
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2011)
11, Number 2, pp. 321–322

Stata tip 99: Taking extra care with encode
Clyde Schechter
Albert Einstein College of Medicine
Yeshiva University
New York, NY

clyde.schechter@einstein.yu.edu

encode (see [D] encode) has long been one of Stata’s basic data-management com-
mands. encode maps the distinct strings of a string variable to an integer-valued nu-
meric variable for which the strings become value labels. Unless you specify a preexisting
set of value labels through its label() option, encode uses the alphanumeric order of
distinct string values present in the dataset to determine numeric values 1, 2, 3, and
so on. Thus if "a", "b", and "d" were the distinct values of a variable, svar, in one
dataset, then typing

. encode svar, generate(nvar)

would produce nvar, in which 1, 2, and 3 correspond to "a", "b", and "d", respectively.
However, the same command applied to a dataset in which "a", "b", "c", and "d" were
the distinct values of svar would produce an encoding that was overlapping but also
different: 3 would correspond to "c" and 4 to "d". Because value labels are what the
user sees in text and graphic output, it could be easy to miss the difference on casual
inspection. Moreover, this difference could easily prove problematic if two or more
datasets were to be combined, say, by using append or merge. Indeed, using encode on
the same variable in multiple datasets that will later be combined can only be called
dangerous.

Having been bitten by this many times, I have developed some precautionary data-
management practices that I commend to others.

1. There are certain types of variables that recur frequently in my work. For many
of these variables, I have developed a standard encoding that I always use. The
code to create standard value labels is explicit in some do-files that I routinely do,
run, or include in my dataset creation do-files. These value labels cover all the
possible values these variables can take. Whenever I encode one of these variables,
I always explicitly use the label() option with these labels.

2. In large projects that will involve multiple datasets with overlapping variables not
part of my “standard” list, whenever I use encode, I routinely follow up with
a label save as an audit of that particular encoding. In later work with the
same variable in other datasets, before I encode, I again do, run, or include
the corresponding labeling do-file and then use the explicit label() option in the
encode command. If encode finds new levels of the variable not already in the
label, it adds them to the label. I follow up using label save, replace again so
that my labeler do-file remains up to date.

c© 2011 StataCorp LP dm0057



322 Stata tip 99

3. So that I do not rely on my memory to know whether I have previously developed
a labeling for a variable, my practice for nonroutine variables is to give the value
label the same name as the variable and to name the labeler do-file using the form
varname label.do. Then, when I want to encode such a variable, I precede the
encode with

. capture run varname label.do

In fact, I have an ado-file that is a wrapper for encode—it handles all this for me.

Although these practices may seem cumbersome and can lead to a project directory
being a bit cluttered with do-files that just generate labels, adherence to these practices
has saved me from some nasty analysis errors that are hard to root out otherwise.


