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Price Discovery of World and China Vegetable Oil Markets and Causality with 

Non-Gaussian Innovations 

1. Introduction 

Vegetable oil is one of the most important edible oils in China (Oil China, 2012). In 

2010, the total consumption of vegetable oil in China was 27 million tons. This is 93% increase 

compared to year 2000, with average annual growth of about 6.8% from 2000 to 2010 (Xu and 

Xie, 2012). Soybean and rapeseed oil have been the most widely used vegetable oils in China 

for decades. Consumption of soybean oil was about 10 million tons in 2010 accounting for 41% 

total domestic vegetable oil consumption (Xu and Xie, 2012). While soybean oil consumption 

is ranked number one, rapeseed oil consumption comes third. Rapeseed oil plays a vital role in 

traditional Chinese cooking. Furthermore, data from the China Statistics Bureau showed that 

China is the largest rapeseed oil consumer in the World. According to the National Food 

Security Long-term Plan (2008-2020) of China, in 2020 the per capita annual consumption of 

vegetable oil will reach 20kg, and the total consumption will reach 29 million tons. These 

statistics show the magnitude of the current vegetable oil market in China. Due to the lack of 

domestic production of vegetable oils to meet the demand, China has been importing vegetable 

oil form the World market. According to the statistics of Customs Information Network, from 

January to July 2012, China imported a total of 400 million tons of edible vegetable oils. This is 

an increase of 18% compared to 2011, and is worth $ 4.7 billion. 

According to Cheng (2012), 92% of soybean oil and 20% of rapeseed oil consumed in 

China are imported. This increasing dependence on international market for vegetable oil 

potentially has an impact on Chinese domestic price of such oils. 

In and Inder (1997) used co-integration methods to study long-run relationships 

between eight types of vegetable oils in the World market. Yu et al. (2006) investigated the 

relationship among soybean, sunflower, rapeseed and palm oils along with one weighted 

average World crude oil price and described the long-run dynamic relationship between 

vegetable and crude oil prices. Wang (2008) examined the linkage of soybean oil futures price 

between China and United States. The results showed a long-run equilibrium relationship 

between futures prices and China spot price. Liu et al. (2012) estimated the relationship 

between the price of the soybean oil and soybeans in China. They found that the soybean oil 
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price has a positive relationship with the price of soybeans in China.  

The extant literature on dynamics of vegetable oil prices shows that most studies 

centered attention to World vegetable oil prices, but failed to relate it to the dynamics of 

China domestic vegetable oil price. The only exception to this is Wang et al., (2013), where 

dynamic movements of world and China vegetable oil prices were modeled in an error 

correction framework. However, Wang et al., (2013) not only assumed a Gaussian 

distribution in their modeling framework, but also did not investigate rich set of information 

hidden in innovations of the error correction model. Our study sheds light on modeling price 

discovery of world and China vegetable oil markets more realistically assuming 

non-Gaussian innovations. Moreover, using rich set of information hidden in innovations of 

vector error correction model, we establish price discovery causal patterns using artificial 

intelligence and directed acyclic graphs (DAGs), again assuming non-Gaussian innovations 

(Shimizu et al., 2006).  

2. Objectives 

The specific objectives of this study are (1) to estimate a vector error correction model 

(VECM) (or seasonal VECM (Beaulieu and Miron, 1993; Johansen and Schaumburg, 1999) if 

seasonal unit roots are present in data) for world and China vegetable oil markets; (2) to 

perform innovation accounting using impulse response functions and error variance 

decompositions; (3) to develop causality patterns of world and China vegetable oil prices 

obtained through directed acyclic graphs applied to the innovations from VECM assuming 

non-Gaussian innovations; (4) to identify structural breakpoints (if any) that affect the dynamic 

patterns of world and China vegetable oil prices; and (5) to perform policy analysis based on 

graphical causal structures obtained from objective. 

3. Methodology 

3.1 Vector error correction model (VECM), cointegration analysis, innovation accounting and 

factorization of residuals  

A vector error correction model (VECM) is applied as a basis for the empirical analysis. 

Existing literature has well discussed the cointegration analysis and vector error correction 

model (Johansen, 1991; Johansen and Juselius, 1990, 1994). A VECM with k-1 lags is 

presented as 
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∆𝑋𝑡 = Π𝑋𝑡−1 + � Γ𝑖Δ𝑋𝑡−𝑖 + 𝜇 + 𝑒𝑡 (𝑡 = 1, … ,𝑇)                                                                  
𝑘−1

𝑖=1

(1) 

where Xt is a (4 × 1) vector including 4 nonstationary vegetable oil prices (price of Chinese 

rapeseed oil, price of Chinese soybean oil, price of world rapeseed oil, price of world soybean 

oil), ΔXt is the difference between Xt and Xt−1, Π and Γ𝑖 are (4 × 4) coefficient matrices, 

μ is a (4 × 1) vector of constants, and et is an iid (4 × 1) vector of Gaussian innovations with 

zero mean and variance covariance matrix Σ. 

The coefficient matrix Π could be factorized as Π = αβ′, where β (4 × 𝑟) is the 

cointegrating space capturing the long-run dynamics and α (4 × 𝑟) is the short-run response to 

the long-run relations. As the rank of Π, r is the number of cointegrating vectors (𝑟 ≦ 4). 

Testing hypotheses on cointegrating space β could facilitate the identification of long-run 

structure, and testing hypotheses on α and Γ𝑖 could facilitate the identification of the 

short-run structure (Johansen and Juselius, 1994; Johansen, 1995). The contemporaneous 

structure can be identified through directed acyclic graph analysis based on the observed 

innovations (Pearl, 1995, 2000; Spirtes and Scheines, 2000).  

    Following the studies of Phillips (1996), Wang and Bessler (2005) and Park, Mjelde and 

Bessler (2008), the number of cointegrating vectors is tested simultaneously with the test of lag 

length using Schwarz-loss and Hannan and Quinn-loss information criteria. Whether to include 

a constant within the cointegrating space is incorporated into this procedure as well. 

Given the number of cointegrating vectors, the hypothesis test of exclusion is conducted 

on the cointegrating space β to determine whether a particular series enters into the long-run 

equilibrium. The test is as follows 

ℋ1:  β = 𝐻𝜑 

The null hypothesis is that a particular series does not entering into the long-run equilibrium or 

the ith column of 𝛽′ is all zero.  

The hypothesis test of weak exogeneity is carried out on α to determine whether a 

particular series responds to the deviation from the long-run equilibrium. The test is as follows 

ℋ2: 𝛼 = 𝛨𝜓 

The null hypothesis is that a particular series does not respond to the perturbation in the 
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long-run relation or the ith row of α is all zero. 

Further analysis of short-run structure involves the examination of Γ𝑖. However, as the 

level VAR, the coefficients of the VECM are difficult to interpret. As suggested by Sims (1980),  

Lutkepohl and Reimers (1992), and Swanson and Granger (1997), the innovation accounting 

procedures like impulse response functions and forecast error variance decomposition may be 

the best way to summarize the short-run dynamic structure. In this paper, the VECM in Eq. (1) 

with k-1 lags is converted to its corresponding level VAR with k lags: 

𝑋𝑡 = (1 + Γ1 + Π)𝑋𝑡−1 −�(Γ𝑖 − Γ𝑖+1)𝑋𝑡−𝑖−1 − Γ𝑘−1𝑋𝑡−𝑘 + 𝜇 + 𝑒𝑡 (𝑡 = 1, … ,𝑇)
𝑘−2

𝑖=1

        (2) 

Based on the equivalent VAR representation, innovation accounting is conducted using moving 

average representation.  

One critical problem of innovation accounting is how to explore the contemporaneous 

correlations of variables. Early work used Choleski factorization to set up a lower triangular 

contemporaneous causal ordering among variables. The application of Choleski factorization 

may cause problems like unrealistic assumption of lower triangular causal ordering and 

seriously misleading innovation accounting results (Bernanke, 1986; Sims, 1986; Swanson and 

Granger, 1997; Yang and Bessler, 2004). Structural factorization suggested by Bernanke (1986) 

is a more recent approach to identify the contemporaneous structure. The observed innovations 

𝑒𝑡 is transformed into orthogonal innovations 𝜐𝑡, which are the driving sources of variation in 

the data: 

Α𝑒𝑡 = 𝑣𝑡                                                                                                                                                (3) 

Instead of imposing lower triangular structure as Choleski factorization, structural 

factorization allows more general causal orderings in matrix A. In this paper, A matrix is a 

(4 × 4) matrix with diagonal of ones: 

 𝐴 = �

1 𝑎12 𝑎13    𝑎14
𝑎21 1 𝑎23    𝑎24
𝑎31 𝑎32   1      𝑎34
𝑎41    𝑎42      𝑎43      1

�                                                  (4)  

As discussed later, directed acyclic graph (DAG) technique will be used to assign zero 

restrictions in matrix A. By pre-multiplying Eq. (2) by A, Eq. (5) is obtained for the estimation 

of usual innovation accounting procedures: 
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𝐴𝑋𝑡 = 𝐴(1 + Γ1 + Π)𝑋𝑡−1

− 𝐴�(Γ𝑖 − Γ𝑖+1)𝑋𝑡−𝑖−1 − AΓ𝑘−1𝑋𝑡−𝑘 + 𝐴𝜇 + 𝐴𝑒𝑡  (𝑡 = 1, … ,𝑇)
𝑘−2

𝑖=1

(5)  

Although the structural factorization allows more general causal flows, most of the 

previous literature still relies on subjective or theory-based information to explore 

contemporaneous structure (Bessler and Yang, 2003). Swanson and Granger (1997) suggested 

a data-determined approach to sort out contemporaneous causal orderings. In this paper, the 

recently developed directed acyclic graph (DAG) technique will be applied to identify the 

contemporaneous structure and the innovation accounting procedures will be conducted based 

on the DAG-based structural factorization.  

3.2 Directed graphs theory 

A directed graph is a graph summarizing the causal flows among a set of variables (or 

vertices) (Pearl, 2000). A more vivid description of the directed graph is a pipeline transferring 

water standing for dependence and independence information flow (Spirtes, Glymour and 

Scheines, 2000). The directed graph consists of vertices (variables), marks (symbols attached 

to the end of undirected edges), and ordered pairs (edges). Arrows exhibit the direction of 

information flow in directed graphs. If there are no edges connecting variable X and variable Y, 

the two variables are conditionally uncorrelated. An undirected edge like 𝑋 − 𝑌, indicates 

variable X and variable Y are conditionally correlated. However, whether X causes Y or vice 

versa could not be determined. If there is a directed edge connecting variable X and variable Y 

like 𝑋 → 𝑌, not only correlation but also causation could be inferred (variable X causes 

variable Y). 𝑋 ↔ 𝑌 describes a bi-directed edge, indicating that there is an omitted variable 

which causes both X and Y. In this paper, only directed acyclic graphs (DAGs) are considered 

to describe the contemporaneous causal relations among variables. Therefore, the resulting 

directed graphs will contain no directed cyclic paths or have no path that leads away from a 

variable only to return to that same variable.  

    Several algorithms have been developed to generate the DAGs. One of the earliest and 

most popular algorithms is PC algorithm (Spirtes, Glymour and Scheines, 2000). PC algorithm 

starts with a complete undirected graph and searches causal flows based on conditional 

independence. First, the edges of the graph are removed sequentially if the correlation or partial 
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correlation (conditional correlation) of pairs of variables is zero. Then the notion of sepset (the 

conditioning variable(s) on removed edges between two variables is called the sepset of the 

variables whose edge has been removed) is used to determine the causal direction of the 

remaining edges.  

PC algorithm is implemented based on the assumption of Gaussian distributed 

variables. Under this assumption, second-order moments of the variables could provide 

required information of probability distribution and partial correlation. Therefore, these is no 

need for higher-order moment structures (Shimizu, Hoyer et al., 2006; Shimizu, Hyvarinen et 

al., 2012). However, since more than one graph could lead to the same probability distribution 

(e.g. 𝑥 ← 𝑦 → 𝑧 and 𝑥 → 𝑦 → 𝑧), PC algorithm could not distinguish between the 

observationally equivalent graph structures (same joint probability density) (Pearl, 2000). In 

the graph, the indistinguishable or equivalent structures are characterized by undirected edges 

(Drewek 2010).  

Different from PC algorithm, the recently developed Linear Non-Gaussian Acyclic 

Models (LiNGAM) algorithm developed by Shimizu, Hoyer et al. (2006) presumes 

independent non-Gaussianity (more than covariance information) of the variables. Based on 

this assumption, higher-order statistics could be used to distinguish the causal graphs that PC 

algorithm fails to. LiNGAM algorithm is conducted by first applying independent component 

analysis (ICA) to estimate a mixing matrix. Assume a vector of observed variables X =

�𝑥1,𝑥2,…,𝑥𝑚� and each variable 𝑥𝑖  (𝑖 = 1, … ,𝑚) is a linear function of the earlier variables and 

the disturbance 𝑒𝑖 

𝑥𝑖 = � 𝑏𝑖𝑗𝑥𝑗 + 𝑒𝑖
𝑘(𝑗)<𝑘(𝑖)

                                                                                                                        (6) 

where 𝑘(𝑖) is a causal order of 𝑥𝑖, 𝑥𝑗 directly causes 𝑥𝑗, and 𝑒𝑖 is the independent and 

non-Gaussian disturbance. By subtracting out the mean of each 𝑥𝑖, generated system of 

equations is: 

𝑋 = 𝐵𝑋 + 𝑒                                                                                                                                            (7) 

where B stands for the coefficient matrix. Solving for X will give Eq. (8): 

𝑋 = 𝐴𝑒                                                                                                                                                     (8) 
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where A = (I − B)−1. The mixing matrix A is estimated by ICA. This procedure emphasizes 

the non-Gaussianity of disturbances, since many different mixing matrices yield the exact same 

covariance matrix (implying the exact same Gaussian joint density) if the disturbances are 

Gaussian (Hyvärinen, Karhunen and Oja, 2004). After obtaining the mixing matrix A, a series 

of transformation, permutation and normalization are followed to generate a strictly lower 

triangular matrix 𝐵�  (an estimate of B) for causal ordering. Then higher-order moment 

structures are used to construct tests of model fit and determine the causal directions among 

variables (Shimizu, Hoyer et al., 2006; Shimizu, Hyvärinen et al., 2006; Shimizu, Hyvarinen et 

al., 2012).  

In this paper, the structural residuals of all four series are non-Gaussian (as discussed 

later). Therefore, LiNGAM algorithm will be applied to identify more exact contemporaneous 

causal pattern. As indicated by Shimizu and Kano (2008), the more non-Gaussian the data are, 

the more accurate the causal structure identified by LiNGAM is.  

4. Data 

Four vegetable oil price series are considered, which are price of Chinese rapeseed oil 

(C_rapeseed), price of Chinese soybean oil (C_soybean), price of world rapeseed oil 

(W_rapeseed) and price of world soybean oil (W_soybean). Monthly data for the two Chinese 

series are collected from China Price Yearbook while monthly data for the two world series are 

from World Bank database. The data cover the period from January 1994 to December 2010, 

yielding 204 observations. All the four price series are measured as US dollars per metric ton 

and are transformed into logarithmic form. Figure 1 shows the plots of logarithmic prices. The 

descriptive statistics of the four price series are provided in Table 1. 
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Fig.1. Monthly logarithmic prices (January 1994 to December 2010) 

 

Table 1 List of descriptive statistics  

  Mean Median Maximum Minimum SD 

C_rapeseed 6.93  6.88  7.72  6.55  0.26  

C_soybean 6.94  6.89  7.67  6.66  0.21  

W_rapeseed 6.48  6.45  7.46  5.75  0.37  

W_soybean 6.40  6.37  7.34  5.69  0.35 

 

5. Empirical Results 

5.1 Stationarity 

One important questions involved in the estimation of time series data is the stationarity 

of each series. If the series are nonstationary, the usual ordinary least squares estimation of the 

autoregressive model may lead to spurious regression results (Granger and Newbold, 1974). 

The well-used unit root tests, the augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 

1979) and the Phillips–Perron test (Phillips and Perron, 1988), are considered. The 

Elliott-Rothenberg-Stock test (Elliott, Rothenberg and Stock, 1996) is also used to increase the 

power of the unit root test. According to the results from Table 2, all the four series are 

nonstationary in level with the presence of unit roots, but stationary after first differencing. 
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However, Engle and Granger (1987) argued that stationary data achieved by first differencing 

may fail to capture the long-run information. As a result, when all the seriese are integrated of 

order one, further test of cointegration is needed to detect the potential cointegrating relations 

among the variables.  

Table 2 Tests for unit root                                             

Variables ADF  Phillips-Perron Elliott-Rothenberg-Stock 

Level    

C_rapeseed -1.0159 -1.2756 -0.6967 

C_soybean -0.8989 -1.644 -0.5692 

W_rapeseed -0.6649 -1.7759 -0.8854 

W_soybean -0.6576 -1.5894 -1.3298 

1st differences    

C_rapeseed -5.1371*** -9.8969*** -3.1429*** 

C_soybean -6.2624*** -13.0969*** -3.8107*** 

W_rapeseed -8.5005*** -12.5336*** -5.1128*** 

W_soybean -4.9614*** -9.9131*** -3.3454*** 

Notes: *, ** and *** denotes rejection of the null hypothesis of presence of unit roots for ADF tests, 

Phillips-Perron tests and Elliott-Rothenberg-Stock tests at 10%, 5% and 1% significance levels 

 

5.2 Choice of lag length and cointegrating rank 

    The order of lags and number of cointegrating vectors are tested simultaneously using both 

Schwarz-loss and Hannan and Quinn-loss metrics. Two cases, with a constant inside of the 

cointegrating space β and without a constant inside of the cointegrating space β are 

considered (Table 3a and Table 3b). Accordingly, both loss metrics indicate that the optimal lag 

length is 2, the number of cointegrating vectors is 1 and the cointegrating space β should 

contain a constant (minimization of the loss metrics). The subsequent examinations will be 

based on a VECM with these model specifications. 
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Table 3a Test of lag length and number of cointegrating vectors (Schwarz-loss metric) 

  With a constant Without a constant 

  r<=1 r<=2 r<=3 r<=1 r<=2 r<=3 

lag=1 -25.442  -25.421  -25.386  -25.368  -25.372  -25.361  

lag=2 -25.513  -25.451  -25.391  -25.440  -25.402  -25.367  

lag=3 -25.259  -25.197  -25.128  -25.184  -25.146  -25.102  

Note: lags 1-3 and conintegrating rank 1-3 are applied sequentially to the vector error correction model (VECM). 

Schwarz loss = 𝑙𝑜𝑔|Σ| + (𝑚 × 𝑘)(𝑙𝑜𝑔𝑇)/𝑇, where Σ is the variance and covariance matrix of residuals, | | is 

the determinant operator, m indicates the number of endogenous variables in each equation, k indicates the number 

of regressors in each equation, and T is the total number of observations in each series.  

 

Table 3b Test of lag length and number of cointegrating vectors (Hannan and Quinn-loss 

metric) 

  With a constant Without a constant 

  r<=1 r<=2 r<=3 r<=1 r<=2 r<=3 

lag=1 -25.520  -25.557  -25.561  -25.475  -25.528  -25.546  

lag=2 -25.747  -25.744  -25.723  -25.703  -25.714  -25.708  

lag=3 -25.651  -25.647  -25.617  -25.604  -25.615  -25.601  

Note: lags 1-3 and conintegrating rank 1-3 are applied sequentially to the vector error correction model (VECM). 

Hannan and Quinn loss = 𝑙𝑜𝑔|Σ| + (2.01)(𝑚 × 𝑘)(log (𝑙𝑜𝑔𝑇))/𝑇, where Σ is the variance and covariance 

matrix of residuals, | | is the determinant operator, m indicates the number of endogenous variables in each 

equation, k indicates the number of regressors in each equation, and T is the total number of observations in each 

series.  

 

5.3 Tests on long-run structure 

    A series of tests are conducted to identify the long-run structure among these prices. The 

first question is whether the single cointegrating relation is caused since one of the price series 

is stationary by itself or since there is a linear combination of two or more price series. Table 4 

shows the results of stationarity test and none of the four series is stationary by itself.  
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Table 4 Test of stationarity (given one cointegrating vector) 

Series Chi-squared P-value Decision 

C_rapeseed 30.813 0.000 R 

C_soybean 30.067 0.000 R 

W_rapeseed 28.146 0.000 R 

W_soybean 28.01 0.000 R 

Critical value at 5% significance level given one cointegrating vector is 7.815. The null hypothesis is that the 

particular series is stationary. The heading “Decision” relates to the decision to reject (R) or fail to reject (F) the 

null hypothesis at 5% significance level. Under the null hypothesis, the test statistics is distributed as 𝜒2 with 

three degrees of freedom. 

 

Given one cointegrating vector, it is possible that certain series may not enter into the 

long-run relation. The test of exclusion is conducted on the cointegrating space β to determine 

whether a particular series is excluded from the long-run equilibrium. Based on the results from 

Table 5, the null hypothesis of exclusion from long-run relation fails to be rejected for 

C_soybean and is rejected for C_rapeseed, W_rapeseed and W_soybean. Therefore, the second 

series C_soybean is excluded from the conintegrating relation, yielding the restriction 

expressed as Eq. (9) with second column of β being zero (a non-zero constant is included in 

the cointegrating space): 

⎣
⎢
⎢
⎢
⎡
𝛽11
𝛽21
𝛽31
𝛽41
𝛽51⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1⎦

⎥
⎥
⎥
⎤
�

𝜑11
𝜑21
𝜑31
𝜑41

�                                                                                                                         (9) 

 

Table 5 Test of exclusion (given one cointegrating vector) 

Series Chi-squared P-value Decision 

C_rapeseed 6.737 0.009 R 

C_soybean 1.609 0.205 F 

W_rapeseed 8.169 0.004 R 

W_soybean 14.301 0.00 R 
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Critical value at 5% significance level given one cointegrating vector is 3.841. The null hypothesis is that the 

particular series is excluded from the single long-run relation. The heading “Decision” relates to the decision to 

reject (R) or fail to reject (F) the null hypothesis at 5% significance level. Under the null hypothesis, the test 

statistics is distributed as 𝜒2 with one degree of freedom. 

In order to test whether each series responds to the perturbation in the single long-run 

relation, the test of weak exogeneity is conducted on α. The test results are exhibited in Table 6. 

The null hypothesis is that a particular series is weakly exogenous and does not adjust to the 

perturbation in the long-run relations. Therefore, price series C_soybean, W_rapeseed and 

W_soybean do not adjust to the deviation from the long-run equilibrium. The second, third and 

fourth rows of α are restricted to be zero as in Eq. (10): 

�

𝛼11
𝛼21
𝛼31
𝛼41

� = �

1
0
0
0

� 𝜓                                                                                                                                      (10) 

 

Table 6 Test of weak exogeneity (given one cointegrating vector) 

Series Chi-squared P-value Decision 

C_rapeseed 13.209 0.000 R 

C_soybean 1.382 0.240 F 

W_rapeseed 3.321 0.068 F 

W_soybean 1.712 0.191 F 

Critical value at 5% significance level given one cointegrating vector is 3.841. The null hypothesis is that the 

particular series does not respond to the perturbation in the long-run relation. The heading “Decision” relates to 

the decision to reject (R) or fail to reject (F) the null hypothesis at 5% significance level. Under the null hypothesis, 

the test statistics is distributed as 𝜒2 with one degree of freedom. 

Based on the combined restrictions on β and α in Eq. (9) and Eq. (10), the restricted 

model is tested. The resulting test statistics is 𝜒2(4) = 19.15 with a p-value of 0.001. The 

rejection of null hypothesis indicates that the combined restrictions expressed as Eq. (9) and Eq. 

(10) are reasonable. As a result, the coefficient matrix Π is as follows (the component 

associated to C_rapeseed series in β is normalized into 1): 
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α𝛽′ = �

−0.054
0
0
0

� [1.000   0.000   0.302   − 1.124  − 1.724]                                                 (11) 

5.4 Identification of the contemporaneous structure 

Based on the innovations from VECM, the DAG is generated using TETRAD V. Since the 

LiNGAM algorithm relies on the non-Gaussianity of data, the Jarque-Bera test of structural 

residuals are conducted to detect whether the series are non-Gaussian. As shown in Table 7, 

only of the structural residuals of four price series is normal, enabling the application of 

LiNGAM (Spirtes, Glymour and Scheines et al., 2010). 

Table 7 Jarque-Bera test of structural residuals 

Series Test statistics P-value Decision 

C_rapeseed 30.121 0.000 R 

C_soybean 62.913 0.000 R 

W_rapeseed 3.017 0.221 F 

W_soybean 6.486 0.039 R 

The null hypothesis is that the structural residual of a particular series is normally distributed. The heading 

“Decision” relates to the decision to reject (R) or fail to reject (F) the null hypothesis at 5% significance level. 

    Accordingly, the DAG result is shown in Figure 2. One interesting result is the 

contemporaneous separation between the Chinese market and the world market with respect to 

the prices of rapeseed oil and soybean oil. It is possibly due to the construction structure of the 

world price series. The two world price series are weighted prices by aggregating prices from 

different countries and regions. The aggregation structure of the data may fail to discover the 

contemporaneous casual relations between the world market and the Chinese market. This 

would be a good implication of using disaggregated data for future research. Within each 

market, the contemporaneous causal relation between rapeseed oil price and soybean oil price 

is found. However, different types of vegetable oil play different roles in the two markets. In 

the Chinese market, C_rapeseed leads C_soybean in contemporaneous time. In the world 

market, information flow is W_soybean causes W_rapeseed. Both C_rapeseed and W_soybean 

appear to be exogenous.  
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Fig.2. Directed acyclic graph 

 

5.5 Forecast error variance decomposition 

To better capture the short-run dynamic structure of the price series, forecast error 

variance decomposition and impulse response function are conducted. The results of forecast 

error variance decomposition are presented in Table 8. The decomposition is performed in 

different horizons, with horizon of zero (contemporaneous time), 1 and 2 months (short 

horizon), 24 months ahead (longer horizon).  

The variation of C_rapeseed is mainly explained by its own innovation at the short horizon 

(86.7% - 93%). In the long run, however, W_soybean (73.3%) has a substantial influence on 

C_rapeseed. In addition, C_soybean (1.9%), W_rapeseed (5.1%) and C_rapeseed itself (19.7%) 

account for the majority of the variation in C_rapeseed. With respect to the variation in 

C_soybean, it is primarily explained by both innovations of C_rapeseed (25% - 29.8%) and 

C_soybean itself (54.6% - 74.4%) at all horizons, even though the influence of innovation of 

C_soybean has some decrease from the short horizon to longer horizon and. Innovation of 

W_soybean (20%) accounts for part of the variation in C_soybean as well in the long run.  

The variation of W_rapeseed is substantially explained by W_rapeseed and W_soybean at 

all horizons. At contemporaneous time, W_rapeseed accounts for a large proportion of its own 

variation (86.2%) while W_soybean explains about 13.8% of the variation in W_rapeseed. In 

the short run, the influence of W_rapeseed (47.7% - 58.7%) and W_soybean (41.2% - 52.0%) 

are relatively similar. The innovation of W_soybean (72.8%) plays an important role in 
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explaining the variation in W_rapeseed in the long run, and the influence of W_rapeseed 

diminishes to 26.5%. The W_soybean is highly exogenous at all horizons and its variation is 

predominantly explained by its own innovation (98.2% - 100%). Innovations of the two 

Chinese price series have extremely very limited influence on the two world price series.  

Table 8 Forecast error variance decomposition   

Periods C_rapeseed C_soybean W_rapeseed W_soybean 

  Percentage (%)     

C_rapeseed     

0 100.000  0.000  0.000  0.000  

1 93.037  4.569  0.007  2.388  

2 86.702  5.325  0.079  7.893  

3 80.689  5.591  0.257  13.463  

4 75.260  5.587  0.480  18.672  

5 70.236  5.461  0.735  23.567  

6 65.522  5.270  1.011  28.197  

24 19.667  1.968  5.112  73.253  

C_soybean     

0 25.603  74.397  0.000  0.000  

1 28.769  68.142  0.033  3.056  

2 29.541  64.655  0.022  5.782  

3 29.784  62.473  0.022  7.721  

4 29.764  61.061  0.027  9.148  

5 29.623  60.071  0.035  10.272  

6 29.418  59.333  0.044  11.205  

24 25.098  54.589  0.268  20.045  

W_rapeseed     

0 0.000  0.000  86.236  13.764  

1 0.082  0.046  58.657  41.216  

2 0.279  0.106  47.655  51.961  



16 

3 0.431  0.165  42.153  57.251  

4 0.522  0.203  38.845  60.430  

5 0.573  0.228  36.621  62.578  

6 0.599  0.245  35.011  64.145  

24 0.434  0.250  26.521  72.795  

W_soybean     

0 0.000  0.000  0.000  100.000  

1 0.236  0.044  0.429  99.292  

2 0.457  0.109  0.607  98.828  

3 0.583  0.153  0.697  98.567  

4 0.647  0.180  0.756  98.417  

5 0.676  0.196  0.801  98.327  

6 0.684  0.205  0.838  98.273  

24 0.423  0.183  1.160  98.234  

 

5.6 Impulse response function 

The results of impulse response functions are shown in Figure 3, presenting the responses 

of each price series to a one time shock in each series. In each sub-graph, the horizontal axis 

indicates the horizon (24 months in this paper) and the vertical axis indicates the standardized 

response.  

The impulse response of C_rapeseed to the shock in its own innovation is immediate, 

positive and strong. However, the strong response doesn’t last long but diminishes over time. 

The response of C_soybean to the shock in C_rapeseed shows positive, large but long lasting 

impulse. A shock in C_soybean is transferred to an immediate and positive response in 

C_rapeseed, which dampens to zero thereafter. The response of C_soybean to its own 

innovation shock is positive, strong and stable over time. The responses of the two world price 

series to the shocks in C_rapeseed and C_soybean are very small, similar as the results shown 

in the forecast error variance decomposition.  

    The shock in W_rapeseed is transferred as relatively small and negative response impulses 

in C_rapeseed, C_soybean and W_soybean, whereas the shock is transferred to strong and 
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positive and long lasting impulses. These results may imply that W_rapeseed is compensating 

the imbalances in other price series. A shock in W_soybean has positive influences on all four 

series. Specifically, a shock in W_soybean is transferred as strong and long lasting response 

impulses of W_rapeseed and W_soybean. 

 
Fig.3. Impulse response functions 

 

6. Conclusion 

Below we present some preliminary as well as expected results. We found presence of 

unit roots (monthly) in all four price series (World and China domestic price of soybean and 

rapeseed oil). According to the cointegration test using two different loss metrics, the results 

show that there is one co-integrating vector among the variables. According to impulse 

responses, China rapeseed oil price responds to China soybean oil price, World rapeseed oil 
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price, and World soybean oil price. Structural breakpoints will help delineate effects of 

structural breaks on dynamics of world and China vegetable oil prices. A graphical directed 

acyclic graph structure on innovations from ECM will help explain interactions of innovations 

(new information) from price variables, which in turn help generate discovery mechanism with 

regards to world and China vegetable oil prices. 
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