Re-Considering the Necessary Condition for Futures Market Efficiency:
An Application to Dairy Futures

Dwight R. Sanders

and

Mark R. Manfredo*

St. Louis, Missouri, April 19-20, 2004

Copyright 2004 by Dwight R. Sanders and Mark R. Manfredo. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

*Dwight R. Sanders is an Assistant Professor of Agribusiness Economics at Southern Illinois University, Carbondale, Illinois. Mark R. Manfredo is an Assistant Professor in the Morrison School of Agribusiness and Resource Management at Arizona State University, Mesa, Arizona.
Re-Considering the Necessary Condition for Futures Market Efficiency: An Application to Dairy Futures

Practitioner’s Abstract

The traditional necessary condition for futures market inefficiency is the existence of alternative forecasting methods that produce mean squared forecast errors smaller than the futures market. Here, a more exacting requirement for futures market efficiency is proposed—forecast encompassing. Using the procedure of Harvey and Newbold, multiple forecast encompassing is tested with the CME fluid milk futures contract. Time series models and experts at the USDA provide the competing forecasts. The results suggest that the CME fluid milk futures do not encompass the information contained in the USDA forecasts at a two-quarter forecast horizon.

Keywords: forecast encompassing, market efficiency, milk futures

“Investors operate with limited funds and limited intelligence: They do not need to know everything. As long as they understand something better than others, they have an edge.”

—George Soros (quoted in Train)

Introduction

Futures forecasting efficiency has been examined for numerous markets using a variety of forecast procedures. It is commonly stated that a necessary, but not sufficient condition to reject futures market efficiency is that competing forecast models produce smaller mean squared forecast errors than futures-based forecasts (Leuthold, Junkus, and Cordier, p. 116). The typical assertion is that if the futures market provides the smallest mean squared forecast error, then the necessary condition for pricing inefficiency is not met; therefore, one cannot use the competing forecast model to generate trading profits.

The necessary condition for futures market efficiency has been tested in the grain (Rausser and Carter), livestock (Garcia, Leuthold, Fortenbery, and Sarassoro; Martin and Garcia), energy (Ma), and financial (Leitch and Tanner; Hafer and Hein) futures markets. In this context, futures forecasts have been compared to those produced by time series and econometric models (Leuthold, Garcia, Adam, and Park), forecasts generated by commercial services (Just and Rausser), and other market experts (Irwin, Gerlow, and Liu). The overall results of these studies are mixed depending on the markets examined and alternative forecasting methods (Garcia, Hudson, and Waller). Generally speaking, futures pricing efficiency has been rejected most often using ex post forecasts generated by the researchers’ own models and in the livestock markets (Irwin, Gerlow, and Liu). For example, Irwin, Gerlow, and Liu indicate that there is evidence of forecast inefficiency in the livestock markets, especially at longer forecast horizons, when futures forecasts are compared to out-of-sample forecasts generated ex post by econometric or time series methods (Leuthold and Hartman; Leuthold, Garcia, Adam, and Park). In contrast,
studies that examine *ex ante* forecasts produced by experts in real-time generally do not reject forecast efficiency (Bessler and Brandt; Irwin, Gerlow, and Liu). In either case, the statistical criteria for forecast efficiency rests on the futures market producing a mean squared error smaller than those of competing forecasts (Leuthold, Garcia, Adam, and Park)

However, as stated by Harvey, Leybourne, and Newbold (1998), finding that forecasts (e.g., futures forecasts) are significantly better than those of a competitor should not “induce complacency” (p. 254). It is entirely possible that a forecast can have a mean squared error smaller than a competitor, but if that forecast does not “encompass” all the information in the competing forecast, then it is not conditionally efficient. In this light, the traditional necessary condition of having the smallest mean squared error is not stringent enough. A higher hurdle—forecast encompassing—should be cleared in order to make any definitive arguments concerning futures market efficiency.

Given the arguments of Harvey, Leybourne, and Newbold (1998), the overall objective of this research is to illustrate that the accepted mean squared error necessary condition is not stringent enough and may lead to low power against the null hypothesis of forecast efficiency. As suggested in the opening quote, a smaller mean squared error is akin to a trader needing to “know everything” that the market knows; whereas a profitable edge may be available to the forecaster who just knows “something better than others.” This practical observation suggests that an efficient futures market must do more than produce the smallest mean squared forecast error. Instead, a futures forecast must meet a more exacting criterion—it must encompass all competing forecasts. Thus, this research introduces forecast encompassing as a more exacting necessary condition for futures market efficiency. In doing this, a direct application of the encompassing principle is provided using *ex ante* forecasts produced by market experts as well as out-of-sample forecasts produced by univariate time series models over alternative forecast horizons.

The remainder of the paper is structured as follows. First, an illustration of the mean squared error necessary condition is provided, focusing on how this measure can be misleading in testing for futures market efficiency. Next, the empirical methodology for testing futures market efficiency in a multiple forecast encompassing framework is presented and applied to milk futures, with the results compared to that of accuracy tests based on mean squared error criteria. Finally, conclusions are drawn regarding the need to strengthen the necessary condition for futures market efficiency to include forecast encompassing.

**Mean Squared Error and Forecast Encompassing—Testing for Market Efficiency**

**Problems with MSE**

Mean squared error (MSE) is used extensively to evaluate the forecasting performance of futures markets. Early studies relied on casual comparisons of MSE (Leuthold) while more recent studies have examined the statistical difference in forecast errors (Irwin, Gerlow, and Liu). In these studies, MSE is defined as:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - f_{i-n})^2$$

(1)
where, \( f_{t-n} \) is the futures price forecast \( n \) periods prior to time period \( t \), \( f_t \) is the corresponding realized futures price, and \( N \) is the number of out-of-sample observations of both the forecasted and realized futures price. As stated previously, the standard necessary condition for futures market efficiency is that no competing forecast (e.g., a time series, econometric, or expert opinion forecast) provides a smaller MSE than the futures market forecast. However, differences in MSE among competing forecasts are often subtle, thus leading the researcher to wonder if differences in MSE are due only to chance. Although significant advances have been made in evaluating the statistical difference in prediction errors (Diebold and Mariano; Harvey, Leybourne, and Newbold, 1997), stating the necessary condition for futures market inefficiency strictly in a comparative MSE framework is potentially misleading. The following intuitive example illustrates how the MSE necessary condition is flawed.

Consider the following simple counter example of the MSE necessary condition. Let the true data generating process be represented by: \( f_t = 0.9x_{1,t-n} + 0.1x_{2,t-n} + \epsilon_t \), where \( f_t \) is the realized price, \( x_{1,t-n} \) and \( x_{2,t-n} \) are elements of the information set available at time \( t-n \), \( \epsilon_t \) is an i.i.d. white noise error, and the \( \text{var}(x_1) = \text{var}(x_2) = \text{var}(x) \), and \( \text{cov}(x_1, x_2) = 0 \). Now, assume that the futures market generates forecasts as \( f_{t-n} = 0.9x_{1,t-n} \) and an alternative model’s forecast is \( f_{A,t-n} = 0.1x_{2,t-n} \). Then, the futures forecast error is \( e^f = f_t - f_{t-n} = 0.1x_{2,t-n} + \epsilon_t \) with \( \text{var}(e^f) = 0.01\text{var}(x) + \text{var}(\epsilon) \) and the alternative forecast error is \( e^A = f_t - f_{A,t-n} = 0.9x_{1,t-n} \) with \( \text{var}(e^A) = 0.81\text{var}(x) + \text{var}(\epsilon) \). It is clear in this example that the futures market will generate the smallest forecast error variance. But, it is equally clear that the futures market is not technically efficient. That is, it does not encompass the information contained in the alternative forecast. Therefore, a trader armed with the alternative model could conceivably use it to extract trading profits from the futures market. Given this counter example, the traditional MSE necessary condition for futures market efficiency is incomplete, and forecast encompassing is proposed as a more exacting necessary condition. In the following section, we introduce the Diebold-Mariano type test of forecast encompassing.

**Diebold-Mariano Tests**

Harvey, Leybourne, and Newbold (1997) originally proposed a modification of the Diebold-Mariano test for differences in MSE to account for non-normal distributions of the forecast error series. Specifically, the modified Diebold-Mariano test (MDM) considers two time series of \( h \)-step ahead forecast errors \( (e_{1t}, e_{2t}) \), for \( t = 1, \ldots, n \), and a specified loss function \( g(e) \), the null hypothesis of equal expected forecast performance is \( E[g(e_{1t}) - g(e_{2t})] = 0 \). For \( h \)-step ahead forecasts, the MDM test is based on the sample mean \( (\bar{d}) \) of \( d_t = g(e_{1t}) - g(e_{2t}) \) with appropriate adjustments for \( h-1 \) autocorrelation. In particular,

\[
\text{MDM} = \left[ \frac{n^2 + 2nh + nh(n-1)}{n} \right]^{-\frac{1}{2}} \left[ n^{-1} \left( \hat{\gamma}_0 + 2 \sum_{k=1}^{h-1} \hat{\gamma}_k \right) \right]^{\frac{1}{2}} \bar{d},
\]

where \( \hat{\gamma}_k = n^{-1} \sum_{t=k+1}^{n} (d_t - \bar{d})(d_{t-k} - \bar{d}) \) is the estimated \( k \)th autocovariance of \( d_t \), and \( \bar{d} \) is the sample mean of \( d_t \). The MDM statistic is compared with the critical values from a \( t \)-distribution.
with n-1 degrees of freedom. Harvey, Leybourne, and Newbold (1997) recommend the MDM for testing differences in forecast accuracy measures; thus, it is used in this research.

Harvey, Leybourne, and Newbold (1998) extend the MDM test to pairwise tests of forecast encompassing by defining \( d_i = e_{1i} - e_{2i} \) and \( \bar{d} \) as the sample mean of \( d_i \). In which case, MDM is simply testing for a zero covariance between \( e_{1i} \) and \( (e_{1i} - e_{2i}) \). The natural extension to a multiple case set forth by Harvey and Newbold is a MDM-type test that the covariance between \( e_{1i} \) and \( (e_{1i} - e_{it}) \) is zero for \( i \) competing forecasts. In developing this test, they define the difference between the forecast errors of the preferred and competing forecasts as \( d_i = (e_{1i} - e_{i+1,t})e_{1i} \), with \( \Delta_i = [d_{1t} d_{2t} d_{3t} \ldots d_{K-1,t}] \). Thus, the null hypothesis is that the vector of covariance terms, \( \Delta_i \), equals zero. Given this, Harvey and Newbold suggest a test statistic (\( MS^* \)) based on Hotelling’s generalized \( T^2 \)-statistic:

\[
MS^* = (K-1)^{-1}(n-1)^{-1}(n-K+1) \bar{d}' \hat{V}^{-1} \bar{d},
\]

where, \( \bar{d} = [ \bar{d}_1 \bar{d}_2 \bar{d}_3 \ldots \bar{d}_{K-1} ] \), \( \bar{d}_i = n^{-1} \sum d_{it} \), and \( \hat{V} \) is the sample covariance matrix. Furthermore, the sample covariance matrix must be adjusted to account for the implicit (h-1) dependency in h-step-ahead forecasts (Harvey, Leybourne, and Newbold, 1997). So, in \( \hat{V} \), the (i,j)th element is defined as,

\[
\hat{v}_{ij} = n^{-1} \left[ n+1-2h+n^{-1}h(h-1) \right]^{-1} \times \left[ \sum_{i=1}^{n} (d_{it} - \bar{d}_i)(d_{jt} - \bar{d}_j) + \sum_{m=1}^{h-1} \sum_{t=m+1}^{n} (d_{it} - \bar{d}_i)(d_{j,t-m} - \bar{d}_j) + \sum_{m=1}^{h-1} \sum_{t=m+1}^{n} (d_{it} - \bar{d}_i)(d_{j,t} - \bar{d}_j) \right].
\]

In finite samples, \( MS^* \) is distributed as \( F_{K-1,n-K+1} \).

According to Harvey and Newbold, the \( MS^* \) statistic serves as the most appropriate test of the null hypothesis that the preferred forecast encompasses the alternatives due to good size and power in moderately large samples. As pointed out by Harvey and Newbold, failure to reject the null hypothesis does not necessarily imply that the preferred forecast is strictly dominant to the competing forecasts. Rather, the forecasts may be highly correlated in which case a combination of nearly identical forecasts could not produce a smaller mean squared error relative to an individual forecast. As well, failure to reject the null may arise due to large sample variability or potentially low power and under-sizing of the test. However, rejection of the null in the encompassing test leads to a much stronger inference. In the case of rejection, it suggests that preferred forecast does not contain the marginal information of the competing forecasts. In the following section, forecast encompassing is tested using Harvey and Newbold’s \( MS^* \) statistic with the futures market forecast designated as the “preferred” model, and time series and expert opinion forecasts designated as “competing” models.

**Empirical Methodology**

Given the importance and interest in the pricing efficiency of futures markets as a topic of inquiry, numerous studies have examined the efficiency of agricultural futures markets. Indeed, nearly every agricultural futures contract that is listed by an exchange today has been examined in some context (Garcia, Hudson, and Waller). However, to date, there has not been an
examination of the efficiency of the relatively new fluid milk futures contracts traded at the Chicago Mercantile Exchange (CME). Initially launched as a deliverable contract in January of 1996, the CME fluid milk futures switched to cash settlement with the May 1997 contract. As well, the volume of Class III milk futures traded has greatly increased since their launch, with average daily volume increasing 85% in 2003 to 759 contracts.

In addition to being relatively new, the CME’s Class III milk futures contract possesses properties that make it desirable for testing futures market efficiency. First, these contracts are cash settled to an announced price by the USDA. Thus, from a forecasting perspective, the milk futures price reflects the market’s expectation for the average Class III milk price for the month. Specifically, these cash settled futures have a monthly expiration calendar, where the contract cash settles to the USDA announced average Class III price (formerly the Basic Formula Price) for the month. For instance, the July 2003 contract’s last trading day was July 31, when it closed at $11.75 per hundredweight. The contract cash settled the following day, August 1st, to the USDA announced Class III average milk price for July of $11.78 per hundredweight. This cash settlement process is very conducive for testing the necessary conditions for futures market efficiency. For example, as pointed out by Hranaiova and Tomek, with delivery-settled futures contracts the embedded delivery options can create uncertainty as to what deliverable subset the market is pricing. Thus, changes in the cheapest to deliver quality, grade, and location could confound the results of forecast efficiency studies that use delivery-settled futures. With cash settled fluid milk futures, there is no doubt that the futures market is forecasting the value of the USDA’s announced average Class III milk price for the contract month. This provides a precisely defined set of forecasts and realized values to examine the necessary condition of futures market efficiency that previous studies lack.

In examining the necessary conditions for futures market efficiency, three sets of forecasts are used in predicting the USDA’s announced Class III price: futures forecasts, forecasts generated from simple time series models, and expert opinion forecasts. In understanding the data setup and forecast horizons established, it is best to first describe the expert opinion forecasts. The USDA releases quarterly forecasts for the “all milk” price in their monthly *World Agricultural Supply and Demand Estimates (WASDE)* reports. These reports are issued between the 8th and 14th of each month and contain a set of quarterly price forecasts for the ensuing three quarters. The forecasts used are drawn from the first report of each quarter (January, March, July, and October) from the third quarter of 1997 (1997.3) through the second quarter of 2003 (2003.2), resulting in 24 *ex ante* forecast periods. Since the USDA releases forecasts for up to three quarters ahead, the sample consists of 24 one-step ahead, 23 two-step ahead, and 22 three-step ahead forecasts. An issue with this data set is appropriately mapping the USDA “all milk” price forecast to the quarterly average Class III price. This is accomplished by estimating a simple log-linear relationship between the USDA’s quarterly average Class III price and the all milk price. Specifically, the natural logarithm of the Class III price is regressed against the natural logarithm of the all milk price, quarterly dummy variables, and a time trend. This provides a mapping function from quarterly all milk prices to Class III prices. This relationship is estimated with historical data up to the forecast date, and then the *WASDE* forecasts are substituted into the relationship to get a Class III forecast for each horizon. Importantly, the mapping relationship is estimated using data only up to the beginning of each quarterly forecast interval—preserving the *ex ante* nature of the forecasts.
Consistent with the release of the USDA expert forecasts, the futures-based forecast is calculated by averaging the three contract months that comprise the appropriate calendar quarter. Since the futures price reflects a forecast for a monthly average price (i.e., the announced Class III price), averaging these three contracts together results in a forecast for the quarterly average price that is consistent with the USDA expert opinion forecasts. Specifically, the futures-based forecast is compiled from settlement quotes taken from the day prior to the morning release of the WASDE report. This process yields 24 one-step ahead, 23 two-step ahead, and 22 three-step ahead ex ante forecasts over the span of 1997.3 to 2003.2.

Finally, two time series models are used to generate out-of-sample forecasts over the sample interval (1997.3 through 2003.2). Granger suggests the use of univariate time series models as a low-cost standard of comparison for forecasters. In the first time series model (TS-1), the natural logarithm of the USDA quarterly Class III milk price index is seasonally differenced, ln(p_t/p_{t-12}), and modeled in an Box-Jenkins framework. In the pre-forecast sample (1990.1 to 1997.2) an ARMA(4,4) model fit the data well and the residual autocorrelation and partial autocorrelation functions were not statistically significant out to eight lags. Osborn, Heravi, and Birchenhall find that for highly seasonal data, annual differenced models may provide more accurate forecasts at long horizons. But, conventional first differences with the inclusion of monthly dummy variables may be more accurate at short horizons. Therefore, a second time series model (TS-2) is fit to the first differences of the natural log of the quarterly average price, ln(p_t/p_{t-1}). The monthly log-relative price changes are regressed against a set of quarterly dummy variables and the residuals are then modeled using standard Box-Jenkins techniques. The final specification includes the monthly dummy variables and an MA(4) process on the error terms.

The time series models are used to generate forecasts from one- to three-quarters ahead. Specifically, the models are estimated from 1990.1 through 1997.2. This model is used to make forecasts out for three quarters. Then, the model is estimated from 1990.2 through 1997.3, and is used to forecast from 1997.4 through 1998.2. While the most recent thirty quarters of data are used to estimate and update the model, the models are not re-specified. As pointed out by Irwin, Gerlow, and Liu, tests of forecast efficiency that rely on ex post model generated forecasts have tended to reject forecast efficiency. This could be due to ex post fitting of the data or using techniques that were not available to the market over the forecast interval (Timmerman and Granger). Here, we purposely employ easily replicable and simple time series specifications that were widely available in standard econometric packages over the sample period.

The forecasts (futures based, expert opinion, and time series) are first evaluated using the traditional forecast accuracy measure of root mean squared error. Under the traditional necessary condition for market inefficiency, if either of the time series or expert opinion forecasts produce more accurate forecasts than the futures forecasts, the CME’s Class III milk futures would be considered potentially inefficient. In addition to casual comparisons of mean squared error, the MDM procedure tests for statistical differences in forecast accuracy (Harvey, Leybourne, and Newbold, 1997). The more stringent test of pricing efficiency, forecast encompassing, is then tested in a multiple encompassing framework using the MS* test statistic put forth by Harvey and Newbold (Equation 3).
Empirical Results

Forecast Accuracy and Encompassing Tests

The traditional root mean squared error (RMSE) forecast accuracy measure is presented in Table 1, along with the mean absolute error (MAE) and Theil’s U. At a one-quarter horizon (Panel A), the futures market records the smallest RMSE of 6.73%. The seasonal time series model (TS-1) has the largest RMSE of 17.96%. Similarly, both the MAE and Theil’s U rank the futures market as the most accurate forecast at the one-quarter horizon. This result is consistent with previous findings of futures market pricing efficiency at short horizons (Irwin, Gerlow, and Liu). However, at two-quarters ahead (Table 1, Panel B), the USDA forecasts are the most accurate by all measures. The USDA’s RMSE is 16.64% compared to 17.26% for the futures market, which is more accurate than either of the time series alternatives. Similarly, at a three-quarter horizon, the futures market does not have the smallest squared prediction error. The TS-1 and USDA have RMSE of 19.03% and 19.05%, respectively, while the futures market’s RMSE is 19.63%. Therefore, based on the casual observation of these forecast accuracy measures at the two and three-quarter horizons, the milk futures market may meet the necessary condition to reject efficiency. However, it is important that the differences in prediction errors are statistically significant.

The MDM test in Equation 2 is used to test the statistical difference in MSE. The results for each forecast horizon are reported in Table 2. At the one-quarter horizon, the futures market clearly provides a superior forecast. The futures market has a statistically smaller mean squared forecast error than each of the competitors (1% level). At this horizon, the USDA forecasts are statistically more accurate than either time series model (5% level), and there is no statistical difference between the time series forecasts. However, at two-quarters ahead (Panel B) and three-quarters ahead, the MDM test cannot distinguish between the accuracy of any of the forecasts. So, although the USDA and time series models produce smaller mean squared forecast errors than the futures based forecasts at these horizons (Table 1), they are not statistically smaller. This result would suggest that the futures market meets the traditional necessary condition for forecast efficiency because the other forecasts do not produce statistically smaller errors (Irwin, Gerlow, and Liu). However, as shown previously, this conclusion may be misleading if the futures forecast does not encompass all the information in the competing forecasts.

A more stringent test of pricing efficiency is forecast encompassing. That is, the futures market forecast should include all the information contained in alternative forecasts. The multiple forecast encompassing test shown in Equation (3) is conducted at each horizon using the futures market as the preferred forecast. The null hypothesis of market efficiency—that the futures market encompasses the competing forecasts—is tested with a F-test of MS* in Equation (3). For the sake of completeness, the encompassing test is performed using each forecast as the preferred forecast (Harvey and Newbold).

The p-values from the encompassing tests are presented in Table 3. Using the futures market as the preferred forecast (first row of Table 3) represents the test for futures pricing efficiency. The null hypothesis that the futures price encompasses the information contained in the competing forecasts is rejected at the 1% level at the two two-quarter horizon. The null hypothesis is not rejected at conventional levels for the one- and three-quarter ahead forecasts. The evidence
suggests that at the two-quarter horizon, the futures market does not contain all the information in the competing forecasts. The encompassing necessary condition for market inefficiency is met. Importantly, this result is consistent with the USDA’s smaller RMSE at this horizon. But, the encompassing test provides much stronger statistical evidence than the test for differences in MSE. That is, based on the traditional difference in MSE test (Table 2), the necessary condition to reject market efficiency is not met. Whereas, forecast encompassing is rejected (Table 3), which suggests that the necessary condition to reject efficiency is met. This result is consistent with Ashley, who reports that tests for differences in MSE may have low power against the null of equal forecast error variance. Therefore, the encompassing test is not only theoretically more appropriate, but it may also provide greater statistical power than tests for differences in MSE.

The remainder of the encompassing tests supports this finding. When the USDA and time series forecasts are designated as the preferred forecasts, in most instances they do not encompass the competing forecasts. The exception is at the two-quarter horizon, where forecast encompassing is not rejected for either the USDA or TS-1 forecasts, which confirms that they encompass the futures forecast at this horizon.

Collectively, the results suggest that the fluid milk futures market is efficient relative to forecasts produced by the USDA and univariate time series models at the one-quarter and three-quarter horizon. However, at the two-quarter horizon, the null hypothesis that the futures market contains all the information in the competing forecasts is rejected. Thus, the necessary condition to reject market efficiency is met. Importantly, a simple test for differences in MSE do not lead to this conclusion.

**Summary, Conclusions, and Discussion**

This research shows that the traditional MSE necessary condition for pricing inefficiency in futures markets is not stringent enough. That is, a smaller MSE does not necessarily imply that a forecast is technically efficient relative to other forecasts. In light of this, the traditional MSE necessary condition may have low power against the null hypothesis of efficient markets. Here, we propose the multiple forecast encompassing test of Harvey and Newbold (2000) as a more appropriate test of pricing efficiency. That is, the futures market forecast should encompass all the information contained in competing forecasts.

The forecast encompassing test is applied to the CME’s Class III milk futures market. Forecast horizons from one- to three-quarters ahead are examined. Simple time series models and USDA expert opinion generate the competing forecasts. Care is taken to map the USDA expert forecasts for “all milk” to the Class III price underlying the cash-settled futures; thereby, providing a direct test of forecast efficiency. The data utilized spans from July 1997 through June 2003. Since this futures contract cash settles to the USDA announced Class III price, any pricing uncertainty that may arise due to delivery options is avoided (Hranaiova and Tomek).

The fluid milk futures forecasts perform admirably at the one-quarter horizon, producing the smallest MSE and encompassing the other forecasts. However, at the two-quarter horizon, the null hypothesis that the futures market contains all the information in the competing predictions is rejected. Therefore, the null hypothesis of pricing efficiency is rejected. At this same
horizon, a statistical comparison of MSE would not reject the null hypothesis. So, the encompassing framework can lead to different inferences than the traditional MSE criteria.

In summary, this research presents a more stringent necessary condition for futures market efficiency than the traditional comparative analysis of mean squared forecast errors. Specifically, to reject the null of market efficiency, it is necessary that the futures market fail to encompass all competing forecasts. Further, the multiple forecast encompassing test of Harvey and Newbold (2000) provides a robust statistical test under a number of distributional assumptions. The presented methodology represents a step forward in refining and investigating the necessary conditions for futures market efficiency.

References


### Table 1. Accuracy Measures

<table>
<thead>
<tr>
<th></th>
<th>Futures</th>
<th>USDA</th>
<th>TS-1</th>
<th>TS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel A: One-Quarter Ahead</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0673</td>
<td>0.1113</td>
<td>0.1796</td>
<td>0.1578</td>
</tr>
<tr>
<td>MAE</td>
<td>0.0591</td>
<td>0.0946</td>
<td>0.1515</td>
<td>0.1318</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>0.2722</td>
<td>0.4502</td>
<td>0.7262</td>
<td>0.6380</td>
</tr>
</tbody>
</table>

|                                |         |        |        |        |
| **Panel B: Two-Quarter Ahead** |         |        |        |        |
| RMSE                           | 0.1726  | 0.1664 | 0.2018 | 0.2016 |
| MAE                            | 0.1465  | 0.1322 | 0.1746 | 0.1636 |
| Theil’s U                      | 0.6956  | 0.6707 | 0.8133 | 0.8123 |

|                                |         |        |        |        |
| **Panel C: Three-Quarter Ahead** |        |        |        |        |
| RMSE                           | 0.1963  | 0.1905 | 0.1903 | 0.2144 |
| MAE                            | 0.1696  | 0.1464 | 0.1573 | 0.1679 |
| Theil’s U                      | 0.7575  | 0.7353 | 0.7345 | 0.8277 |

### Table 2. MDM Test for Difference in Mean Squared Prediction Errors

<table>
<thead>
<tr>
<th></th>
<th>USDA</th>
<th>TS-1</th>
<th>TS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel A: One-Quarter Ahead</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futures</td>
<td>0.0048a</td>
<td>0.0009</td>
<td>0.0027</td>
</tr>
<tr>
<td>USDA</td>
<td>0.0081</td>
<td>0.0174</td>
<td></td>
</tr>
<tr>
<td>TS-1</td>
<td></td>
<td>0.2999</td>
<td></td>
</tr>
</tbody>
</table>

|                                |         |        |        |
| **Panel B: Two-Quarters Ahead** |         |        |        |
| Futures                       | 0.8108  | 0.3768 | 0.4285 |
| USDA                          | 0.3407  | 0.3167 |        |
| TS-1                          |         | 0.9947 |        |

|                                |         |        |        |
| **Panel C: Three-Quarters Ahead** |        |        |        |
| Futures                       | 0.8825  | 0.8202 | 0.6432 |
| USDA                          | 0.9962  | 0.6942 |        |
| TS-1                          |         | 0.5757 |        |

*aP-value from the MDM test for difference in mean squared errors.*
Table 3. Test for Multiple Forecast Encompassing

Forecast Horizon

<table>
<thead>
<tr>
<th>Preferred Forecast</th>
<th>One-Ahead</th>
<th>Two-Ahead</th>
<th>Three-ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futures</td>
<td>0.1712(^a)</td>
<td>0.0040</td>
<td>0.1500</td>
</tr>
<tr>
<td>USDA</td>
<td>0.0242</td>
<td>0.9973</td>
<td>0.0252</td>
</tr>
<tr>
<td>TS-1</td>
<td>0.0055</td>
<td>0.9999</td>
<td>0.0024</td>
</tr>
<tr>
<td>TS-2</td>
<td>0.0042</td>
<td>0.0002</td>
<td>0.2540</td>
</tr>
</tbody>
</table>

\(^a\)P-value for the null that the preferred forecast encompasses all the competing forecasts.
Endnotes

1 The sufficient condition for market inefficiency is the ability to produce risk-adjusted trading profits.
2 It is important to distinguish that prior studies, such as Leuthold, Garcia, Adam, and Park, simulate the past with out-of-sample forecasts; but they are *ex post* in the sense that they are not made in real-time. In contrast, extension or export forecasts—such as those examined by Irwin, Gerlow, and Liu—are made in real-time. Thus, a test using a history of these forecasts is truly *ex ante*.
3 Class III and BFP milk prices are available starting in May of 1995. Prior to that, the “all milk” price is used to calculate a return series. The two return series are combined to make a continuous series of log-relative price changes.