamental to the notion of equilibrium embodied in the Black-

Scholes formula. Agricultural revenue insurance is written on an individual farm crop

revenue index (individual farm-based insurance) or an area revenue index (area-based in-

surance). Not only are these not the prices of continuously tradeable assets, but because

of the seasonality of harvests these indices take on a value of zero at all time periods ex-

cept the harvest period, so that the standard geometric Brownian motion assumption for

the underlying index must be violated. Clearly, crop revenues are determined seasonally

by technology, management, and the supply and demand for the underlying crops, not

by investors holding assets for investment purposes. If an option (insurance contract) is

written on an index which is not the price of an asset held for investment purposes and

traded on liquid financial markets, as is surely the case with agricultural insurance, then

the equilibrium notion underlying the Black-Scholes formula (3) breaks down.
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Arbitrage Based Option Pricing Models Assuming Nontradeability

The issue of “nontradeability” of the asset underlying an option (insurance contract) has

been given considerable attention in the finance literature (e.g. Hull 1993; Merton 1998)

and has also been discussed in the agricultural insurance literature (Stokes, Nayda and

English, 1997; Stokes and Nayda, 2003; and Yin and Turvey, 2003). One way to resurrect

the Black-Scholes no arbitrage arguments when the underlying index is not the price of

a tradeable asset is to assume that, even though the underlying index itself is not the

price of a tradeable asset, there exist a complete set of continuously tradeable assets that

allow agents to construct a portfolio whose risk tracks or spans the uncertainty in the

nontradeable index (Dixit and Pindyck 1994; Merton 1998). This spanning portfolio is

often called the “spanning asset”.

Given the existence of a spanning asset we can construct a (tradeable) portfolio con-

sisting of the spanning asset and a risk-free bond that can be continuously adjusted

to exactly replicate the return on the option (insurance contract). Or if the return on

the option cannot be exactly replicated (i.e. there is a “tracking error” between the re-

turn on the tradeable portfolio and that on the option), the “tracking error” component

is priced at zero under a complete markets assumption because idiosyncratic risks are

not valued in complete market economies (Merton 1998). Hence, in equilibrium the no

arbitrage condition implies that the value of the portfolio and the value of the option

(insurance contract) must be equal. This equilibrium condition, combined with the stan-

dard assumption that the underlying revenue index evolves continuously as a geometric

Brownian motion, leads to the following formula for the insurance value at time t − 1

(Hull 1993; and Merton 1973):4

(4) Vt−1(Gt) = βt

[
GtN

(
gt − µt + λtσt

σt

)
− eµt+

1
2
σ2

t−λtσtN

(
gt − µt + λtσt − σ2

t

σt

)]
where λt is the so-called “market price of risk” for the spanning asset, which is a measure

of the excess equilibrium expected return of the spanning asset above the risk free rate.

4Because crop revenue is seasonal and not observed continuously, the only interpretation that really

makes sense for this geometric Brownian motion assumption is that the underlying index represents

the expected harvest time revenue conditional on information available at the current t. Then this

expectation evolves continuously over time as new information becomes available and, at the harvest

date, the expected revenue equals the actual revenue.
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It is interesting to note that if the market price of spanning asset risk is zero (λt = 0),

which implies that the spanning asset risk is completely diversifiable and so the expected

equilibrium rate of return on the spanning asset is just the risk-free rate, then (4) reduces

to the simple present value formula (2) with γt = 0. Hence, when the underlying index

is not the price of a tradeable asset but its risk can be tracked by a spanning asset

whose risk is completely diversifiable, then the insurance contract can be priced according

to its discounted expected present value (with discounting occurring at the risk-free

rate). Also notice that if the underlying index was the price of a traded asset then

the expected equilibrium return on holding this asset would have to equal (rt + λtσt)

because the market price of risk for the spanning asset and the market price of risk

for the asset whose price is the underlying index must be equal by definition. That is,

Et−1(Yt/Yt−1) = eµt+0.5σ2
t−yt−1 = ert+λtσt which implies µt − λtσt = yt−1 + rt − 0.5σ2

t .

Substituting this result into (4) returns the Black-Scholes formula (3) for a tradeable

underlying asset (as expected).

The no arbitrage option valuation formula (4) for an option (insurance contract)

whose underlying index is not the price of a tradeable asset overcomes one of the key

weaknesses of the Black-Scholes formula because it does not require the underlying index

to be the price of a tradeable asset. Equation (4) is also computationally straightforward

to implement. Nevertheless, (4) is not without problems of its own for pricing agricultural

insurance contracts. First, (4) contains a free unobservable parameter in the market price

of risk for the spanning asset, λt. So to compute an insurance value using (4) then λt

has to be determined. This is usually done by imposing some equilibrium asset pricing

model, such as the Capital Asset Pricing Model (CAPM) or the Arbitrage Pricing Model

(APT) (e.g. Yin and Turvey 2003; and Stokes and Turvey 2003). For example, if the

price of the spanning asset is determined according to the CAPM, then it can be shown

that λt = (ρt/σmt)(αmt − rt), where ρt is the correlation coefficient between the spanning

asset and the market portfolio returns, σmt is the standard deviation of the return on

the market portfolio, and αmt is the expected return on the market portfolio. In this

case, λ can be estimated from data on the underlying index and the market portfolio

return, without requiring any data on the spanning asset return. Notice, however, that

this approach requires the assumption of an equilibrium asset pricing model for all assets

in the economy which is much more restrictive than the simple no-arbitrage argument

underlying the Black-Scholes model.
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Even if λt can be determined using the CAPM or APT, (4) still has problems for

pricing agricultural insurance. Clearly, the choice of equilibrium model to use to compute

λt, and the assumptions used to implement it, will have an influence (perhaps a big

influence) over the insurance valuation result. And if these equilibrium models have to

be called on anyway to value the market price of risk, then why not just use them to

value the insurance contract directly? There may be little real benefit to filtering the

valuation through a no arbitrage argument if, say, the CAPM has to be used to value the

market price of risk anyway. Also, equation (4) still implies that the options are being

priced as if their value is determined in a liquid market where agents are holding the

options for investment purposes and can either buy or sell options costlessly in a liquid

secondary market. As discussed earlier, these assumptions may be reasonable for pricing

liquid exchange-traded financial options but are more problematic for pricing agricultural

insurance contracts.

Most importantly, (4) assumes that an appropriate spanning asset (or portfolio) is

available. The problem with spanning in the case of crop insurance is that the required

contingent claims generally do not exist. It is true that futures and options markets exist

for many crops, and state average yield futures and options markets have been available

over some periods. But these assets will not allow perfect replication of the risk associated

with revenue outcomes for individual farms, or even county areas. Available contingent

claims markets just do not appear extensive enough to allow replication in the case of

crop insurance revenue indices. Furthermore, there is somewhat of a tautology in the

spanning argument because if a spanning portfolio of continuously tradeable contingent

claims exist then the insurance contract itself is redundant. That is, the spanning port-

folio would itself allow replication of the option (insurance) return, and the transaction

costs of trading the contingent claims would likely be lower than the costs of operating an

insurance program.5 So using (4) [or for that matter (3)] to price agricultural insurance

implies that the insurance contract is redundant (downside revenue risk can be insured

with existing contingent claims and insurance contracts are not required to help complete

the market structure (Merton, 1998). This assumption seems particularly untenable in

the case of agricultural insurance. Is it really true that farmers can completely insure

their revenue risk without the insurance contract? If so, then why has there been so

much government policy directed at engineering and innovating new agricultural insur-

5This same argument applies equally to the Black-Scholes model for tradeable assets.
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ance contracts? If no spanning portfolio is available then the introduction of agricultural

insurance contracts will alter the non-diversifiable risk profile of a significant number

of investors (farmers) and the arbitrage based option pricing equation for nontradeable

assets (4) will no longer be applicable.

Lucas Representative Agent Equilibrium Models

One final class of models that has been used to value agricultural insurance contracts

is the consumption-based Lucas representative agent model (Lucas, 1978). This model

prices contingent claims (including insurance) using an equilibrium pricing kernel derived

from a well-defined dynamic optimization problem and the imposition of market clearing

conditions. The equilibrium pricing kernel takes the form:

(5) Pt−1(Gt) = δtEt−1

[
U ′(Ct)

U ′(Ct−1)
max(Gt − Yt, 0)

]
where U(.) is a concave von Neumann-Morgenstein utility function, δ is consumer’s time

preference parameter, Ct is consumption in period t (which depends on realized Yt). This

model is a representative agent model and the utility function is that of the representative

agent. Notice that if the representative agent is risk neutral then (5) just reduces to the

present value formula (1) (with γt = 0). But if the representative agent is risk averse

then U ′(Ct)/U
′(Ct−1) represents a risk adjustment factor that compensates investors for

taking on the risk of issuing the insurance contracts [in much the same way that the

market price of risk adjusts the arbitrage based model (4)].

There are several problems associated with the general equilibrium pricing kernel

(5). First of all, whose consumption should be used to compute the marginal utility of

consumption? Should it be aggregate consumption in the economy or consumption of

farmers or some local agricultural region?6 There is no reason why it should be farm or

regional consumption because all agents in the economy can invest in insurance by issuing

insurance contracts or investing in insurance companies. And yet aggregate economy-

wide consumption tends to have very little correlation with agricultural crop revenues in

the U.S. and so applying (5) using aggregate economy-wide consumption tends to just

reduce to the risk neutral present value formula (1). Another problem in computing the

marginal utility of consumption is that a specific form must be assumed for the utility

6It have been done both ways(see Cao and Wei 2004; and Richards, Manfredo and Sanders 2004).
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function. Clearly, insurance pricing results may be sensitive to which utility function and

consumption variable are included in the analysis. More importantly, while the equilib-

rium pricing kernel (5) is not based on arbitrage arguments, and so does not require

spanning, it is a single good representative agent exchange model in which no trades

of any commodity or asset occur in equilibrium (no trades being necessary because all

agents are identical). Hence the model generates equilibrium pricing kernels for contin-

gent claims but the claims are redundant since they are never traded in equilibrium. Put

another way, the Lucas general equilibrium asset pricing model is implicitly a complete

markets model and so prices insurance contracts assuming they are redundant assets.

We have already argued above that this complete markets assumption is likely to be very

unreasonable in the case of crop insurance. It would appear that the introduction of crop

insurance will alter the non-diversifiable risk profile of a significant number of investors

(i.e. farmers) and so any model that prices agricultural insurance as a redundant asset

is unlikely to give appropriate answers to the valuation question.

Summary

We have examined several existing methods for pricing agricultural insurance contracts

and found them wanting to various degrees. The present value model is simple and

flexible but has a free parameter and is not consistent with a reasonable model of mar-

ket equilibrium in the insurance market. The Black-Scholes model is a fully articulated

equilibrium model with no free parameters but requires the insurance contract to be a

redundant asset and the underlying index for the insurance contract to be the price of a

tradeable asset. Neither of these assumption is very palatable in the case of agricultural

insurance. The arbitrage based model for claims on non-tradeable assets overcomes some

of the weaknesses of the Black-Scholes model but has a free parameter in the market

price of risk, and still assumes that the insurance contract is a redundant asset (via

spanning). The general equilibrium Lucas model does not rely on spanning and arbi-

trage but is sensitive to required assumptions about utility and consumption, and is

implicitly a complete markets model so that the insurance contract is again priced as

if it were a redundant asset. Indeed, all of these models (except for the present value

model) price insurance contracts as if they were freely traded on liquid secondary mar-

kets and either implicitly or explicitly price insurance as if it were a redundant asset in
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a complete markets model. We view these as significant weaknesses in the context of

agricultural insurance valuation and in the next section we begin the task of developing

an insurance valuation model that relaxes the assumption of complete markets and rec-

ognizes that agricultural insurance contracts are issued by investors (or the government)

but held by farmers, and that they cannot usually be traded on liquid secondary markets.

Incomplete Markets Models For Agricultural Insurance Valuation

We have argued above that complete market models of insurance valuation, which price

insurance as a redundant asset are not completely appropriate for most agricultural in-

surance valuation problems. In this section we introduce two alternative models that

allow for incomplete markets. Both models are based on a discrete-time Lucas exchange

economy with an infinite horizon and a single nondurable consumption good serving as

numeraire. However, we allow for agent heterogeneity and uninsurable background risk

so that insurance valuation occurs in an incomplete markets environment. We begin with

a benchmark model in which insurance contracts can be engineered and traded costlessly

by heterogenous agents operating in a competitive market. The heterogenous agent as-

sumption distinguishes this model from the Lucas representative agent model and allows

insurance to be a non-redundant asset which helps complete the market structure. Sec-

ond we extend the benchmark model by assuming that insurance contracts are costly to

engineer and administer so that they cannot be freely traded among individuals, (i.e.,

there is no liquid secondary market for trading insurance). This creates a role for insur-

ance companies to act as market intermediaries between farmers and the capital markets.

The second model is more consistent with the way agricultural insurance markets work

in practice.

A Model With Liquid Secondary Market For Insurance

In the model with liquid secondary market, markets are not complete (there is uninsurable

background risk), and agricultural insurance is not a redundant asset. However, there is

a liquid secondary market in which insurance contracts can be traded costlessly among

individuals, with no restrictions on who insures and who are the insurers (i.e., contracts

can be bought or sold by any agent in the economy). This model is characterized by
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Assumptions 1.1-1.4.

Assumption 1.1. There are n agents indexed i = 1, . . . , n who maximize the same

objective function E0 [
∑∞

t=0 δtU(Cit)], but are heterogeneous in their endowment of unin-

surable random “wage” income Zit and insurable random “farm” income Yit realized at

each period.7 Note that Yit can be zero which would indicate that agent i has no insurable

income (and is not a farmer).

Assumption 1.2. There are n + m + 1 assets in the economy. These include n

insurance contracts written on agent i’s insurable income Yit for i = 1, . . . , n, a risk-free

bond with exogenously given fixed gross return Rt = (1+rt), and m stocks indexed by j.

The insurance contract written on agent i’s insurable income at time t, Yit, has a period

t−1 price of Pi,t−1 at t−1 and a random current value of Vit = max(Git−Yit, 0), where Git

is the insurance guarantee on Yit. Let Pt−1 = (P1,t−1, . . . , Pn,t−1) and Vt = (V1t, . . . , Vnt)

denote n-dimensional vectors of t − 1 and t-period insurance values. At time t, stock j

pays a net dividend of Djt and has ex-dividend price P s
jt. Let Dt = (D1t, . . . , Dmt) and

P s
t = (P s

1t, . . . , P
s
mt) denote m-dimensional vectors of the dividend and price processes.

Assumption 1.3. In equilibrium, the bond and all insurance contracts are assumed

to be in zero net supply, and each stock is assumed to be in fixed positive supply which

is normalized to be one.8 Then let Ds
t = 1

n

∑m
j=1 Djt denote the aggregate dividends per

capita.

Assumption 1.4. For tractability and consistent with distributional assumptions

in most other non-arbitrage base option valuation models, assume constant relative risk

aversion preferences (CRRA) and that (Cit, Ykt) and (Ds
t , Ykt) are joint lognormally dis-

tributed respectively for all i and k.9 Also assume that insurable and uninsurable risks

are uncorrelated, Covt−1(Zit, Ykt) = 0 for all i and k.

Under these assumptions an equilibrium insurance valuation formula can be derived

7We will refer to Zit as “wage” income and Yit as “farm” income but notice that the key distinction

is that Yit is insurable while Zit is not. We can easily think of Zit as including other non-insurable

components of farm income and not restrict it to just off-farm income.
8The assumption on stocks follows from Constantinides and Duffie (1996).
9Models that feature uninsurable background risk cannot be preference free and so some assumption

about preferences has to be made. CRRA is a natural and common choice (see Constantinides and

Duffie, 1996). Similarly, lognormality is a common assumption in both the option pricing and insurance

literatures (see Rubinstein, 1976). The joint lognormally of (Cit, Ykt) and (Ds
t , Ykt) can be justified in

that there is no restriction on the distribution of Zit.
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as given in the following proposition.

Proposition 1. Under Assumptions 1.1-1.4, the equilibrium price of an insurance

contract written on agent k’s insurable income Ykt is

(6)

Pk,t−1(Gkt) = βt

[
GktN

(
gkt − µkt + ηkt

σkt

)
− eµkt+

1
2
σ2

kt−ηktN

(
gkt − µkt + ηkt

σkt

− σkt

)]
where

(7) ηkt = α

[
Et−1(D

s
t )Covt−1(d

s
t , ykt) + 1

n

∑n
i=1 Et−1(Yit)Covt−1(yit, ykt)

1
n

∑n
i=1 Et−1(Cit)

]
,

α is the CRRA parameter, N(.) is the cumulative distribution function for the standard

normal, gkt, ykt and ds
t are natural logarithms of Gkt, Ykt and Ds

t respectively, µkt =

Et−1(ykt), and σ2
kt = V art−1(ykt).

Proof. See appendix.

The only real difficulty in making this formula operational is finding an appropriate

value of ηkt. From (7) we see that ηkt depends on the CRRA parameter α and the joint

distribution of the insurable yield indices Yit and aggregate stock market dividends per

capita Ds
t , weighted by the proportion of aggregate consumption per capita accounted

for by aggregate dividends per capita and by aggregate insurable farm income per capita.

Obtaining an appropriate value for α is difficult and sensitivity analysis might be used

to investigate the sensitivity of equilibrium insurance values to different α values. How-

ever, remaining aggregate consumption, dividend, and insurable farm revenue parameters

could be estimated for observable data.

It is interesting to note that the liquid market equilibrium insurance pricing formula

(6) takes exactly the same form as the arbitrage-based option pricing formula (4) for

nontradeable assets, with ηt in (6) playing the role of the market price of risk term λtσt

in (4). This highlights that these two models provide very similar results except that the

equilibrium price of non-diversifiable risk is priced in a different way in the two models.

Nevertheless, for any CRRA parameter α used in (6) there is clearly a corresponding

value for the market price of risk λt that will make the two formulas give the exact

same equilibrium insurance price. This highlights that our liquid market model is just

an alternative way of pricing the non-diversifiable risk inherent in holding the insurance

contract – one that allows for uninsurable background risk, incomplete markets and does

not require insurance to be a redundant asset.
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A Broker Model With No Liquid Secondary Market

In the above model with liquid secondary market, insurance contracts can be traded

costlessly among individuals, and all individuals can choose the number of contracts to

buy and sell, irrespective of whether they receive insurable farm income or not. However,

there is no liquid secondary market for trading actual agricultural insurance contracts

(only farmers can buy contracts and, once purchased, these cannot be resold). Moreover,

farmers are usually allowed to buy only one insurance contract for the same insured

risks out of a concern for moral hazard. The model in this section modifies these two

implausible assumptions imposed in the model with liquid secondary market and creates

a role for insurance companies to act as market intermediaries between farmers and the

capital markets. However, some more restrictive technical assumptions are also imposed

for tractability. Assumptions 2.1-2.4 characterize this model.

Assumption 2.1. There are n agents indexed i = 1, . . . , n who maximize the same

objective function E0 [
∑∞

t=0 δtU(Cit)]. Among them, there are n1 identical farmers in-

dexed 1, . . . , n1 who have insurable farm income Yit and uninsurable income Zit, and

n2 = n − n1 heterogenous wage-earners indexed n1 + 1, . . . , n who have heterogenous

uninsurable wage income Zit but no insurable income.10 There is a single insurer in the

market who is regulated by the government to ensure competitive behavior. The in-

surer works as a broker. By signing insurance contracts with individual farmers, pooling

the risky assets (insurance contracts) together, and trading the repackaged asset in the

capital market with both wage-earners and farmers.

Assumption 2.2. There are m+2 traded assets in the economy, consisting of a risk-

free bond with exogenously given fixed gross return Rt = 1 + rt, m stocks indexed by j,

and a repackaged insurance asset with a random gross return Rh. Similar to Assumption

1.2, let Dt = (D1t, . . . , Dmt) and P s
t = (P s

1t, . . . , P
s
mt) denote the m-dimensional dividend

and price processes. The insurance contract written on farmer k’s income can only

be traded between farmer k and the insurer. Each farmer is allowed to buy only one

insurance contract. The farmer chooses a guarantee level Git for a given price formula

Pt−1(Git) at time t − 1, and receives a payoff Vit = max(0, Git − Yit) at t.

Assumption 2.3. In equilibrium, the bond is assumed to be in zero net supply, each

10Note that the realized income Yit is not identical across i, but the distribution of Yit is identical for

all farmers.
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stock is assumed to be in fixed positive supply which is normalized to one, and the insurer

makes zero economic profit (as a broker, the insurer does not bear risk by assumption).

Assumption 2.4. In addition to all of the assumptions in 1.4, (Cit, Rh
t ), (Ds

t , Rh
t )

and (Yit, Rh
t ) are joint lognormally distributed, respectively.

Under these assumptions an equilibrium insurance valuation formula can be derived

as given in the following proposition.

Proposition 2. Under Assumptions 2.1-2.4, the equilibrium price of an insurance

contract written on a representative farmer’s insurable income Ykt is

(8) Pk,t−1(Gkt) = βte
Φ(Gkt)ηkt

[
GktN

(
gkt − µt

σt

)
− eµt+

1
2
σ2

t N

(
gkt − µt

σkt

− σkt

)]
where

(9) Φ(Gkt) =
e(µkt+

1
2
σ2

kt) · N
(

gkt−µkt

σkt
− σkt

)
GktN

(
gkt−µkt

σkt

)
− e(µkt+

1
2
σ2

kt)N
(

gkt−µkt

σkt
− σkt

) .

Proof. See appendix.

Again, the only real difficulty in making this formula operational is finding an appro-

priate value for ηkt, which can be characterized and estimated as described above under

the discussion of the model with liquid secondary market (6).

In this case it is interesting to note that the broker model (8) takes exactly the same

form as the present value model (2), with eΦ(Gkt)ηkt playing the role of the loading factor

(1 + γt). Clearly, setting the loading factor to γt = eΦ(Gkt)ηkt − 1 then these two formulas

give equivalent results. This highlights the fact that the broker model provides a way of

pinning down the equilibrium price of risk, thereby defining the equilibrium value of the

free loading factor parameter in the present value model.

Discussion

An important property of the two price formulae (6) and (8) is that they both are

increasing functions of ηkt. This is obvious for (8) because Φ(Gkt) > 0. To see this point

in (6), notice that (6) is equivalent to

(10) Pk,t−1(Gkt) = βtEt−1

[
max(Gkt − eykt− 1

2
σ2

kt−ηkt , 0)
]

We then interpret ηkt as market compensation for the risk related to holding agricultural
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insurance contracts, so that as it gets higher so does the equilibrium price of the insurance

contract.

Some examples will highlight how ηkt is determined and how insurance prices depend

on ηkt in the two formulae we propose. Time and individual indexes are omitted when

there is no confusion.

First, note that if Cov(yi, yk) = Cov(ds, yk) = 0 for all i 6= k (i.e. each agent’s

insurable income is uncorrelated with that of other agents and the aggregate dividend,

so that individual risks are fully diversifiable), then ηt = 0 and the valuation formulae

(6) and (8) both revert to a simple net present value (NPV) calculation [equation (2)

with γt set to zero].

Second, assume that Cov(ds, yk) = 0 for all i 6= k (insurable risk k is uncorrelated

with the aggregate dividend). Furthermore, let Cov(yi, yk) = σ2
yk

for i = k and ρσ2
yk

for

all i 6= k, where ρ is the correlation coefficient between yi and yk (i 6= k).11 Then (7)

becomes

η = α

(
ρσ2

yȲ

C̄

)
where Ȳ = 1

n

∑n
i=1 Yi is average per capita insurable income and C̄ = 1

n

∑n
i=1 Ci is

average per capita total consumption. Note that for countries with small proportions of

total consumption coming from agricultural income, then Ȳ will be small relative to C̄

and η will be small.

Third, for countries where agriculture-related industry is a major sector in the na-

tional economy, we would expect Cov(ds, yk) > 0 and agricultural income to account for

a large proportion of total income (the latter is especially true for less developed coun-

tries). In this case, ηk will be large. However, for countries where agriculture is a small

sector (e.g. the U.S.), both Cov(ds, yk) and Ȳ /C̄ will be small, and ηk will consequently

be expected to be small.

Simulation

In this section, we compare (6), (8), and the net present value (NPV) formula [(2) with

loading factor γt set to zero] to highlight how different answers can be provided by the

11This implies that σ2
yi

= σ2
yk

for all i (insurable incomes have the same variance and a constant

correlation coefficient ρ).
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Table 1: Model parameters summary

Parameter Notation Figure 1 Value Figure 2 Range

α CRRA parameter 10 [0, 40]

δ Risk-free discount factor 0.96 [.90, .99]

CVY = σY

Ȳ
, coefficient of variation for Y 0.4 [.1, .6]

CVDs = σDs

D̄s , coefficient of variation for Ds 0.5 [.2, .8]

ρ(Yi, Yk) Correlation coefficient of Yi and Yk, i 6= k 0.6 [.2, .8]

ρ(Y,Ds) Correlation coefficient of Y and Ds, i 6= k 0.6 [.2, .8]

Ȳ
C̄

% of per capita farmer income in total income 0.25 [.02, .6]

D̄s

C̄
% of per capita dividend in total income 0.5 [.2, .8]

η Market compensation of risk 0.33 [0, 1]

different valuation models in different situations. To make the models comparable, we

assume that farmers are identical. The parameters in the pricing formulae (6) and (8)

are calibrated by assigning some reasonable values to the parameters to see how the

formulae work. For convenience, we denote P1 as the NPV formula, P2 as the liquid

market formula (6), and P3 as the broke formula (8).

The equilibrium risk factor η in Propositions 1 and 2 can be approximately expressed

as:

(11) η = α

[
D̄

C̄
· ρ(Ds, Y ) · CVDs · CVY +

Ȳ

C̄
· ρ(Yi, Yk) · CV 2

Y

]
where the parameter definitions are listed in Table 1. Equation (11) suggests that the

market compensation for risk, η, will be large in an economy where agriculture is a major

sector, where farmers’ income accounts for a large percentage in aggregate consumption,

and where farmer incomes are variable and highly correlated.

Figure 1 shows how the three pricing formulae perform at different guarantee levels

and a single set of parameters given as in the third column of Table 1. In the simulations,

Ȳ is set at 30. At G = Ȳ , P2 is 106% and P3 is 148% larger than P1. In other words, if

we consider the broker model with no liquid secondary market as the true model, then

using the actuarially fair NPV model tends to underestimate insurance price by 60%,

and using the liquid market model underestimates it by 17%.

Figure 2 shows how the three pricing formulae perform at different values of market

compensation for risk η and a fixed guarantee level G = Ȳ = 30. The reasonable ranges
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Figure 1: Insurance prices versus guarantee levels

for the parameters in (11) are listed in the fourth column of Table 1. Overall, a reason-

able range for η would be [0, 1]. The more industrialized the economy is, the smaller η

would be. When η = 0, the three formulae give the same insurance price. When η > 0,

P3 > P2 > P1. However, their differences are small for small values of η. As examples,

when η < 0.01, P3 is less than 0.1% larger than P2 and is less than 3% larger than P1;

When η < 0.07, P3 is less than 1% larger than P2. The differences among the three

formulae grow larger as η increases.

Conclusions

In this paper, we argue that existing option pricing models and the Lucas representative

agent model for pricing agricultural insurance may be misleading because they all as-

sume complete markets which is unsuitable for most agricultural insurance applications.

We propose two incomplete markets models and derive two corresponding insurance

pricing formulae under the usual assumptions of CRRA preferences and lognormally dis-

tributed random variables. Our major contributions lie in the broker model with no

liquid secondary market, which appears more consistent with the way agricultural in-

surance markets actually operate. In this model, two types of market incompleteness
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Figure 2: Insurance prices versus η, the market compensation of risk

are incorporated. The first is that insurance is not a redundant asset and helps to com-

plete the market structure. The second and more important type is nonexistence of

liquid secondary markets for trading agriculture insurance contracts. We also make a

contribution by modelling a role for an insurance company to work as an intermediary

between farmers and the capital market in constructing insurance valuations. Another

contribution is that the pricing formula derived by this model justifies and helps to pin

down the unknown loading parameter in the present value formula, thereby pricing the

non-diversifiable risk embodied in holding agricultural insurance contracts. Simulation

results suggest, for reasonable parameter values, the model that incorporates a higher

level of market incompleteness derives a higher equilibrium insurance price than the

model that incorporates a lower level of market incompleteness. Furthermore, the effect

of non-existence of liquid secondary market on insurance price is not negligible unless

the market compensation of risk, η, is very small (> 1% if η > 0.07).
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Appendix

Proof of Proposition 1

Agent i’s objective is

(12) max
{Cit}

E0

[
∞∑

t=0

δtU(Cit)

]

The budget constraint is

(13) Cit = Zit + Yit + bitRt + xi,t−1Vt + θi,t−1(P
s
t + dt) − bi,t+1 − xitPt − θitP

s
t

where, bit is the agent’s investment in the bond, xit = (xikt : k = 1, . . . , n) is agent i’s

portfolio of numbers of insurance contracts purchased (sold if negative), and θit = (θijt :

j = 1, . . . ,m) is agent i’s portfolio of shares of stocks purchased (sold if negative). Note

that short selling of stocks and insurance contracts is allowed, as is borrowing or lending

at the risk-free rate.

Substituting (13) into (12) and equating the derivatives of (12) with respect to xi,t−1

and bit to zeroes, we derive the first order conditions for solving agent i’s problem in

choosing xi,t−1 and bit :12

−U ′(Ci,t−1) + δtRtEt−1[U
′(Cit)] = 0(14)

−U ′(Ci,t−1)Pt−1 + δtEt−1[U
′(Cit)Vt] = 0(15)

(14) and (15) together imply

(16) Et−1 [U ′(Cit)(Vkt − Pk,t−1Rt)] = 0, k = 1, . . . , n

which can be written using the CRRA assumption as:

Et−1

{
C−α

it [max(Gkt − Ykt, 0) − Pk,t−1Rt]
}

= 0, k = 1, . . . , n

or

(17)

∫ ∞

−∞

∫ gkt

−∞
e−αcit [Gkt − eykt − Pk,t−1Rt] f(cit, ykt)dyktdcit = 0

12Second order conditions are satisfied by the concavity of U .
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where lower case letters denote natural logarithms and f(cit, ykt) is the joint probability

density function (PDF) of cit and ykt conditional on information available at t− 1. From

results in the appendix of Rubinstein, the integral in (17) can be evaluated and solved

to give:

(18)

Pk,t−1 = βt

[
GktN

(
gkt − µkt + ασcitykt

σkt

)
− eµkt+

1
2
σ2

kt−ασcityktN

(
gkt − µkt + ασcitykt

σkt

− σkt

)]
where σcitykt

= Covt−1(cit, ykt).

In equilibrium, (18) must hold for every i. Therefore, if all individuals have identical

beliefs about probability distributions, and identical CRRA parameters α, then (18) im-

plies that in equilibrium σcitykt
must be equal across all i. Thus, an equilibrium expression

for the value of insurance contract k can be written as equation (6), where ηkt = ασcitykt

which is constant across individuals (in equilibrium). It remains to show how ηkt might

be computed.

In equilibrium bond and all insurance contracts are assumed to be in zero net supply,

and each stock is assumed to be in fixed positive supply normalized to one. Therefore,∑n
i=1 xit = 0,

∑n
i=1 bit = 0, and

∑n
i=1 θit = 1 for all t. The budget constraint (13) then

becomes:

(19)
n∑

i=1

Cit =
n∑

i=1

Zit +
n∑

i=1

Yit + nDs
t

This implies

(20)
n∑

i=1

Covt−1(Cit, ykt) = nCovt−1(D
s
t , ykt) +

n∑
i=1

Covt−1(Yit, ykt)

because Covt−1(Zit, ykt) = 0 by assumption. From results in the appendix of Rubinstein

then if cit and ykt are joint normally distributed (Cit and Ykt lognormal) then

(21) Cov(Cit, ykt) = E(Cit)Cov(cit, ykt)

Now substituting (21) into (20) and using the fact that Covt−1(cit, ykt) = ηkt/α is constant

across i in equilibrium, then (20) becomes:

(22)
ηkt

α

n∑
i=1

Et−1(Cit) = nEt−1(D
s
t )(Covt−1(d

s
t , ykt) +

n∑
i=1

Et−1(Yit)Covt−1(yit, ykt)

Rearranging (22) gives (7).
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Proof of Proposition 2

Each agent’s objective is represented in (12). But farmers (indexed 1, . . . , n1) and wage-

earners (indexed n1 + 1, . . . , n have different budget constraints.

Farmers’ budget constraints are

Cit = Zit + Yit + bitRt − hi,t−1R
h
t + θi,t−1(P

s
t + Dt) + Vit(Git) −(23)

− bi,t+1 + hit − θitP
s
t − Pt(Gi,t+1), i = 1, . . . , n1

Wage-earners’ budget constraints are

(24) Cit = Zit + bitRt −hi,t−1R
h
t + θi,t−1(P

s
t +Dt)− bi,t+1 +hit − θitP

s
t , i = n1 +1, . . . , n

where, hit is agent i’s investment in the repackaged insurance asset. The other notations

are the same as those in the proof of Proposition 1.

The first order conditions for solving agent i’s problem in choosing hi,t−1 are:13

(25) Et−1

[
U ′(Cit)(R

h
t − Rt)

]
= 0

Since the farmers are identical, they choose the same guarantee level G0
t , which sat-

isfies

(26) E
{
U ′(Cit)

[
1{Gt>Yit} − P ′

t−1(Gt)Rt

]}
= 0

where 1{Gt>Yit} is a random variable which equals one if Gt > Yit and zero otherwise.

The insurer’s problem is to choose an insurance price formula Pt−1(Gt) to maximize

profit (insurers bear no risk). Profit equals zero based on the assumption of competitive

behavior. Thus we have the brokerage conditions:

∑n
i=1 hi,t−1 = n1Pt−1(G

0
t )(27) ∑n

i=1 hi,t−1R
h
t =

∑n1

i=1 Vit(G
0
t )(28)

(27) and (28) together imply

(29) Rh
t =

1

n1Pt−1(G0
t )

n1∑
i=1

Vit(G
0
t )

13Second order conditions are satisfied by the concavity of U .
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We further assume Cit and Rh
t are joint lognormal distributed. Then (25) becomes:

(30) log
[
Et−1(R

h
t )
]
− rt = αCovt−1(cit, r

h
t ) i = 1, . . . , n.

Equation (30) implies that Covt−1(cit, r
h
t ) = σctrh

t
must be equal across all i. Equations

(29) and (30) together imply

Pt−1(Gkt) = βte
−ασ

ctrh
t Et−1(Vit)

= βte
−ασ

ctrh
t

[
GktN

(
gkt − µkt

σkt

)
− eµkt+

1
2
σ2

ktN

(
gkt − µkt

σkt

− σkt

)]
(31)

It remains to compute σctrh
t
.

In equilibrium, the bond is in zero net supply and each stock is in fixed positive supply

normalized to one. Therefore,
∑n

i=1 bit = 0, and
∑n

i=1 θit = 1 for all t, and brokerage

conditions (27) and (28) hold in equilibrium. The budget constraints (24) and (24) then

become (19), which implies

(32)
n∑

i=1

Covt−1(Cit, r
h
t ) = nCovt−1(D

s
t , r

h
t ) +

n∑
i=1

Covt−1(Yit, r
h
t )

because Covt−1(Zit, r
h
t ) = 0 by the assumption that Zit and Ykt are independent condi-

tional on information available at t − 1. Using the property of joint lognormality, (32)

becomes

(33) σctrh
t

=
nEt−1(D

s
t )Covt−1(d

s
t , R

h
t ) +

∑n
i=1 Et−1(Yit)Covt−1(yit, R

h
t )

Et−1(Rh
t )
∑n

i=1 Et−1(Cit)

and (29) and (33) together imply

(34) σctrh
t

=
nEt−1(D

s
t )Covt−1(d

s
t , Vkt) +

∑n
i=1 Et−1(Yit)Covt−1(yit, Vkt)

Et−1(Vkt)
∑n

i=1 Et−1(Cit)

We then need to compute Covt−1(d
s
t , Vkt) and Covt−1(yit, Vkt).

14

Covt−1(d
s
t , Vkt) =

∫ +∞

−∞

∫ g

−∞
ds(G − ey)f(ds, y)dyd(ds) − E(ds)E(V )

= −Covt−1(d
s
t , yt)e

µy+ 1
2
σ2

yN

(
g − µy

σy

− σy

)
(35)

where f(ds, y) is the conditional joint pdf of ds
t and ykt, and σdsy = Covt−1(d

s
t , ykt).

Similarly,

(36) Covt−1(yit, Vkt) = −Covt−1(yit, ykt)e
µy+ 1

2
σ2

yN

(
g − µy

σy

− σy

)
14Time and agent indexes are omitted in the following computation.
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(34), (35) and (36) together imply

(37) ασctrh
t

= −Φ(Gkt)ηkt

where ηkt is given in (7) and Φ(Gkt) is given in (9). Equations (37) and (31) together

imply (8).
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