Do Remittances Alter Household Nutrition? Evidence from Rural Kilimanjaro in Tanzania

Rosemary E. Isoto and David S. Kraybill, Dept. of Agricultural, Environmental & Development Economics, The Ohio State University, Columbus, OH 43210, USA.

Copyright 2014 by Rosemary E. Isoto and David S. Kraybill. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
INTRODUCTION

Remittances are a major source of external development finance providing households with income for investment, insurance and capital accumulation (Chami et al., 2003; World Bank, 2004; Yang, 2008).

According to the Migration and Remittance Fact Book (2011), Tanzanians living outside the country in 2010 were equal to 0.7 percent of Tanzanians living within the country. The majority of Tanzanian migrants reside in Australia, Burundi, Canada, Kenya, Malawi, Mozambique, Rwanda, Uganda, United Kingdom, and United States. Remittances by Tanzanians abroad amounted to an estimated US$ 337 million (TSHs 339.2 billion) in 2010, an increase of six percent from US$ 318 million in the previous year (Tanzania Central Bank Statistics, 2011).

Objective of the Study

To determine if remittance income makes a difference in the macronutrients and micronutrients consumption patterns of households.

Literature on the Income Elasticity of Nutrients

Low nutrient intake is widespread among rural low income households in developing countries. The prevalence of undernourishment in Tanzania is high estimated at 39% of the population in 2012 (WFP, 2012).

Estimates of the income elasticity of calories in developing countries is high, ranging from close to zero to close to one (Abdulai and Aubert, 2004).

METHODOLOGY

Empirical Framework

Data
- Utilizes data from 2008-2010 Kilimanjaro Livelihood and Climate Survey (KILCS).
- Fifteen villages were surveyed with fifteen households randomly selected from each village, making up a sample of 225 respondents.
- The survey contains information on household consumption quantities, total expenditure data on food and nonfood commodities, and demographic characteristics for each sampled household.
- The consumption data includes consumption from own production, consumption from purchases and consumption from in-kind transfers from other households.

Model
- We estimate a regression model of household per capita nutrient intake:

\[C_{it} = \alpha_0 + \beta_1 H_{it} + \beta_2 R_{it} + \beta_3 Y_{it} + \beta_4 T_{it} + \epsilon_{it} \]

where \(C_{it} \) is per capita nutrient intake of household \(i \) at time \(t \), \(\alpha_0 \) is a fixed effect reflecting time differences, \(H_{it} \) represents household characteristics, \(R_{it} \) is a dummy variable for remittances, \(Y_{it} \) represents village level characteristics, and \(\epsilon \) is the error term. \(\beta_1, \beta_2, \beta_3, \) and \(\beta_4 \) are parameters to be estimated.

Estimation Procedure
- Remittance and net income would be endogenous since unobservables characteristics that affect migration and, hence, remittances may also affect household nutrient intake. There may be reverse causality as high nutrient consumption might bring better health, affecting the probability either positively or negatively that a member will migrate and hence send remittances back home.
- To overcome this problem, an Instrumental Variable (IV) approach is used which employs instruments that affect migration and, hence, remittances but that do not directly affect household nutrient intake.

Descriptive Statistics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pooled Sample (N=225)</th>
<th>Received Remittances (N=149)</th>
<th>Did not Receive Remittances (N=102)</th>
<th>T-test of Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Size</td>
<td>5.2</td>
<td>4.8</td>
<td>5.6</td>
<td>2.6**</td>
</tr>
<tr>
<td>Age of Head</td>
<td>55.3</td>
<td>60.1</td>
<td>49.8</td>
<td>-5.5**</td>
</tr>
<tr>
<td>Age of Spouse</td>
<td>49.6</td>
<td>54.1</td>
<td>44.5</td>
<td>-2.2**</td>
</tr>
<tr>
<td>Educ. of Head</td>
<td>6.7</td>
<td>6.2</td>
<td>7.2</td>
<td>2.2*</td>
</tr>
<tr>
<td>Educ. of Spouse</td>
<td>6.0</td>
<td>5.2</td>
<td>2.7</td>
<td>3.8**</td>
</tr>
<tr>
<td>Farm Size (acres)</td>
<td>2.4</td>
<td>2.7</td>
<td>2.1</td>
<td>-2.5**</td>
</tr>
<tr>
<td>Net Annual Income (Tshs)</td>
<td>27617 (665432)</td>
<td>258470 (671006)</td>
<td>296392 (296392)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Econometric Results

Variables: Remittances (instrumented), Head, 1-5 years of education, Head, 6-9 years of education, Spouse, >10 years of education, Age of head, Household size, Farm size, another village, income (instrumented), constant

<table>
<thead>
<tr>
<th>Variables</th>
<th>Calories</th>
<th>Protein</th>
<th>Fats</th>
<th>Carbohydrates</th>
<th>Vit. A</th>
<th>Vit. C</th>
<th>Calcium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remittances (instrumented)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Head, 1-5 years of education</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Head, 6-9 years of education</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spouse, >10 years of education</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age of head (in)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Household size (in)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Farm size</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Another village</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Income (instrumented)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Constant</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Red signs imply significance, grey signs imply lack of significance.

DISCUSSION

Remittance coefficients are positive and significant for the highest-quality nutrients: proteins, vitamin A, vitamin C and calcium.

Remittance coefficients are not significant for the lowest-quality nutrients: calories, carbohydrates and fats.

Holding everything else constant, households that received remittances consume 183 percent more protein per capita than households that do not receive remittance. The coefficient is significant at the five percent level.

Households that received remittances consumed 47 percent more fats per capita than non-remittance receiving households.

Age of head, household size and farm size all had negative and significant coefficients.

CONCLUSION

Various authors have found that remittances received by home-country recipients are used either for investment in housing, businesses, consumption of nonfood items or for insurance against risks (Adams, 1991; Miller and Paulson, 2000), however our study finds that remittances are useful in poor rural households for boosting nutrition first and foremost.

The study finds that remittances improve household nutrition and, hence, food security.

Remittances are invested in human capital in the form of higher quality nutrients such as protein. This leads to better cognitive development and health.

We find a negative relationship between ownership of farmland and nutritional levels but this effect can be offset by remittances.

REFERENCES