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PRICING WEATHER INSURANCE WITH A RANDOM STRIKE PRICE:  

AN APPLICATION TO THE ONTARIO ICE WINE HARVEST 

 

Abstract 

Interest is growing in weather insurance within the agricultural sector but its use has been limited 
by the difficulty in defining the appropriate weather event and the lack of agreement on how to 
price the product.  In this paper we develop a new insurance pricing method for weather 
insurance under situations where volume returns depend not only on the occurrence of the 
weather event, but also its timing.  The method is applied to the pricing of weather insurance for 
ice wine in the Niagara Peninsula of southern Ontario.  Because the harvest quantity of grapes 
for ice wine degrades over time, the strike value on the weather event measured as harvestable 
hours is random.  This random strike, we developed a systematic approach to valuing the 
insurance using first, the single index model to capture inter-temporal covariance effects, and 
then a Monte Carlo simulation protocol to estimate the premium.  While this study investigated a 
model unique to ice wine production in particular, the ideas can be extended to a number of other 
agricultural situations in which weather affects critical timing in the production process.   
 

Introduction 

The use of weather as the basis for writing insurance to protect against volumetric risk 

and revenue losses in agriculture has received growing attention in recent years by private and 

public insurance companies (Turvey 2001).  Weather insurance can provide an effective risk 

management strategy for sectors where there is a significant degree of volume uncertainty 

attributable to weather (Muller and Grandi).  For example, energy generating companies have 

successfully used weather derivatives to hedge against changes in temperature that affect power 

demand (Dornier and Queruel, D’Arcy) and Leggio and Lien examine the effectiveness of 

exchange-traded weather derivatives as a means to hedging exposure to increases in the demand 

for natural gas.  The successful adoption of weather derivatives in other industries and the 

inherent weather risks faced by the agricultural sector explain the growing interest in their 

applicability for agriculture and agribusiness.   
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Weather insurance provides several advantages over conventional crop insurance.  First, 

it is technically free from problems of moral hazard endemic to most crop insurance schemes 

(Rubinstein and Yaari; Horowitz and Lichtenberg; Smith and Goodwin).1  Indemnities are based 

upon measured weather outcomes rather than crop yields directly so there are no opportunities, 

other than manipulating the weather station/recorder directly, to affect the indemnity amount.  

Therefore, there is complete independence between the production actions of the insured and the 

weather insurance payoff and, consequently, no requirement for costly monitoring (Turvey, Hoy 

and Islam).  Second, information about weather is unambiguous and symmetric to both the 

insurer and the insured.  Weather insurance is written on the specific conditions at a local 

weather station or a secured station on-site.  Such data can be easily verified and the resulting 

transparency eliminates asymmetric information and the problem of adverse selection.  Third, 

when one considers the vast influence of weather on agricultural productivity, weather insurance 

provides a flexibility that is not normally found in conventional crop insurance and, therefore, 

increases the number of products that can be offered by insurance companies.  This is 

particularly true for agricultural crops, the variability of which can be tied specifically to weather 

events. 

While interest is growing in weather insurance within the agricultural sector, its use has 

been limited by the difficulty in defining the appropriate weather event and the lack of agreement 

on how to price the product (Richards, Manfredo and Sanders).  The literature on the theoretical 

pricing of weather derivative products that are traded and priced to equilibrium (i.e. Richards, 

Manfredo and Sanders; Cao and Wei;Campbell and Diebold; Alaton, Djehiche and Stillberger; 

                                                 
1 Coble et al find that Kansas wheat farmers engage in moral hazard when weather conditions are not favorable 
while operating efficiently when weather conditions are favorable. 
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Turvey 2002; Froot and Posner; and Muller and Grandi) collectively illustrate the complexities 

of developing equilibrium models with a variety of assumptions regarding the pricing equation, 

stochastic processes and the market price of risk.  The complexities are further indicated within 

the few applications that tend to focus primarily on heat-based insurance (i.e. Richards, 

Manfredo and Sanders; Skees et al. 2002; and Turvey 2002) or derivative products with rainfall 

applications (i.e. Mafoua and Turvey; Skees et al. 2001; and Turvey 2001).  The mere 

identification of using weather as an economic instrument for risk management gives rise to 

innovations and challenges that have not previously been considered.  Each innovation comes 

with a new set of complexity, and rather than common models that can be applied to a broad set 

of risks such as crop insurance, weather insurance will give rise to a multitude of unique 

problem-specific solutions.  This complexity and uniqueness is the subject matter of this paper. 

The purpose of this study is to develop a new insurance pricing method for weather 

insurance under situations where volume returns depend not only on the occurrence of the 

weather event, but also its timing.  The method is applied to the pricing of weather insurance for 

ice wine in the Niagara Peninsula of southern Ontario.  This particular insurance requires 

defining a new measure of risk based on a freezing-degree hour.  Ice wine is a dessert wine that 

requires unique winter conditions for proper harvesting of the grapes.  The grapes can only be 

picked in their natural frozen state at air temperatures between -8°C to -12°C.  Since water in the 

grapes picked at these temperatures remains partially frozen as ice crystals, the resulting juice is 

sweet and highly acidic.  The juice yield from the frozen grapes is significantly less than the 

normal yield from grapes harvested in the fall but the resulting vintage sells at a premium of 

more than four times the price of ordinary table wines.  If the specific weather conditions are not 

met during the winter, the grapes are harvested in early spring and sold for either grape juice or 
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lower grade “late harvest” wine.  Thus, if grapes cannot be harvested for ice wine, the wineries 

and/or grape growers would have been better off to pick the grapes in the fall for conversion into 

table wine. 

The paper begins by outlining the production of ice wine and the weather events 

necessary for its success and then develops a method to transform weather risk to a harvest hour 

basis.  An expected utility model is developed to illustrate how specific weather risks affects 

portfolio choices between harvesting grapes for fresh markets or leaving grapes on vines for an 

uncertain weather-contingent harvest.  It then describes a new insurance pricing method that uses 

Monte Carlo simulations of a single index model that captures the systematic and unsystematic 

risks of the weather events.  Results are then presented to illustrate how weather variability 

across space and time affects insurance premiums.   

The current study differs in scope and modeling from previous studies on the use of 

weather insurance.  First, in looking at ice wine we are not examining crop yield per se, but a 

harvestable quantity that declines through the winter due to wildlife damage.  Thus, the key 

insurable event is not only total harvestable hours but when they occur, which increases the 

scope of previous studies that focus on the volume impact of weather alone.  The unique 

characteristic of freezing degree hours and its relationship to harvestable hours with a random 

‘strike’ illustrates the application of what is termed an ‘exotic’ product to the tool kit of risk 

managers in the food industry2.  To complicate the valuation further, harvestable hours is a 

                                                 
2 While terms such as ‘strike’ and ‘exotic’ are usually used in conjunction with financial derivatives, we refrain from 
regarding the insurance product herein as a derivative.  The difference between insurance and derivatives is 
increasingly being blurred.  In the past year for example, the National Association of Insurance Commissioners has 
made the argument that weather derivatives are simply insurance products in disguise to avoid certain regulatory 
requirement (NAIC 2003).  To this, the Weather Risk Management Association (2004) countered that derivatives 
are not weather insurance since it is not required that any counterparty has an economic or insurable interest in the 
subject matter of the contract.  Furthermore, for insurance the insured must suffer a loss of a pecuniary nature.   
With weather derivatives, while lose is highly correlated with weather events, proving an economic loss is not 
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random variable with uncertainty as to when the appropriate temperatures occur and the total 

number of hours available.  Because of this path dependency, the strike price is random and the 

premium for the insurance product must be obtained through numerical methods rather than 

through a closed form solution.  Finally, the yield decline throughout the winter season gives rise 

to increasing opportunity costs.  The cost of a lost hour of harvest is more valuable earlier in the 

winter before yields fall than later and thus economic losses depend on the number of harvest 

hours obtained prior to that point in the season.  This paper illustrates how best-available 

historical data can be used in conjunction with Monte Carlo methods to estimate insurance 

premiums for an exotic insurance product. 

 

Background on Ice Wine Production 

Bordered by Lake Ontario on the north and the Niagara River on the east, the Niagara 

Peninsula is the largest viticultural area in Ontario and also in Canada (see Figure 1).  Lake 

Ontario cools the summer air so that grapes do not ripen too quickly, and then keeps the fall air 

comparatively warm so that the first frost is delayed, thus extending the growing season.  

Approximately 13,000 acres of wine grapes are grown in this area, and this represents about 80% 

of Canadian grape-growing volume (VQA Ontario).  Increasingly, the region is differentiating 

itself through the production of ice wine which, outside of Canada, is made in Germany and 

Austria.  From a fledging industry over a decade ago, there are now approximately 70 wineries 

producing 108 ice wines in the region.  The 1.72 million litres of ice wine produced in the 2003-

04 season is valued at approximately $3 billion. 

                                                                                                                                                             
necessary for receiving a payment.  The blur in the context of this paper is that the provider is an insured who would 
not ordinarily sell a contract to an entity without an economic interest in the weather outcome. 
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In Canada, the production of ice wine is governed by the Vintners Quality Alliance 

(VQA).  Ice wine must be naturally produced using grapes harvested under temperature 

conditions that ensure the wine has a Brix (sugar level) of 35 or higher, which is obtained when 

the air temperature is -8°C or less.  If a vintner is found to be using artificial means to “fast-

freeze” the grapes or storing grapes in a cold storage, the VQA will penalize the winery by not 

allowing the VQA label to go on their products. 

Although any variety of grapes can produce ice wine, Riesling and Vidal are the two 

varietals most often chosen for Canadian ice wine.  There tends to be a perceived quality 

difference and thus a price premium in the export market for Riesling ice wines (Speck).  

However, the majority of ice wine made in Canada is produced from Vidal grapes because it has 

a relatively thick-skin that offers better protection against winter damage.  Vidal, a cross between 

European and North American white grape varieties, is the only hybrid grape that VQA allows 

for ice wine.  Both varieties can be used for table wine or ice wine and are managed in the same 

way during the growing season regardless of their end use.  The decision on the volume of 

grapes in the vineyard to set aside for ice wine is made during the growing season.  The area set 

aside will increase with increases in potential export demand and decrease with the volume of ice 

wine in stock and the severity of the previous winter (Speck).   

Once the fall harvest is complete, the grapes left on the vine for potential use in ice wine 

must be protected against weather and wildlife damage.  The longer the grapes remain on the 

vine, the greater chance they will fall to the ground and be lost or eaten by animals.  The vines 

are netted to help secure grape clusters on the vine and to prevent animals tempted by the high 

sugar-content grapes, particularly birds, from eating the crop. 
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Winter harvest of grapes for ice wine is constrained to moments when the air temperature 

is between -8°C to -12°C.  At a temperature less than -8°C, the water crystallizes out of the 

grapes leaving behind the high concentration of sugars, fruit acids and extracts needed to 

produce the distinct flavors of ice wines.  However, if the temperature drops below -12°C, the 

press will be slowed and the quantity of concentrated juice from the frozen grapes will decrease 

dramatically.  The only weather condition required for a successful harvest is the amount of time 

between the desired temperature band.  Other climatic factors such as humidity or wind speed do 

not affect the quality of the harvested grape.  

Warm winter temperatures can significantly limit the winter grape harvest and 

subsequently the volume of ice wine produced.  For example, approximately 60% of Ontario 

grapes set aside for ice wine were diverted to late harvest wines in 2001 due to insufficient 

harvest hour temperatures.  In addition to the lost opportunity costs of selling the harvested juice 

in the form of cheaper late vintage table wine or grape juice rather than ice wine, an additional 

loss is the increased vulnerability of the vines to winter damage.  Leaving grapes on the vines 

after they would normally be harvested does not allow the vines to store extra sugars to help 

sustain them through harsh winters (Fischer). 

The risk of warm winter weather is increasingly borne by the wineries rather than the 

grape grower.  Wineries that do not grow their own grapes, generally contract directly with 

growers in the summer.  Growers are paid 125% of the August price for grapes established by 

negotiations between the vintners and the Ontario Grape Marketing Board.  The volume on 

which this price is paid is estimated by sampling during the fall harvest.  The wine maker pays 

this pre-determined amount by November 15th to the grape grower to ensure the rights to the 

grapes left on the vine for potential winter harvest.  Remaining costs are negotiated on an 
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individual basis.  These costs include netting the grapes which ranges between $200 to $300 per 

acre.  Harvest costs are also negotiated. 

While most of the juice used for ice wine is from grapes harvested by the vintners in 

conjunction with the growers, there is a small market for the juice concentrate.  Some growers 

will press their harvested frozen grapes and sell the juice.  Current prices are $15 to $20 per liter 

for juice from Vidal grapes, and $23 to $32 per liter for Reisling juice (Green, Hope).  The price 

of concentrated juice increases with the Brix degree.  There is also a market for late harvest 

juice, which currently sells for about $4 per liter.  However, the market is thin for ice wine juice 

as most vintners have contracted directly with growers to ensure a sufficient quantity and quality 

of juice. 

 Growers and wineries have taken several approaches to reduce the risk of warm winter 

weather.  Many wineries will contract out harvest with several different farmers in different 

locations within the Niagara Peninsula region.  This diversification strategy increases the 

likelihood that acceptable harvest conditions will be met in at least one region within the 

Peninsula, which has many micro-climates.  In other cases, the wineries have switched to 

mechanical harvesting to reduce the total number of harvest hours required.  Regardless, weather 

uncertainty remains the major contributor to revenue risk for ice wine vintners and there are 

presently no risk management strategies available. 

 

Effect of Weather Insurance on Production 

One of the critical economic decisions that ice wine producers must make is how much of 

a crop should be left on the vines to produce harvest or ice-wine, rather than harvested for table 

wine.  Let x  define the percent of grapes to be harvested for ice-wine in the winter and x−1  as 
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the percentage harvested for table wine in the fall.  In the absence of insurance, iπ  are the 

anticipated profits from ice wine, with variance 2
iσ , and tπ   is the expected profits from table 

wine with variance 2
tσ .  Furthermore, let 2 2 ( , ) 0i t Tσ σ φ− = Ψ >  so that the spread between the 

variance of ice and table wine is dictated solely by the existence of the freezing degree-day 

weather event ( )φ  and when it occurs (T).  It is understood that ( ) 0' ≤Ψ φ  and ( ) 0' >Ψ T .  In 

other words, the spread in variance falls with more ideal weather conditions, but rises with 

delays in occurrence. 

The choice framework is summarized by the following expected utility function, 

(1) ( ) ( ) 2 2 2 2 21 ( (1 ) 2 (1 ) )
2i t i t itU x x x x x xλπ π π σ σ σ= + − − + − + −   

where λ is the coefficient of absolute risk aversion and 2
itσ  the covariance between the profit 

streams of the two enterprises.  Expected utility is maximized when the proportion of grapes to 

be kept for ice wine is 

(2) 2 2

( )*
( 2 )

i t t it

i t ii

x π π λ σ σ
λ σ σ σ
− + −

=
+ −

 

Taking derivatives of the optimal proportion harvested reveals the standard stochastic dominance 

arguments that the area harvested for ice wine increases with a rise in expected profits of ice 

wine holding risk constant ( / 0)ix π∂ ∂ > , and decreases with an increase in the variability holding 

expected profits constant 2( / 0)ix σ∂ ∂ < .  If increases in expected profits come at the expense of 

increased risk , then the area of grapes collected for ice wine will fall as long as 

2/ 1/ 2it iσ σ∂ ∂ < , which will always be true. 
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 The existence of a general contingent claim on the weather event ( )Tφ  can influence the 

management choices of the vintner.  For simplicity, define ( ,0) 0iπ φ =  when the weather event 

does not occur and max( ,1)iπ φ π=  when conditions are ideal (i.e. sufficient number of cold days).  

We can then state that ( ) [ ]max, 0,i Tπ φ π∈  and that 

(3) ( )
max

0

, ( , ) ( , ) ( )i i T g T d T
π

π φ π φ φ φΕ Τ =   ∫   

where ( )Τ,φg  is the joint event-time distribution for φ .  We assume that the insured understands 

the relationship between the number of cold harvest hours and returns from ice wine production, 

and that there is a profit floor, fπ , from which the associated weather event, ( )1 ,f i f Tφ π π−=  

can be determined.  With fπ and fφ  known, an indemnity function can be constructed, 

),,( Tffff φπωω = .  The fair premium to insure the profit floor )( fν can be calculated using 

(4) ( ) ( ) ( )∫ ΤΤ=
b

a
ffff dgT φφφπων ,,,  

 Profits with insurance are thus given by 

(5) 
^

( , ) ( , , )i fT Tπ π φ ω π φ ν= + −  

which is designed so that ffii TMax νπφππ −= )),,((
^

 and 
^

[ ] [ ( , )]iE E Tπ π φ=  with variance 

2
^

2 )]()),,(([ ifif ETMaxE ππφσ −= .  By design 2
ifσ  is truncated from below with probabilities 

stacked at fπ .  It will be true that 2 2
i ifσ σ>  and if fν  is actuarially fair (i.e. 

^
[ ] [ ( , )]iE E Tπ π φ= ), 

then it is self evident that by 2/ ix σ∂ ∂ , the use of weather insurance will lead to an increase in 

planned ice wine production. 
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Pricing Weather Insurance 

Conventional Pricing of Weather Insurance 

The actuarially fair premium for weather insurance should equal the expected “loss” or 

“cost” incurred by the buyer if the undesirable weather event occurs.  For this premium, the 

buyer minimizes exposure to adverse weather risk while retaining the ability to capitalize fully 

on advantageous weather conditions.  The price of an insurance contract on weather for ice wine 

(V) can be expressed generally as:  

(6)  V = θ ∫Z (Z - H) f(H) dH  for H < Z 

where:  θ – is the opportunity cost per hour if grapes are not harvested for ice wine; 

 Z – is the strike point or number of harvest hours required by the winery; 

 H – is the actual number of harvest hours during the winter harvest season; and 

f(H) – is the probability distribution function of the number of hours of winter 

temperature between -8°C and -12°C. 

The insurance contract provides an indemnity if the actual number of harvest hours (H) is 

less than the amount needed (Z).  Note that the price of the policy depends on the specific 

weather event to be insured (H), the likelihood of the event (f(H)), and the payout (θ) if the actual 

hours are less than the harvest hours required by the winery (Z). For example, assume the 

weather contract stipulates a payout if cumulative harvest hours are less than 40 hours (Z=40) 

between December 1 and March 15 with a payoff of $5,000/hour below the strike (θ).  If the 

actual number of harvest hours were 38 (H=38), the purchaser of the insurance contract would 

receive $10,000 (θ*(Z-H)=$5,000/hour*(40hrs-38hrs)). 
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Pricing of Weather Insurance with a Random Strike Price 

Estimation of the premium for an ice wine weather product is more complicated than the 

general formula given by equation (6).  The major complication arises in the loss of potential 

yield through the season due (primarily) to wildlife.  If the quality of the harvest degrades over 

time, then so too must θ in equation (6).  For example, obtaining the strike point (i.e. 40 

harvestable hours) may still result in a loss if the desired temperatures occurred late in the season 

and total harvestable grapes had declined.  In our analysis, we determine losses by month, θt 

where t = December, January, February and March.  Since the losses vary by month, then the 

losses attributable to each month are conditioned on the number of harvest hours in the previous 

month(s).  Thus, the strike price is random and the premium for the insurance product cannot be 

estimated through a simple closed form solution.  A numerical approach is ultimately required. 

The operational model for this particular weather insurance product is described by the 

indemnity function 

(7)  V = )0,(
4

1
ii

i
i hZMax −∑

=

θ  

where i = 1,2,3,4 for the consecutive months of December through March; iθ is the marginal loss 

for month i with 1−≥ ii θθ ; ih  is the number of harvestable hours in month i ( ∑=
i

ihH ) and iZ is 

the strike or coverage level.  An important aspect, and complication of this model, is that Zi is a 

random variable that is conditional on the accumulation of hours in previous months.  More 

specifically, if Z0 represents the total number of harvest hours required in a season, then 

(8a)  Z1= Z0
 

(8b)  Z2= Z1 - h1
 

(8c)  Z3= Z2 – h2 
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(8d)  Z4= Z3 – h3 

For example, if Z0 = 40 hours and by chance there were no conditions with temperatures between 

-8°C and -12°C in December (h1 = 0), then there is a pay out for December  associated with the 

yield decline in that month ( 140 θ⋅ ) and the number of required harvest hours remaining in 

January is 40 (Z2= Z1 - h1=40-0).  On the other hand, if h1=30, then the payment for December 

would be 110 θ⋅  and the new coverage for January would be 10 (Z2=40-30). 

Because both the trigger and the hours in January, February and March are dependent 

respectively on the accumulation of harvestable hours in December, January, and February, the 

distributions for ih  must be jointly distributed.  In simulation we use a single index model (see 

Sharpe 1963) to capture the monthly covariance.  Defining h  as the average number of monthly 

harvest hours in a given year (
−

h =0.25∑
i

ih ) and h  as the average of h  across all years, we can 

write 

(9)  ∫= hdhfhh )( . 

In addition, we express harvestable hours for each month as a function of the single index h . 

(10)  ),(hhh ii =  i = 1, 2, 3, 4 

The expected value of V, in (7) can now be written as  

(11)  hdhfhhZMaxV ii
i

i )()]0),(([
4

1

−= ∫ ∑
=

θ  

The model is operationalized by defining a linear functional form for (11) and estimating 

the parameters using the historical data described in section V.  Ignoring time subscripts, we 

define the single index model as 

(12)  iiii hh εβα ++=     ∀  i = 1, 2, 3, 4 
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The single index model has the following properties.  First, the sum of the intercepts is equal to 

zero ( 0
4

=∑
i

iα ).  Second, the sum of the slope coefficients is equal to 4 ( 4
4

=∑
i

iβ ) so on 

average β=1.  Third, the variance of harvest hours in month i ( 2
ihσ ) is 

(13)   2222
_

2 ][
iii hiiih hhE εσσβσ +=−= . 

Fourth, the covariance in harvest hours between months i and j is given by: 

(14)  2]][[),cov( hjijjiiji hhhhEhh σββ=−−=  

Semantically, we can view the average number of monthly harvest hours as a portfolio of the 

four months distributions and their covariance.  Thus 

(15)  ∑∑∑
== =

+=
4

1

22
4

1

4

1

2

i
hj

i j
ih iε

σσββσ . 

The variance surrounding monthly harvest hours (equation 8) consists of two 

components.  The first component given by 22
hi σβ  represents the systematic risk, or risk in ih  

that is correlated with the seasonal average.  The second component, 2
iε

σ  is the specific or non-

systematic risk that is not correlated with the average.  Equation (13) allows for common 

seasonal patterns in monthly harvest hours, as well as independent or idiosyncratic shocks.   

The distribution of average monthly harvest hours ( h ) through the estimated single index 

model (equation 12) sufficiently captures the systematic and covariate risks as shown by 

equation (15).  For example, a cold December and the resulting high number of harvest hours are 

more likely to be followed up by a cold January.  Exact covariances can be estimate with 

knowledge of the single index parameters iβ  and iε .  Consequently, we can generate the 

complete distribution of V in (11) using the distributions for )(hf , and the four distributions for 
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),0(~ 2
i

Ni εσε .  As discussed in the background section, areas throughout the Niagara Peninsula 

differ in microclimates and therefore the distributions for )(hf  should be expected to differ in 

their moments, including skewness and higher moments.  To capture differences in the 

distribution of probabilities due to microclimate, the probability distribution functions of 

harvestable hours for each location was estimated using Palisade Corporations’ BestFit computer 

program. Estimation of (12) does not require normality in the distribution of h , but iε  will still 

be normally distributed.  Regression estimates of the single index model by location are 

presented in Appendix 1. 

 

Numerical Example of Pricing  

To illustrate how the new insurance pricing method is implemented, we provide a step by 

step example of the procedure using the Beamsville location.  With @Risk as the Monte Carlo 

simulator, the initial step is to draw a value for average monthly harvest hours ( jh
−

) from its best-

fit probability distribution.  The distribution of 
−

h  for Beamsville follows a logistic distribution 

with a mean of 48.8 hours and a standard deviation of 10.45.  Suppose that an initial value for the 

seasonal average hours per month of 48.08 hours ( 1

−

h ) was randomly drawn.  Given this value on 

the average monthly number of hours available throughout the total harvest period, the predicted 

harvest hours for each month can then be calculated using the Single Index Model.  Expected 

December hours, for example, would be 44.30 found by plugging 1

−

h  into the single index 

regression estimates for Beamsville given in Appendix 1 (44.3= -8.11+1.09(48.08)).  This 

represents the systematic component of harvest hour risk.  The non-systematic component is 
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obtained by adding a random draw from a zero-mean normal probability distribution with 
1ε

σ  of 

28.17 for Beamsville.  For this example iteration, the value drawn was -17.6 hours, which results 

in a predicted value of 26.7 hours (44.3-17.6) for the month of December.  Using the same 

process, the predicted monthly harvest hours was 85.91 hours for January, 62.85 hours for 

February and 12.92 hours for March. 

Assuming the value of the harvest is $10,000 and 250 harvest hours are required, the 

value per harvest hour is $40 ($10,000/250 hours).  Given that 26.7 hours of harvest occurred in 

December, there are 223.3 hours remaining (Z2= Z1 - h1= 250-26.7).  The cost to the producer of 

not being able to harvest the complete crop in December depends on the assumed yield loss.  

Suppose that grapes not harvested in December incur a 10% loss in yield.  Since the value of the 

unharvested crop at the end of December is $8,931 ($40/hr*222.3 hrs), the 10% fall in harvest 

quantity implies that the losses from not harvesting in December are $893.   

The losses in successive months are calculated in the same manner.  For example, given 

85.9 hours of temperatures within the suitable range predicted for January, there would be 

137.37 hours required to finish the harvest (Z3= Z2 – h2=223.27-85.9=137.37).  Assuming there is 

a degradation in yield of 20%, the value of the yield loss for January (LossJan,1) is $1,099 

(=.20*137.37 hrs*$40/hr).  In February, 62.85 harvest hours occur leaving 74.52 hours 

remaining.  At a 30% degradation the loss is $894.  Finally, in this simulation example 74.5 

harvest hours remain going into March but only 12.9 harvest hours occur, leaving 61.6 hours of 

harvested grapes abandoned for a loss of $986.  The cumulative weather-based loss in the 

example is $3,872 (=893 (Dec) + 1099 (Jan) + 894 (Feb) +986 (March)).  That is, of an initial 

expected value of $10,000 had the crop been harvested in December, degradation due to the lack 
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of cold temperatures reduced the value to only $6,128.  The simulation process is then repeated 

5,000 times so that an average loss (or premium price) can be calculated.   

A simple variant of this model is to assume that there is no degradation over time.  

Consequently, losses depend only on the occurrence of the event and not its timing.  For the 

above example, 188.4 harvest hours were available in the whole season out of the necessary 250 

hours.  Thus, the losses not accounting for timing of the harvestable hours would have been 

$2,464 (61.6 hours * $40/hour) as opposed to the $3,872 cost that does account for yield loss 

through the season. 

 

Weather Data 

The source of meteorological data used in this study is the Ontario Weather Network 

(OWN).  In addition to collecting data from its own weather stations, OWN warehouses 

meteorological data from co-operating weather networks and government sources such as 

Environment Canada.  OWN can provide custom analysis of this weather data but has also 

developed a number of weather-based decision models for use within agriculture.3   

OWN provided data for this study on hourly temperatures since December 1995 through 

March 2003 for 13 locations in the Niagara Peninsula Region.  The specific weather event of 

concern to ice wine makers is temperature between -8°C and -12°C.  However, harvest is 

generally not done during daylight hours so harvest hours between 10 am and 8 pm are excluded 

resulting in a maximum of 15 harvest hours per day.  The total number of hours within this 

temperature band for a harvest season is summarized in Table 1 for the 13 locations from the 

OWN data set. 

                                                 
3 Further information on the Ontario Weather Network can be obtained from their website www.ownweb.ca. 
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The average harvestable hours over the eight harvest seasons was 171 hours across the 13 

locations.  However, there are statistically significant differences in the average across both 

locations and years.  The F-stat value from the Two-Way ANOVA testing for differences in 

means across locations was 5.42 versus the critical F-value of 1.91.  On average, the greatest 

numbers of harvest hours occur in the Grimsby region with the fewest in the Lakeshore region 

and at Niagara College.  Locations further up the escarpment had more hours relative to 

neighboring sites down the escarpment and closer to Lake Ontario (i.e. Vineland Escarpment 

(165 hours) vs. Vineland Cherry Ave (156 hours). 

The differences in average harvest hours are greater between years than between 

locations.  While there is a range in mean values of approximately 47 hours between the 

locations with the most and least average harvest hours (Grimsby and Lakeshore), the average 

harvest hours across seasons ranges from a high of 282 hours in 1995-95 to a low of 61 hours in 

1997-98.  The observed value of F is 263.14 from the Two-Way ANOVA and is significantly 

different from the critical F-value of 2.13 which implies the null hypothesis that the mean 

acceptable harvest hours is the same across the 8 observed years should be rejected.  

 

Results 

 The actuarial pricing of ice wine insurance is based upon the number of hours required, 

the likelihood that the harvestable hours will become available, the sequence in which the hours 

become available, and the opportunity costs of lost or delayed harvest.  This section summarizes 

the Monte Carlo results of our analysis by examining the sensitivity of the premiums to changes 

in each of the variables.  
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This first simulation examines how the premiums respond to changes in the number of 

hours required.  Each of the 12 locations represent different probabilities for harvest hours, so the 

analysis examines the issue in two dimensions.  The assumption is that the harvest quantity 

decays by 10% in each month and any crop remaining in the field in March is lost.  The 

premiums presented assume the value of harvest is $10,000.  The average value of icewine 

production across all 70 wineries in the regions is approximately $30 million but there are 

significant differences in size as the market is dominated by several large wineries.  A typical 

vintner may have sales in the $1 million range so the premiums for a weather contract should be 

multiplied by 100.  On an hourly basis a $10,000 value assigns $400/hour for a 25 hour harvest 

and $100/hour for 100 hour harvest.  The values also assume initially that there is a maximum of 

15 harvest hours per day and that there is no monthly yield loss until March 15 when any 

remaining grapes are left on the vine.4  Most vintners confine their harvest to the non-daylight 

hours so that the skin of the grape does not thaw in the sun despite the cool temperatures, which 

implies a maximum of 15 hours per day for harvest. 

 The estimated premiums (or average losses to winery) are presented in Table 2 for the 12 

locations.  Premiums increase at an increasing rate with the number of harvest hours required.  

For example, the premium to ensure at least 50 hours of temperatures between -8 and -12 is 

$122.53 in Beamsville and this premium increases to $371.28 if required hours (Z) rise to 100 

hours.  As Z rises, the need for a colder winter increases and thus so does the likelihood of losses. 

                                                 
4 Another restriction for some vintners is that their labor crew can only pick for a maximum of 8 hours per day.  
Premiums are inversely related to the amount of time available in a day to harvest.  Less time in a day to harvest 
means that there will be times during the winter when the temperature is appropriate to harvest but picking cannot 
occur because the daily time limit on picking has been reached.  Thus, the likelihood of insufficient harvest time 
increases, as does the probability of loss.  Premiums under the different labor hours per day assumption are available 
from the authors upon request. 
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An important observation is that premiums are not only affected by the number of 

required harvest hours but also by the location of the winery (see Table 2).  The premium for 

Grimsby would be $70.26 per $10,000 of loss but this would rise to $555.38 for a winery in the 

Lakeshore region.  The differences reflect the differences in micro-climates within the Niagara 

Peninsula region.  Locations with cooler climates and greater likelihood of temperatures between 

-8°C and -12°C have lower premiums than the locations with warmer climates by Lake Ontario.  

From Table 1, Grimsby has an average 194.63 harvest hours with a standard deviation of 64.06 

hours, while Lakeshore has a lower average of 152 harvest hours with a much wider standard 

deviation of 94.45 hours.  These results strongly suggest that the feasibility of a weather 

insurance product requires dealing with a significant basis risk.  Without acknowledging the 

existence of the micro-climates and measuring weather data at alternative sites, adverse selection 

problems will confront the insurer. 

The premiums presented in Table 2 assume a simple 10% decline in harvestable yield 

until March 15th when any available grapes left on the vine cannot be harvested.  However, 

damages can reduce yield through the season in variable amounts and the effects of the decline in 

alternative yield loss assumptions are listed in Table 3.  The premiums required increase 

significantly with monthly yield loss.  For example, at a Beamsville location and with 100 

harvestable hours required, the premium is $371.28 with no monthly yield loss through the 

winter.  This premium provides only a payout from losses of unharvested crop in March and 

would be reflective of an insurance product that only accounts for if adequate harvest hours had 

occurred and not when they happened.  If there is a constant 10% decline in unharvested crops in 

December, January and February the premium rises to $984.91 and to $1,905.36 if there is a 25% 

monthly reduction in grape yield.  The 10%, 20%, 30% loss row illustrates, perhaps more 
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reasonably, that losses increase by month, with a small loss in January and increasing through 

March. The relative difference between premiums under different yield loss assumptions is 

directly related to the number of harvest hours required.  The higher the number of harvest hours 

required, the higher the premiums. 

Estimated premiums (or expected losses) are decomposed into the monthly estimates in 

Table 4 for the Beamsville site.  If required harvest hours over the season are low, most losses 

are due to not being able to harvest the full crop in the month of December before there is a 

decline in harvestable quantity.  For example, approximately 72% of the $250 premium for a 

vintner insuring for at least 25 hours of harvest time is due to the reduction in grape volume by 

not getting the crop off by the end of December.  In contrast, most of the premiums for a contract 

requiring a high number of harvest hours is associated with having to leave some of the crop in 

the field at the end of the winter.  For example, 45% of the approximately $2,500 expected loss 

associated with a 200 harvest hour requirement is due to the complete yield loss at the end of the 

season whereas it is only 15% ($38) of the $250 premium for a 25 hour harvest requirement.  

The decomposition again illustrates the effect of when the weather event occurs (and not only if 

it occurs) on the expected loss or premium 

 

Summary 

The greatest risk faced by ice wine vintners is insufficient winter hours between -8°C to -

12°C necessary for harvesting the grapes.  To mitigate this risk, this paper developed an exotic 

approach to insuring unharvested hours.  The key features of the model presented are that: a) the 

probability distribution of harvestable hours is not constant across time, and b) when the harvest 

quality degrades over time, the strike value, measured in harvestable hours, becomes random.  
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Because of this random strike, we developed a systematic approach to valuing the insurance 

using first, the single index model to capture inter-temporal covariance effects, and then a Monte 

Carlo simulation protocol to estimate the premium.  While this study investigated a model 

unique to ice wine production in particular, the ideas can be extended to a number of other 

agricultural situations in which weather affects critical timing in the production process.  An 

example would be the harvest of vegetables and tender fruit for which the quantity and quality of 

product depend not only on the length of harvest period but also when the harvest occurs.  

Applying the model to twelve different locations in the Niagara Peninsula showed clearly 

that different microclimates require flexibility in product design, and a one-product-fits-all 

philosophy will not work.  The variation in premiums across locations suggests the existence of 

significant basis risk that will require the use of weather stations located in sites reflective of the 

local situation of the insured.  Furthermore, in discussions with the vintners and other wine 

specialists, it is also clear that any product has to be adaptable to the specific requirements of the 

vintner.  For example, the insurable risks of a vintner with machine harvesting capabilities will 

surely be different than one with manual harvesting capabilities.  

 As indicated in the introduction, designing weather insurance to manage agricultural risks 

will require unique solutions.  This paper illustrated how unique these designs can be.  While 

previous research has examined continuous data for a specific coverage level (or strike price), 

this paper illustrated how exotic insurance products can be designed when the coverage level 

changes over time depending on whether specific weather events do or do not occur.  We have 

shown how historical probabilities, inter-temporal correlations, and inter-temporal degradation 

could be combined into a single Monte Carlo simulation framework to set the premiums for a 

product with a random strike price. 
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Figure 1.  Location of Sites in the Niagara Peninsula Region of Ontario 
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Table 1.  Total Harvest Hours* by Season and Location 
 Harvest Season  

Location 95-96** 96-97 97-98 98-99 99-00 00-10 01-02 02-03 

Avg 

(Std Dev) 

Beamsville 

 

312 

 

223 

 

82 

 

182 

 

187 

 

237 

 

88 

 

223 

 

191.75 

(76.89) 

Grimsby 

 

279 

 

216 

 

122 

 

173 

 

161 

 

250 

 

105 

 

251 

 

194.63 

(64.06) 

Jordan 

Escarpment 

297 

 

214 

 

90 

 

170 

 

168 

 

243 

 

96 

 

226 

 

188.00 

(71.53) 

Jordan 

Highway 8 

308 

 

198 

 

64 

 

158 

 

176 

 

192 

 

62 

 

201 

 

169.88 

(79.60) 

Lakeshore 

 

323 

 

172 

 

28 

 

157 

 

137 

 

150 

 

36 

 

213 

 

152.00 

(94.45) 

Niagara 

College 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

202 

 

44 

 

197 

 

147.67 

(89.81) 

Niagara 

Parkway 

319 

 

184 

 

29 

 

171 

 

153 

 

148 

 

39 

 

207 

 

156.25 

(92.64) 

Queenston 

 

303 

 

190 

 

50 

 

167 

 

138 

 

185 

 

37 

 

199 

 

158.63 

(85.56) 

Vineland 

Cherry Ave 

320 

 

209 

 

68 

 

183 

 

166 

 

199 

 

42 

 

215 

 

175.25 

(87.54) 

Vineland 

Escarpment 

308 

 

219 

 

70 

 

166 

 

168 

 

220 

 

82 

 

215 

 

181.00 

(78.16) 

Virgil 

 

301 

 

198 

 

35 

 

192 

 

159 

 

177 

 

49 

 

201 

 

164.00 

(86.30) 

West St 

Catherines 

308 

 

212 

 

82 

 

152 

 

170 

 

212 

 

77 

 

194 

 

175.88 

(75.20) 

Winona 

 

289 

 

216 

 

77 

 

191 

 

160 

 

204 

 

62 

 

188 

 

173.38 

(74.18) 

Average 

(Std Dev) 

282.08 

(85.65) 

188.54 

(58.64) 

61.31 

(32.23) 

158.62 

(49.27) 

149.46 

(46.97) 

201.46 

(31.99) 

63.00 

(24.18) 

210.00 

(16.75) 

171.41 

 

*- Harvest hours is the total number of hours in the harvest season between -8 and -12 Celsius but not including those between 10 

am and 8 pm (daylight hours).  

**- The harvest season from December 1995 to March 1996 refers to the 1995 harvest season
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Table 2.  Estimated Premiums by Location (Max. of 15 harvest hours per day) 
Loss of $10,000 with no yield loss for each month 

Target Harvest Hours 

Location 25 50 75 100 125 150 175 200 

Beamsville 54.43 122.53 222.94 371.28 581.89 853.04 1198.83 1612.04 

         

Grimsby 24.78 70.26 153.98 289.68 493.51 759.29 1104.86 1527.34 

         

Jordan 

Escarpment 

45.66 

 

109.36 

 

207.56 

 

366.46 

 

591.09 

 

881.91 

 

1254.30 

 

1694.74 

 

         

Jordan 

Highway 8 

104.48 

 

208.59 

 

364.55 

 

593.51 

 

889.96 

 

1268.47 

 

1719.52 

 

2214.95 

 

         

Lakeshore 328.27 555.38 839.14 1172.60 1577.04 2030.64 2523.22 3026.58 

         

Niagara 

Parkway 

271.18 

 

466.78 

 

727.70 

 

1034.82 

 

1409.78 

 

1842.33 

 

2318.31 

 

2812.99 

 

         

Queenston 204.15 375.42 606.89 899.78 1255.70 1681.57 2159.42 2660.88 

         

Vineland 

Cherry Ave 144.19 257.78 416.81 637.18 913.61 1258.97 1668.58 2124.73 

         

Vineland 

Escarpment 

89.79 

 

180.50 

 

316.48 

 

509.30 

 

765.97 

 

1088.12 

 

1485.77 

 

1939.11 

 

         

Virgil 163.31 304.34 497.92 756.32 1070.34 1459.63 1908.08 2391.10 

         

West St 

Catherines 80.36 171.53 315.33 527.78 806.00 1165.68 1604.03 2090.71 

         

Winona 78.78 167.68 307.19 510.21 779.67 1126.79 1556.60 2037.90 
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Table 3.  Estimated Premiums by Location under Alternative Monthly Yield Losses 
  Harvest Hours 

Location Yield Loss Assumption 25 50 75 100 125 150 

Beamsville No yield loss 54.43 122.53 222.94 371.28 581.89 853.04 

 10% decline 249.87 449.08 698.70 984.91 1305.49 1659.46 

 25% decline 543.03 938.89 1412.34 1905.36 2390.89 2869.08 

 10%, 20%, 30% 275.48 495.79 778.47 1107.81 1479.84 1891.63 

        

Grimsby No yield loss 24.78 70.26 153.98 289.68 493.51 759.29 

 10% decline 214.82 380.32 603.43 873.61 1189.66 1541.77 

 25% decline 499.87 845.40 1277.59 1749.50 2233.89 2715.49 

 10%, 20%, 30% 239.45 427.17 684.35 997.88 1365.07 1773.88 

        

Lakeshore No yield loss 328.27 555.38 839.14 1172.60 1577.04 2030.64 

 10% decline 596.37 997.90 1437.48 1883.08 2355.43 2846.47 

 25% decline 998.53 1661.67 2334.99 2948.81 3523.03 4070.23 

 10%, 20%, 30% 642.11 1076.05 1555.18 2052.87 2577.33 3116.70 

        

Queenston No yield loss 204.15 375.42 606.89 899.78 1255.70 1681.57 

 10% decline 441.86 770.27 1158.10 1575.98 2017.89 2493.70 

 25% decline 798.42 1362.55 1984.91 2590.28 3161.17 3711.90 

 10%, 20%, 30% 488.66 851.70 1280.51 1748.92 2246.80 2772.97 

        

Virgil No yield loss 163.31 304.34 497.92 756.32 1070.34 1459.63 

 10% decline 388.01 689.01 1043.10 1426.43 1829.11 2272.91 

 25% decline 725.05 1266.00 1860.88 2431.60 2967.26 3492.82 

 10%, 20%, 30% 422.69 752.01 1142.83 1570.36 2026.55 2521.75 
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Table 4.  Estimated Premiums for Beamsville Location Broken Down by Month* 
 Required Harvest Hours 

Month 25 50 75 100 125 150 175 200 

December 

 

January 

 

February 

 

March 

 

Total 

178.55 

 

24.49 

 

8.72 

 

38.10 

 

249.87 

297.99 

 

47.15 

 

18.16 

 

85.77 

 

449.08 

427.92 

 

82.80 

 

31.93 

 

156.06 

 

698.70 

542.55 

 

130.64 

 

51.82 

 

259.90 

 

984.91 

628.32 

 

190.77 

 

79.07 

 

407.32 

 

1305.49 

689.33 

 

257.92 

 

115.09 

 

597.13 

 

1659.46 

733.56 

 

327.37 

 

158.87 

 

839.18 

 

2058.97 

766.86 

 

394.13 

 

208.76 

 

1128.43 

 

2498.18 

*- Loss of $10,000 with loss of 10% for December and additional 10% for each month following 
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Appendix 1.  Regression Estimates of Single Index Model of Monthly Harvest Hours (hi) as a Function of Seasonal Monthly 
Average ( h ) by Location 
 
    December     January     February     March   
Location Intercept Slope R2 Intercept Slope R2 Intercept Slope R2 Intercept Slope R2 
Beamsville 
 

-8.11 
(0.80)* 

1.09 
(0.12) 

0.35 
 

-1.48 
(0.95) 

1.62 
(0.01) 

0.65 
 

8.40 
(0.61) 

0.94 
(0.02) 

0.61 
 

1.19 
(0.96) 

0.36 
(0.48) 

0.09 
 

Grimsby 
 

-24.37 
(0.54) 

1.50 
(0.09) 

0.40 
 

12.26 
(0.74) 

1.34 
(0.10) 

0.38 
 

-4.15 
(0.85) 

1.13 
(0.03) 

0.57 
 

16.26 
(0.55) 

0.03 
(0.95) 

0.00 
 

Jordan Escarpment 
 

-17.78 
(0.59) 

1.30 
(0.08) 

0.42 
 

16.92 
(0.55) 

1.27 
(0.06) 

0.48 
 

-2.81 
(0.85) 

1.13 
(0.01) 

0.72 
 

3.67 
(0.89) 

0.30 
(0.56) 

0.06 
 

Jordan Highway 8 
 

-0.19 
(0.99) 

0.90 
(0.14) 

0.32 
 

8.41 
(0.71)) 

1.37 
(0.03) 

0.59 
 

7.02 
(0.58) 

0.95 
(0.01) 

0.69 
 

-15.24 
(0.52) 

0.78 
(0.15) 

0.31 
 

Lakeshore 
 

1.60 
(0.92) 

0.77 
(0.08) 

0.43 
 

1.70 
(0.92) 

1.59 
(0.00) 

0.77 
 

7.08 
(0.47) 

0.97 
(0.00) 

0.78 
 

-10.38 
(0.49) 

0.67 
(0.09) 

0.41 
 

Niagara Parkway 
 

3.50 
(0.85) 

0.75 
(0.10) 

0.39 
 

-0.60 
(0.97) 

1.70 
(0.00) 

0.77 
 

6.29 
(0.60) 

0.90 
(0.01) 

0.67 
 

-9.19 
(0.59) 

0.65 
(0.12) 

0.35 
 

Queenston 
 

-0.28 
(0.99) 

0.93 
(0.09) 

0.41 
 

-3.64 
(0.85) 

1.64 
(0.01) 

0.74 
 

7.98 
(0.54) 

0.90 
(0.02) 

0.64 
 

-4.06 
(0.81) 

0.54 
(0.18) 

0.27 
 

Vineland Cherry Ave 
 

0.93 
(0.97) 

0.83 
(012) 

0.36 
 

2.48 
(0.91) 

1.64 
(0.01) 

0.71 
 

6.74 
(0.61) 

0.90 
(0.01) 

0.68 
 

-10.14 
(0.63) 

0.62 
(0.19) 

0.27 
 

Vineland Escarpment 
 

-2.79 
(0.92) 

0.97 
(0.14) 

0.33 
 

-1.79 
(0.94) 

1.62 
(0.02) 

0.64 
 

6.64 
(0.62) 

0.97 
(0.01) 

0.70 
 

-2.05 
(0.93) 

0.45 
(0.38) 

0.13 
 

Virgil 
 

-0.27 
(0.99) 

0.88 
(0.09) 

0.40 
 

-0.45 
(0.98) 

1.68 
(0.01) 

0.70 
 

9.75 
(0.42) 

0.83 
(0.02) 

0.65 
 

-9.03 
(0.63) 

0.61 
(0.16) 

0.29 
 

West St Catherines 
 

-3.72 
(0.90) 

1.00 
(0.14) 

0.32 
 

4.06 
(0.88) 

1.45 
(0.04) 

0.55 
 

10.63 
(0.49) 

0.88 
(0.03) 

0.58 
 

-10.97 
(0.64) 

0.67 
(0.20) 

0.26 
 

Winona 
 

-1.25 
(0.96) 

0.90 
(0.17) 

0.28 
 

-1.39 
(0.96) 

1.70 
(0.02) 

0.61 
 

10.18 
(0.52) 

0.84 
(0.04) 

0.53 
 

-7.54 
(0.73) 

0.56 
(0.25) 

0.21 
 

*-  p-values are in parentheses.  
 


