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Abstract

In line with the rights and incentives provided by the Bayh-Dole Act of 1980, U.S.
universities have increased their involvement in patenting and licensing activities through
their own technology transfer offices. Only a few U.S. universities are obtaining large
returns, however, whereas others are continuing with these activities despite negligible or
negative returns. We assess the U.S. universities’ potential to generate returns from
licensing activities by modeling and estimating quantiles of the distribution of net
licensing returns conditional on some of their structural characteristics. We find limited
prospects for public universities without a medical school everywhere in their
distribution. Other groups of universities (private, and public with a medical school) can
expect significant but still fairly modest returns only beyond the 0.9" quantile. These
findings call into question the appropriateness of the revenue-generating motive for the

aggressive rate of patenting and licensing by U.S. universities.

Keywords: Bayh-Dole Act, quantile regression, returns to innovation, skewed

distributions, technology transfer, university patents.
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1. INTRODUCTION

Some critical policy shifts strengthening intellectual property rights (IPRs) in the United States
have taken place over the last quarter century. These include the Bayh-Dole Act of 1980, which
made it possible for universities to retain title to patents derived from federally funded research,
as well as the establishment of the Court of Appeals for the Federal Circuit in 1982 and some
critical U.S. Supreme Court decisions. Concomitant with these pro-1PR policy shifts, more and
more U.S. universities have became directly involved in licensing activities. The number of
universities with a technology transfer office (TTO) increased from 25 in 1980 to 200 in 1990,
and by 2000 virtually every U.S. university had such an office (Nelson, 2001). A 15-fold increase
in university patenting and a more than 5-fold increase in the number of universities granted
patents were observed between 1965 and 1992 (Henderson, Jaffe and Trajtenberg, 1998). This
trend in U.S. universities’ patenting and licensing activities has accelerated in the last decade
(Sampat, 2003). U.S. patents issued to 69 U.S. universities that are nine-year recurrent
respondents to Association of University Technology Managers (AUTM) surveys increased
129% between 1993 and 2001. Licenses and options executed by 55 U.S. universities that are
eleven-year recurrent respondents to AUTM surveys increased 139% between 1991 and 2001,
and their gross license revenue increased 485% between 1991 and 2001. The aggregate gross
license revenue obtained by all U.S. universities approached $1 billion in FY 2002 (AUTM,
2002).

This growth in university patenting and licensing activities has generated considerable
attention in economic research (Mazzoleni, 2005; Sampat, 2003; Link, Scott and Siegel, 2003;
Mazzoleni and Sampat, 2002; Nelson, 2001; Mowery et al., 2001; Jaffe, 2000). Issues considered
include whether these activities have affected the traditional role of universities, typically
understood to be the advancement of science and the dissemination of knowledge; whether Bayh-
Dole was necessary to induce technology transfer and provided the right incentives for

universities; and the social welfare implications of university patenting.



The underlying presumption of Bayh-Dole is that without (exclusive) licensing
arrangements, firms would not undertake the follow-up investment to bring an invention to the
marketplace as products or services." Thus, the Act was intended for inventions that would not be
developed and commercialized without patenting and licensing, but universities obviously can
exploit their rights more generally for all patentable inventions. The Cohen-Bayer recombinant
DNA technique (licensed by the University of California and Stanford University) and Richard
Axel’s co-transformation process (licensed by Columbia University) are examples of university
inventions for which technology transfer would certainly have occurred absent patenting and
licensing. University licensing in these cases has simply taxed industry, and ultimately
consumers, for use of these technologies (Sampat, 2003). Quite clearly, when it comes to
patenting and licensing, universities are likely to behave based on their self-interest rather than
the public interest. Beath et al. (2003) considered the possibility that universities, with reduced
state and federal financial support, could provide incentives to faculty to engage in activities that
can augment inventors’ incomes. Furthermore, TTO managers as agents may have short-term
horizons and give priority to monetary returns in their activities. In fact, based on a recent survey
of 76 major U.S. universities, the licensing income generated is found to be the most important
criterion by which TTO offices measure their success (Thursby, Jensen, and Thursby, 2001).

Because increased revenue is one of the considerations motivating universities in this
context, a relevant question concerns the extent of net returns that universities are collecting from
these activities. Figure 1 presents the distribution of net license returns (license revenues received
less the net legal fees paid and the operating cost of technology transfer offices, in million
dollars) for 148 U.S. universities, averaged over the five-year period 1998 to 2002 (see the data

section for details). It is apparent that only a few universities are earning large returns. In fact, the

! Mazzoleni (2005) showed that this presumption is too general and its validity depends on
innovation-specific conditions. If the disclosure by universities does not prevent the downstream
firms from patenting the developed product, licensing the invention could be welfare enhancing
only if firms engage in socially excessive R&D under open access.



top 20 universities obtain 83% of the aggregate net license returns generated, whereas most of the
other universities earn negative or negligible net returns. Figure 2 presents the distribution of the
net license returns as a fraction of the university’s total research expenditures. This distribution is
also highly skewed; the ratio is high for only a few universities, whereas it is less than 5% for the
majority of them (90%).”

The overall picture is that of a few universities generating significant returns, whereas the
majority of universities continue licensing activities even though they appear to earn negative net
returns or break even. Obviously, these universities are hoping to do better in the future, an
expectation perhaps predicated on the very asymmetric distribution of returns discussed earlier.
Given the examples of big winners among universities, what can others, conditional on their
characteristics, anticipate as the potential for generating economic return? This question has not
been addressed in a coherent econometric study in the literature, and thus we wish to address it
directly in what follows. Related existing work includes Trune (1996), who analyzed the
licensing activities of U.S. universities with the purpose of developing a “national criterion” with
which universities can measure their performance. Trune and Goslin (1998) calculated the
profitability of technology transfer programs of universities and found that nearly 60% of the
universities are earning negative profits from maintaining technology transfer offices. Siegel,
Waldman, and Link (2003) did a productivity analysis of TTO performance in terms of license
revenues (taken as a proxy for technology transfer activities) by using the stochastic frontier
estimation approach. Lach and Schankerman (2004) found that universities with higher royalty

shares to inventors generated significantly higher license revenues.

2 Note also that the big earners in Figure 1 are not necessarily those with high ratios in Figure 2.
For example, the University of California System has the third-largest net license return but that
is only 2.6% of its total research budget. Moreover, Columbia University earns the highest net
license return ($109.6 million), whereas Florida State University receives the highest net return
relative to its research budget (41.6%).



2. THE MODELING FRAMEWORK
In order to assess the potential of U.S. universities in generating economic returns from licensing
activities given their characteristics, we model and estimate the select quantiles as linear functions
of a set of characteristics of universities. We take this route over the conventional conditional
mean analysis because the mean cannot adequately convey the potential for private returns to
universities when, as is the case here, the distribution of net economic returns of U.S. universities
is highly skewed. This skewness is apparent from the data reported in Table 2. Fifty percent of
the U.S. university population earns less than $0.31 million, whereas the average net return is
$4.42 million.® The standard deviation is large; 75% of the population obtains less than half of the
mean, which implies that the mean is strongly influenced by the upper 10% of the population.

In addition, the quantile regression helps us to describe the entire conditional distribution.
By taking this approach, we can look at the impacts of covariates at different points in the
distribution. We are interested in how the marginal impacts of covariates vary with the ranking of
universities in terms of generating licensing return (in case of the conditional mean estimation the
slope coefficients are forced to be the same at all quantiles). Assuming a particular skewed
distribution and parameterizing its mean does not seem to be a promising avenue either. There is
no consensus over a specific distribution governing the innovation process per se. Based on
various data on citation and value measures of patent significance, which includes license revenue
data of Harvard University, Silverberg and Verspagen (2004) find that overall fit of the
distribution resembles log normal, whereas the Pareto distribution fits the tails better. They note
the implication that the second and even the first moments of underlying distributions may not
even exist. With quantile regression, the existence of moments is not a concern because the focus

is on quantiles and every distribution has quantiles.

® To put this mean net return into perspective, we note that it is only 2.41% of the average
research budget (total research expenditures) of universities.



2.1 Quantile regression
The basic quantile regression model assumes that the conditional quantiles are linear functions of

the explanatory variables. Assume that we have a sample of N observations from a population,

that is, {(yi,xi):izl,...,N} , Where the subscript i indexes each observation, y; is the licensing

return, and x; is the K x1 vector of explanatory variables (a set of characteristics), which can
include the intercept term. Moreover, let 7 € (0,1) define the quantile of interest; let S(z) be the

corresponding parameter vector for the vector of characteristicsthat vary with quantiles; and let

Q, () be the quantile function, which is defined as the inverse function of F(.), the underlying
conditional (on x;) cumulative distribution function for y;. Then the quantile of interest is
written as a linear function of a set of characteristics as

Yi =X%B()+ Ui (7) @

Q. (i | %) =X B(7) (2)
where u; (7) denotes the error term, which is also a function of the quantile of interest. Based on
the preceding two equations, error terms must satisfy the quantile restriction:

Q. (Ui (T)| Xi ) =0 3)

The parameter estimates for the h sample quantile minimizes the weighted absolute

deviations (the errors); that is,

MIEQQ Z T|yi _Xiﬂ|+ z (1—T)|Yi _Xiﬂ| (4)
PR ictiyxpy ie{iy,>x 6}
where | . | is the absolute value operator and the other notation as defined before. For 7 =0.5,

one would weigh deviations equally, which is known as median regression. Weights differ for
other quantiles, such as = =0.75; one would weight positive deviations with 0.25 whereas one

would weight negative deviations with 0.75. The rationale for the suggested weights in (4) is as



follows. Recall that the ™ quantile denotes the maximum value that y; can take with given

probability 7. Then, the probability to observe a value less than the quantile is 7, whereas the
probability to observe a value beyond that quantile is (1—7). For more discussion of estimation
and inference with quantile estimation, see Buchinsky (1998).

Quantile regression has emerged as a comprehensive method and found applications in
various fields of economics including labor economics, wealth distribution, and various
disciplines such as finance, medicine, demographics, and environmental modeling (see
Fitzenberger, Koenker, and Machado, 2002 and Yu, Lu, and Stander, 2003). In particular,
quantile regression has found use in the finance literature via the notions of Value at Risk

(VaR,) and Conditional Value at Risk (CVaR ) (Uryasev and Trindade, 2004). Based on a

given loss distribution, VaR_ is the maximum amount one can lose at a given probability 7, i.e.,

the 7 quantile. CVaR is defined as the expected value of loss beyond a VaR , . Rockafellar
and Uryasev (2000) show that CVaR , has better properties as a measure of risk.
Instead of loss distribution typically used in VaR, and CVaR, literature, here we work

with gain distribution. Estimating a given quantile then shows the maximum amount a university
can gain at a given level of probability. In order to estimate the expected value beyond a given

quantile (CVaR ), we use the relations derived in Uryasev and Trindade (2004). First, define
functions [.]*as [v]" = max{v,0} for generic variablev e R, and denote the estimated 7™ quantile

(VaR,) with Q. (y|x) . Then the relation of interest is

1
(1-7)

E(yly=Q.(y1%) =0, (y 1)+ ——=E(ly-Q,(y[)]I) 5)

For a sample of N observations from a population, y; for i=1,...,N , one can estimate the

expectation on the right-hand side of (5) with the method-of-moments approach as



N ~
E(Iy-Q.(y101) = 21~ G (y 10T ©)
i=1

Inserting (6) into (5) yields the desired estimate.

2.2 Data

Table 1 lists the variables that we use in our analysis, along with their brief descriptions, and
Table 2 provides summary statistics. Our data pertain to 148 U.S. universities over the five-year
period from 1998 to 2002 and are aggregated at the university level.* We compute the annual
averages of the time-varying variables (both dependent and explanatory variables) over the
sample period. This approach is also adopted in Siegel, Waldman, and Link (2003).

The dependent variable of our model is the net licensing return for each university. This
is calculated as the total license revenue less the cost of patenting and licensing activities. The
cost is measured as the sum of net legal fee expenditures (legal fees expended less legal fees
reimbursed) and operating expenditures of TTOs (salary expenses plus benefits to the employees
and overhead cost).” The net licensing return variable is averaged over the sample period 1998 to
2002. The source for the license revenue and legal fees reimbursed and expended is AUTM
(1998-2002) surveys. To compute the cost of operating expenditures of TTOs, we relied on
employment data from AUTM surveys and used salary data from College and University
Personnel Association (CUPA) administrative compensation surveys. CUPA surveys provide data

for the top two positions in TTOs for the period 1998 to 2002.° Note that the cost items

* Pooling the observations over this time period yielded an initial sample of 173 U.S. universities.
After adjusting for the missing observations on explanatory variables, we are left with the final
sample of 148 observations from U.S. universities.

> Legal fees expended are the expenditures of an institution on external legal fees, which include
prosecuting, maintenance, and interference costs of patents and copyrights. They also include
minor litigation costs. Legal fees reimbursed are the legal fee expenditures reimbursed to the
institution by licensees (see AUTM, 2002).

® More details of our procedure are available upon request.



considered here do not include the opportunity cost of time of faculty who are involved in patent
and licensing activities, and therefore the real cost to universities of their patenting and licensing
activities is underestimated.

The explanatory variables that we use in our model are meant to capture some basic
structural characteristic that, at least in the short run, may be considered as exogenous. These
variables are as follows:

(1) Whether a university is public or private, and whether or not it has a medical school. These
are dummy variables constructed from information provided by AUTM surveys.

(2) Size of the university. This is measured by total research expenditures and averaged over the
sample period 1998 to 2002. The data source is AUTM (1998-2002) surveys.

(3) Quality of the faculty. We proxy this variable by the total number of citations per faculty in
technological departments.” This is obtained from the National Survey of Graduate Faculty
completed in 1993 (National Research Council, 1995). Note that this variable is thus
predetermined given the sample period we covered, which is 1998 to 2002.

(4) State R&D intensity. We measure this variable as the share of state-level R&D within national
R&D performance in order to measure ongoing R&D activity in that state. This is also averaged
over the sample period 1998 to 2002. The data on state and national level R&D expenditures is
obtained from the National Science Foundation’s website.®

The characteristics captured by the dummy variables (1) have long been considered of
interest. Because public universities are more vulnerable to budget crises (Link, Scott, and Siegel,

2003), they may license more aggressively. On the other hand, public universities may be less

"' We normalize the citations received at each technological department by the number faculty in
that department and sum over these departments in order to obtain total number of citations per
faculty in technological departments in a given university. Alternative indexes for faculty quality
can be “Scholarly quality of faculty (ratings) in technological departments” and the “Number of
publications per faculty in technological departments”.

8 See the website at http://www.nsf.qov/sbe/srs/sepro/start.htm for more information.




flexible culturally and bureaucratically in interacting with private companies (Siegel, Waldman,
and Link, 2003); therefore, ceteris paribus, they may have a lower licensing rate. Lach and
Schankerman (2004) found that private universities are more effective in terms of generating
licensing income compared to public universities and warranted future research on the
determinants of this observation.

Regarding the medical school effect, we note that biomedical research has emerged as a
productive field whose research output attracted the interest of industry, and this trend was
present before the passage of the Bayh-Dole Act (Mowery et al., 2001). Hence, having a medical
school is expected to provide a significant advantage in terms of generating return from licensing
activities. In fact, top university licenses by revenue generation are biomedical (Eisenstein and
Resnick, 2001).

The size variable in (2) captures the quantitative side of the research potential of a given
university. The interest is on the value of additional research dollars, and how it varies with the
rank of universities in terms of licensing return, that is, across quantiles. The variable in (3)
captures the qualitative side of a university’s research potential. The quality of inventions
obviously matters in assessing the inventions’ revenue-generating potential, and the quality of
inventions can be presumed to be positively associated with the quality of faculty. Finally, the
variable in (4) is meant to determine if the revenue-generating abilities of a university is affected
by its location—the local economic conditions that are mostly outside of a university’s control.

Before proceeding to the econometric analysis, it is worth commenting briefly on the net
returns of Table 2. The average net return from patenting and licensing—across all 148
institutions and over the five-year period of our sample—is $4.42 million. This is certainly not an
inconspicuous amount and underscores the extent of the activities being undertaken by TTOs in
U.S. universities. But these net returns still represent a fairly small amount when considered
within the scope of the R&D efforts undertaken. Over the period considered the average annual

total research expenditures at these universities was $183.7 million. Thus, if one were to focus



exclusively on the commercial licensing outcome, the “yield” for the average U.S. university (i.e.,
the average net return as a percent of the average research expenditures) would be a paltry 2.41%.
This percent return is quite variable for the structural groups that are identified in Table 2. For
public universities it is 2.06% if they have a medical school, and 0.43% if they do not have a
medical school; for private universities the percent return is 4.25% if they have a medical school

and 2.80% if they do not have a medical school.

3. ESTIMATION PROCEDURE

Estimation was carried out by using the QUANTREG procedure in SAS (SAS Institute, 2003).
To estimate standard errors in this procedure, we used the sparsity method (also called the direct
method) under the assumption that observations are independently and identically distributed
(i.i.d.). This method estimates the reciprocal of the underlying density at the quantile of interest,
which is called the sparsity function. The precision of the estimates depends on how sparse (or
dense) observations are near the quantile of interest. This method also requires a bandwidth
choice. We used Hall and Sheater bandwidth based on the suggestion in Koenker (2005). We
chose the simplex algorithm as the optimization method, which is the most stable one. Although
the sparsity method is sensitive to the i.i.d. assumption, the estimated standard errors were also
confirmed with the resampling estimation method available under the QUANTREG procedure of
SAS. The resampling method uses a Markov-chain marginal bootstrap technique developed in He

and Hu (2002) and was done for 200 repetitions.

4. RESULTS

Table 3 presents the estimations for the 0.25™, 0.5, 0.75™, and 0.9" quantiles. The intercept and
the explanatory variables size and faculty quality are significant in explaining these quantiles at
conventional levels of significance. We recall that the base group to which the intercept applies is

that of public universities without medical school. Private universities without medical school and

10



public universities with medical school are not statistically different than this base group in all
guantiles. Private universities with medical school obtain significantly higher returns than the
base group around the 0.75" quantile of distribution, and this difference increases towards the
upper end of distribution, as it is nearly $10 million at the 0.9" quantile.

The estimated coefficient of the size variable, which expresses the return to an additional
$1 million of total research expenditure, is initially $3.5 thousand (0.35%) at the 0.25" quantile; it
increases towards higher quantiles, approaches $20 thousand (2%) near the 0.75" quantile, and
decreases slightly at further quantiles. The impact of an additional citation to publications in
technology fields, a measure of faculty quality, is monotonically increasing with the level of
quantiles. The impact of a single citation at the 0.9" quantile exceeds three times the value ($3.2
thousand) at the median of the distribution. That is, the marginal value of faculty quality is higher
for those universities that are already obtaining higher return. Finally, state R&D, the amount of
R&D in the state of a given university vis-a-vis national R&D, becomes a significant factor (both
economically and statistically) around the 0.75" quantile of the distribution. A one-percentage-
point increase in the state R&D relative to the national level is associated with an increase in the
licensing return for universities in that state by more than $200 thousand.

Based on the estimates in Table 3, we predict select quantiles for the structural groups of
universities that we have identified (public and private, and with and without a medical school) at
the mean characteristics of each group. Table 4 presents the predicted values for select quantiles.
Based on these estimates and additional quantile points, Figure 3 plots the underlying
distributions for the average university in each group.

From Figure 3, we observe that the average private university with a medical school
ranks highest in terms of generating licensing return in all quantiles, whereas the average public
university without a medical school is dominated by others in all quantiles in that regard. These
structural differences are increasing with the level of quantiles. The average private university

without a medical school and the average public university with a medical school appear to have

11



similar distributions. This suggests that they may have close expected values but may differ in
terms of dispersion of licensing returns.

The estimates of the 0.9™ quantiles in Table 4 entails that there is a 90% chance that
licensing returns will not exceed $21.56 million for an average private university with a medical
school, $9.92 million for an average private university without a medical school, $7.61 million
for an average public university with a medical school, and $3.27 million for an average public
university without a medical school. These estimated values for the 0.9™ quantiles are 9.5%,
6.7%, 3.4%, and 3% of the corresponding average sizes, respectively.

We further estimate what the average university in each group can expect beyond the
0.9" quantile, as described in equations (5) and (6). We report these values along with the sample
mean for each group in the last two columns of Table 4. Specifically, the last column of Table 4
can be interpreted as the expected value of net returns conditional on a university being in the top
10% of earners of its group (as identified by the characteristics of being public or private, and of
whether or not the university possesses a medical school). One way to gauge this estimate is to
relate it to the estimated corresponding 0.9" quantile. This ratio turns out to be 1.05, 2.56, 4.65,
and 2.74, respectively, for the average university that is public without a medical school, private
without a medical school, public with a medical school, and private with a medical school. Thus,
an average public university without a medical school has an expected value beyond its 0.9"
quantile only slightly higher than the 0.9™ quantile. For all other groups, on the other hand, the
right tail of the distribution of returns is fatter. In particular, the gains in relative returns
associated with being in the top 10% of earners is highest for universities with a medical school.
In any event, the expected returns of the top 10% of earners remain a relatively small fraction of

the total research expenditure of the universities.
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5. CONCLUSION

In this paper we have assessed the potential of U.S. universities in generating economic returns
from licensing activities, conditional on some of their characteristics. Recognizing that the
underlying distribution is highly skewed, rather than modeling the conditional mean we model
and estimate the select quantiles as linear functions of a set of characteristics of universities. Our
finding that the estimated slope coefficients of characteristics are not constant over the quantile
points supports this modeling choice.

We find that the net returns from patenting and licensing by U.S. universities are, on
average, quite modest. Regarding the marginal impacts of the characteristics along the quantiles,
we found that the marginal “rate of return” of research funds does not exceed 2% in any quantile
we considered. The value of additional research dollars is highest and the state R&D, a measure
of local economic conditions, appears particularly important around the 0.75" quantile of the
distribution. The impact of faculty quality, on the other hand, appears monotonically increasing
for the quantiles we considered.

We also found structural differences in the licensing return distributions of groups of
universities depending on whether they are private or public and on whether or not they have a
medical school. In terms of generating licensing returns after controlling for other factors, private
universities with a medical school appear to have an institutional advantage over other groups.
Public universities with a medical school and private universities without a medical school are
close at the distributional points. Public universities without a medical school are dominated by
other groups at all quantile points.

A rationalization that is sometimes proffered as to why universities should continue with
their patenting and licensing activities, even when they are making negligible or negative returns,
relies on the marked skewness of the returns distribution, i.e., on the notion of “waiting for the
big one.” Our estimate of the expected net licensing returns, conditional on a university being in

the top 10% of earners of its group, helps to quantify this scenario. The expected payoff for being

13



a winner is highest for universities with a medical school and for private universities. This is in
line with the argument in Lach and Schankerman (2004) that private universities are more
efficient in terms of generating licensing return but qualifies the argument for medical school
impact.

Based on the estimated marginal effects and the structural differences among the group of
universities, we would argue that universities should form a more realistic perspective of the
possible economic returns from patenting and licensing activities. The potential in terms of
generating returns appears particularly limited for public universities without a medical school.
The fairly modest overall expected licensing returns, especially when compared with the
investment in university research expenditures, suggest that the increased emphasis on university
patenting and licensing that has emerged in the United States in the last quarter century should
perhaps be reconsidered, especially when attempts to privatize some of the returns of university
research appear to conflict with the traditional public research objectives of fostering basic

research and to disseminate knowledge.
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Table 1: Description of Variables

Variable

Description

Net Returns (y)

Public & No Medical (x;)

Private & No Medical (x,)

Public & Medical (X3)

Private & Medical (x,)

Size (xg)

Faculty Quality (xg)

State R&D (x;)

Licensing return in a given university (averaged over the sample period
1998 to 2002 and in million dollars).

Dummy variable, which takes value of 1 if university is public and does

not have medical school, and 0 otherwise (base case).

Dummy variable, which takes value of 1 if university is private and does

not have medical school, and 0 otherwise.

Dummy variable, which takes value of 1 if university is public and has

medical school, and 0 otherwise.

Dummy variable, which takes value of 1 if university is private and has

medical school, and 0 otherwise.

The average total research expenditures (in million dollars) over the
sample period 1998 to 2002.

Total number of citations received per faculty in technology departments

in a given university (evaluated in 1993).

The ratio of total R&D performance level in a given state to the national

R&D performance level (averaged over the sample period 1998 to 2002).
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Table 2: Data on U.S. Universities, 1998-2002: Descriptive Statistics

U.S. Universities N  Variables Min  Median Max Mean s:\j/
All 148  Net Returns -0.80 0.31 109.59 4.42 12.53
Size 9.7 116.9  2,079.2 183.7 224.7
Quality 0.6 318 2,691 485 519
State R&D 0.0003 0.021 0.209 0.031 0.036
Public & No 45  Net Returns -0.39 -0.03 4.02 0.47 1.06
Medical School Size 17.9 67.1 426.4 110.2 96.5
Quality 0.6 169 780 218 196
State R&D 0.0003 0.013 0.070 0.018 0.019
Private & No 11 Net Returns -0.77 0.24 26.97 412 8.23
Medical School Size 16.9 44.5 780.3 147.4 224.9
Quality 179 385 2,362 740 817
State R&D 0.0063 0.056 0.209 0.060 0.053
Public & 59  Net Returns -0.80 0.31 56.50 4.58 11.28
Medical School Size 9.7 1634  2,079.2 222.8 284.3
Quality 3 325 1,882 469 407
State R&D 0.0013 0.021 0.209 0.030 0.031
Private & 33  Net Returns -0.29 1.65 109.59 9.61 20.46
Medical School Size 25.0 184.7  1,120.0 226.1 210.3
Quality 29 627 2,691 794 674
State R&D 0.0019 0.036 0.209 0.043 0.047

Source: see text. Note: “N” is the number of observations; “Net Returns” and “Size” are

measured in million of dollars.
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Table 3: Parameter Estimates for Select Quantiles (Dependent variable: Net return

measured in $ million)

Explanatory Variables Q-25 Q-50 Q-75 Q-30
Intercept 05087 -0.9717"  -187807  -0.7431
Private & No Medical -0.0625 -0.8500 -0.9498 1.1376
Public & Medical -0.1838 -0.2400 -0.2647 -0.1016
Private & Medical 0.1839 -0.0343 4.8790 9.9398 ™
Size 0.0035 0.0065 0.0196 0.0182 "
Faculty Quality 0.0009 ™ 0.0032 ™ 0.0057 ™ 0.0099
State R&D 257 6.14 22.33" 752

Hk

Note: ™", ™, " indicate significance at 1%, 5%, and 10%, respectively, based on the largest of p-

values of Wald and likelihood ratio statistics.
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Table 4: Select Predicted Quantiles at the Mean Values of Characteristics, and Sample

Estimates of Expected Values (in million dollars)

Estimated Estimated
U.S. Universities Q-0.25 Q-0.5 Q-0.75 Q-0.9 | Expected Expected
Value Value Beyond
Q-0.9
Public without
. 0.032 0.552 1.936 3.272 0.474 3.438
medical school
Private without
. 0.481 1.855 5.616 9.925 4123 25.417
medical school
Public with
. 0.446 1.913 5.560 7.610 4,582 35.379
medical school
Private with
1.605 4,223 14.792 21.562 9.608 59.121

medical school
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Figure 1: Net Licensing Returns of U.S. Universities, 1998-2002 (in million dollars)
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Figure 2: Net Licensing Returns as a Fraction of Total Research Expenditures of U.S.

Universities, 1998-2002
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Figure 3: Predicted Quantiles (at the mean characteristics, in million dollars)
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