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The Term Structure of Implied Forward Volatility: 
Recovery and Informational Content in the Corn Options Market  

 
Options with different maturities can be used to generate volatility estimates for non-overlapping 
future time intervals.  This paper develops the term structure of volatility implied by corn futures 
options, and evaluates the informational content of the implied forward volatility as a predictor 
of subsequent realized volatility.  Using data from 1987-2001 and employing a flexible method to 
obtain the implied forward volatilities, two types of information are examined: 1) the market’s 
estimate of future realized volatility for the nearby interval of the term structure and, 2) the 
market’s expectation of the direction and magnitude of change of future realized volatility over 
time.  In contrast to previous research, the results indicate that the implied forward volatilities 
anticipate the realized volatilities reasonably well.  For the nearby interval of the term structure, 
the implied forward volatilities provide unbiased forecasts and capture a larger portion of the 
systematic variability in the realized volatilities than forecasts based on historical volatilities.  
Using information on the direction and magnitude of change in volatility over time, we find that 
the early-year options forecast volatility about as well as the three-year moving average and 
better than the naïve forecast, while later-year options and alternative forecasts are less able to 
predict the direction and magnitude of changing volatility.  During this later-year period, the 
implied forward volatilities tend to over-predict the magnitude of actual volatility.  Overall, we 
find that the term structure of volatility implied by corn futures options contains information on 
future realized volatility. 
 
Keywords: corn options, implied forward volatility, informational content, term structure 
 
 
Introduction 
 
Price risk, generally expressed as volatility, has been shown to affect input and output decisions 
in a variety of economic situations.  In a decision-making context, information about future 
volatility is particularly important to market participants as it permits them to assess alternative 
allocations of resources in a more relevant framework.  In futures markets for example, 
information about future volatility can provide market participants with an understanding of the 
relative costs and risks of placing and offsetting hedges during different time periods.  Increased 
volatility can correspond to more frequent margin calls, shortening the time that investors have 
to respond with new funds, and thereby putting a greater portion of investors’ wealth at risk.  
Information about future volatility can also provide insight into whether holding a particular 
commodity, e.g., storing harvested grain, will be consistent with individual risk preferences.1  
The needed estimates of future volatility over a particular time period can be obtained from 
observed options premiums by inverting a theoretical pricing model.  However, as the volatility 
implied in options premiums is only an expected average, market participants still face the risk of 
not knowing when volatility will be below or above this average.  Although not often realized, 
this important information is also contained in options prices. 

 
Market participants and researchers have largely overlooked the possibility of 

decomposing the expected average volatilities implied in options with different maturities into 
                                                 
1 Information about the future volatility in prices might also be used in risk-response econometric analysis.  
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implied forward volatilities.  These forward volatilities, also known as forward-forward 
volatilities, refer to the expected average volatilities between the expiration dates of two options 
with successive maturities.  Figure 1 illustrates this idea for a pair of options.  At 0=t , the 
options expiring at α−= eTt  and eTt = , 0>α , imply two different average volatilities, 

α
σ

−− eTiv 0,  

and 
eTiv −0,σ .  These expected average volatilities, however, are not the only information about 

future volatility that can be recovered from the options prices.  The options prices also hold 
information about the implied forward volatility, 

ee TTifv −−α
σ , , over the interval from α−eT  to eT .  

Using options with several different expirations, market participants can infer an implied forward 
volatility curve - the term structure of volatility. 2  Hence, the implied volatilities recovered from 
options prices contain information about the expected average volatilities until expiration, and 
also the expected average volatilities during non-overlapping time intervals. 

 
This paper identifies a procedure to generate the term structure of volatility implied by 

options prices, and evaluates the informational content of futures options on a storable 
agricultural commodity.  Specifically, we investigate the term structure and the ability of the 
implied forward volatility to predict realized volatility of corn futures prices.  As a determinant 
crop, corn is characterized by a few short, but critical, time periods in its growing cycle during 
which environmental factors such as weather have a greater impact on yields and price 
variability than during other periods.  Because these critical periods repeat annually, the 
associated greater volatility provides a natural test of the implied forward volatilities’ forecast 
ability.  In the analysis, we employ a recently advanced method to obtain the implied volatilities 
which recovers all information about future volatility available from the options prices.  Using an 
extensive data set that begins shortly after trading in agricultural futures options resumed, we 
allow for the emergence of a flexible term structure and investigate whether information such as 
the direction or magnitude of future volatility changes can be predicted from the implied forward 
volatility. 
 
Literature  
 
At any point in time, an asset’s future price volatility is unknown and must be estimated using 
either backward- or forward- looking methods.  Backward- looking methods forecast future 
volatility based on statistical measures such as the standard deviation, mean absolute return, or 
inter-quantile range of a time series of an asset’s returns over a historical period.  Future 
volatility is then predicted using time series models ranging from simple random walk and 
moving averages to ARCH-type and stochastic volatility models.  Forward-looking methods 
estimate future volatility as the implied volatility obtained from observed option premiums by 

                                                 
2 This term structure is analogous to the yield curve of forward interest rates implied by prices of bonds with similar 
risk but different maturities.  Assuming bonds with identical default risk, no arbitrage conditions imply that from a 
set of today’s spot interest rates lasting i periods into the future, r0,i, i=1,2,…,m,…,n, the implied forward interest 
rates between times m and n can be obtained using 
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inverting a theoretical option pricing model.  Since market participants possess all available 
historic information when pricing options, forward-looking methods should yield better 
predictions of future volatility than backward- looking methods.   

 
Empirical studies, focusing primarily on financial assets, support this notion.  Christensen 

and Prabhala (1998) and Fleming (1998) show that the volatility implied by S&P 100 index 
option premiums dominates historical volatility in predicting future volatility.  Examining the 
forecasting power of the implied volatilities of S&P 500 index futures options Feinstein (1989) 
and Ederington and Guan (2000) provide further evidence that the implied volatilities outperform 
historical volatilities.  Similar results are obtained by Xu and Taylor (1995) analyzing implied 
volatilities of PHLX currency options and Jorion (1995) examining volatilities implied by 
options on foreign currency futures.  Day and Lewis (1993) find better performance of the 
volatilities implied by options on crude oil futures.3  Overall, recent empirical evidence indicates 
that implied volatilities tend to outperform historical volatilities in predicting future uncertainty.  

 
The original Black and Scholes (1973) option pricing model for European options and the 

models developed by Roll (1977), Geske (1979), and Whaley (1981) for American options 
assume that volatility of the underlying asset, expressed as the standard deviation of its returns, 
remains constant over the life of the option.  However, empirical research shows that the 
volatility of asset returns varies over time (Fama, 1965; Black, 1976; Merton, 1980; Poterba and 
Summers, 1986; French et al., 1987).  To incorporate time-varying volatility, the original Black 
and Scholes (1973) model was generalized (Merton, 1973) and alternative option pricing models 
developed (Cox and Ross, 1976; Hull and White, 1987; Johnson and Shanno, 1987; Scott, 1987; 
Wiggens, 1987).  These models interpret the implied volatility as the average volatility that 
market participants expect to prevail until option expiration. 4   

 
As different expected average volatilities may be extracted from options differing in 

maturity, a term structure of implied volatility unfolds.  Previous academic work has analyzed 
this term structure of future volatility mainly within the framework of mean-reversion.  Stein 
(1989), for example, estimates a mean-reverting process with constant long-run mean and 
coefficient of mean-reversion to model the volatility implied by S&P 100 index options, and Xu 
and Taylor (1994) estimate two mean-reverting models for four currency PHLX options prices 
employing a Kalman filter.  Yet,  only two studies have decomposed the expected average 
volatilities implied in options with different maturities into implied forward volatilities (Campa 
and Chang, 1995; Gwilym and Buckle, 1997). 

 
Assuming rational expectations, Campa and Chang (1995) test the expectations 

hypothesis in the term structure of volatility in foreign exchange options by examining whether 
current long-dated volatility quotes are consistent with future short-dated volatility quotes.  
                                                 
3 Earlier studies by Day and Lewis (1992) and Canina and Figlewski (1993) for S&P 100 index options and 
Lamoureux and Lastrapes (1993) for individual stocks find no superior performance of implied volatilities compared 
to historical volatilities and hence conclude that implied volatilities are inefficient.  Those results have subsequently 
been attributed to measurement errors by Jorion (1995), Christensen and Prabhala (1998), and Ederington and Guan 
(2000). 
4 As noted by Stein (1989), this interpretation of implied volatility requires two necessary conditions.  First, market 
participants do not get compensated for bearing volatility risk.  Second, the option pricing model is a linear function 
of volatility. 
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Based on daily volatility quotes in pound, mark, yen, and Swiss franc options from December 
1989 to August 1992, Campa and Chang (1995) are unable to reject the expectations hypothesis 
for most cases.  Further, the current differences between long-dated and short-dated volatility 
quotes predict the direction of future short-rate and long-rate changes correctly.  However, 
Campa and Chang’s (1995) analysis has several limitations.  First, the implied forward 
volatilities are examined only with regard to their internal consistency.  No attempt is made to 
assess their ability to predict actual realized volatilities.  Similarly, the direction of future 
volatility changes refers to changes in the implied volatilities but not to changes in the realized 
volatilities of the underlying assets.  Consequently, the implied term structure of volatility is not 
evaluated based on the realized term structure of volatility but instead based on its own 
components.  Hence, Campa and Chang’s (1995) results are limited to the data domain of 
implied volatilities and cannot be generalized to the term structure of realized volatilities of the 
underlying assets.  Second, the analysis was performed on markets characterized by direct 
volatility quotes with a fixed time to expiration date.  While this approach may provide a more 
direct assessment of the expectations hypothesis, it is atypical of most options markets where 
premiums rather than volatility are quoted, and the length of the term structure depends on the 
maturities of the options traded. 

 
While Campa and Chang (1995) study only implied forward volatilities, Gwilym and 

Buckle (1997) examine the implied forward volatilities as predictors of realized volatilities.  
Using one-month and two-month maturity American options on the FTSE 100 index from June 
1993 to September 1995, they compare the implied forward volatility between the two expiration 
dates with the realized volatility over this period.  The implied forward volatility is found to 
consistently overestimate realized volatility as evaluated by mean absolute and mean squared 
errors, and to have poor forecasting ability.  Because Gwilym and Buckle’s (1997) data are 
limited to one-month and two-month options, the implied forward volatilities are constrained to 
one-month intervals, and hence no term structure unfolds.  Further, no evaluation of other 
predictive properties such as the directional change of volatility is conducted. 
 
Specific Characteristics of the Corn Market 
 
An advantage of using a commodity such as corn to evaluate the implied forward volatilities as 
predictors of future realized volatility is that researchers (Roll, 1984; Anderson, 1985; and 
Kenyon et al., 1985) as well as market participants have observed repeating patterns of varying 
volatilities in agricultural futures markets.  Anderson (1985), for example, finds strong 
seasonality in the volatility of corn, wheat, and soybean futures prices between 1969 and 1980.  
The periods of higher and lower volatility follow the growing and non-growing cycles of the 
crops.  Corn is a determinant crop, which means the plant grows according to an internal clock 
and cannot generate new growth to compensate for stress during key growth periods.  Hence, 
periods when moisture and temperature are especially critical to crop development are 
characterized by greater volatility than periods where weather has a less profound impact on crop 
growth and future yields.  Times particularly critical to corn growth and the potential impact of 
four days of stress on yields are given in Table 1.  The higher volatility during critical periods 
reflects the greater uncertainty and risk that market participants face during those intervals.  As 
the crop passes through this time and the actual weather is observed, this uncertainty is gradually 
resolved and the volatility starts to decline.  Since these critical growth periods repeat annually, 
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market participants know before the crop is planted the approximate times of greater corn price 
volatility.  In an efficient options market, the implied forward volatilities that contain these 
growth periods are expected to be higher than for periods where weather has a less profound 
impact on crop development. 
 
Methods 
 
Volatility Estimates 
 
Following Fackler and King (1989) and Sherrick et al. (1996), this study assumes no-arbitrage 
conditions and uses Cox and Ross’ (1976) description of options premiums as the discounted 
expected future payoffs against a risk neutral valuation measure (RNVM) that characterizes the 
return distribution of the underlying asset.  Under this approach the current premiums of 
European call and put options are given by  
 

    ∫
∞

−=
0

)(),0max()()( TTTc dFFgxFTbxV    [1] 

 

    ∫
∞

−=
0

)(),0max()()( TTTp dFFgFxTbxV    [2] 

 
where Vc and Vp are the premiums of European call and put options, x is the options’ strike price, 
T is the time to expiration, FT is the price of the underlying asset at expiration, b(T) is the 
discount factor, and g(FT) is the market expected probability density function of the underlying 
asset price, FT, at maturity.5  If g(FT) is assumed to be lognormal, the relationship represents the 
Black-Scholes option pricing model.  The observed option premiums and the current discount 
rate can be used to recover the implied RNVM, i.e. the distribution of the underlying asset price. 

 
The approach differs from traditional Black-Scholes option pricing applications in two 

ways.  First, no restrictions are imposed on the asset distribution’s underlying mean, such as the 
mean equaling the current asset price or being a function thereof, or the underlying asset’s price 
process.  The only assumption needed is that no-arbitrage conditions prevail.  Second, in contrast 
to just using the option nearest to being at-the-money, the information contained in all calls and 
puts across all strike prices is used simultaneously. 

 
 The objective function used to recover the appropriate implied distribution is 
 









































−−+

























−− ∑ ∫∑ ∫

==

∞ l

j

x

TTjTjp

k

i x
TiTTic

j

i

dYYxYgTbVdYxYYgTbV
1

2

0
,

1

2

, ))(|()())(|()(min ϕϕ
ϕ

 [3] 

 

                                                 
5 In this paper we use a European options pricing model to approximate the American options price of the corn 
futures options.  
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where ϕ  is the parameter vector for the particular distribution, Vc,i and Vp,j are the observed 
options premiums, xi and xj are the respective call or put strike prices, and k and l are the number 
of calls and puts for a particular day.  Solving this equation for a specific options maturity yields 
the most suitable parameter vector.  The RNVM can be approximated by a number of 
distributions.  However, Fackler and King (1989) and Sherrick et al. (1996) find that there is 
little gain in accuracy by using distributions other than the traditional lognormal.   

 
Since the approach yields a different parameter vector for each set of maturities, implied 

volatilities can be recovered for different times to expiration.  Assuming that variance is additive, 
those different implied volatilities can be used to calculate the implied forward volatility between 
two successive expiration dates, α−eT  and eT , using 
 

2
0,

2
0,, αα

σσσ
−− −−− −=

eeee TivTivTTifv  0>α .   [4] 

 
The implied forward volatility represents the market’s expectation of the average volatility that 
will occur during this future interval (Figure 1).  This expectation can be annualized as follows 
 

( )α
αα

σσ
−

−− −
×=

−−
ee

TTifvTTIFV TTeeee

365
,,  .   [5] 

 
The realized volatility of the underlying futures contract, F, during the period between 

two consecutive expiration dates is calculated on daily log returns 
 

)/ln( 1−= ttt FFR .     [6] 
 
Denoting D as the number of trading days in the interval, α−eT  to eT , the mean return µ  during 
this period is estimated by 
 

D

R
R

D
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== 0 ,      [7] 

 
and the variance of Rt by 
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.     [8] 

 
However, in a perfectly efficient futures market R  is zero, and hence the realized volatility is 
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σ ,     [9] 

 
which can be expressed in an annualized form by 
 

365,, ×= −− −− eeee TTrealTTREAL αα
σσ .    [10] 

 
Forecast Evaluation Methods 
 
The predictive performance of the implied forward volatility is evaluated with respect to 
alternative predictors of future volatility in order to assess whether market participants 
incorporate new information into their volatility forecasts.  The three-year moving average of 
past realized volatilities during the respective intervals and the naïve forecast defined as the 
volatility realized during the time interval in the previous year are chosen as alternative forecasts. 
 
Levels of Volatility 
 
The implied forward volatility and the alternative forecasts as predictors of future realized 
volatility are first examined using a simple regression framework 
 

εσαασ ++= FORECASTREAL 10      [11] 
 
where REALσ  and FORECASTσ  refer to the annualized realized and forecasted volatilities.  The 
forecasted volatilities are the implied forward volatility, the three-year moving average, or the 
naïve forecast.  A significant coefficient 1α  indicates that the forecast contains information about 
subsequent realized volatility.  A significant constant term 0α  indicates an average level of 
stochastic volatility that the market is unable to predict.  In this context, an efficient or unbiased 
forecast is often characterized by 00 =α  and 11 =α  which can be tested using equation [11] with 
an F-test. 
 
 The differences in accuracy of the three volatility forecasts are further evaluated based on 
relative forecast errors using the mean absolute percentage error (MAPE) and the mean squared 
percentage error (MSPE) 
 

( )
∑

− −

−−

− −

−− ×
−

=
ee ee

eeee

TT TTREAL

TTREALTTFORECAST

n
MAPE

α α

αα

σ

σσ
100

1

,

,,    [12] 

 

 
( )

∑
− −

−−

− −

−−











×

−
=

ee ee

eeee

TT TTREAL

TTREALTTFORECAST

n
MSPE

α α

αα

σ

σσ
2

,

,, 100
1

.   [13] 

 



 8 

These error measures are then compared using the Modified Diebold Mariano (MDM) test 
proposed by Harvey, Leybourne, and Newbold, HLN (1997).  The procedure involves specifying 
a cost-of-error function, g(e), of the forecast errors e and testing pair-wise the null hypothesis of 
equality of expected forecast performance.  The test statistic, which HLN (1997) indicate should 
be compared with the critical values from the Student’s t distribution with (T – 1) degrees of 
freedom, is computed for one-step ahead forecasts as  
 

( )
d

dd
T

T
MDM T

t
t∑

=

−

−
=

1

21
1

,    [14] 

 
where dt =g(et,1)-g(et,2), d is the average difference across all years, and the null hypothesis is 
E(dt)=0.  For example, when testing for significant differences of the MAPEs of two forecasts, 
g(et,1)=|et,1| is the absolute percent forecast error of method 1, g(et,2)=|et,2| is the absolute percent 
forecast error of method 2, and dt=et,1-et,2 is the difference between the respective absolute 
percent forecast errors at time t.  

 
HLN (1998) demonstrate that the size of the MDM test is insensitive to contemporaneous 

correlation between the forecast errors and that its power declines only marginally with 
departures from normality.  They argue that these characteristics are important since researchers 
attempting to differentiate between forecasts are often faced with correlated forecasts that 
possess occasional large errors.  This is also the case in our study.  Other advantages of the MDM 
test include its applicability to multiple-step ahead forecast horizons, its non-reliance on an 
assumption of forecast unbiasedness, and its applicability to cost-of-error functions other than 
the conventional quadratic loss.  HLN (1997) assert that the MDM test constitutes the “best 
available” method for determining the significance of observed differences in competing 
forecasts. 

 
Changes in Volatility 
 
On a particular trading day, forward volatilities for successive time intervals can be extracted 
from the options prices.  Hence, these premiums contain information about the market’s 
expectation of future volatilities and about the directional change of those future volatilities over 
time.  For example, following the growing cycle of the crop and observing historical patterns of 
volatility, the implied forward volatility in the February-April interval might be lower than in 
April-June interval as the latter displays historically greater realized volatilities than the former.  
Hence, each trading day a term structure of the implied forward volatility unfolds that reflects 
not only trader’s expectations about the level of future volatility but also its directional change. 

 
Following Henriksson and Merton (1981) and Henriksson (1984) the accuracy of 

predicting directional change is evaluated using the log odds ratio in the regression 
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where Z(i) is a binary variable that takes the value of 1 if the actual realized volatility increased 
from one interval to the subsequent one, and 0 otherwise, U(i) is a binary variable that takes the 
value of 1 if the forecasted volatility increased from one interval to the subsequent one, and 0 
otherwise, and i is the total number of directional predictions made.  The sign and magnitude of 
the coefficient 1β  are estimated using a logit framework.  A significant positive 1β  means that 
the forecast has predictive power of the directional change of future realized volatility, while a 
significant negative or a non-significant coefficient indicates that the forecast does not predict 
reliably the directional change of future realized volatility.   

 
The procedure suggested by Cumby and Modest (1987) and Hartzmark (1991) allows for 

further evaluation of the information about the directional change contained in the volatility 
forecasts.  Define REALσ∆  as the changes in the realized volatilities from one interval to the 
subsequent one and FORECASTσ∆  as the respective changes in the forecasted volatilities.  Then the 
regression equation 

 
εσγγσ +∆+=∆ FORECASTREAL 10     [16] 

 
assesses whether large increases (decreases) in the forecasted volatilities from one interval to the 
subsequent one correspond to large increases (decreases) in realized volatilities for the respective 
intervals.  Hence, this framework examines the accuracy of the forecasts in predicting the 
magnitude of the directional change.  The coefficients and tests can be interpreted in a similar 
manner to those in equation [11], and provide indications of forecast accuracy.  MAPEs, MSPEs, 
and MDM tests are also generated to more carefully examine the differences in forecast 
accuracy. 
 
Data and Construction of Volatility Intervals 
 
The analysis uses daily settlement prices of corn futures standard options that traded from 
January 2, 1987 to December 31, 2001 and daily settlement prices of corn futures from February 
17, 1984 to November 22, 2002.6  The options premiums and futures prices are obtained from 
the Chicago Board of Trade (CBOT) and provide 15 complete years of observations.  Corn 
futures expire in September, December, March, May, and July.  Since the options mature about 
one month before the underlying futures expires, the underlying contracts traded dictate the time 
intervals for which implied forward volatilities can be examined.  This results in implied forward 
volatilities that cover intervals of differing lengths; some intervals are approximately two months 
long, others three months.  The intervals over which the implied forward volatilities are 
computed are essentially fixed across years because corn futures options always mature at 
approximately the same point in time.  The expiration dates vary only slightly by a few days.  
Hence, five time intervals can be constructed:  February-April, April-June, June-August, August-
November, and November-February, with the underlying corn futures contracts being May, July, 
September, December, and March, respectively.  The implied forward volatilities for successive 

                                                 
6 The number of serial options traded during the data period was small.  Their low associated trading volume was 
insufficient for consistently extracting the implied volatilities with the method employed in this study.  Furthermore, 
the infrequent occurrence of serial options does not allow fo r meaningful comparisons across years.  Therefore, 
these options were not considered in the analysis.  
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two-month and three-month intervals can be chronologically stacked.  In this manner, a complete 
and continuous term structure of future volatilities emerges reaching from approximately 6 
months up to 12 months into the future, depending on the available maturities of the options 
traded.   

 
The lognormal distribution is used as the RNVM to extract the implied volatilities from 

the corn options premiums.  This distribution has been shown to work reasonably well for 
obtaining the implied volatilities from soybean futures options (Fackler and King, 1989; Sherrick 
et al., 1996).  Furthermore, the lognormal distribution allows for greater degrees of freedom than 
higher-order distributions because it requires only a two-parameter ϕ  vector.  The discount 
factor b(T) is calculated by compounding the corresponding three-month T-Bill rate obtained 
from the Federal Reserve Board over the time to maturity of the options. 

 
The data are first screened to exclude options that are listed, but did not actually trade; 

block trades; and options violating monotonic strike-premium patterns.  Furthermore, a 
minimum of three valid observations is required for each set of options because the parameter 
vector of the lognormal distribution contains two elements, and using only two observations 
would yield a system of two equations with two unknowns resulting in a perfect fit with no error.  
Sets of options consisting entirely of calls or puts are excluded from the analysis as those sets are 
frequently inconsistent with monotonic volatility patterns.  The remaining options in each set are 
equally weighted when computing the implied volatility using Equation [3].  Finally, the 
annualized forward volatilities implied by two sets of subsequent options are obtained using 
Equation [5].  The implied forward volatilities are extracted from sets of options that traded 2 
months before the beginning of the interval, i.e. 2 months before the expiration of the options 
with the shorter maturity.  Because the time intervals are either two or three months long, this 
approach assures non-overlapping observations. 

 
The realized futures price volatilities are calculated using equation [10].  The annualized 

volatilities for the corresponding time intervals are based on the contracts underlying the set of 
options with the longer time to maturity and are computed around an assumed mean of zero 
(Equation [9]).  Two reasons warrant this approach.  First, in an efficient futures market, no 
arbitrage requires that the mean return from holding futures contracts is zero.  Second, Figlewski 
(1997) cautions that when dealing with short sample periods as is the case in this study, noisy 
price movements can result in deviations from the true mean and make the estimate, R , very 
inaccurate.  Since the options mature about one month before the futures, all problems usually 
associated with prices close to maturity of a futures contract are avoided because that period is 
automatically excluded when calculating the realized volatility.  This treatment is important as 
the time right before the expiration of the futures is usually characterized by high volatility often 
attributed to traders closing positions to avoid delivery.  
 
Analysis and Results 
 
General Pattern 
 
The realized volatilities for the five intervals are displayed in Figure 2.  The graph shows the 
anticipated repeating patterns of varying volatilities in the corn futures market.  The April-June 
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and June-August intervals that cover the majority of the growing cycle tend to display the largest 
volatilities (Table 2).  As the effect of weather uncertainty is the largest during the April-June 
and June-August intervals, the associated volatility is greater in those intervals than in the 
harvest interval (August-November) and the storage intervals (November-February and 
February-April) where weather has less or no impact.  The average realized volatility during the 
growing period exceeds the average volatility of the non-growing period (0.311 vs. 0.189; pt-test, 

pairwise=0.000) and also displays a greater variance of those volatilities (6.691 x 10-3 vs. 1.181 x 
10-3; pF-test=0.001).  Furthermore, during the growing cycle, weather tends to cause more 
uncertainty during the June-August interval than during the April-June interval (0.348 vs. 0.263; 
pt-test , pairwise=0.002) because the former contains the more critical periods for crop development  
(Table 1).  The differences in volatility between growing and non-growing intervals and within 
the growing interval confirm the findings of Anderson (1985). 
 
 The repeating volatility patterns observed for the realized volatilities are also reflected in 
the implied forward volatilities (Figure 3).  Overall, the graph shows that market participants 
incorporate the greater impact of weather on corn futures prices during the growing period than 
during the non-growing period (0.286 vs. 0.202; pt-test , pairwise=0.000).  As observed for the 
realized volatilities, the variance of the implied forward volatilities for the growing period is also 
greater than during the non-growing period (1.977 x 10-3 vs. 0.829 x 10-3; pF-test=0.058).  
Moreover, the implied forward volatilities for the June-August interval are greater than those for 
the April-June interval (0.320 vs. 0.247; pt-test, pairwise=0.000) indicating that the respective 
uncertainty associated with the critical growing periods in each time interval is incorporated in 
options  prices. 
 
Predictive Performance in Levels 
 
The explanatory power of the implied forward volatility and the alternative forecasts regarding 
future realized volatility is first evaluated with equation [11].7  Differences in forecast accuracy 
are then examined using the MDM tests.  The analysis is based on 75 observations as there are 5 
two- and three-month intervals in each of the 15 years.  The results in Table 3 show that in terms 
of R2,  the implied forward volatility provides modestly better predictions of future realized 
volatility (R2=0.35) than the three-year moving average (R2=0.28) and the naïve forecast 
(R2=0.25).  The coefficient estimates for 1α  are significant for all forecasts indicating that all 
have significant explanatory power of future realized volatility.  The constant term is not 
significant for the implied forward volatility (p=0.186).  In contrast, the constant is significant 
for the alternative forecasts.  Furthermore, the joint hypothesis 00 =α  and 11 =α  is rejected by 
an F-test for the alternative forecasts, but not for the implied forward volatility indicating that the 
implied forward volatility is a more effective forecast, capturing a larger portion of the 
systematic variability in the realized volatility. 

 
The magnitude of the forecast errors as measured by the MAPE and MSPE is larger for 

alternative forecasts than for the implied forward volatility.  These differences are evaluated 
using the MDM test.  The error function g(e) is specified as the absolute percent forecast error 

                                                 
7 To conserve observations, the moving averages for the intervals in 1987-1989 are obtained using 1984-1986 corn 
futures data. 
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and the squared percent forecast error and tests for statistical significance in the differences of 
the MAPEs and the MSPEs between the implied forward volatility and each alternative forecast.  
Significant differences are found for both specifications of the error function in tests between the 
implied forward volatility and the naïve forecast (Table 3).  The differences between the implied 
forward volatility and the three-year moving average are not significant .  These findings indicate 
that larger differences in forecast ability emerge when less past information is incorporated into 
making the forecast. 
 
Predictive Performance in Changes 
 
The term structure of the implied forward volatility is examined for the first trading day of each 
month.  Depending on the expiration dates of the options traded on the first trading day of each 
month the term structure of forward volatility varies in length within and across years.  For 
example, on January 2, 2001, five option maturities were traded: February, April, June, August, 
and November.  Figure 4 depicts the corresponding distributions implied by these options.  The 
differences in the distributions express the market’s expectation of how the uncertainty in the 
corn futures market will be resolved over time.  The smaller variance of the close-to-maturity 
options indicates that little uncertainty remains regarding the nearby futures price.  The greater 
variance of the longer-term options reflects the market’s increasing uncertainty regarding the 
futures price at more distant times.  From the five different implied volatilities, the implied 
forward volatilities for four consecutive intervals, February-April, April-June, June-August, and 
August-November, can be obtained.  The term structure implied by these forward volatilities and 
the corresponding realized vo latilities for each of those intervals are displayed in Figure 5.8  The 
small difference in variance between the options expiring in August and in November observed 
in Figure 4, for example, translates into a small implied forward volatility for the August-
November interval in Figure 5, and indicates that market participants expect most of the 
uncertainty regarding the corn futures price to be resolved by August. 
 
Term Structure Implied Across Months 
 
The forecasting ability of the implied forward volatilities regarding the directional change from 
one time interval to the next is first examined by assessing the number of correct directional 
predictions.  In the example of 2001, the implied forward volatilities predict accurately the term 
structure of the realized volatilities – two successive increases in volatility over the growing 
intervals followed by a decrease during the harvest interval (Figure 5).  Table 4 summarizes the 
directional accuracy of the implied forward volatility predictions.  Vertically, the table illustrates 
how with successive months the market adds new intervals, so that at each point in time forecasts 
for several subsequent future intervals are available.  On average the implied forward volatilities 
predict the directional change of the realized volatilities correctly in about 80% of the cases with 
percentages of correct directional predictions ranging from 60% on the first trading day in 
September to 91% on the first trading day in March.  Table 4 also shows the tendency of the 
market to provide fewer volatility forecasts for more distant intervals, particularly in August, 
September, and October.  The smaller number of forecasts is a sign of the reduced activity in 

                                                 
8 Note that Figures 4 and 5 are complements, as jointly they capture all information regarding the expected future 
volatility available from the options prices. 
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options with longer expirations.  With reduced trading activity, these more distant options may 
contain less market information.  

 
Market participants have a better ability to correctly forecast the directional change 

earlier in the calendar year:  from the second storage interval to the first growing interval (83%); 
from the first growing interval to the second growing interval (81%); and from the second 
growing interval to the harvest interval (100%).  In contrast, later in the calendar year when 
volatility differences between the intervals are less pronounced the ability to predict the 
differences declines:  from the harvest interval to the first storage interval (63%); and from the 
first storage interval to the second storage interval (54%).  The high degree of accuracy in 
predicting the directional change in volatility from the second growing interval to the harvest 
interval expresses the market’s expectation that most of the weather related uncertainty regarding 
the final crop size is resolved by mid-August.  This  result is consistent with recent findings by 
Egelkraut et al. (2003) who evaluate the accuracy of crop production forecasts provided by 
USDA and two private information agencies for corn and soybeans and find that the corn 
forecasts released in early August are good predictors of final crop size.  Simply put, less supply 
uncertainty remains to be resolved during the harvest period. 

 
Term Structure Implied in January and August 
 
The term structure of the implied forward volatility is analyzed more closely for January and 
August.  These months represent important times for participants in the corn market.  January is 
the first month of the new crop year, and farmers typically make planting decisions at that time 
in order to have sufficient time to arrange financing and to obtain supplies such as seeds, 
herbicides, and fertilizer.  In contrast, by August most of the uncertainty regarding the size of the 
current corn crop is resolved (Egelkraut et al., 2003) and market participants begin to evaluate 
alternative marketing strategies.  Therefore, information about future volatility becomes 
particularly important in these months. 

 
The term structure extracted on the first trading day in January covers four intervals, the 

second storage interval, the first and second growing intervals, as well as the harvest interval 
(Table 4).  The accuracies of the predictions of the directions of future volatility changes from 
one of those intervals to the next are 87%, 85%, and 100% respectively with a mean of 90%.  On 
the first trading day in August, the implied term structure extends over the harvest interval, the 
first and second storage interval, and the first growing interval.  The directional change of future 
volatility is less accurate, predicting correctly 73%, 67%, and 75% respectively with a mean of 
71%.   

 
The predictive performance of the implied forward volatility and the alternative forecasts 

of the directional change of future realized volatility is evaluated with equation [15].  The 
coefficient estimates for 1β  are significantly greater than zero for all forecasts with the exception 
of the naïve forecast in August suggesting that these forecasts contain information about the 
directional change of future realized volatility (Table 5).  Furthermore,  all forecasts perform 
better in January than in August because of the more consistent volatility pattern over the 
growing period than over the non-growing period.  Usually, two consecutive increases in 
volatility from the second storage interval to the first and further to the second growing interval 
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are followed by a decrease from the second growing interval to the harvest interval.  However, in 
August where the volatility pattern extending over the non-growing period is less regular, less 
accuracy and statistical differences may exist.  Overall, the three forecasts appear to predict the 
direction of change of future realized volatility rather well, but based on the percentage accuracy 
of the predictions and p-values it appears that the implied forward volatilities and the three-year 
moving average forecast perform just about the same which is superior to the naïve forecast.   

 
Analyzing the magnitude of change in future volatility using equation [16], we find that 

for both months, the constant term is insignificant and 1γ  is significantly positive for all 
forecasts (Table 6), demonstrating that forecasts contain information about the magnitude of the 
change.  In two cases, however, the joint hypothesis 00 =γ  and 11 =γ  is rejected, indicating that 
the naïve forecast in January (p=0.021) and the implied forward volatility in August (p=0.006) 
are biased.  In these cases, the magnitudes of the coefficients suggest that the implied forward 
volatilities overstate realized volatilities.  In evaluating the statistical differences in the forecasts, 
the implied forward volatility and the two alternative forecasting methods are not expected to 
significantly differ in January because the volatility pattern that prevails over the crop year is 
rather well established.  The findings displayed in Table 6 are fairly consistent with this  
expectation.  The MDM test provides only a modest indication of a significant difference 
between the forecasts in January.  In August, the three-year moving average performs most 
effectively; the results of the MDM test indicate significant differences between the implied 
forward volatility and the three-year moving average.  No differences exist between the implied 
forward volatility and the naïve forecast.  Hence, even though the implied forward volatility 
performs equally well in predicting the directional change of future volatility in August, it does 
not incorporate as well past information about the magnitude of this change.  The decline of the 
predictive performance of the implied forward volatilities relative to the three-year moving 
average in August is likely related to the less pronounced pattern of volatility in the non-growing 
intervals, and the reduced number of options traded at more distant intervals during this period.  
Fewer transactions reflect a lower informational content in the market.   
 
Summary and Conclusion 
 
This paper identifies the information and procedures to develop the term structure of volatility 
implied by option prices, and evaluates the informational content of the implied forward 
volatility as a predictor of subsequent realized price volatility in the corn futures market.  Using 
15 years of options and futures prices, two types of information are generated: 1) the market’s 
estimate of future realized volatility during the nearby interval of the term structure, and 2) the 
market’s expectation of the direction and magnitude of change of future realized volatility over 
time.  For each information set, comparisons of the predictive accuracy are based on the ability 
of implied forward volatility to explain subsequent realized volatility.  Further, mean squared 
percentage errors (MSPEs), mean absolute percentage errors (MAPEs), and the Modified 
Diebold Mariano (MDM) test are used to assess the accuracy of the implied forward volatility 
against forecasts generated from historical volatility.  We also assess the ability of the forecasts 
to reflect the direction of change in realized volatility.  The results indicate that the implied 
forward volatility reflects rather well the general pattern of realized volatility in the corn market.  
Based on the information for the nearby interval of the term structure, our findings indicate that 
the implied forward volatility provides unbiased forecasts and captures a larger portion of the 
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systematic variability in the realized volatility than the forecasts based on historical information.  
The comparison to the three-year moving average and the naïve forecast suggests a modestly 
better performance of the implied forward volatility as measured by the larger R2 and the smaller 
MAPEs and MSPEs. Results from the MDM tests of the statistical differences in the forecasts 
reinforce the modest superiority of the implied forward volatility.  Using the information on the 
direction and magnitude of change in volatility, we find that the early-year options predict about 
equally well as the three-year moving average and better than the naïve forecast.  Later-year 
options and alternative forecast procedures are less able to predict the direction of changing 
volatility, but the implied forward volatility and the three-year moving average forecast appear to 
be marginally better than the naïve forecast.  During this later-year period, the three-year moving 
average forecast of the magnitude of the change in variability outperforms the forecasts from the 
implied forward volatility which tend to over-predict. 

 
Our findings are in contrast to Gwilym and Buckle (1997) who, analyzing FTSE 100 

index options, find insignificant coefficients for the implied forward volatility and significant 
coefficients for the constant term and conclude that the implied forward volatility has limited 
predictive power.  For corn, the implied forward volatility does explain the variability of future 
realized volatility.  Further, in most cases the implied forward volatility provides forecasts that 
are marginally better than or equal to forecasts generated from historical volatilities.  In contrast 
to Gwilym and Buckle (1997) we find only limited evidence of systematic over-predictions by 
the implied forward volatility.  The source of the over-predictions  may be related to the less 
pronounced pattern of volatility in the non-growing intervals, and the reduced number of options 
traded at more distant intervals during this period.  With reduced trading activity, these more 
distant options may contain less market information.  

 
The results of our analysis can also be interpreted within the traditional mean-reversion 

framework of volatility (employed for example by Stein (1989) and Xu and Taylor (1994)).  
Instead of considering the volatility behavior around a long-run mean as essentially random, we 
identify a reoccurring, systematic pattern of volatility that is closely related to the specific 
characteristics of the underlying commodity.  Since market participants incorporate this volatility 
pattern into prices, options contain more information than just the average volatility.  This 
additional information expresses the market’s expectation about the time and size of positive and 
negative deviations from the implied mean volatility.  

 
While previous research by Gwilym and Buckle (1997) indicates that the implied forward 

volatility may not be a good predictor of price variability in financial assets, the approach 
appears to hold promise in agricultural markets.  For corn, we find that the implied forward 
volatility performs reasonably well in forecasting realized volatility.  Future research should 
extend this analysis to other commodities such as soybeans and wheat and further investigate the 
value of the implied forward volatility for agriculture. 
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Table 1. Critical growth stages of corn and potential yield loss caused by four days of moisture 
and/or temperature stress during these periodsa 

Critical Growth Stage Potential Yield Loss [%] after Four Days of 
Moisture and/or Temperature Stress 

Typical Datesb 

12th-14th leaf stage 
Tassel emergence 
Silk emergence 
Blister stage 
Dough stage 

  5-10 
10-25 
40-50 
30-40 
20-30 

June 23-27 
July 3-7 

July 10-14 
July 22-26 

August 7-11 
aAccording to Shaw and Laing (1966) and Claasen and Shaw (1970). 
bEstimates are for Central Illinois – for the North-South center of the Midwest corn crop (close to 
the Illinois-Wisconsin line) add about 5 days.  The actual dates can vary considerably due to 
planting and seasonal temperatures. 
 
 
 
 
 
Table 2. Mean and standard deviation of realized volatility and implied forward volatility, 
1987-2001 (75 observations = 5 intervals x 15 years) 

Interval Realized Volatility Implied Forward Volatility 

 Mean Variance (x 10-3) Mean Variance (x 10-3) 

Feb-Apr 
Apr-Jun 
Jun-Aug 
Aug-Nov 
Nov-Feb 

0.185 
0.263 
0.348 
0.207 
0.167 

  3.003 
  6.302 
10.466 
  1.391 
  1.358 

0.186 
0.247 
0.320 
0.235 
0.172 

1.291 
1.569 
3.493 
1.564 
0.778 

Apr-Aug (growing) 
Aug-Apr (non-growing) 

0.311 
0.189 

  6.691 
  1.181 

0.286 
0.202 

1.977 
0.829 

All 0.239   2.084 0.235 0.601 
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Table 3. Predictive performance of the implied forward volatility, the three-year moving 
average, and the naïve forecast for the levels of future realized volatility, 1987-2001 (75 
observations = 5 intervals x 15 years) 

Forecast Regressiona F MDM Errors 

 0α  
p-value 

1α   
p-value 

R2 
00 =α  and 11 =α  
p-value 

pMAPE-value 
pMSPE-value 

MAPE 
MSPE 

Implied forward 
volatility 

0.043 
0.186 

0.826 
0.000 

0.35 
 

0.412 
  22.70 

  8.33 

Three-year 
moving average 

0.087 
0.002 

0.649 
0.000 

0.28 
 

0.006 
 

0.280 
0.204 

25.38 
10.69 

Naive 0.115 
0.000 

0.508 
0.000 

0.25 
 

0.000 
 

0.002 
0.000 

31.53 
15.41 

aIf needed adjusted for heteroskedasticity using the Newey-West procedure. 
 
 
 
 
 
Table 4. Directional accuracy of the implied forward volatility predictions on the first day of 
trading in each month, 1987-2001  

Month 
Feb-Apr 

to 
Apr-Jun 

Apr-Jun 
to 

Jun-Aug 

Jun-Aug 
to 

Aug-Nov 

Aug-Nov 
to 

Nov-Feb 

Nov-Feb 
to 

Feb-Apr 

Accuracy 
[%] 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

 13/15a 
12/15 

 
 
 
 
 

3/4 
8/11 
11/13 
13/15 
13/15 

11/13 
12/13 
13/15 
13/15 

 
 
 
 
 

1/3 
6/11 
9/11 

12/12 
13/13 
15/15 
15/15 
15/15 
15/15 

 
 
 

1/1 
7/7 
9/9 

 
 

2/3 
3/6 
5/11 
7/12 
10/13 
11/15 

 
 
 
 

 
 
 
 
 

0/2 
1/1 
6/9 
7/14 
9/15 
7/15 

 

90 
90 
91 
86 
77 
76 
79 
71 
60 
69 
69 
89 

Accuracy [%] 83 81 100 63 54 80 
aThe ratio in each cell is the number of correct predictions divided by the number of predictions. 
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Table 5. Predictive performance of the implied forward volatility, the three-year moving 
average, and the naïve forecast in January (40 observations) and in August (28 observations) for 
the directional change in future realized volatility, 1987-2001  

Forecast January August 

 0β  
p-value 

1β  
p-value 

Accuracy 
[%] 

0β  
p-value 

1β  
p-value 

Accuracy 
[%] 

Implied forward 
volatility 

-2.485 
 0.018 

4.234 
0.000 

88 
 

-1.012 
 0.089 

1.705 
0.048 

68 
 

Three-year moving 
average 

-2.485 
 0.018 

4.234 
0.000 

88 
 

-1.099 
 0.062 

2.079 
0.022 

71 
 

Naive -1.012 
 0.087 

2.398 
0.002 

78 
 

-0.693 
 0.214 

1.030 
0.208 

61 
 

 
 
 
 
 
 
 
 
Table 6. Predictive performance of the implied forward volatility, the three-year moving 
average, and the naïve forecast in January (40 observations) and in August (28 observations) for 
the magnitude of change of future realized volatility, 1987-2001 

Forecast January August 

 0γ  
p-value 

1γ  
p-value 

R2 
pMAPE 
pMSPE 

0γ  
p-value 

1γ  
p-value 

R2 
pMAPE 
pMSPE 

Implied forward 
volatility 

 0.010 
 0.576 

0.870 
0.000 

0.36 
   0.003 

 0.786 
0.475 
0.006 

0.26 
  

Three-year 
moving average 

-0.013 
 0.465 

0.951 
0.000 

0.41 
 

0.278 
0.271 

 0.002 
 0.831 

0.790 
0.000 

0.40 
 

0.020 
0.037 

Naive -0.003 
 0.893 

0.470 
0.016 

0.14 
 

0.076 
0.102 

-0.003 
 0.768 

0.641 
0.001 

0.36 
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Figure 1.  Conceptual model of the volatilities s iv implied by two options maturing at Te-α and Te 
and the implied forward volatility s ifv between these expiration dates, i.e. for the interval Te-α to 
Te  
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Figure 2. Realized volatilities for forward intervals implied in corn futures options, 1987-2001 
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Figure 3. Forward volatilities implied in corn futures options, 1987-2001 
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Figure 4. Probability distribution function for corn futures prices implied by corn futures options 
with different expiration dates on January 2, 2001 
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Figure 5. Term structure of forward volatilities implied in corn futures options on January 2, 
2001, and corresponding realized volatilities 
 
 


