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Designing a Dedicated Energy Crop Supply

System in Tennessee: A Multiobjective

Optimization Analysis

T. Edward Yu, Zidong Wang, Burton C. English, and

James A. Larson

A multiobjective optimization model integrating with high-resolution geographical data was
applied to examine the optimal switchgrass supply system in Tennessee that considers both
feedstock cost and greenhouse gas (GHG) emissions in the system. Results suggest that the
type of land converted into switchgrass production is crucial to both plant gate cost and GHG
emissions of feedstock. In addition, a tradeoff relationship between cost and GHG emissions
for the switchgrass supply is primarily driven by the type of land converted. The imputed cost
of lowering GHG emissions in the feedstock supply system was also calculated based on the
derived tradeoff curve.

Key Words: bioenergy, land use change, multiobjective, switchgrass, tradeoff curve

JEL Classifications: C61, Q13, Q16

Biofuel production from lignocellulosic biomass

(LCB) is being advocated as an alternative to

fossil-based transportation fuels in the United

States. LCB-based biofuel production has the

potential to mitigate greenhouse gas (GHG)

emissions from the transportation sector and to

enhance rural economic activity through more

intense use of agricultural lands (English et al.,

2006). The Renewable Fuel Standard (RFS)

established in 2005 and revised in the Energy

Independence and Security Act 2007 mandates

21 billion gallons of advanced biofuel (other

than ethanol derived from corn starch) available

for transportation use by 2022 with 16 billion

gallons to be produced from LCB feedstock

(U.S. Congress, 2007). Based on the recently

revised One Billion Ton Update study (U.S.

Department of Energy, 2011), considerable LCB

feedstock, including dedicated energy crops, will

be required to fulfill this goal. Notwithstanding

the potential availability of LCB feedstock to

meet the mandate, the cost of LCB feedstock

will be an important factor influencing the

sustainability of an LCB-based biofuel indus-

trial sector. Given that the quantity and quality
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of LCB feedstock influences the cost of biofuel

production, an important research question is

how the feedstock supply chain for biofuel

production should be optimally configured.

The RFS also requires lifecycle GHG

emissions of advanced biofuels to be 50%

lower than fossil fuels. Rapid expansion of the

biofuel sector and resulting biogenic GHG

emissions from ethanol production and bio-

mass power plants have prompted environ-

mental groups to seek more stringent GHG

regulations on bioenergy industry. With the

increasing focus on allowable life cycle GHG

emissions related to bioenergy production, it is

important to consider the related GHG emis-

sions from the potential production of LCB

feedstock. Changes in GHG emissions caused

by alterations in land use and feedstock pro-

duction, storage, and transportation activities in

the supply chain of a potential LCB feedstock

may impact the sustainability of LCB-based

bioenergy production. Thus, another important

research question is how GHG emissions pro-

duced from supplying LCB feedstock is influ-

enced by the optimal configuration of the

feedstock supply chain.

Switchgrass is a perennial grass that is na-

tive to North America and has shown great

potential as a dedicated energy crop for bio-

energy production (Fike et al., 2006; Wright

and Turhollow, 2010). The positive attributes of

switchgrass as a dedicated energy crop include

high potential biomass yields and low fertilizer

and chemical requirements relative to row

crops (Jensen et al., 2007). Switchgrass also has

a deep fibrous root system that can mitigate soil

erosion and sequester carbon in soils, thereby

increasing productivity of soil (Mitchell, Vogel,

and Sarath, 2008). Switchgrass grows well on

the soils where other conventional crops can-

not be produced (Lewandowski et al., 2003)

and thus is well suited to the eroded soils of

the southeastern United States. In addition,

abundant sunshine and precipitation in the

region are conducive to high switchgrass

yields relative to other regions of the United

States (English et al., 2006).

The cost of feedstock has been considered

as an obstacle to the development of a LCB-

based bioenergy industry, including switchgrass

(U.S. Department of Energy, 2007). Switchgrass

is bulky relative to its energy content, which

makes it expensive to harvest, store, and

transport (Sokhansanj, Kumar, and Turhollow,

2006). Switchgrass is harvested in a limited

period of the year so the requirements for

feedstock storage can be enormous and costly.

Weathering and precipitation during storage of

switchgrass cause losses of dry matter that in-

crease the cost of feedstock at the plant gate

(Mooney et al., 2012). The opportunity cost

of converting cropland to switchgrass pro-

duction will also influence the willingness of

farmers to grow switchgrass (James, Swinton,

and Thelen, 2010). Switchgrass production

most likely competes for land with a low

opportunity cost such as pasture and hay land

(English et al., 2006). The aforementioned fac-

tors are highly spatial-dependent (Noon, Zhan,

and Graham, 2002) and have a major influence

on the delivered cost of switchgrass to a con-

version facility and thus the profitability of

switchgrass-based biofuel (Hess, Wright, and

Kenney, 2007).

Activities in a switchgrass supply chain pro-

duce GHG emissions that are different from

current agricultural activities in a region. Changes

in land use alter GHG flux on soils because

switchgrass sequesters soil carbon at a different

rate than existing cropping activities (Elliott

et al., 2014; Kwon et al., 2013). The application

of fertilizer and herbicides, the use of farm

machinery for switchgrass production, and the

production of those chemicals and equipment

create GHG emissions. Transportation of switch-

grass to the conversion facility also generates

GHG emissions. GHG emissions from changes in

land use are potentially spatially oriented because

soil types and soil quality vary considerably

among regions (Qin, Zhuang, and Chen, 2011).

The availability of land for switchgrass pro-

duction and transportation infrastructure may

also differ by region.

Given the importance of feedstock costs and

GHG emissions in the development of a sus-

tainable advanced biofuel industrial sector, in-

formation is needed about the potential tradeoff

between the two performance criteria. Thus, the

objective of this study is to evaluate the potential

tradeoffs between the potentially competing
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objectives of minimizing feedstock costs and

minimizing GHG emissions in the design of a

switchgrass feedstock supply chain. We evalu-

ate the key factors that influence feedstock cost

and GHG emissions and the relationship of

those two objectives in a switchgrass supply

chain through a multiobjective optimization

analysis. Certain factors such as the type of

land (e.g., pasture and hay land or cropland)

converted to switchgrass production may have

a positive impact on one objective, e.g., mini-

mizing cost (GHG emissions), in the feedstock

supply chain while having a negative influence

on the other objective, e.g., minimizing GHG

emissions (cost), Thus, a tradeoff may exist be-

tween those two objectives. The potential trade-

off between feedstock cost and GHG emissions

is evaluated using switchgrass feedstock in

Tennessee as the case study. The tradeoff re-

lationship can be used to calculate the imputed

cost of abating GHG emissions in the switch-

grass feedstock supply chain for bioenergy

production. This study provides useful infor-

mation to both the government and investors so

that a more balanced and sustainable supply

system of energy crops for the bioenergy sector

can be developed.

Literature Review

The design of a sustainable LCB supply chain

and efficient conversion technology has been

a growing focus in the bioenergy literature

given the desire of expediting the commer-

cialization of bioenergy industry. A detailed

review of LCB supply chain studies can be

found in An, Wilhelm, and Searcy (2011) and

Sharma et al. (2013). Mathematical program-

ming is a widely used approach to evaluate the

optimal location of the conversion facility and

the optimal design of an LCB supply chain.

Sharma et al. (2013) recently summarized 32

refereed journal papers applying mathematical

programming to evaluate the optimal configu-

ration of biomass/biofuel supply chains be-

tween 1997 and 2011. Among the 32 papers,

more than 55% were published after 2008,

suggesting a growing interest in optimization

analyses of LCB feedstock and biofuel supply

chains. The objectives of the mathematical

programming models in many studies, in-

cluding more recent studies after 2011, were

single objective optimizations using economic

criteria such as cost minimization, net present

value maximization, or profit maximization (e.g.,

Dunnett, Adjiman, and Shah, 2007; Kondili,

Pantelides, and Sargent, 1993; Mas et al., 2010;

Maung and Gustafson, 2013), whereas a few

studies considered dual economic and environ-

mental criteria in the design of a feedstock supply

chain. For example, You and Wang (2011) eval-

uated minimum economic cost and minimum

GHG emission criteria to examine the optimal

biofuel supply chain as a case study in Iowa and

found that efficient conversion technology was

the key for commercialized LCB-based biofuel

production. Bernardi, Giarola, and Bezzo (2012)

considered multiple objectives in a biofuel

supply chain and observed that the negative pre-

dictive value for biofuel production was posi-

tively related to both carbon emissions and water

consumption.

When assessing the economic and environ-

mental performance of the LCB supply chain,

spatial information was often important to the

analysis (Archer and Johnson, 2012). For in-

stance, high-resolution spatial data were crucial

in studies that evaluated the location for con-

version facility (e.g., Bowling, Ponce-Ortega,

and El-Halwagi, 2011; Zhang, Johnson, and

Sutherland, 2011). Unlike the capital and op-

eration costs of conversion facility, cost of LCB

feedstock is sensitive to spatial variation in the

quantity and quality of lands between sites

(Mooney et al., 2009; Noon, Zhan, and Graham,

2002). In addition, the attributes and the quality

of the local transportation network affected the

transportation cost and GHG emissions of

a feedstock supply chain (Jäppinen, Korpinen,

and Ranta, 2011; Yu et al., 2013). Most im-

portantly, spatial factors such as the type of

land converted to LCB feedstock production

could have different implications to the eco-

nomic and environmental performance of the

feedstock supply chain. For example, the op-

portunity cost of converting hay and pasture

land to switchgrass is much lower than divert-

ing cropland to switchgrass production as a re-

sult of the lower net returns from pasture and

hay production (James, Swinton, and Thelen,

Yu et al.: Dedicated Energy Crop Supply System 359



2010). However, converting hay and pasture land

to switchgrass production can result in a net in-

crease in GHG emissions from the soils, whereas

converting cropland to switchgrass land can se-

questrate more carbon in soil (Kwon et al., 2013).

Integrating geographical information into

a multiobjective optimization framework has

a long history in the land use literature

(Malczewski, 2006). Recently, multiobjective

programming model studies using spatial data

for the optimization of the LCB feedstock

and biofuel supply chain have started to appear

in the bioenergy literature. You et al. (2012)

conducted a county-level, multiobjective study

of LCB feedstock supply chains in Illinois and

found a tradeoff between the economic and

environmental performance of the biofuel sup-

ply chain. They also found that new jobs created

were positively correlated with the economic

cost of the supply chain. However, analysis of

the potential tradeoff between feedstock cost

and GHG emissions from converting pasture

and hay land or cropland to LCB feedstock

production is still lacking in the multiobjective

optimization of the LCB supply chain literature.

This study aims to add to the bioenergy litera-

ture by providing a case study of how the type of

land (pasture and hay land versus cropland)

converted to switchgrass production affects the

tradeoff in feedstock costs and GHG emissions

for a conversion facility in Tennessee.

Conceptual Framework

It is hypothesized that the conversion facility

considers both economic and GHG emissions in

the design of the switchgrass supply chain. The

objective of the facility is to identify a most

preferred solution that keeps cost and GHG

emissions of the feedstock supply chain as low

as possible given that the two attributes cannot

be simultaneously optimized (Mavrotas, 2009).

The multiobjective function is formulated as

follows (Chankong and Haimes, 1983, p. 114):

(1) min. CF Xð Þ, EF Xð Þ½ �

where CF is total cost of switchgrass at the gate

of facility F ($), EF is total GHG emissions cal-

culated as carbon dioxide equivalents in metric

tons (CO2e Mg) produced in the switchgrass

supply chain, and X is a set of decision vari-

ables. In contrast to a single optimal solution,

the multiobjective optimization generates effi-

cient, noninferior solutions that cannot improve

one objective (e.g., cost minimization) without

lowering the target of the other objective (e.g.,

GHG emissions minimization) (Zakariazadeh,

Jadid, and Siano, 2014).

Switchgrass production can be converted

from hay and pasture land and/or cropland. The

share of hay and pasture land converted into

switchgrass, R, will affect the optimization out-

put because the land converted to switchgrass

production from hay and pasture land or crop-

land has different impacts on opportunity costs

and GHG emissions in the feedstock supply

chain. Figure 1 shows the relationship among

feedstock cost (CF), GHG emissions (EF), and

the share of hay and pasture land in a region (R)

in a switchgrass supply chain. Hay and pasture

land has a lower profitability than cropland;

thus, the cost of converting hay and pasture

land is lower than the cost of converting crop-

land. When more hay and pasture land is con-

verted (i.e., a higher value of R), total feedstock

cost is lower. Thus, the negative relationship

i.e.,
dCF

dR
< 0

� �
between the feedstock cost and

Figure 1. Relationship among Cost (CF),

Greenhouse Gas (GHG) Emissions (EF), and

the Share of Hay and Pasture Land Used (R)

for the Switchgrass Supply System
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the hay and pasture land ratio is found in Figure

1. In contrast, converting cropland to switch-

grass production will increase soil carbon re-

sulting from carbon sequestration of the grass.

However, changing land use from hay and pas-

ture to switchgrass releases stored carbon to

the atmosphere because of land preparation

and the different rate of carbon sequestration

associated with the root fraction (Agren and

Franklin, 2003; Kwon et al., 2013). Thus, the

positive relationship exists between GHG

emissions and the hay and pasture land ratio in

Figure 1
dEF

dR
> 0

� �
. When the hay and pasture

ratio changes from R1 to R2 to R3, the corre-

sponding feedstock costs (c1, c2, and c3) and

GHG emissions (e1, e2, and e3) are determined

in the model. The resulting tradeoff relation-

ship between feedstock cost and GHG emis-

sions
dCF

dEF
< 0

� �
is observed.

Methods and Data

Mathematical Model

A multiobjective model incorporating spatial

characteristics was developed to determine the

amount of land converted from current agri-

cultural activities and feedstock draw area to

meet the feedstock demand for the conversion

facility. The potential tradeoff between the two

objectives, i.e., cost minimization and GHG

emissions minimization, was also evaluated. The

cost considered in this study is the plant gate cost

of switchgrass, including the farm gate cost and

transportation cost. Because there is no market

price for switchgrass, the farm gate cost of

feedstock was calculated by considering the

cost of switchgrass production, harvest, storage,

and the opportunity cost of land conversion to

switchgrass production. GHG emissions ana-

lyzed in this study include both direct and in-

direct emissions. Direct GHG emissions come

from land use change for feedstock production,

energy use for farming operations, and trans-

portation. The estimated GHG emissions from

the change in land coverage include the net

change of both aboveground and underground

in a steady-state status over 30 years after land

conversion. Indirect GHG emissions in the

feedstock supply chain refer to the production of

seed, fertilizer, herbicides, farm machinery, and

trucks used in agricultural production activities.

The components used to calculate the economic

cost and GHG emissions are summarized in

Table 1. The model structure and constraints are

found in the Appendix.

The conversion facility was assumed to be

a medium size with a nameplate capacity of

189,271 kiloliters (kL) per year (Tembo, Epplin,

and Huhnke, 2003). The facility was designed to

be located in an industrial park in Tennessee so it

can access the required infrastructure, e.g.,

power line, roads, water system, etc. It was as-

sumed that the conversion technology used in

the facility would convert a ton of switchgrass

into 0.29 kL of biofuel (Wang, Saricks, and

Santini, 1999). Given the conversion rate, the

monthly feedstock demand from the conversion

facility required approximately 55,000 dry Mg

of switchgrass. Switchgrass was assumed to be

harvested annually from November to February

under the available working hours in each month

that were determined based on historical

weather records (Larson et al., 2010). Switch-

grass was assumed to be harvested and packaged

in large 1.2 � 1:2 � 2.4-m rectangular bales.

Bales were stored at the edge of the field with

storage dry matter losses increasing at a de-

creasing rate over time (Mooney et al., 2012).

Semitruck trailers were used for switchgrass

transportation from the field to the facility. The

maximum travel distance from field to the

conversion facility was set to 121 km, which

was adjusted from the radius of 80 miles used

in the literature (e.g., Epplin, 1996) based on

the actual road network in the study area and

the facility capacity. A dry matter loss rate of

2% was assumed during switchgrass trans-

portation (Kumar and Sokhansanj, 2007).

Analytical Procedure

To solve a multiobjective optimization prob-

lem, the e-constraint method and weighting

method are the most commonly used approaches

(Mavrotas, 2009). The e-constraint method,

which optimizes one objective using the other

objective(s) as constraint(s), may outperform the

Yu et al.: Dedicated Energy Crop Supply System 361



weighting method because it provides more

comprehensive and robust solutions using

a relative efficient solving process (Mavrotas,

2009). However, the e-constraint method also

has a potential issue on the efficiency of the

solution, i.e., the solution may be weakly effi-

cient. Thus, an augmented e-constraint method

developed by Mavrotas (2009) that overcomes

the ambiguity in the solution from the con-

ventional e-constraint method was used in this

study. The efficient solutions generated from

the augmented e-constraint method determine

the tradeoffs of the two objectives considered,

revealing how the performance of one objective

(cost) changes with different preferences on the

other objective (GHG emissions). The details

of the method and its advantage over the con-

ventional e-constraint method are illustrated in

Mavrotas (2009).

In this study, the feedstock supply chain cost

was minimized subject to a range of GHG

emission levels.1 The range of the objective

function EFðXÞ was divided into k identical

intervals; thus, the optimization of (k + 1) grid

point was solved and the tradeoff curve was

generated. The optimization problem was for-

mulated as follows (Zakariazadeh, Jadid, and

Siano, 2014):

(2) min. CF Xð Þ2 e� s

r

� �
(3) s.t. EFðXÞ þ s ¼ e,

where e is a small number (in this study e was

set to 10�3), s is the nonnegative slack variable,

and r is the range of the GHG emissions ob-

jective between the minimum GHG emissions

level (e0) to the unconstrained GHG emissions

level ðen). The constraint of GHG emissions

e e ¼ en 2
en 2 e0

k

� �
� h, h ¼ 0,1, . . . , k

h i
is

the hth range of EFðXÞ. The slack variable was

added in the objective function (equation [2]) to

prevent the program from producing weak

efficient solutions (Mavrotas, 2009, p. 460).

Figure 2 shows an example of the tradeoff

curve generated for a conversion facility A

through imposing a series of GHG emission

constraints. With e0 and en, the (n-1) emission

constraints from e0 to en break down the range

of [e0, en] into n equidistant parts. Given various

constraint levels of GHG emissions, the corre-

sponding optimal costs are then determined

Table 1. Components for Cost and Greenhouse Gas (GHG) Emissions from Switchgrass Supply
Chain

Economic Cost GHG Emissions

Farm Gate Transport Direct Indirect

Land conversion � Opportunity cost � Land use

change

Production � Establishment

� Annual maintenance

� Fuel use � Fertilizer production

� Herbicide production

� Seed production

� Machinery production

Harvest � Labor

� Fuel

� Machinery

� Fuel use � Machinery production

Storage � Labor

� Fuel

� Machinery

� Materials

� Fuel use � Machinery production

Transportation � Labor

� Fuel

� Truck

� Fuel use � Truck production

1 The optimization process can also be modeled by
minimizing the GHG emissions using a range of
feedstock cost levels and the tradeoff relationship
between cost and GHG emissions in the switchgrass
feedstock supply chain still remains.
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using equations (2)–(3) to form the tradeoff

curve for facility A. For example, the optimal

cost cd is determined by setting a specific

GHG emission constraint ed, which gives one

solution point, AD with (ed,cd). Point AC in

Figure 2 represents the solution for cost and

GHG emissions under the unconstrained GHG

emissions level ðen). On the tradeoff curve in

Figure 2, the relative changes of cost and GHG

emissions show the imputed cost of reducing

GHG emissions. For example, from solution

point AC to AD, the imputed cost to reduce

(e0–ed) CO2e Mg of GHG emissions is

$(cd–c0), i.e.,
cd 2 c0

e0 2 ed
($/CO2e Mg), which is

the slope of ADAC.

The conversion facility having the lowest

feedstock cost in our study area was used to

illustrate the potential tradeoff relationship

between cost and GHG emissions in its switch-

grass supply chain. The model first minimized

the feedstock cost without imposing any con-

straint in GHG emissions as shown in equations

(4)–(5) to generate the upper bound of GHG

emissions level (en).

(4) min. CF ðXÞ,

(5) s.t. Q

where Q is the total amount of switchgrass to be

produced for the conversion facility. To obtain

the minimum GHG emissions level (i.e., e0) in

the feedstock supply chain for the facility,

equations (6)–(7) were used:

(6) min. EFðXÞ,

(7) s.t. Q

The feedstock cost for the minimized GHG

emissions level was also an ex post estimate.

Two targets of ed were then imposed in this

study to generate the tradeoff curve.

Data

More than 230 industrial parks in a database

maintained by the Tennessee Valley Authority

were considered as potential candidates for the

conversion facility location in Tennessee (Smith,

2011). All of the industrial parks had access to

water, power, and roads as well as sufficient

room for feedstock storage. Existing cropland of

corn, wheat, soybean, sorghum, cotton, and hay

in the state and within 80 km of the state border

was considered as the potential feedstock

supply area (see Figure 3). Public land such as

national parks was excluded from the study.

Land area was decomposed into five square-

mile hexagons (defined as land resource units).

In addition, a street-level network from the U.S.

Census of Bureau was applied to generate the

routes from each land resource unit to the fa-

cility with the following hierarchy: 1) primary/

major roads; 2) secondary roads; 3) local and

Figure 2. A Tradeoff Curve between Cost and Greenhouse Gas (GHG) Emissions in a Feedstock

Supply System
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rural roads; and 4) other roads (U.S. Census

Bureau, Geography Division, Geographic Prod-

ucts Branch, 2012).

Crop yields were obtained from the

SSURGO Database at the subcounty level

(U.S. Department of Agriculture [USDA]. Na-

ture Resources Conservation Service. Soil

Survey Geograophical Database [SSURGO

Database], 2012). Area in each land resource

unit for each crop type was derived from the

Cropland Layer Database (USDA, National

Agricultural Statistics Service, 2011). The pri-

ces of crops were three-year average prices for

2010–2012 (USDA. National Agricultural Sta-

tistics Service). Production costs for crops were

from the USDA (USDA, Economic Research

Service, 2013b) and Policy Analysis System

(POLYSYS) model (De La Torre Ugarte, Ray,

and Tiller, 1998). Simulated switchgrass yields

were obtained from the Oak Ridge Energy Crop

County Level Database (Jager et al., 2010.) and

were disaggregated to the land resource unit

level using an index of soil quality. Production

and harvest costs for switchgrass were from

Larson et al. (2010) and the University of

Tennessee, Department of Agricultural and

Resource Economics (2009). The trans-

portation cost of switchgrass included labor,

energy consumption, semitruck maintenance,

and loading/unloading. The energy, labor, and

maintenance costs for operating equipment and

capital costs were calculated based on the

American Agricultural Economics Association

Cost and Return Handbook (AAEA, 2000) and

American Society of Agricultural Engineers

standards (ASABE, 2006).

To estimate the GHG emissions from land

use change, the DAYCENT model, a daily time-

step version of the CENTURY (Parton, 1996)

biogeochemical model was adopted to simulate

the soil CO2 and N2O emission factors as a re-

sult of the conversion of different types of land

into switchgrass production. Factors such as soil

property, crop type, and weather were included

in the DAYCENT model (Schimel et al., 2001).

The annual weather data for Tennessee were

acquired from the DAYMET model maintained

by the Oak Ridge National Laboratory. The soil

property data used in the DAYCENT were from

the U.S. Geological Survey.

Figure 3. Feedstock Supply Region and Industrial Park Locations
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The Greenhouse Gases, Regulated Emissions,

and Energy Use in Transportation (GREET)

Model 2013, which was developed and is main-

tained by the Argonne National Laboratory

(Argonne National Laboratory, 2013), provided

the emission factors for all the three GHG

emissions from machinery combustion during

LCB harvest. Diesel consumption was calcu-

lated from the time used during each operation

(hours/acre) times the fuel use (gallon/hour) of

the tractor. GHG emissions from switchgrass

transportation were estimated using the Motor

Vehicle Emissions Simulator (MOVES) by the

U.S. Environment Protection Agency (2013).

In addition to travel distance, local weather,

travel speed, and the slopes of road were con-

sidered when estimating the truck emissions of

switchgrass from farm gate to the conversion

facility. The version used to estimate vehicle

emissions was MOVES2010a. Indirect emis-

sions from the production of agricultural ma-

chinery, fertilizer, herbicide, and seed were

calculated based on the emission factors from

GREET model.

Empirical Results

The least feedstock cost conversion facility

without imposing GHG emissions constraint

was located in an industrial park adjacent to

Interstate 24 in the southeast of Nashville (see

Figure 4). The feedstock draw area for the

minimum cost case (i.e., the minimum feed-

stock cost without imposing constraints on

GHG emissions) in Figure 4A was more geo-

graphically compact than the minimum GHG

emissions solution in Figure 4B. In the mini-

mum cost case, switchgrass production was

primarily produced on low opportunity cost hay

and pasture land. When the objective is to

minimize total GHG emissions as shown in

equation (6), converting cropland becomes the

first choice because of increased carbon se-

questration. For the minimum GHG emissions

solution in Figure 4B, all of the land used for

switchgrass was converted from cropland.

Feedstock draw area under GHG minimization

was less dense geographically (Figure 4B) than

under cost minimization (Figure 4A) because

more hay and pasture land is available in east

and middle Tennessee, whereas cropland is less

available in the two regions relative to west

Tennessee.

The output for the minimum cost and min-

imum GHG emissions solution points is sum-

marized in Table 2. For the minimum cost case

(the second column in Table 2), total GHG

emissions produced in the switchgrass supply

chain was 81.6 thousand Mg. The major source

of GHG emissions was energy consumption for

farming activities and totaled 36.7 thousand

Mg followed by the conversion of hay and

pasture land to switchgrass that released soil

carbon by 25.1 thousand Mg. The production of

seed, fertilizer, herbicide, farm machinery, and

trucks yielded nearly 16,000 Mg in indirect

GHG emissions. Switchgrass transportation

between the farm gate and the conversion fa-

cility produced approximately 4,000 Mg of

GHG emissions. Total feedstock cost including

transportation and farm gate cost was $46.0

million. Feedstock cost at the farm gate was

$35.4 million with an opportunity cost of $1.6

million. Transportation of feedstock accounted

for $23% ($10.6 million) of the total plant gate

cost.

For the minimum GHG emissions point (the

third column in Table 2), the switchgrass sup-

ply chain produced total GHG emissions of

34.5 thousand Mg. Given that all of the land

used for switchgrass production was converted

from cropland, more than 25,000 Mg of GHG

emissions were sequestrated in soils. GHG

emissions from transportation of feedstock

were 7.2 thousand Mg higher than the trans-

portation emissions in the minimum cost so-

lution because of a larger feedstock supply

area. Total feedstock cost for the minimum

GHG emissions case was more than $85 million.

The opportunity cost of converting cropland

to switchgrass ($37.3 million) became the

largest component of plant gate cost. The cost

for switchgrass transportation was higher than

the minimum cost solution because the feed-

stock supply area was more geographically

dispersed.

Two additional grid points of GHG emis-

sions (A1, A2) were included using equations

(2) and (3) to develop a cost–GHG emissions

tradeoff curve and are plotted in Figure 5. At
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point A1, total GHG emissions were con-

strained at 62.8 thousand Mg with the optimal

feedstock cost of $50.7 million. Total feedstock

cost increased to $60.2 million when limiting

the level of GHG emissions of 43.9 thousand

Mg at grid point of A2. The share of hay and

pasture land used for switchgrass production

decreased from 98% to 65% to 11% to 0% from

Figure 4. Location of the Conversion Facility and Associated Feedstock Supply Region for Cost

Minimum and Greenhouse Gas (GHG) Emission Minimum Solution Points
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the four points (Ac, A1, A2, and Ae) on the

tradeoff curve. The tradeoff curve in Figure 5

suggests that the imputed cost of mitigating

GHG emissions in the feedstock supply chain

can be traced out along the tradeoff curve.

Lowering GHG emissions from the point of Ac

(81.6 thousand Mg) to A1 (62.8 thousand Mg)

increased the total cost in the feedstock supply

system by $4.8 million (approximately $250/

CO2e Mg), whereas the average imputed cost of

mitigating the same amount of GHG emissions

between point A1 and A2 doubled to $500/

CO2e Mg. Moreover, the average imputed cost

for GHG emission reduction increased to

nearly $2,700/CO2e Mg from the solution point

A2 to the minimum emission case Ae. This

output suggests that the point A1 may be the

most preferred solution for the conversion fa-

cility when designing the feedstock supply

system and locate the feedstock producers. The

imputed cost of emissions abatement infor-

mation developed in this tradeoff analysis may

Table 2. Summary for the Cost Minimum and Greenhouse Gas (GHG) Emissions Minimum Cases
at the Selected Conversion Facility

Cost Minimum GHG Emissions Minimum

GHG Emissions (1,000 Mg)

Land conversion 25.1 –25.2

Energy use—farming 36.7 36.6

Energy use—transportation 3.9 7.2

Indirect sources 15.9 15.8

Total 81.6 34.5

Cost ($ million)

Cost at farm gate 35.4 71.2

Opportunity 1.6 37.3

Production 8.6 8.6

Harvest 22.4 22.4

Storage 2.8 2.9

Transportation 10.6 14.2

Total at plant gate 46.0 85.4

Hay and pasture land ratio 97.8% 0.0%

Figure 5. The Tradeoff Curve between Cost and Greenhouse Gas (GHG) Emissions of Switch-

grass Supply Chain for the Least Cost Conversion Facility in Tennessee
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be useful to policymakers and LCB-based en-

ergy investors seeking to develop a sustainable

bioenergy sector in the region.

Conclusions

Expediting the development of alternative en-

ergy sources using lignocellulosic biomass

feedstocks has been strongly promoted by state

and federal government agencies over the past

decade. However, technical barriers to the de-

velopment of a cost-effective feedstock supply

chain impede the sustainability of a bioenergy

sector in the United States. Thus, the objective

of this study was to identify the key factors to

a sustainable LCB feedstock supply chain

considering both economic and environmental

performance. To achieve this objective, the

potential tradeoff between cost and GHG

emissions caused by type of land converted to

switchgrass production was examined for

a case study in Tennessee. This study applied

a multiobjective mathematical model to mini-

mize both cost and GHG emissions in a switch-

grass supply chain.

Results show that both feedstock cost and

GHG emissions from the switchgrass supply

chain were heavily influenced by the type of

land converted for switchgrass production.

Also, the availability of the type of agricultural

land to produce switchgrass, i.e., hay and pas-

ture land or cropland, and the road network

affected the location of conversion facility. The

potential site with the least feedstock cost was

located where low opportunity cost hay and

pasture land is most geographically concen-

trated in Tennessee.

For this facility, the switchgrass supply

chain produced the minimum cost output of

81.6 thousand Mg of CO2e with the total feed-

stock cost of $46 million. The land for switch-

grass production was primarily converted from

hay and pasture land. In contrast, GHG emis-

sions dropped to approximately 35,000 Mg but

cost increased to more than $85 million when

only cropland was converted to switchgrass. The

tradeoff curve generated for the facility indi-

cated that the imputed cost for GHG emissions

abatement quickly increased along with the

target (or constraint) of GHG emissions. This

relationship implies that the location of switch-

grass production and the resulting changes in

crop production should be considered in tar-

geting government incentives to encourage

switchgrass-based biofuel production in the

state and the southeastern region.

Finally, the tradeoff between cost and GHG

emissions estimated in this study suggests that

the selection of land for feedstock production

can influence the economic and environmental

performance of the feedstock supply chain.

With the different ordering of the objective in

this study (i.e., using GHG emissions as the

main objective and constraining cost at multi-

ple levels), the location of the conversion fa-

cility and feedstock draw area will change

accordingly because cropland is concentrated

in west Tennessee. However, the tradeoff rela-

tionship between cost and GHG emissions will

remain. In addition, for other regions with dif-

ferent landscape of agricultural activities, the

tradeoff curve between cost and GHG emissions

in a feedstock supply chain can still be observed

if the relative opportunity cost and soil carbon

sequestration rate between the potential LCB

feedstock and existing agricultural lands are

found. For future research, the analysis can be

extended to the whole supply chain system as-

sociated with different types of energy production

(e.g., coal, natural gas) and the relationship be-

tween cost and net changes in GHG emissions

among those energy products can be evaluated.
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Appendix

The cost of switchgrass at the conversion facility

gate is defined as:

(A-1)
CF ¼ Copportunity þ Cproduction þ Charvest

þ Cstorage þ Ctransportation

where CF is the total economic cost ($) of

the switchgrass supply chain; and Copportunity,

Cproduction, Charvest,Cstorage, and Ctransportation are

opportunity costs from land conversion, pro-

duction cost, harvest cost, storage cost, and

transportation cost of switchgrass, respectively.

The definition of the parameters and variables

used in the following equations are included in

Table A1. The opportunity cost (Copportunity) for

switchgrass production equals the profit of pre-

vious crop type as presented in equation (A-2).

If cropland revenue is less than the county-level

land rent, the land rent for crop and pasture is

used instead. The production cost for switch-

grass production (Cproduction) includes the

amortized establishment cost of the first year

as well as an annual maintenance cost.

(A-2) Copportunity ¼

X
ip

Priceip � Yieldip � PCip

Yield swi
i

� XCip

� �
, if ðPriceip � Yieldip � PCipÞ � LRip ³ 0

X
ip

LRip

Yieldswi
i

� XCip

� �
, if ðPriceip � Yieldip � PCipÞ � LRip < 0

8>>><
>>>:
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Table A1. Definitions of Subscripts, Parameters, and Variables

Unit Definition

Subscripts

i Locations of switchgrass production field

j Location of the biorefinery

m Month

p Crops (hay and pasture, corn, soybean, wheat)

t Storage protection method

k Type of machinery (tractor, mower, loader, rake)

Parameters

Priceip $/unit Traditional crop price

Yieldip ha/unit Tradition crop yield

PCip $/ha Production cost of traditional crop

Yieldswi
i d Mg/ha Yield for switchgrass in each hexagon

LRip $/ha Land rent of traditional crop

Est $/ha Establishment cost in the first year

AM $/ha Annual maintenance cost

Sigmai $/ha Cost of harvesting switchgrass

g it $/d Mg Cost of storing switchgrass

ui $/d Mg Cost of transporting switchgrass from field to facility

DMLT % Dry matter loss during transportation

lucEco2
p CO2e Mg/ha CO2 emission from land conversion of crop to switchgrass

lucEn2o
p CO2e Mg/ha N2O emission from land conversion of crop to switchgrass

storE CO2e Mg/d Mg GHG emissions from energy usage during storage

harE CO2e Mg/ha GHG emissions from energy usage during harvest

proE CO2e Mg/ha GHG emissions from energy usage during production

transEmip CO2e Mg /truck GHG emissions from energy usage during transportation

fertE CO2e Mg/d Mg GHG emissions from fertilizer production

herbE CO2e Mg/d Mg GHG emissions from herbicide production

seedE CO2e Mg/d Mg GHG emissions from seed production

machEk CO2e Mg/unit GHG emissions from machinery production

loadwtmi d Mg/truck Tonnage of switchgrass delivered per truck

aaip ha Cropland available in each hexagon for each crop

PASp % Maximum percent of land converted

CapUnit kL/year Annual capacity of a conversion facility

l kL/d Mg Switchgrass–ethanol conversional rate

rateavam % Ratio of working hours in each month to total

avehourm hour Average working hours of machinery in each month

mtbi hour/ha Machine time per acre for each machinery

DMLSmt % Dry matter loss during storage

Ddm kL/month Monthly demand for ethanol

Variables

Aip ha ha of switchgrass produced annually

AHmip ha ha of switchgrass harvested monthly

XCip d Mg dry Mg of switchgrass produced annually

XHmip d Mg dry Mg of switchgrass harvested monthly from November to February

XTNmip d Mg dry Mg of switchgrass transported directly to the facility after harvest

NXSmipt d Mg dry Mg of switchgrass newly stored monthly from November

to February

XSmipt d Mg dry Mg of switchgrass stored monthly from November to October

XTOmipt d Mg dry Mg of switchgrass transported from storage to the facility

Numbk
m unit Number of equipment used in harvest

Note: GHG, greenhouse gas.
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(A-3) Cproduction ¼
X

ip

Estþ AM

Yieldswi
i

� XCip

� �

(A-4) Charvest ¼
X

ip

Sigmai

Yieldswi
i

� XCip

� �

(A-5) Cstorage ¼
X
mipt

g it � NXSmipt

(A-6)

Ctransportation ¼
X

i

ui

�

X
mp

XTNmip þ
X

mpt
XTOmipt

1� DMLT

The sources of GHG emissions of the switch-

grass supply chain are land use change (Eluc),

energy consumption from switchgrass pro-

duction, storage harvest (Eenergy), transportation

(Etransportation), and the production of seed, fertil-

izer, herbicide, and machinery (Eind). Equations to

calculate the GHG emissions from these sources

are given in (A-7)2(A-11), and the definitions for

parameters and subscripts are also in Table A1.

(A-7) EF ¼ Eluc þ Eenergy þ Etransportation þ Eind

(A-8) Eluc ¼
X
mip

lucEco2
p þ lucEn2o

p

� �
� AHmip

(A-9)

Eenergy ¼
X
mip

storE � XHmip

þ
X
mipb

proE þ harEð Þ � AHmip

(A-10)

Etransportation¼
X

mi

transEmip

�

X
p
XTNmipþ

X
pt

XTOmipt

loadwtmi � ð1� DMLTÞ

(A-11) Eind ¼
X
mip

fertE þ herbE þ seedEð Þ

� AHmip þ
X

m

Numbk
m � machEk

Several constraints about feedstock availability and

inventory flow for the switchgrass supply chain are

presented in equations (A-12)–(A-22). Land use

constraints are specified in equations (A-12) and

(A-13). Equation (A-14) indicates that no more

switchgrass was harvested than produced. Equa-

tion (A-15) indicates that the amount of switch-

grass harvested each month is constrained by the

available working hours in each month (rateavam).

Equation (A-16) limits the harvest season of switch-

grass from November to February. Equation (A-17)

calculates machinery use during switchgrass har-

vest. Equation (A-18) shows that the newly stored

switchgrass in each month, m, equals the amount of

switchgrass harvested deducting the amount of

switchgrass delivered to the conversion facility di-

rectly. During harvest season, accumulative switch-

grass storage equals the amount stored in previous

month plus the newly stored amount as presented

in equation (A-19). During off-harvest season, ac-

cumulated switchgrass storage equals the amount

stored in the previous month subtracting the amount

of switchgrass delivered to the facility in the current

month, as presented in equation (A-20). Equation

(A-21) indicates that the temporal framework con-

sidered in the model is a single harvest year.

Equation (A-22) indicates that the switchgrass de-

livered to the facility each month meets the demand.

(A-12) Aip £ PASp � aaip, 8i, p

(A-13) XCip £ Yield swi
i � Aip, 8i, p

(A-14) XCip �
X

m

XHmip ³ 0, 8i, p

(A-15)

X
i,p,

XHmip ¼
CapUnit

l
� rateavam,

Dec £ m £ Feb & 8m

(A-16) XHmip ¼ 0, March £ m £ Oct 8m, i, p

(A-17)

Numbk
m � avehourm

�
X

i,p

ðmtbk
i � AHmipÞ ³ 0, 8m

(A-18)

X2

t

NXSmipt ¼ XHmi �
XTNmip

1� DMLT
,

Nov £ m £ Feb & 8m, i, p

(A-19)

XSðmþ1Þipt ¼ 1� DMLSmtð Þ � XSmipt

þ NXS mþ1ð Þipt,

Nov £ m £ Feb & 8m, i, p, t

(A-20)

XSðmþ1Þipt ¼ 1� DMLSmtð Þ

� XSmipt �
XTOðmþ1Þipt

1� DMLT
,

Mar £ m £ Oct 8m, i, p, t

(A-21) XSmipt ¼ 0, m ¼ Oct & 8m, i, p, t

(A-22)
l
X

i,p

XTNmip þ
X
i,p,t

XTOmipt

 !

¼ Ddm, 8m
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