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On the Dynamics of Price Discovery: Energy and 

Agricultural Markets with and without the Renewable Fuels 

Mandate 

We model the energy–agriculture linkage through structural vector autoregression (VAR) 

model. This model quantifies the relative importance of various contributing factors in 

driving prices in both markets. The LiNGAM algorithm from the machine learning 

literature is used to help identify structural parameters in contemporaneous time. We 

perform conditional forecasting, taking into account the renewable fuel standards 

policies, and compare the forecasted path of prices with and without the renewable fuels 

mandates. 

Key Words: ethanol, vector autoregression, renewable fuel standard, graph theory 

Introduction 

Enhancing energy security and GHG emission reduction are important reasons to 

promote renewable energy sources such as biofuels. To encourage biofuels, US 

government has implemented ethanol subsidies and renewable fuel standards on the 

amount of ethanol to be blended to transportation fuel. Ethanol is a gasoline additive.  

Since it contains higher octane than gasoline, it burns cleaner.  The feedstock for grain 

ethanol (or first generation of biofuels) is mainly corn.  The increase in corn demand as a 

biofeedstocks, especially after 2006 ethanol boom, and limited land resources causes a 

competition for land between food and fuel.  Accordingly, a strong link between crude 
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oil, gasoline and corn prices has been formed.  The evolving interdependency between 

energy and agriculture markets in US is the subject of this study. 

Subsidization of ethanol in the United States began with the Energy Policy Act of 

1978. Since then, the subsidy has ranged between 40¢ per gallon and 60¢ per gallon of 

ethanol, and until it was discontinued on December 31, 2011 was 45¢ per gallon (Abbott, 

Hurt and Tyner 2011). Throughout the last three decades of ethanol production, the 

subsidy has been a fixed amount, invariant with oil or corn prices (Tyner and Taheripour 

2008).  In 1990, the Clean Air Act was passed, which required vendors of gasoline to 

have a minimum oxygen percentage in their product because adding oxygen enables the 

fuel to burn cleaner. Therefore a cleaner environment became another important reason 

for ethanol subsidies.  

For the oil industry to meet the oxygen percentage standard requirements, there were 

two options: 1) use ethanol that contains a high percentage of oxygen by weight, or 2) use 

methyl tertiary butyl ether (MTBE). MTBE was generally a cheaper alternative than 

ethanol, so it was the favored way of meeting the oxygen requirements throughout the 

1990s. However MTBE showed negative environmental consequences infiltrating water 

supplies and it was viewed as highly toxic.  Consequently, MTBE was gradually banned 

on a state-by-state basis (Birur, Hertel and Tyner 2009). 

The 2006 Ban of MTBE, combined with high crude oil price (which climbed to over 

$100/bbl in 2004) and the ethanol tax credit raised the profitability of ethanol industry 

particularly beginning in 2004 and 2005. High profit margins from ethanol production in 

2004–2007 encouraged a rapid investment in ethanol industry in these years (Tyner et al. 
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2008). Between 2006 and 2008, the correlation between crude oil and corn prices was 

strong, in part because ethanol was needed to supply the oxygenate market. After 2008 

the oxygenate market was largely saturated, ethanol prices ceased their rapid rise (and 

corn prices rose significantly), making ethanol production unprofitable in many cases. In 

2008-09 and afterward, we see a high correlation (about 0.84 in 2008) between ethanol 

and corn prices, since the profitability of ethanol production depends on corn price 

(Abbott, Hurt and Tyner 2011).  

On December, 2007, the Energy Independence and Security Act of 2007 (H.R. 6) was 

signed into law. This comprehensive energy legislation amends the Renewable Fuels 

Standard (RFS) signed into law in 2005. RFS sets forth a phase-in for renewable fuel 

volumes beginning with 9 billion gallons in 2008 and ending at 36 billion gallons in 

2022. By doing so, the legislation seizes on the potential that renewable fuels offer an 

opportunity to reduce foreign oil dependence and greenhouse gas emissions and provide 

meaningful economic opportunity across this country; putting America firmly on a path 

toward greater energy stability and sustainability (Renewable Fuel Association ). 

Growth of the ethanol industry in last few years makes corn an energy crop, as well as 

the world’s most important source of grain for production of livestock, poultry, and dairy 

products. This transition established a relationship between ethanol and corn price and 

also the products from corn. Production of biofuels affects the agriculture market in that 

diversion of land to produce biofeedstocks may reduce the supply of other products and 

as a result there is a likely rise in prices.  Since ethanol is oxygen enhancing additive and 

a replacement for gasoline, its price has a relationship with gasoline and also crude oil. 

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ140.110.pdf
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The ranges of fluctuation in these relationships have been different during past years 

(Wisner 2009). 

Figure 1 shows the indices of corn, crude oil, ethanol, and gasoline prices since 2000 

based on data from energy information administration (EIA) and USDA.  The main point 

of this graph is commodity prices have moved together for the most part. As we can see 

before 2007 corn price and crude oil price show small responses to each other’s 

movement, but after this time they show a stronger relationship. The same is true for corn 

and gasoline. Gasoline’s price has not increased as much as crude oil’s price since 2007, 

the reason could be that crude oil is not the only cost factor in gasoline production. 

In recent years, drop in gasoline usage in US and market limitations to future growth 

in the blending of biofuel have resulted in fall of ethanol consumption (Westcott and 

McPhail 2013). This fall even leads to unsatisfaction of RFS requirements and that cause 

some uncertainty on EPA implementation of RFS for 2014 and beyond and penalties to 

parties who are not able to encounter the requirements (Westcott and McPhail 2013). 

 Brief literature review 

Birur, Hertel and Tyner (2009) examined the effect of the ethanol boom on the price 

of other agricultural commodities. They indicated that the rapid growth of corn price in 

2006-07 affected the price of soybeans as well, since there were substantial shifts of 

soybeans acreage to corn. Corn is used primarily as an animal feed. Poultry, meat and 

eggs faced largest shock as two-thirds of poultry feed consists of corn. As a consequence, 

the total cost of producing poultry meat and eggs has increased by about 15 percent over 

this period. Alexander and Hurt (2007) suggest that in the long run, food will be able to 
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compete successfully with the use of crops for fuel, but probably with somewhat higher 

food prices and greater costs of food to consumers.  

The literature does address the interactions of ethanol production and the energy 

market. For instance, Du and Hayes (2009) calculated the average impact of ethanol 

production on the gasoline price. Estimation results indicate that, on average, over the 

whole sample period (2000-2010) the growth in ethanol production reduced wholesale 

gasoline prices by $0.25/gallon. Also changes in the price of crude oil were found to have 

effects on the biofuel’s production and prices. The FAO 2010 explains when crude oil 

prices increase; two main factors affect agricultural commodity markets. First, the 

production costs for the crop increase so this leads to a reduction in supply and therefore 

raises commodity prices. Second, the increase in oil-based fuel prices provides an 

incentive to biofuel producers to expand production, which in turn expands demand for 

agricultural feedstock crops causing prices to increase more. The expansion in biofuel 

supply may also decreases because of the rise in commodity prices. The net impact on 

commodity markets will depend on the degree of increase in biofuel prices relative to the 

increase in total crop production cost.  

Bryant and Outlaw (2006) also studied the effect of absence, existence and different 

combinations of government policies (RFS and exemption of tax credits) on ethanol 

production and price by 2012. They conclude that due to powerful market-based 

incentives the increases in levels of ethanol production would be likely in coming years, 

even in the absence of government programs. Carter, Rausser and Smith (2012) also 

estimate that corn prices were about 30 percent greater, on average, between 2006 and 
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2010 than they would have been if ethanol production had remained at 2005 levels with 

no RFS. Tyner (2010) studied links between agriculture and energy markets and found 

strong correlation between crude oil and corn prices in 2006-2008 and little link between 

ethanol and corn prices. But in 2009, when there was ethanol surplus in the market the 

link between ethanol and corn price was strongest.  

Empirical methods 

Vector Autoregression model 

In this study, we use Vector autoregression (VAR) model for our analysis. 

Considering regularities of world without imposing any prior restriction is an advantage 

of VAR (Greene 2003). A VAR can be expressed as: 

          
 
            

Where    a (mx1) vector of variables and m is is the number of series.    is a (qx1) 

vector of strictly exogenous variables.    and C are appropriately dimensioned matrices 

of coefficients. The integers k and t are the number of lags and time indexes, respectively.  

   is the innovation term and it is assumed to be white noise, means E (  ) = 0.. The 

innovations    and    are independent for s≠t. Although serially uncorrelated, 

contemporaneous correlation among the elements of    is possible, ∑= E        is an 

(mxm) positive definite matrix.   

Contemporaneously correlated innovations could mislead the information one gleans 

from the vector autoregression (by confounding innovation accounting results). A 

Choleski factorization is one way to address this issue. In this method, we need to pre 

multiply the system by lower triangular matrix      , such that     ∑       . The 
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problem with this method is that it imposes an ordering through Choleski factorization. 

Our theory is sometimes not rich enough to suggest which series are exogenous. A 

Bernanke factorization is another option which allows more general causal flows. 

Following (Bernanke 1986) one can write the innovations as a linear function of 

orthogonal innovations: 

        

Multiplying matrix A to non-orthogonal innovations, gives orthogonal innovations 

provides the identified structural VAR. The transformed VAR will thus look as follows: 

            

 

   

          

If         and    =  , then we can also write the equation in moving average form 

as follows: 

                
 
    

There exist some rules in the literature on number of free parameters to maintain 

identification (Doan 1993). Compare to Choleski decomposition which imposed a just 

identified structure, Bernanke allows more flexible identification method based on 

theory. In this study we will use algorithms of inductive causation (Pearl 2000) with 

acyclic graphical representations to hold identifying restrictions on matrix A (Awokuse 

and Bessler 2003). 

Directed Acyclic Graphs  

The graphical approach to recognize the causal ordering among the variables is 

directed acyclic graphs which is based on graph theory.  This method pictures the causal 
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flow among the variables by using arrows and vertices (Pearl 2000) and statistically 

inferred information about the probability distribution of the estimated residuals. In 

another word, it consists of a set of variables and the directed or undirected edges 

between some of the variables (Pearl 1995). A causal model such as A → B is a directed 

graph, which means A causes B. It means one can change the value of B by changing the 

value of A. A directed acyclic graph is a directed graph that contains no directed cyclic 

paths (Spirtes, Glymour and Scheines 2000).  For instance A→B→C→A is a cyclic 

graph, since we return to the same variable as we start with.  

Directed acyclic graphs show the conditional independencies as implied by the 

recursive product decomposition (Awokuse and Bessler 2003):  

                             
 
     

Here Pr is the probability of the variables               and     is the minimum 

subset of variables that comes before     in causal sense. 

Pearl (1995) also suggests the concept of D-separation as a method in DAGS to verify 

the causal ordering. A variable d-separates two variable when it blocks the information 

flow between them. One basic pattern of causal relationship is the causal chain 

(A→B→C). In this chain A and C are dependent unless we condition on B. The other 

pattern is causal fork (A← B→C), in which A and C are dependent until we condition on 

B. Also the last pattern is a causal collider (A→B←C), in this case A and C are 

independent but are dependent when we condition on B. DAGs realize the causal 

direction first by testing the correlation between the variables and then by conditional 

correlation on the third variables and following the above rules of causal ordering. 
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Figure 2 depicted the Lingam (Linear Non-Gaussian Acyclic Model) algorithm 

(Shimizu et al. 2006) which is used in this study to figure out the causal ordering among 

the variables. This method is appropriate when at most one of the variable’s noises may 

be Gaussian. Spirtes et al. (2010) explain this method as a system such as: 

1)      

2)          

3)         

Where a, b and c are the coefficients and    ,    ,    are independent noises. If we 

write these equations in reduced forms, we will have: 

4)      

5)           

6)                   

 

 LiNGAM algorithm can find the correct matching of coefficients in the Independent 

Component Analysis (ICA) matrix (Hyvärinen and Oja 2000) and prune away any 

insignificant coefficients using statistical criteria (Spirtes et al. 2010). A unique DAG will 

be constructed, since the coefficients are determined for each variable. The required 

assumptions are: 1) no unmeasured common causes; 2) dependent variable could be 

explained by a linear equation; 3) relation among variables are not deterministic; 4) i.i.d 

sampling; 5) Markov condition, which is probability distribution  explain one variable is 

only condition on the variables of direct cause (Spirtes et al. 2010). 
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Forecasting and conditional forecasting 

In the literature, using conditional forecasting is an approach to evaluate a policy. It is 

of interest sometimes to consider the forecast of some variables in the system conditional 

on some knowledge of the future path of other variables in the system. (Sims, Goldfeld 

and Sachs (1982) address important issues on how to conduct a formal policy analysis.  

We can use Vector Autoregression to do policy analysis. Assuming a policy 

instrument is exogenous; one can view a VAR model’s forecasts conditional on different 

hypothetical values of instrument as capturing the effect of alternative instrument settings 

on the endogenous variables (Cooley and LeRoy 1985). If we force some values on 

future path of one variable, this will result in restrictions on the other variables of the 

system as well. In general forecasting our best guess of future disturbances could be zero, 

but in conditional forecasting by forcing a value on some variables we cannot assume 

zero disturbances on other variables. The disturbance is not zero to adapt real values to 

the required (policy) values.  

If we wish to forecast one period ahead conditional on a specific policy, we know the 

future of policy variable and also the model at the current time. Here is the setup: 

                             

This equation is shows at time t we are predicting for t+1. Since we know the current 

and past states (history), so we will have: 

                   

Identification of this system depends on the structure imbedded in the matrix   . This 

structure on   , will communicate the implied path on other variables, in addition to the 
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policy variable whoes future values the governmental authority sets.  Therefore for this 

model to be identified, we need sufficient restrictions on     matrix. For VAR in N 

variables if we leave more than N(N-1)/2 parameters free (to be estimated) the model is 

not identified. The restrictions on   , come from theory or inductive causation. We can 

use the algorithms of inductive causation (communicated through the DAG structure) on 

the VAR innovations derive the restriction on     in contemporaneous time. 

 Data 

The data of this study are monthly data, starting from January 2000 to April 2013 for 

total observations of 160. We decide to choose data generated after 2000, since most 

ethanol production increases over the post 2000 period.  Our data includes corn price, 

ethanol price (ethp), ethanol production (eprod) and also soybean price, cattle price and 

hog price (soyp, cattp, hogp) are representatives to show the effects on agricultural 

market. In addition we study the Crack ratio (crkr), to show effects of energy market 

following Du and Hayes (2009) and Knittel and Smith (2012). The crack ratio is a 

measure of the refining margin. Du and Hayes (2009) define it as the price of gasoline 

divided by the price of oil. The gasoline price variable is the “total gasoline 

wholesale/resale price by refiners”, which excludes taxes and reflects primarily gasoline 

prior to blending with ethanol. The crude oil price is the “national average refiner 

acquisition cost of crude oil”. These data and also Ethanol production are obtained from 

the U.S. Energy Information Administration (EIA) website. The agricultural products 

prices are from the USDA website. The ethanol price data source is Hart's Oxy-Fuel 

News. The Data are deflated by the consumer price index (CPI). To get the real prices, 
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each price is divided by, CPI in each month/CPI in April 2013. CPI index is from U.S. 

Bureau of Labor Statistics website. Plots of the price series for each market are provided 

in Figure 3. 

Empirical results 

Stationarity 

We have performed two test of stationarity of the variables, Dickey–Fuller (DF) and 

Augmented Dickey–Fuller (ADF). DF and ADF test results are given in Table 1. DF 

results show that at both critical value ethanol price, crack ratio and hog price are 

stationary and the rest of variables are non-stationary. The ADF test also presents that the 

crack ratio and hog price variables with 2 and 1 lag respectively, are stationary at 5% 

critical value and at 10% critical value, ethanol price with 2 lags is also stationary. The 

rest of variables are showing non stationary. 

 

Optimal lag length 

We use Schwarz loss, Akaike loss, Hannan and Quinn’s phi measures to determine the 

optimal length of lags for the VAR model (Table 2). To find the optimal lag we tried 

these tests for different set of regressions with seasonality, break and lags. We implement 

the Bai-Parron break test and we choose ethanol production’s break at 2009:02. The 

optimal lag length results shows smaller numbers with only seasonality and lags and not 

break included. As one can see in this table, Schwarz loss, Hannan and Quinn’s phi 

measures and Akaike loss are minimized at 1, 2 and 10 lags respectively. Smaller lag 

length seems to be more reasonable for our study, so we need to choose between Schwarz 

loss or Hannan and Quinn’s phi measures. We will use a two-lag VAR model suggested 
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by Hannan and Quinn’s phi measure since the Schwarz loss metric may have a tendency 

to over-penalize additional regressors compared to the other metrics (Geweke and Meese 

1981). 

 Estimation results of two-lag VAR 

The p-values of F-test associated with the null hypothesis of both coefficients of one 

and two-lagged prices jointly equal to zero at 10% level of statistical significance are 

given in Table 3. As one can see in the table, all the variables have at least one other 

significant coefficient in their equation, except for hog equation. Corn price coefficient is 

significant in both ethanol price and ethanol production.  Also corn price and ethanol 

production are significant in crack ratio along with soybeans price coefficient. Soybeans, 

Cattle and hog price coefficients are significant in five equations out of total of seven. 

Ethanol price is only significant in ethanol production equation. 

Identifying contemporaneous structure 

We use LiNGAM algorithm to identify the causal structure of the variables in the 

model. This algorithm is appropriate to use when at most one variable is Gaussian. 

Therefore, the Normality test has been applied before using LiNGAM in this study. A 

Jarque- Bera test has been applied to the data to determine whether they follow the 

skewness and kurtosis matching a normal distribution or not. The test statistic is as 

follows: 
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Where n is the number of observation, S is the sample skewness, and K is the sample 

kurtosis. The results of the normality test are that we reject the null hypothesis of 

normality for all the variables except for ethanol price.  

Using TETRAD (Scheines and Spirtes 1994) we implement LiNGAM algorithm with 

prune factor 0.7 to figure out the contemporaneous structure among the seven variables. 

Figure 4 represents causal structure among the variables of our model. As one can see in 

this figure, energy and agriculture markets are connected through the edges between corn 

price and ethanol price. The information flow is Corn price causes soybeans price and 

also ethanol price.  

 

Forecast error variance decomposition 

The results of forecast error variance decomposition are reported in table 4. The time 

horizon of decompositions is zero (contemporaneous time), 1 month (short horizon), 6 

months, 1 year and 3 years ahead (long term). The forecast error variance decomposition 

suggests that that in contemporaneous time agriculture market prices are all exogenous, 

except for soybeans which its variation is explained by innovations from corn (39.72%). 

Variation of corn price in long horizon is explained mainly by ethanol production and 

cattle price (11% and 13.3% respectively) and together with other variables they explain 

50% of variation in corn price. In short run, the variations in cattle and hog prices are 

accounted only by corn and soybeans price innovations and soybeans share is higher than 

corn. But then in long term ethanol price and production and also crack ratio play role in 

explaining cattle and hog prices. For instance, crack ratio and ethanol production explain 

around 11% and 3.4% of cattle price respectively. 
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In energy market, crack ratio is showing exogeneity in contemporaneous time and the 

variations in ethanol price are explained by itself mainly and also by corn price (4.7%).In 

6 months horizon, Variations in ethanol price are explained by crack ratio for about 10%, 

but this amount decreases in long run (3 years) to about 8.7%. we can see overall, share 

of crack ratio in explaining ethanol price is higher than corn price in the longer term. And 

the immediate effect of corn price on ethanol price is higher than crack ratio.  

Moreover, although in short run the variables of the model only explain about 9% of 

the variation in ethanol production but in long term (3years) this number increases to 

about 75%. The main variables which describe ethanol production variation in long term 

are crack ratio, cattle and hog prices.  

  

 Innovation Accounting 

We present impulse response functions to analyze the effects of a one-time only shock 

of one of the series on the other series. One can see impulse response functions 

represented in graph 5. Horizontal axes on the sub-graphs represent the horizon or 

number of months after shock, which is 36 months in our study. Vertical axes show the 

standardized response to the one time shock in each market. The variable’s names are 

labeled at top of the columns.  

As one can see in the graph 5, a shock in ethanol production transferred as a positive 

and long lasting impulse to almost all of the agriculture market commodities’ prices 

(corn, soybeans and cattle). Also in the energy market, a shock in ethanol production has 

a negative influence on crack ratio, which dampens to zero in the long run. This means 

increase in ethanol production decrease the gasoline refining margin and so gasoline price 
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relative to crude oil price. Also a shock in ethanol price will lead to a negative short term 

impulse in crack ratio, which dampens to zero in longer term. Moreover the effects of a 

shock to crack ratio on ethanol price is the same. The reason could be explained as when 

the price of ethanol increases, demand of blended fuel will decrease and so do demand 

and price of gasoline. Therefore ethanol price and gasoline price in short run are acting as 

complementary goods. This also explains a negative response of corn price to one time 

shock in crack ratio in short run. Increase in blended fuel price will lead to decrease in 

demand of ethanol and also decrees in ethanol price and therefore corn price. Also as one 

can see in the graph, the ethanol production will respond negatively to a shock in crack 

ratio, which persists over the long term. 

           A positive shock of ethanol price also leads to a positive short impulse in hog 

price.  Part of this raise might be due to the long lasting increase of corn price, when 

ethanol price shock happens. When ethanol price increases there might be more 

incentives to allocate land to biofeedstocks instead of other crops which could be used as 

food for livestock. This concept can also be seen as an increase in soybeans price after a 

shock to ethanol production. 

We note also a one-time shock in corn price will lead to short positive impulse to 

ethanol price, since the ethanol production cost will increase. Also a shock to corn price 

will lead to positive response of soybeans price. Since soybeans is an important grain for 

animal feed, it could be a good substitute when price of corn increase. This excess 

demand will affect the soybeans price to increase, and it gradually dampens to zero. 
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Forecasting and conditional forecasting 

Forecasting exercises for prices has been performed by the year 2022. In our 

forecasting we took in to account the Renewable Fuel Standards (RFS2) annual amount 

of ethanol content in blended fuel with gasoline. RFS2 sets forth 13.8 and 14 billion 

gallons of corn ethanol by 2013 and 2014 respectively. This amount will be fixed at 15 

billion gallons from 2015 to 2022 to promote advanced biofuels, such as cellulosic 

ethanol from switchgrass. The required amount of ethanol blended into fuel is declared 

yearly, so we have calculated the required monthly amount by calculating the monthly 

weights of ethanol production. Taking this mandatory amount of ethanol from RFS2 in 

our model, we construct a conditional forecasting. 

Comparing conditional and unconditional forecasts, one can see that all agricultural 

commodities prices and ethanol price will be higher when we take into account for RFS 

requirements in our model, except for hog prices and crack ratio. One can see the 

forecasting results in the Error! Reference source not found.6. The solid line after Jan 

2013 to the end of 2022 is the unconditional forecast and the dotted line is the forecast 

conditional on RFS policies. Conditional forecasting gives us a corn price which is 15% 

higher than unconditional forecast for the price average of 2022. This difference is 5% 

for ethanol price and also 14% and 3.5% for soybeans and cattle prices. By contrast, the 

conditional forecasts regarding RFS requirements leads to almost 6% lower gasoline 

price than when there are no RFS requirements in the model. 

In 2013, the blend wall limits ethanol consumption in E10 (motor gasoline contains 

10%ethanol) to about 13.3 billion gallons (April 2013 short term Energy Outlook). For 
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this reason and also constant gasoline consumption of 138 billion gallons as in 

predictions, ethanol falling short of required amount in the mandate (Coyle 2013; 

Westcott and McPhail 2013). This extra amount of RFS was substituted by blending 

advanced biofuels in excess of advanced RFS or by using accumulated credits (RINs) 

(Irwin and Good 2013a). There are two ways to meet EPA requirement and expand the 

blend wall: 1) increase in domestic gasoline consumption, 2) consumption of E15 or E85 

instead of E10 (Irwin and Good 2013b). For this last one to happen we need a lower 

ethanol price compare to gasoline price since a same amount of ethanol contains 25% less 

energy (Irwin and Good 2013a). At May 7
th

 2014, Energy Information Administration 

had released a projection on (Irwin and Good 2013b)(Irwin and Good 2013b)(Irwin and 

Good 2013b)(Irwin and Good 2013b)the amount of ethanol accredited to RFS (Annual 

energy outlook 2014). One can compare the projection amount with RFS requirement in 

table 5. We performed conditional forecasting on prices regarding EIA projection of 

ethanol amount as well.    

 

The average ethanol price for the year 2022 shows 4.8, 0.8, 2.8 percent decrease in corn, 

ethanol and cattle price compare to the forecast conditional on RFS requirements. This 

number is also showing 1% increase for crack ratio which together with ethanol price 

decrease could make E85 more economically feasible. 
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Discussion  

This study shows a significant linkage between agriculture and energy market through 

corn. The results of directed acyclic graphs suggest that at contemporaneous time corn 

causes soybeans price and ethanol price. Renewable fuel standards requirements and rise 

in ethanol for demand affect the agriculture market.  

Diversion of land to produce biofeedstocks and reduction in supply of other products 

are some other issues regarding biofuels policies. Innovation accounting methods are 

employed to summarize the integration between agriculture and energy markets.  

Forecast error variance decomposition suggests that ethanol production explains about 

10% of corn and soybeans prices in our model in longer term. These products count as a 

feed for livestock as well, so their price rise has effects on livestock prices as well. Corn 

price and soybeans price together count for about 12 and 18 percent of change in cattle 

and hog prices. 

Moreover crack ratio explains about 8.7% of ethanol price changes. Immediately after 

a given positive shock to ethanol production the crack ratio will decrease. This could be 

explained by the higher demand for ethanol.  A rise in ethanol price will lead to higher 

blended fuel price. The rise in blended fuel price then will lead to decrease in its demand. 

This will also cause gasoline price to decrease. Impulse response results confirm that a 

positive shock to ethanol price will decrease the crack ratio right after the shock, though 

it dampens to zero, shortly after the pulse in ethanol price. 
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Finally we study conditional price forecasts taking RFS policies into account. Results 

are showing higher prices for almost all the model’s commodities, and a lower crack 

ratio, compare to no RFS restrictions forecasts by 2022.  

Today Corn ethanol covers 10% of finished motor gasoline in US (E10). E85 (with 

70-85% ethanol content) is consumed in limited volumes, and the infrastructure is not 

prepared to increase this volume. One concern of today’s ethanol industry is that we have 

reached a blending limit known as blending wall. That means reaching the RFS targets 

for corn ethanol by 2022 will require raising the E10 blend standard for regular vehicles. 

We have also performed a forecasting exercise regarding EIA projection of ethanol 

accredited for RFS by 2022. The results indicate a smaller increase in ethanol price and a 

larger decrease in gasoline price (both around 1%) compare to the forecasts conditioning 

on RFS requirements. 
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Table 1.Dickey–Fuller (DF) and Augmented Dickey–Fuller (ADF) for non-stationary of 

variables. 

 

 

The DF test is implemented through an ordinary least squares regression of the first 

differences of prices on a constant and one lag of the levels of prices (Greene 2003). In 

ADF test, k lags of dependent variable are included in the regression. The null hypothesis 

for the test statistic of both tests is the data is non stationary in levels. The null hypothesis 

is rejected when the observed t-statistics are less than this critical value.  The 5% and 

10% critical values are (-2.89, -2.58) (Fuller, 1976). ADF regression runs with 12 lags 

and the chosen lag number (K) is the minimized Schwarz loss metric. Also the Q-

statistics is the Lung-Box statistics on the estimated residuals from the test regression. 

The p-value with respect to each Q-statistics is given in the parenthesis. 

 

  

Variables Dickey-Fuller Augmented Dickey-Fuller 

Test    Q Test  K    Q 

Corn Price -0.29 62.23 

(0.00) 

-0.32 1 60.99 

(0.00) 

Ethanol Price -4.31 45.71 

(0.12) 

-2.84 2 31.18 

(0.69) 

Crack Ratio -5.15 70.42 

(0.00) 

-2.99 2 61.52 

(0.00) 

Ethanol   Production 0.13 667.99 

(0.00) 

-0.08 1 249.14 

(0.00) 

Soybeans Price -1.43 70.78 

(0.00) 

-1.28 1 38.30 

(0.36) 

Cattle Price -2.46 302.88 

(0.00) 

-2.33 1 81.43 

(0.00) 

Hog Price -3.51 76.56 

(0.00) 

-3.30 1 71.05 

(0.00) 
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Table 2.VAR optimal lag length determination 

 

Number of lags 

Schwarz 

Information Criterion 

(SIC) 

 

Hannan and Quinn 

Information Criterion 

(HQIC) 

Akaike Information 

Criterion 

(AIC) 

1   14.0694* 12.4485 10.4536 

2 14.5285   12.3103* 10.2122 

3 15.6201 12.8047 10.6032 

4 16.9162 13.5036 10.1988 

5 18.0327 14.0229 10.6147 

6 19.1616 14.5546 11.0430 

7 19.9150 14.7108 10.0959 

8 20.8277 15.0263 10.3080 

9 21.8751 15.4765 10.6549 

10 22.8041 15.8082 10.8833 

11 23.4828 15.8898 9.8615 

12 23.9342 15.7439   9.6123* 

Note: * indicates the most appropriate lag order for the considered model.  

The information criteria used to identify the optimal lag length (p) of a VAR process 

are                  
  

 
 ,                 

    

 
 , and                 

  
         

 
 , where     is the maximum likelihood estimate of variance-covariance 

matrix of  , p is the proposed lag length, n is the number of variables, and T is the 
sample size. 
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Table 3. p-values associated with F-tests for the null hypothesis of the coefficients on one- 

and two-lagged prices on each of 7 variables are equal to zero in the two-lagged VAR(2) 

model estimation results. 

dependent 

variable CORP ETHP CRKR EPROD SOYP CATTP HOGP 

CORP 0.000* 0.388 0.075* 0.182 0.621 0.232 0.301 

ETHP 0.967 0.000* 0.260 0.013* 0.447 0.829 0.278 

CRKR 0.124 0.025* 0.000* 0.379 0.415 0.012* 0.828 

EPROD 0.134  0.393 0.033* 0.000* 0.094* 0.317 0.977 

SOYP 0.091*  0.861 0.060* 0.046* 0.000* 0.011* 0.209 

CATTP 0.005* 0.028* 0.843 0.006* 0.064* 0.000* 0.175 

HOGP 0.011* 0.025* 0.223 0.183 0.056* 0.098* 0.000* 

* Indicates the p-values below 10% significance level. 
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Table 4. Forecast error variance decompositions from two-lag VAR. 

Step CORP ETHP CRKR EPROD SOYP CATTP HOGP 

CORP 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 

 2 97.19 0.01 1.34 0.46 0.45 0.26 0.24 

 7 79.14 0.48 3.48 1.14 1.00 7.83 6.90 

 13 69.30 0.74 2.40 2.58 0.83 13.32 10.80 

 37 54.78 3.80 3.09 11.07 1.42 13.32 12.49 

ETHP  1 4.71 95.28 0.00 0.00 0.00 0.00 0.00 

 2 5.29 92.37 0.00 0.45 0.06 0.47 1.33 

 7 2.79 79.96 9.42 0.37 2.08 2.57 2.79 

 13 3.43 71.91 9.05 0.36 6.64 5.14 3.43 

 37 5.01 66.43 8.79 1.10 8.67 6.49 3.47 

CRKR 1 0.00 0.00 100.00 0.00 0.00 0.00 0.00 

 2 0.30 0.03 96.77 0.35 1.33 0.03 1.15 

 7 0.29 1.99 85.75 0.70 8.12 1.37 1.75 

 13 0.41 2.07 81.74 1.37 9.57 2.14 2.67 

 37 1.09 1.75 69.35 3.68 8.52 10.88 4.70 

EPROD  1 0.00 0.00 0.00 100.00 0.00 0.00 0.00 

 2 0.56 1.72 0.98 92.24 1.69 0.93 1.85 

 7 0.73 6.62 2.96 69.19 4.79 10.97 4.70 

 13 0.39 6.30 6.59 51.03 5.55 19.31 10.79 

 37 2.62 2.30 9.91 25.15 2.37 42.79 14.82 

SOYP 1 39.72 0.00 0.00 0.00 60.27 0.00 0.00 

 2 38.39 0.05 0.55 0.07 60.82 0.00 0.09 

 7 34.14 1.43 1.12 0.85 50.08 2.92 9.42 

 13 34.50 2.99 1.03 2.68 40.25 4.44 14.09 

 37 29.45 3.89 2.97 9.97 30.20 6.75 16.74 

CATTP  1 0.00 0.00 0.00 0.00 0.00 100.00 0.00 

 2 0.00 0.01 0.07 0.00 2.49 97.16 0.23 

 7 0.43 0.04 9.02 0.02 7.45 76.59 6.42 

 13 0.90 0.03 11.75 0.19 7.82 69.95 9.33 

 37 2.04 0.24 11.36 3.40 10.12 63.84 8.97 

HOGP  1 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

 2 1.61 0.00 0.09 0.00 0.34 0.11 97.82 

 7 2.15 2.30 1.53 0.10 2.22  2.68 88.97 

 13 1.72 3.05 1.72 0.12 10.49  7.82 75.05 

 37 1.58 2.84 3.32 0.91 16.17  11.20 63.95 
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Table 5. Ethanol requirement in RFS and EIA projection of credits earned from ethanol. 

 

RFS 

requirements 

EIA 

projection 

2013 13.8 13.31 

2014 14.5 12.73 

2015 15 13.59 

2016 15 13.65 

2017 15 13.84 

2018 15 13.91 

2019 15 13.95 

2020 15 14.06 

2021 15 14.12 

2022 15 14.37 
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Figure 1: Price index of agriculture and energy commodities. 

  

0 

1 

2 

3 

4 

5 

6 

Fe
b

-2
00

0 

Se
p

-2
00

0 

A
p

r-
20

01
 

N
o

v-
20

01
 

Ju
n

-2
00

2
 

Ja
n

-2
00

3 

A
u

g-
20

03
 

M
ar

-2
00

4 

O
ct

-2
00

4
 

M
ay

-2
00

5 

D
ec

-2
00

5
 

Ju
l-

20
06

 

Fe
b

-2
00

7 

Se
p

-2
00

7 

A
p

r-
20

08
 

N
o

v-
20

08
 

Ju
n

-2
00

9
 

Ja
n

-2
01

0 

A
u

g-
20

10
 

M
ar

-2
01

1 

O
ct

-2
01

1
 

M
ay

-2
01

2 

D
ec

-2
01

2
 

in
d

ex
, j

an
 2

00
0=

1
 

gasoline 

Oil 

ethanol 

corn 



 

31 

 

 

Figure 2: Causal graph and reduced form- taken from Spirtes et al. 2010 
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Figure 3: Monthly time series plot (January2000- April 2013) 
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Figure 4: Directed acyclic graphs at 0.7 prune factor using LiNGAM. 
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Figure 5: Impulse response functions from innovation of two-lag VAR. 
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----- Conditional Forecasts   ──── Unconditional Forecasts 

Figure 6.Conditional and unconditional forecasts by the year 2022. 

 


