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Abstract. Water scarcity is likely to increase in the coming years, making improvements in irrigation 
efficiency increasingly important.  An emerging technology that promises to increase irrigation efficiency 
substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management 
software, creating an integrated system that allows real-time monitoring and control of moisture status 
that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten 
production times, decrease pesticide application, and increase yield, quality, and profit.  We use an 
original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new 
sensor network technology in the nursery and greenhouse industry.  We find that adoption rates for a base 
system and demand for expansion components are decreasing in price, as expected.  The price elasticity 
of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat 
greater than that of drip irrigation.  Adoption rates for a base system and demand for expansion 
components are increasing in specialization in ornamental production: Growers earning greater shares of 
revenue from greenhouse and nursery operations are willing to pay more for a base system and willing to 
purchase larger numbers of expansion components at any given price.  We estimate that growers who are 
willing to purchase a sensor network expect investment in this technology to generate significant profit, 
consistent with findings from experimental studies. 
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Willingness to Pay for Sensor-Controlled Irrigation 

Introduction 

Current trends on water supply and demand indicate that the importance of greater water 

use efficiency is likely to grow, especially for agricultural uses, which account for 80 percent or 

more of consumptive use in the US as a whole and over 90 percent in many western states 

(Schaible and Aillery, 2012).  Population growth is increasing water demand for urban uses and 

for energy production (Sauer et al., 2010; Schaible and Aillery, 2012; Gleick, 2013).  Expansion 

of irrigated acreage in the High Plains combined with depletion of groundwater supplies from the 

Ogallala Aquifer has intensified competition among agricultural users, between agricultural and 

other user, and between states (Evans and Sadler, 2008; Gleick, 2013; Kuwayama and Brozovic, 

2013).  Climate change is expected to reduce average snowpack accumulation in the Sierra 

Nevada and Rocky Mountains, shrinking available supplies throughout much of the western US 

(Mote et al., 2005). 

Growing water scarcity can be mitigated by increases in irrigation efficiency by 

combining more precise application equipment and decision support systems (Evans and Sadler, 

2008).  Wireless sensor networks, an emerging technology on the verge of commercial 

introduction, offer this kind of decision support.  These systems upload data wirelessly into 

irrigation management software, allowing irrigation managers to monitor moisture status and 

match water application with plant uptake needs in real time.  This technology differs from 

moisture sensors currently on the market in its integration of user-friendly software and control 

capabilities that permit real time information access and irrigation control.  Research studies 

conducted in actual production environments indicate that these systems can reduce irrigation 

costs—including labor and energy in addition to water—substantially (Belayneh et al., 2013).  



Other documented benefits include lower plant loss rates, shorter production times, less need for 

pesticide application, and higher yield and quality (Lichtenberg et al., 2013; Saavoss et al., 

2014).  These research studies all indicate that adoption can be extremely profitable. 

This paper uses an original survey of nursery and greenhouse farmers nation-wide to 

investigate likely initial acceptance, diffusion rates, and ultimate ceiling adoption rates of this 

new sensor network technology.  We focus on the greenhouse, nursery, and floriculture industry, 

a large and growing segment of US agriculture.  Sales of this sector totaled almost $17 billion in 

2007, more than vegetables ($15 billion), wheat ($11 billion), cotton ($5 billion), and almost as 

much as fruits, nuts, and berries ($19 billion) or soybeans ($20 billion) (US Department of 

Agriculture, 2009). The value of each acre-foot of water used for greenhouse and nursery 

products is 2-3 orders of magnitude greater than other crops (Ackerman and Stanton, 2011). 

States in the water-scarce Pacific, Mountain, and South Central regions account for 37 percent of 

greenhouse and nursery sales, suggesting that water savings are likely extremely important for 

this industry (Hall, Hodges and Palma, 2011).  The high market value of ornamental crops 

combined with their large footprint in water-scarce, high water cost regions makes them a likely 

market for sensor networks. 

We investigate two dimensions of demand for these sensor networks with an eye toward 

gauging likely initial grower acceptance of this technology, how rapidly it is likely to 

disseminate, and the ultimate size of market for wireless sensor networks.  We begin by 

estimating willingness to pay for a base system consisting of 5 sensors connected to a single 

transmission node plus software.  We use the willingness to pay estimates to discuss 

characteristics of likely base system adopters and to explore likely effects of changes in system 

prices and grower perceptions of system benefits on the speed at which this technology is likely 
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to diffuse.  We then investigate potential system scale by estimating demand for additional 

transmission nodes, with each node holding up to 5 sensors.  We use this estimated demand 

relationship to investigate characteristics associated with demand for additional nodes. 

Briefly, the estimated coefficients of the base system willingness to purchase model 

indicate that as many one-fifth of nursery and greenhouse operators might purchase a base 

system when it becomes commercially available while about 30% are unlikely to purchase a base 

system at any price.  The estimated price elasticity of demand for a base system suggests that this 

technology is likely to diffuse more rapidly than drip irrigation.  Our estimates of base system 

willingness to pay combined with our estimates of demand for additional nodes, indicate an 

average expected profit from adoption of about $11,000 annually, with substantial variation 

around that figure. 

We proceed as follows.  We begin with a review of the literature on adoption of irrigation 

technologies.  We then describe our survey of nursery and greenhouse operators and the data 

obtained from that survey.  The subsequent section discusses the specification and estimation of 

models of willingness to pay for a base system and demand for additional nodes.  We then 

discuss estimation results, followed by a discussion of implications for the initial adoption and 

subsequent diffusion of this technology.  A final section concludes. 

Economics of Precision Irrigation Adoption 

Traditional gravity-fed irrigation systems rely on soils to hold a reservoir of water 

available for plant uptake.  The efficiency of these systems is limited: Some of the water applied 

is lost via surface runoff, some percolates through the root zone into groundwater, and some 

groundwater drains into nearby streams and ditches.  Improving uniformity of application by 

leveling can reduce—but not eliminate—these losses (Feinerman et al., 1983). 
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Sprinkler and drip systems increase irrigation efficiency by substituting capital and 

energy for soil water holding capacity (Caswell and Zilberman, 1986; Lichtenberg, 1989).  

Farmers cultivating lower quality soils or land with greater slope are thus more likely to adopt 

more precise irrigation technologies than farmers cultivating better soils on level land, where the 

gains from increasing irrigation precision are lower (Lichtenberg, 1989; Dinar and Yaron, 1990; 

Negri and Brooks, 1990; Shrestha and Gopalakrishnan, 1993; Green et al., 1996; Green and 

Sunding, 1997; Moreno and Sunding, 2005; Koundouri et al., 2006; Schoengold et al., 2006).  

Larger farm operations, which presumably have greater capacity to finance investment in 

irrigation equipment, are also more likely to adopt drip and sprinkler systems (Dinar et al., 1992; 

Shrestha and Gopalakrishnan, 1993; Green et al., 1996).  The gains from increasing irrigation 

precision—and thus the likelihood of adoption of more efficient irrigation technologies—have 

also been shown to be greater when water is more expensive (Dinar and Yaron, 1990; Green et 

al., 1996; Pfeiffer and Lin, 2014) and when the marginal value of water is greater (Caswell and 

Zilberman, 1985; Lichtenberg, 1989; Dinar et al., 1992; Shrestha and Gopalakrishnan, 1993; 

Schoengold et al., 2006). 

As noted above, irrigation efficiency is lower—and thus investments in more efficient 

irrigation equipment are more profitable—on farms whose soils vary more in terms of soil 

permeability, slope, and similar factors (Feinerman et al., 1983).  The same holds for investments 

in precision agriculture technologies more generally.  For instance, variable rate fertilizer 

application is more profitable on fields whose soils vary more in terms of natural fertility 

(Babcock and Pautsch, 1998; Pautsch et al., 1999; Griffin et al., 2000; Oriade and Popp, 2000; 

Bullock et al., 2005) and correspondingly less profitable on farms with more uniform soils 

(Hudson and Hite, 2003). 

4 
 



The key advantage of sensor networks is that they provide more accurate information 

about substrate moisture status in real time, allowing growers to make real time adjustments to 

irrigation water applications.  The potential value of more accurate information about the 

production environment has been demonstrated for variable rate fertilizer application (Pautsch et 

al., 1999; Bullock et al., 2005) as well as for sensor networks (Belayneh et al., 2013; Lichtenberg 

et al., 2013; Saavoss et al., 2014). 

Data 

We investigate potential willingness to pay for sensor networks using data from an 

original survey of greenhouse and nursery operations conducted from January 2012 through 

March 2013. The survey was administered in person to growers at the Mid-Atlantic Nursery 

Trade Show and the Georgia Green Industry Association annual meeting and online via 

invitations circulated through extension networks.  Incomplete surveys were followed-up with 

phone calls or emails.  Growers attending the Mid-Atlantic Nursery Trade Show and Georgia 

Green Industry Association annual meeting numbered 541 and 80, respectively.  The extension 

networks through which invitations were circulated have a potential reach of about 9,100 

commercial greenhouse and nursery operations.  A total of 268 surveys were completed, 35% of 

which were filled out at trade shows and 65% of which were completed online. The sample is 

more representative of commercial operations—and thus likely purchasers of the wireless sensor 

systems we study—than of the greenhouse and nursery industry as a whole. For example, the 

revenue distribution of the respondents in our sample is skewed towards operations with high 

gross revenues compared with the national revenue distribution of the nursery and greenhouse 

growers as reported in the U.S. Census of Agriculture (Table 1). The 47% of operations surveyed 

by the Census of Agriculture that gross less than $25,000 per year are unlikely to profit from 
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wireless sensor networks since their profit margins are unlikely to justify the cost of system 

purchase and maintenance. The sample is also skewed towards larger operations in terms of 

acreage.  Operations in Appalachia and the Southeast were over-represented relative to the share 

of operations reported by the Census of Agriculture while operations located in the Midwest 

were under-represented. 

The survey focused on general characteristics of the operation and the respondent, as well 

as questions that were directed specifically towards water use practices such as water sources. 

Questions concerning general characteristics of the operation included income, total costs, size, 

zip code, and revenue sources.  Respondents were also asked to list the percent of total water 

used from surface, deep wells, shallow wells, recycled water, rain, municipal water, and other 

water sources.  Questions concerning characteristics of the respondent included age, education 

level, and position in the company.  

Information about growers’ willingness to pay for a base system and for additional nodes 

was elicited in the following series of steps.  First, respondents were given the following 

background information: 

“As part of this project, we are developing and testing sensor 

networks that can monitor root zone moisture, weather and many 

other variables for precision irrigation and nutrient management. 

These more advanced sensor networks can automatically turn 

irrigation on and off as needed, reducing or eliminating the need 

for manual irrigation control. The sensors decide when, where, and 

how much to irrigate based on set-points you determine. 

Answering the questions below will help us to better understand 
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the extent of technology adoption in the nursery and greenhouse 

industry.” 

Respondents were then asked for their perceptions of potential benefits and limitations of sensor 

networks (Table 2). Next, respondents were asked to look at a schematic of a base sensor 

network system (Figure 1) and asked the following question: 

 “A basic sensor system contains a base station, software, and a 

single node (with up to 5 sensors), which monitors and controls 

irrigation in a single production area/irrigation zone. Would you 

purchase a basic sensor system if the price was $X?”  

The system price X was randomized across participants with values of $500, 

$1,000, $2,000, $3,000, $4,000, or $5,000.”1  Every price bin had nearly the same 

number of growers assigned to it (Table 3).  

To determine how extensive a sensor network respondents might be willing to purchase, 

respondents were again shown the sensor network schematic in Figure 1 and asked the following 

question: 

“A basic sensor system is expandable, so you could buy additional 

nodes (5 sensors), and use the same base station and software 

package. Suppose you already purchased the basic system, how 

many additional nodes would you be willing to purchase for your 

operation if EACH node cost $X?”  

The price of an additional node X was randomized with values of $500, $1,000, $1,500 or 

$2,000. Respondents were to select the number of additional nodes from the following list: 0, 1, 

1An earlier version of the survey also included a $1,500 bin, and there is one response with that price level. That 
observation is treated like the other price levels in the probit model.  
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2, 3, 4, 5, 6-7, 8-10, 11-15, 16-20, and 21 or more. Prices were assigned close to evenly between 

the bins (Table 3).  Note that the additional nodes question is framed in a way that assumes the 

respondent already owns the base system, allowing a respondent to report a willingness to buy 

additional nodes even if she was not willing to buy a base system at the price offered. 

Thirty-nine percent of the growers included in the sample said they would be willing to 

buy a base system.  Conditional on having purchased a base system, growers were willing to 

purchase an average of 3.5 additional nodes.  The desired scale of a wireless sensor network 

varied substantially: Some growers were not willing to purchase any additional nodes while 

others were willing to purchase as many as 21.  Both the share of growers willing to purchase a 

base system and the average number of additional nodes purchased are generally decreasing in 

price, albeit not monotonically (Table 3).  Differences in size of operation are the most likely 

source of this non-monotonicity: Growers who were quoted a price of $3000 for a base system 

and $1500 for each additional node are substantially smaller on average than growers quoted 

prices of $2000 or $4000 for a base system and $1000 or $2000 for each additional node. 

Descriptive statistics of the variables used in the econometric analysis are shown in Table 

4.  The growers in the sample vary substantially in size as measured by both revenue and spatial 

extent of the operation.  Most respondents specialized heavily in greenhouse and nursery 

production.  About half of these growers had formal education at least through a bachelor’s 

degree.  Most growers had very positive perceptions of the capabilities of wireless sensor 

networks.  Cost and reliability were the major concerns about the technology. 

Specification and Estimation 

A probit model was used to estimate the willingness to purchase the base system. A tobit 

model was used to estimate demand for additional nodes.   
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Estimating Willingness to Pay for a Base System 

Growers presumably answer the question of whether they are willing to buy the sensor 

system affirmatively if and only if they expect that using a sensor network to control irrigation 

would increase profit relative to their current irrigation methods.  The expected increase in profit 

from investing in a sensor network ∆𝜋∗ was not observed; instead, we observe the binary 

response of whether or not the grower would buy the system at the price quoted.  We assume that 

growers would buy the system if they expect the investment to be profitable:  

∆𝜋∗ = 𝛼𝑋 + 𝑍′𝛽 + 𝜀 

𝑦 = 1 𝑖𝑓 ∆𝜋∗ ≥ 0 

𝑦 = 0 𝑖𝑓 ∆𝜋∗ < 0 

Here X is the randomized price assigned to each respondent, Z is a vector of controls and ε is a 

mean zero random error capturing the influence of all unobserved factors that enter into the 

grower’s adoption decision. The probability that a grower would buy a base system is thus: 

Pr(𝑌 = 1|𝑋0,𝑍) = Φ(𝛼𝑋 + 𝒁′𝜷) 

where Y =1 if the respondent answers affirmatively and Y=0 otherwise and Φ(∙)denotes the 

cumulative distribution of ε. We assume that ε is distributed normally and thus estimate the 

parameters α and β using probit. 

The set of characteristics Z used in the probit model included measures of operation size, 

the share of ornamental production in the firm’s total revenue, the grower’s education level, the 

grower’s perception of the benefits and limitations of wireless sensor systems, and indicators for 

the operation’s water sources and the region in which the operation is located.  

There are three main types of ornamental production environments: greenhouse, 

container, and field.  Greenhouse production is labor and energy intensive but has the highest 
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profit per area.  Typical operation size ranges are 0.1 to 10 acres of production area.  Container 

production is less intensive, and can be more easily managed on a larger scale, with typical sizes 

of 0.5 to 50 acres of production area.  Field operations tend to be the least intensive, with 

operation sizes typically in the range of 5 to 500 acres. Operations often have more than one 

production method being used at the same time (i.e. greenhouse and container production). 

We use two measures of size, gross income and acreage. Gross income of the operation 

was included to account for differences in available funds to purchase any given technology. 

Higher grossing operations are also more likely to hire labor that specializes in managing their 

irrigation systems, so sensor networks may provide a relatively larger labor cost savings for 

them.  Size in acres was included to measure the ability of a firm to take advantage of economies 

of scale in sensor placement. Similarly, larger operations of any given type tend to have more 

irrigation zones, which make the irrigation systems more complex and therefore costly to 

manage. Since the sensor systems simplify irrigation systems by enabling automation of 

irrigation management, larger firms may expect to experience greater increases in profit than 

smaller firms. We expect that both the gross income and size in acres will be positively 

correlated with a respondent’s willingness to buy a sensor network. 

The percent of all revenue from ornamental production was included because ornamental 

crops typically irrigate more frequently than agronomic producers, and therefore operations with 

high portions of their revenues coming from ornamental crops may see the benefits of investing 

in sensor networks more quickly, particularly for greenhouse and container production.  

Operations that specialize more in ornamental production may also be more aware of new 

technological developments.  For example, producers specializing in ornamentals are likely to 

have more involvement in industry-specific information networks through trade-shows and 
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targeted advertising. A sharper focus on the greenhouse and nursery industry also likely 

translates to more inputs focused on greenhouse and nursery production, including water, labor, 

and disease control measures. Sensor networks may reduce the cost of all these inputs, so we 

expect that willingness to buy a sensor network will increase with the percentage of revenue 

from greenhouse and nursery operations. 

Growers with more formal education levels likely have both greater human capital and 

greater technological sophistication.  Thus, higher educational attainment is likely correlated 

with both greater expected productivity increases and lower expected transition costs. Previous 

studies have indicated that individuals with higher levels of education are more willing to adopt 

new agricultural technologies (Feder et al., 1985; Dinar and Yaron, 1990; Koundouri et al., 

2006). We expect that higher levels of education will correlate with a higher willingness to buy a 

sensor network. 

Previous studies also indicate that older growers are less likely to adopt new 

technologies, suggesting that willingness to adopt a sensor network should decrease as the age of 

the operator increases, a finding that has been attributed to a shorter time horizon and higher 

transition costs (Feder et al., 1985).  Research to date suggests that the payback period for 

investments in sensor networks is quite short (Belayneh et al., 2013; Lichtenberg et al., 2013) 

suggesting that a shorter time horizon should not be an impediment to adoption.  Once 

technological sophistication is taken into account (by controlling for education level, for 

instance), transition costs may not correlate with age.  There are thus reasons to believe that age 

may not be a factor in growers’ willingness to buy sensor networks.  We include it in our base 

specification regardless, in keeping with previous literature on this topic. 
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We expect willingness to buy a sensor network to be greater for growers who express 

positive views of their benefits and lower for growers who express concerns about their cost, 

effectiveness, or reliability. We thus include indicators of whether respondents expressed beliefs 

about each potential advantage and limitation of wireless sensor networks. 

Water sources differ in terms of cost, quantity available, and quality.  We thus include 

indicators of whether growers obtained water from shallow wells, deep wells, surface sources, 

municipal water systems, or gray water as well as whether growers reused runoff water.  These 

sources are not mutually exclusive, as growers may use water from more than one source.  All 

else equal, water from deep wells and municipal sources tends to be more expensive than water 

from other sources.  Growers using water from these sources are likely to obtain greater 

reductions in water expenditures than growers using water from cheaper sources; we thus expect 

growers getting water from deep wells or municipal sources to be willing to pay more for a 

sensor network.  Operations using surface water, recycled water, or gray water face a higher risk 

of growth reduction or plant death due to disease, phytotoxicity, etc.  Since sensor networks have 

been shown to reduce disease losses, we expect growers using these water sources to be willing 

to pay more for a sensor network. Conversely, operations that rely solely on rain water for 

irrigation stand to gain very little from using sensor networks, so we expect growers using 

rainfall to be willing to pay less for a sensor network. 

Finally, we include regional dummy variables to control for unobserved factors such as 

climate conditions, information networks, and water scarcity. We expect growers located in 

regions with higher levels of water scarcity (e.g., the Pacific, and South Central regions) to be 

willing to pay more for a wireless sensor network compared to growers located in regions where 

water is less scarce (e.g., the Northeast). 
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Estimating Demand for Additional Nodes 

A single node gives information about substrate moisture status for a limited area.  

Growers with more extensive operations or those growing a larger number of plant species with 

different water requirements would likely need to use a larger number of nodes in order to 

benefit from greater irrigation precision.  We estimate demand for additional nodes—contingent 

on prior acquisition of a base system—in order to gauge variations in the scale at which sensor 

networks are likely to be used and in order to investigate operation characteristics correlated with 

those variations.  We use a double censored tobit model to estimate this demand for additional 

nodes.  Responses are censored at 0, while the number of additional nodes to be purchased are 

top coded at 21 or more.  Choices of the number of additional nodes greater than 5 were 

presented as ranges: 6-7, 8-10, 11-15, and 16-20.  We use the midpoint of each range (6.5, 9, 13, 

and 18) as the observed number of additional nodes yi in our tobit model.  We observe the latent 

demand for additional nodes by grower i, yi*, only if it lies between 0 and 21, i.e., observed 

demand yi is: 

𝑦𝑖 = 21 𝑖𝑓 𝑦𝑖 ∗> 21 

𝑦𝑖 = 𝑦𝑖 ∗  𝑖𝑓 0 < 𝑦𝑖 ∗< 21 

𝑦𝑖 = 0 𝑖𝑓 𝑦𝑖 ∗< 0 

𝑦𝑖 ∗= 𝛾𝑊 + 𝑽′𝜹 + 𝜂 

where W is the randomized price, V is a vector of operation and grower characteristics, and η is 

a random error capturing the influences of all unobserved factors affecting a grower’s demand 

for additional nodes (which we assume to be distributed normally with mean zero). 

We expect that the same factors that influence willingness to pay for a base system to 

affect demand for additional nodes.  Those factors include size, share of income derived from 
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ornamental production, water source, education, and perceptions of benefits and limitations of 

sensor networks. 

Operations that are larger in terms of acreage are likely to have more irrigation zones, and 

thus have a higher demand for additional nodes.  Larger grossing operations may also have more 

funds available and may thus experience fewer financial constraints in deciding how extensive a 

sensor network system to purchase. 

Operations that earn a greater percentage of revenue from ornamental crops typically 

grow a wider variety of plant species and are thus also likely to have a larger number of 

irrigation zones.  For that reason, we expect the share of revenue from nursery and greenhouse 

operations to be positively correlated with the number of nodes demanded. 

We expect that growers using more costly water sources such as deep wells and 

municipal water systems to be willing to buy more extensive sensor network systems as well, 

since their potential gains from irrigation cost savings are likely to be greater.  The same 

reasoning leads us to expect that operations in more water scarce regions such as the Pacific and 

the Southeast, where the costs of water are higher due to constraints on availability as well as 

direct acquisition expenses, will be willing to purchase larger numbers of nodes than growers in 

less water scarce regions such as the Northeast. 

We investigate the effect of human capital on sensor network system scale by including 

grower education levels in the additional node demand equation. 

The literature suggests that one mechanism for addressing uncertainty about the 

performance of a new agricultural technology is to experiment with it on a portion of the farm 

operation.  Experience with the technology reduces uncertainty about its potential; if the 

technology is truly more profitable, the share of the operation on which it is used should expand 
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over time (Feder, Just, and Zilberman 1985).  We investigate the effects of uncertainty about 

performance by including indicator variables for whether a grower believed sensor networks to 

have the advantages and limitations presented in Table 1.  Belief in each potential advantage 

should indicate less uncertainty about potential benefits and should thus be correlated with a 

larger number of additional nodes demanded.  Belief in each potential limitation should indicate 

greater uncertainty about potential benefits and should thus be correlated with a smaller number 

of additional nodes demanded. 

Estimation Results 

Willingness to Purchase a Base System 

We simplified our model for willingness to purchase a base system in two ways.  First, 

we aggregated education into two levels: (i) high school and some college and (ii) a post-

secondary degree (including associate, bachelors, masters, and doctoral degrees).  Wald tests 

indicated that the coefficients of the post-secondary degree categories (p = 0.549) were jointly 

not significantly different from zero and that none of the post-secondary degree categories were 

significantly different from each other (p = 0.082).  Aggregation of education levels had little or 

no effect on the remaining estimated coefficients.  Second, Wald tests indicated that the 

perceptions of benefits were jointly significant (p = 0.017) but that perceptions of limitations (p 

= 0.707), water source (p = 0.944), age category (p = 0.251), and region (p = 0.738) were not.  

We thus dropped these sets of indicators from the main model.  As a robustness check, we report 

estimated coefficients and marginal effects of the variables included in our main model from 

models including these additional controls (Table 5). 
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The coefficients of the variables included in the probit model used to determine 

willingness to pay for a base system model all have signs consistent with our expectations (Table 

5).  They are also robust with respect to the inclusion of the additional control variables. 

The coefficient of price is negative and significantly different from zero, consistent with 

downward sloping demand.  The base system demand is not very sensitive to changes in price: A 

$100 reduction in price would increase the share of respondents willing to purchase a base 

system by only about 0.007 percentage points, on average (Table 6). 

The coefficient of the percentage of revenue from ornamental production is positive and 

significantly different from zero, consistent with our hypothesis that growers who rely on nursery 

and greenhouse crops more heavily are likely to benefit more from using sensor networks and 

are likely to be more aware of potential benefits of sensor networks as well.  Base system 

demand is more sensitive to the degree of specialization in greenhouse and nursery crops than to 

price: A one percentage point increase in the percentage of revenue from ornamental production 

is associated with 0.5 percentage point in increase in the share of respondents willing to purchase 

a base system, on average. 

The coefficient of no post-secondary degree is negative and significantly different from 

zero, consistent with the hypothesis that farmers with more formal education are more likely to 

adopt new agricultural technologies.  The effect of formal schooling on willingness to purchase a 

base system is substantial: Respondents without a post-secondary degree are 23 percentage 

points less likely to be willing to purchase a base system than those with a post-secondary 

degree. 

The estimated coefficients of size in terms of acres and in terms of revenue are both 

positive but neither is significantly different from zero and both are quite small in magnitude, 
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indicating a lack of scale effects influencing likely adoption of a base system.  The average semi-

elasticity of the likelihood of purchasing a base system with respect to income is significantly 

different from zero.  But it too, is quite small: on average, an increase in income of $100,000 is 

associated with only a 0.05 percentage point increase in the probability of a respondent being 

willing to purchase a base system. 

Willingness to purchase a base system was associated with some, but not all perceived 

benefits of sensor networks.  Growers who believe that sensor networks can increase irrigation 

efficiency, reduce irrigation management costs, and improve product quality are more likely to 

be willing to buy a sensor network at the quoted price than those who did not.  These beliefs are 

associated with substantial differences in base system demand.  Those who believe that sensor 

networks can increase irrigation efficiency, reduce irrigation management costs, and improve 

quality are 12-15 percentage points more likely to be willing to purchase a base system.  The 

coefficients of believing that sensor networks can reduce management costs and lower product 

losses were both positive, as expected, but not significantly different from zero.  Somewhat 

surprisingly though, growers who believe that sensor networks can reduce disease are 15 

percentage points less likely to be willing to buy a sensor network at the quoted price.  The 

coefficient of believing that sensor networks can increase ability to manage growth rates was 

also negative but was not significantly different from zero. 

Estimated Demand for Additional Nodes  

As with the probit model of willingness to purchase a base system, we simplified the tobit 

model of demand for additional nodes by dropping variables that were not significantly different 

from zero.  Wald tests indicated that education levels (p = 0.636), age category (p = 0.994), 

perceptions of potential benefits of sensor networks (p = 0.418), and perceptions of potential 
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drawbacks of sensor networks (p = 0.122) were not significantly different from zero.  We thus 

removed these sets of indicators from the main model.  As a robustness check, we report 

estimated coefficients and marginal effects of the variables included in our main model from 

models including them as additional controls (Table 7).   

The coefficients of the variables included in the main model of demand for additional 

nodes all have signs consistent with our expectations (Table 7).  They are also robust with 

respect to the inclusion of the additional control variables. 

The coefficient of price is negative, consistent with downward sloping demand.  It is 

significantly different from zero when additional controls are included but not otherwise.  The 

effect of price on demand for additional nodes is quite small: a one percent increase in price 

decreases the unconditional expectation of the number of additional nodes demanded by 0.3 

percent (Table 8).  The effect of a change in price is split fairly evenly between reductions in the 

number of nodes demanded by those purchasing a positive amount (as indicated by an elasticity 

of 0.1) and reductions in the probability that a grower is willing to purchase any additional nodes 

(as indicated by a semi-elasticity of 0.09). 

The coefficient of the percentage of revenue from ornamental production is positive and 

significantly different from zero, consistent with our hypothesis that growers who rely on nursery 

and greenhouse crops more heavily are likely to have a greater diversity of plant varieties and 

irrigation zones and thus need more nodes to obtain adequate coverage.  Demand for additional 

nodes is quite inelastic with respect to the degree of specialization in greenhouse and nursery 

crops. A one percentage point increase in the share of income from ornamental production is 

associated with a 0.02 percent increase in the unconditional expectation of the number of 

additional nodes demanded.  As with price, the effects of specialization in greenhouse and 
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nursery crops are split fairly evenly between the extensive and intensive margins. A one 

percentage point increase in the share of income from ornamental crops is associated with a 0.6 

percentage point increase in the probability that a grower is willing to purchase at least one 

additional node, compared to a 0.7 percent increase in the expected number of additional nodes 

demanded by growers willing to purchase at least one. 

The estimated coefficients of size in terms of acres and in terms of revenue are both 

positive, as expected.  The coefficient of income is significantly different from zero while the 

coefficient of size in acres is not, suggesting that financial capacity may constrain the size of 

system demanded. 

Growers obtaining water from deep wells and surface waters and those using gray water 

are willing to buy a larger number of nodes at any given price.  As noted earlier, water from deep 

wells is more expensive to pump, so that growers using this source stand to save more in 

expenditures on energy for irrigation.  Surface water withdrawals are often limited either by 

permit level or, in the short run, by pump capacity; the positive coefficient of the surface water 

indicator is consistent with water having a higher implicit cost due to such constraints.  Gray 

water is often more saline than other sources; more precise water application can reduce salt 

buildup. 

Growers in the Appalachian region are willing to buy fewer nodes at any given price than 

growers in other regions.  Possible explanations include less plant and irrigation zone diversity 

and less water scarcity among growers in this region. 

Implications for Initial Adoption and Diffusion of Sensor Network Technology 

The estimated coefficients of the probit model can be used to draw inferences about 

likely initial adoption and subsequent diffusion of sensor network technology in the greenhouse 

19 
 



and nursery industry.  As is standard, we assume that growers whose willingness to pay for a 

base system is at least as great as the current price of a system will adopt the technology while 

those with a willingness to pay less than the current price will not.  We thus use estimates of 

willingness to pay to estimate the share of nursery and greenhouse operators likely to adopt this 

technology initially.  Growers who did not adopt the technology initially may do so later on, if 

the cost of the technology falls, as often occurs as producers of the technology benefit from 

economies of scale or from learning from experience in producing the technology.  Alternatively, 

growers who did not adopt the technology initially may do so later on as the benefits of the 

technology become better known and as uncertainty about the technology shrinks (Feder et al., 

1985).  We examine the effects of changes in price and perceptions about benefits and drawbacks 

of sensor networks by estimating their effects on the share of growers with a willingness to pay 

for a base system greater than or equal to the price of system. 

Initial Adoption 

Predicted willingness to pay for each respondent is equal to max{0, 𝑍′𝛽
𝛼

}.  On average, 

respondents were willing to pay $1905 for a base system, substantially less than the projected 

initial price of $3500.  There is substantial variability in willingness to pay for a base system, 

however, as indicated by a standard deviation slightly larger than the mean at $2015.  

Examination of the cumulative distribution of willingness to pay estimates (Figure 1) indicates 

that almost one fifth of our respondents were willing to pay at least the projected initial price of 

$3500.  That estimate suggests that initial adoption of sensor networks could be high relative to 

many other new agricultural technologies generally and irrigation technologies in particular.  For 

example, only 5.8% of irrigated farms used drip irrigation in 1978, the first year drip irrigation—
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introduced in the US in the late 1960s—was reported by the Farm and Ranch Irrigation Survey 

(Census of Agriculture, 1979). 

At the other end of the spectrum, roughly 30% of our respondents were not willing to pay 

anything for a base system.  Respondents unwilling to pay anything for a base system differed 

from those with a positive willingness to pay in terms of size and reliance on nursery operations.  

The average income of those with an estimated willingness to pay of zero was lower than that of 

those with a positive willingness to pay (p = 0.103).  The average share of income from 

greenhouse and nursery operations of those with an estimated willingness to pay of zero was 

similarly lower than that of those with a positive willingness to pay (p = 0.009).  These 

differences are consistent with the notion that larger operations that specialize more in 

ornamental production are more likely to adopt sensor network technology. 

Impact of Changes in Network Price 

As noted above, one factor that often drives diffusion of new technologies is falling 

prices that render the technology affordable to larger and larger numbers of potential buyers.  

While we cannot predict the rate of change in the price of the sensor networks, we can use the 

experience of similar types of products to estimate the range of rates at which sensor network 

costs might change over time.  For example, a comparison of the Producer Price Indexes for 

communications equipment during 2006-2013 and for wireless telecommunications services 

during 2009-2013 with the Consumer Price Index for the corresponding periods of time indicates 

that prices of these goods and services fell at respective annual average rates of 1.4% and 4.4% 

in real terms.  The estimated coefficients of the probit model indicate that a 1% decrease in price 

results in an average 0.2 percentage point increase in the share of growers willing to purchase a 

base system (Table 10).  If sensor network prices decrease at comparable rates, one would expect 
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the share of growers willing to purchase a base system to increase at rates of 0.3-0.8 percentage 

points a year.  This estimated rate of diffusion is slightly more rapid than that of drip irrigation: 

In 2008, 17.4% of irrigated farms used drip or trickle systems compared to 5.8% in 1978, 

corresponding to an average annual rate of increase of about 0.3%. 

Impact of Changes in Grower Perceptions 

Another factor known to drive diffusion of new technologies is the spread of information 

that increases expectations about profitability and reduces uncertainty about performance.  To 

gauge the magnitude of the effect of information diffusion on rates of adoption of sensor 

networks, we conduct a set of simulations using the coefficients of current perceptions of the 

potential benefits of sensor networks.  We focus on diffusion of beliefs that sensor networks 

increase irrigation efficiency and reduce irrigation management costs, since our analysis 

indicates that these two beliefs have a statistically significant effect on the probability that a 

grower would purchase a base system. 

We model changes in adoption over time due to the spread of positive perceptions about 

sensor network performance as follows. Let Pjt be the number of growers who believe that sensor 

networks have benefits of type j in period t.  Assume that each grower who does not believe that 

sensor networks have benefits of type j in period t changes that perception with probability Ω, so 

that the number of growers whose perception of sensor network benefits changes from negative 

to positive is Ω(1-Pjt). We sample the population without replacement, so that growers change 

their beliefs about sensor network performance from negative to positive but not vice versa. In 

period T, we compare the adoption rate for every positive perception and several information 

dispersion rates Ω.  We compare diffusion rates for Ω =0.01, 0.1, and 0.2. We run 1000 trials for 
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each value of Ω over a period of 200 years and report average adoption rates at the expected base 

system price of $3,500 for each period. 

Our simulations indicate that diffusion of information about these benefits of sensor 

networks would have a very limited effect on rates of sensor network technology adoption (Table 

9).  Even after 50 years, of the 20% of non-adopters changing their beliefs about sensor network 

performance from negative to positive, the share of growers willing to purchase a base system 

increases by only 3-6 percentage points.  The main reason is that a majority of growers already 

believe that sensor networks have these benefits: Over four-fifths believe that sensor networks 

can increase irrigation efficiency and almost three-fifths believe that sensor networks can reduce 

irrigation management costs (Table 4).  These positive perceptions of sensor network 

performance result in relatively high likely initial adoption rates coupled with relatively small 

effects of information diffusion on subsequent adoption rates. 

Sensor Network Profitability 

The estimated coefficients of the probit and tobit models can also be used to draw 

inferences about current grower perceptions of the respective profitability of investing in a 

sensor network and additional nodes.  Investing in a base system is profitable if the annual return 

on that investment is at least as great as the cost of system.  Thus, the estimated willingness to 

pay for a base system is a conservative estimate of the expected annual profit from investing in a 

sensor network.  The profit from additional nodes equals the consumer surplus under a grower’s 

demand curve for additional nodes (Just et al., 1984).  The estimated number of nodes that 

respondent i would purchase at price W is 𝑁�𝑖(𝑊) = max {0, 𝛾𝑊 + 𝑽𝒊′𝜹}.  We calculate consumer 

surplus assuming that demand is linear between the choke price for each respondent, −𝑽𝒊′𝜹
𝛾

 , and 

the expected market price of $800 per node (see Figure 2).  Growers whose choke price is less 
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than $800 would not buy any additional nodes and thus have consumer surplus of zero, so that 

consumer surplus for each grower is max�0,
�𝑽𝒊

′𝜹
𝛾 −800�∗𝑁𝚤(800)�

2
�, 𝑁𝚤� (800) is the expected number 

of nodes purchased by grower i at the price of $800. 

At the initial estimated price of $800 per node, almost 2/3 of the respondents have 

positive consumer surplus from the purchase of additional nodes.  The average consumer surplus 

for those growers is $6,747.  There is considerable variability in estimated consumer surplus 

from the purchase of additional nodes, as indicated by a standard deviation of $20,708 and a 

range of $0 to $196,872. 

Adding willingness to pay for a base system to consumer surplus from the purchase of 

additional nodes gives an estimate of each grower’s anticipated profit from investment in a 

sensor network.  These calculations indicate that the 165 growers with positive estimated profit 

from investing in a sensor network had an estimated annual profit of $11,088.  Slightly over half 

of these growers had estimated profit between $1000 and $5000 a year (Figure 3).  Another fifth 

had estimated profit between $5000 and $10,000 a year and another tenth had expected profit 

between $10,000 and $20,000 a year.  At the upper end of the scale, one grower had estimated 

annual profit at almost $210,000 a year. 

Increased profit averaged 5.9% of annual revenue.  In almost every case, estimated profit 

from investing in a sensor network amounted to 5% or less of annual revenue, with a few 

growers having estimated shares much higher (Figure 4).  Since profit usually also amounts to a 

small share of revenue, these calculations suggest that investing in this technology can increase 

profit substantially, consistent with findings from experimental studies (Belayneh et al., 2013; 

Lichtenberg et al., 2013; Saavoss et al., 2014). 
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Conclusion 

Water scarcity is likely to grow in the coming years, making improvements in irrigation 

efficiency increasingly important.  An emerging technology that promises to increase irrigation 

efficiency substantially is a network that uploads soil moisture and other sensor data into 

irrigation management software, creating an integrated system that allows real-time monitoring 

and control of moisture status.  This technology, which is on the verge of commercial 

introduction, has been shown in experimental settings to reduce irrigation costs, lower plant loss 

rates, shorten production times, decrease pesticide application, and increase yield, quality, and 

profit (Lichtenberg et al., 2013; Saavoss et al., 2014).  

This paper uses an original survey to investigate likely initial acceptance, ceiling 

adoption rates, and profitability of this new sensor network technology in the nursery and 

greenhouse industry.  We find that adoption rates for a base system and demand for expansion 

components are decreasing in price, as expected.  The price elasticity of the probability of 

adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that 

of drip irrigation.  Adoption rates for a base system and demand for expansion components are 

also increasing in specialization in ornamental production: Growers earning greater shares of 

revenue from greenhouse and nursery operations are willing to pay more for a base system and 

willing to purchase larger numbers of expansion components at any given price.  Consistent with 

previous literature on adoption of new agricultural technologies, willingness to pay for a base 

system increases with education level and perceived benefits of sensor networks, notably 

increased irrigation efficiency, reduced irrigation management costs, and improved quality.  We 

estimate that growers who are willing to purchase a sensor network expect investment in this 

technology to earn significant profit, consistent with findings from experimental studies. 
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Our estimates are based on responses to hypothetical choice questions for a technology 

that is not yet on the market.  They suggest that a relatively large share of nursery and 

greenhouse operators could be early adopters and that diffusion of this technology could be more 

rapid than other precision irrigation technologies (or precision agricultural technologies more 

generally).  Once this technology has been on the market for a few years, it would be interesting 

to compare actual adoption rates to the predictions made here. 
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Table 1. Comparison of Sample with National Statistics on Nursery and Greenhouse 
Operations 

Category 
Percentage of Growers in Category 

Nationwide Survey Sample 
Revenue 

$1,000,000 or more 6.56 35.26 
$500,000 to $999,999 4.69 16.84 
$250,000 to $499,999 6.29 14.21 
$100,000 to $249,999 12.86 11.58 
$50,000 to $99,999 10.16 5.79 
$25,000 to $49,999 12.56 5.79 
$10,000 to $24,999 17.91 7.89 
$5,000 to $9,999 11.49 2.11 
$2,500 to $4,999 8.78 0.00 
$1,000 to $2,499 6.24 0.53 
Less than $1,000 2.47 0.00 

Acreage 
1 to 9 38.29 32.17 
10 to 49 36.03 27.71 
50 to 69 6.01 5.1 
70 to 99 5.4 3.18 
100 to 139 4.18 5.41 
140 to 179 2.36 3.18 
180 to 219 1.51 3.18 
220 to 259 1.06 2.55 
260 to 499 2.71 6.37 
500 to 999 1.55 6.05 
1000 to 1999 0.56 2.55 
2000 or more 0.34 2.55 

Region 
Pacific 18.81 21.31 
North East 21.19 19.34 
South East 14.41 20.98 
Appalachia 12.26 19.34 
Midwest 20.58 10.49 
Great Plains 1.66 3.28 
South Central 7.16 3.61 
Mountain 3.72 1.64 
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Table 2. Potential Benefits and Drawbacks of Sensor Networks 

Potential Benefits Increase efficiency 

Reduce monitoring time/costs 

Reduce irrigation management costs 

Increase ability to manage growth rates 

Increase quality 

Reduce disease occurrence 

Potential Drawbacks The sensors would not control irrigation correctly 

The cost would be too high 

The sensors would not be reliable 

There would be too much maintenance involved 

The sensors would not be as efficient as our current system 
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Table 3. Distribution of Responses by Offered Price 

Price Level for Number of Responses  
Base System   Number Who Would Buy a Base System 

$1000 59 32 
$2000 50 19 
$3000 52 26 
$4000 58 15 
$5000 49 14 

Additional Node  
Average Number of Additional Nodes 

Purchased 
$  500 62 4.5 
$1000 52 3.9 
$1500 57 2.0 
$2000 56 3.8 
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Table 4. Descriptive Statistics of Variables Used in the Probit and Tobit Models 

Variable Mean Standard Deviation Minimum Maximum 
Farm Operation 
Operation Size (Acres) 222.8773 610.8162 0 6000 
Annual Income ($1000) 2252.068 11279.64 0 150000 
Percent of Income from 
Greenhouse and Nursery Crops 

83.97398 33.51402 0 100 

Located in Appalachian Region 0.197026 0.398494 0 1 
Located in Midwest 0.096654 0.296037 0 1 
Located in Northeast 0.193309 0.395629 0 1 
Located in Pacific Region 0.230483 0.421927 0 1 
Located in Southeast 0.189591 0.392708 0 1 
Located in South Central 
Region 

0.037175 0.189542 0 1 

Use Water from Shallow Well 0.29368 0.456296 0 1 
Use Water from Deep Well 0.460967 0.499403 0 1 
Use Surface Water 0.301115 0.459598 0 1 
Use Recycled Water 0.215613 0.412014 0 1 
Use Rain Water 0.182156 0.386693 0 1 
Use Municipal Water 0.193309 0.395629 0 1 
Use Gray Water 0.048327 0.214856 0 1 
Use Water from Other Sources 0.04461 0.20683 0 1 
Farm Operator 
High School Graduate 0.063197 0.243771 0 1 
Some College 0.107807 0.310714 0 1 
Associate Degree 0.078067 0.268777 0 1 
Bachelor’s Degree 0.360595 0.481068 0 1 
Post-Graduate Degree 0.122677 0.328677 0 1 
Age 20-29 0.033457 0.180163 0 1 
Age 30-39 0.118959 0.324344 0 1 
Age 40-49 0.197026 0.398494 0 1 
Age 50-59 0.260223 0.439574 0 1 
Age 60+ 0.122677 0.328677 0 1 
Perceptions of Wireless Sensor Networks 
Sensor Networks Can Reduce 
Product Loss 

0.609665 0.488735 0 1 

Sensor Networks Can Improve 
Increase Quality 

0.70632 0.456296 0 1 

Sensor Networks Can Improve 
Irrigation Efficiency 

0.825279 0.380436 0 1 

Sensor Networks Can Reduce 
Disease 

0.572491 0.495639 0 1 
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Variable Mean Standard Deviation Minimum Maximum 
Sensor Networks Can Reduce 
Irrigation Management Cost 

0.587361 0.493227 0 1 

Sensor Networks Can Increase 
Ability to Manage Growth 
Rates 

0.550186 0.498402 0 1 

Sensor Networks Can Reduce 
Monitoring Cost 

0.505576 0.500901 0 1 

Sensor Cost Would Be Too 
High 

0.825279 0.380436 0 1 

Sensors Would Not Control 
Irrigation Correctly 

0.431227 0.496171 0 1 

Sensors Would Not Be Reliable 0.516729 0.500652 0 1 
Sensors Would Require Too 
Much Maintenance 

0.330855 0.471398 0 1 

Sensors Would Not Be as 
Efficient as Current System 

0.148699 0.356455 0 1 
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Table 5. Estimated Coefficients of the Probit Willingness to Purchase Base System Model 

Variable Base Model Model with 
Additional Controls 

Base System Price -0.000204*** 
(0.001) 

-0.000211*** 
(0.002) 

Operation Size (Acres) 0.000206 
(0.198) 

0.000165 
(0.386) 

Operation Size Missing (0/1) 0.548 
(0.579) 

0.772 
(0.538) 

Annual Income ($1000) 0.0000155 
(0.167) 

0.0000145 
(0.178) 

Annual Income Missing (0/1) -0.490 
(0.101) 

-0.637** 
(0.047) 

Percent of Income from Greenhouse and Nursery Crops 
(0-100) 

0.0160** 
(0.035) 

0.0150* 
(0.080) 

Percent of Income from Greenhouse and Nursery Crops 
Missing (0/1) 

1.427* 
(0.079) 

1.341 
(0.144) 

High School Diploma/Some College (0/1) -0.714*** 
(0.005) 

-0.781*** 
(0.006) 

Education Level Missing (0/1) 0.290 
(0.332) 

0.435 
(0.366) 

Sensor Networks Can Reduce Product Loss (0/1) 0.152 
(0.477) 

0.171 
(0.447) 

Sensor Networks Can Improve Increase Quality (0/1) 0.405* 
(0.069) 

0.398* 
(0.093) 

Sensor Networks Can Improve Irrigation Efficiency 
(0/1) 

0.448* 
(0.098) 

0.493 
(0.114) 

Sensor Networks Can Reduce Disease (0/1) -0.435** 
(0.033) 

-0.381* 
(0.089) 

Sensor Networks Can Reduce Irrigation Management 
Cost (0/1)  

0.385** 
(0.049) 

0.408* 
(0.059) 

Sensor Networks Can Increase Ability to Manage 
Growth Rates (0/1) 

-0.142 
(0.488) 

-0.187 
(0.406) 

Sensor Networks Can Reduce Monitoring Cost (0/1) 0.119 
(0.552) 

0.172 
(0.428) 

Constant -1.847** 
(0.018) 

-1.951** 
(0.048) 

Number of Observations 268 268 
p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 10% levels, respectively.  
Additional controls include region indicators, indicators of beliefs about drawbacks of sensor networks, water source 
indicators, and age. 
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Table 6. Average Partial Effects of Independent Variables on the Probability of Purchasing 
a Base System 

Independent Variable Change in Probability of Purchasing a Base 
System due to 
One unit change in 
independent 
variable 

One percent change in 
independent variable 

Base System Price -0.0000665*** 
(0.000) 

-0.190*** 
(0.000) 

High School Diploma/Some College (0/1) -0.232*** 
(0.004) 

 

Operation Size (Acres) 0.0000671 
(0.195) 

0.0147 
(0.205) 

Annual Income ($1000) 0.00000503 
(0.163) 

0.00842*** 
(0.003) 

Percent of Income from Greenhouse and 
Nursery Crops (0-100) 

0.00521** 
(0.031) 

 

Sensor Networks Can Reduce Product Loss 
(0/1) 

0.0494 
(0.475) 

 

Sensor Networks Can Improve Increase 
Quality (0/1) 

0.132* 
(0.064) 

 

Sensor Networks Can Improve Irrigation 
Efficiency (0/1) 

0.146* 
(0.094) 

 

Sensor Networks Can Reduce Disease (0/1) -0.142** 
(0.029) 

 

Sensor Networks Can Reduce Irrigation 
Management Cost (0/1)  

0.125** 
(0.044) 

 

Sensor Networks Can Increase Ability to 
Manage Growth Rates (0/1) 

-0.0463 
(0.487) 

 

Sensor Networks Can Reduce Monitoring 
Cost (0/1) 

0.0387 
(0.551) 

 

Observations 268 268 
p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 10% levels, 
respectively.   
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Table 7. Estimated Coefficients of the Two-Limit Tobit Additional Node Demand Model 

Variable Base Model Model with 
Additional Controls 

Additional Node Price -0.00159 
(0.113) 

-0.00174* 
(0.083) 

Operation Size (Acres) 0.00109 
(0.294) 

0.00111 
(0.302) 

Operation Size Missing (0/1) -6.212 
(0.308) 

-8.589 
(0.164) 

Annual Income ($1000) 0.000138*** 
(0.003) 

0.000152*** 
(0.002) 

Annual Income Missing (0/1) -2.791** 
(0.046) 

-2.468 
(0.181) 

Percent of Income from Greenhouse and Nursery Crops 
(0-100) 

0.122** 
(0.013) 

0.120** 
(0.014) 

Percent of Income from Greenhouse and Nursery Crops 
Missing (0/1) 

12.20** 
(0.024) 

11.56** 
(0.034) 

Located in Appalachian Region (0/1) -4.900** 
(0.030) 

-5.284** 
(0.023) 

Located in Midwest (0/1) 0.872 
(0.716) 

0.568 
(0.815) 

Located in Northeast (0/1) -3.498 
(0.117) 

-3.273 
(0.160) 

Located in Pacific Region (0/1) -0.208 
(0.921) 

-0.716 
(0.740) 

Located in Southeast (0/1) -2.372 
(0.274) 

-2.746 
(0.209) 

Use Water from Shallow Well (0/1) 0.561 
(0.701) 

0.400 
(0.791) 

Use Water from Deep Well (0/1) 3.262** 
(0.025) 

2.741* 
(0.065) 

Use Surface Water (0/1) 2.509* 
(0.071) 

2.773** 
(0.046) 

Use Recycled Water (0/1) 0.771 
(0.568) 

0.183 
(0.891) 

Use Rain Water (0/1) 0.888 
(0.554) 

-0.212 
(0.890) 

Use Municipal Water (0/1) 1.170 
(0.492) 

0.986 
(0.559) 

Use Gray Water (0/1) 9.105*** 
(0.001) 

8.117*** 
(0.002) 
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Variable Base Model Model with 
Additional Controls 

Use Water from Other Sources (0/1) -0.238 
(0.932) 

-1.339 
(0.647) 

Constant -9.575* 
(0.063) 

-7.977 
(0.167) 

Sigma  7.432*** 
(0.000) 

6.991*** 
(0.000) 

Number of Observations 233 233 
p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 10% levels, respectively.  
Additional controls include indicators of education level, indicators of beliefs about benefits of sensor networks, 
indicators of beliefs about drawbacks of sensor networks, and age. 
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Table 8. Average Partial Effects of Independent Variables on the Demand for Additional Nodes 

Independent variable Expected number of additional nodes 
demanded 

Expected number of additional nodes 
demanded conditional on positive 
demand 

Probability of positive 
demand 

Average 
absolute 
change due to 
a one unit 
change 

Average 
percent 
change 
due to a 
one 
percent 
change 

Average 
percent 
change 
due to a 
one unit 
change 

Average 
absolute 
change due to 
a one unit 
change 

Average 
percent 
change 
due to a 
one 
percent 
change 

Average 
percent 
change 
due to a 
one unit 
change 

Average 
absolute 
change due to 
a one unit 
change 

Average 
absolute 
change due 
to a one 
percent 
change 

Additional Node Price -0.000855 
(0.110) 

-0.320 
(0.121) 

 -0.000572 
(0.110) 

-0.109 
(0.111) 

 -0.0000748 
(0.107) 

-0.0919 
(0.109) 

Operation Size (Acres) 0.000586 
(0.292) 

0.0354 
(0.260) 

 0.000392 
(0.292) 

0.0131 
(0.283) 

 0.0000513 
(0.291) 

0.00968 
(0.280) 

Annual Income ($1000) 0.0000742*** 
(0.002) 

0.0265*** 
(0.000) 

 0.0000496*** 
(0.002) 

0.0135*** 
(0.000) 

 0.00000650*** 
(0.003) 

0.00693*** 
(0.000) 

Percent of Income from 
Greenhouse and Nursery 
Crops (0-100) 

0.0655** 
(0.012) 

 0.0194** 
(0.014) 

0.0438** 
(0.012) 

 0.00685** 
(0.012) 

0.00574*** 
(0.010) 

 

Located in Appalachian 
Region (0/1) 

-2.630** 
(0.029) 

 -0.777** 
(0.031) 

-1.759** 
(0.029) 

 -0.275** 
(0.030) 

-0.230** 
(0.026) 

 

Located in Midwest (0/1) 0.468 
(0.715) 

 0.138 
(0.715) 

0.313 
(0.715) 

 0.0490 
(0.715) 

0.0410 
(0.715) 

 

Located in Northeast 
(0/1) 

-1.877 
(0.115) 

 -0.555 
(0.117) 

-1.256 
(0.115) 

 -0.196 
(0.116) 

-0.164 
(0.112) 

 

Located in Pacific 
Region (0/1) 

-0.112 
(0.921) 

 -0.0330 
(0.921) 

-0.0747 
(0.921) 

 -0.0117 
(0.921) 

-0.00978 
(0.921) 

 

Located in Southeast 
(0/1) 

-1.273 
(0.273) 

 -0.376 
(0.274) 

-0.852 
(0.274) 

 -0.133 
(0.274) 

-0.112 
(0.271) 

 



Independent variable Expected number of additional nodes 
demanded 

Expected number of additional nodes 
demanded conditional on positive 
demand 

Probability of positive 
demand 

Average 
absolute 
change due to 
a one unit 
change 

Average 
percent 
change 
due to a 
one 
percent 
change 

Average 
percent 
change 
due to a 
one unit 
change 

Average 
absolute 
change due to 
a one unit 
change 

Average 
percent 
change 
due to a 
one 
percent 
change 

Average 
percent 
change 
due to a 
one unit 
change 

Average 
absolute 
change due to 
a one unit 
change 

Average 
absolute 
change due 
to a one 
percent 
change 

Use Water from Shallow 
Well (0/1) 

0.301 
(0.700) 

 0.0890 
(0.700) 

0.201 
(0.700) 

 0.0315 
(0.700) 

0.0264 
(0.700) 

 

Use Water from Deep 
Well (0/1) 

1.751** 
(0.023) 

 0.517** 
(0.025) 

1.171** 
(0.023) 

 0.183** 
(0.024) 

0.153** 
(0.022) 

 

Use Surface Water (0/1) 1.347* 
(0.068) 

 0.398* 
(0.071) 

0.901* 
(0.069) 

 0.141* 
(0.070) 

0.118* 
(0.067) 

 

Use Recycled Water 
(0/1) 

0.414 
(0.568) 

 0.122 
(0.568) 

0.277 
(0.568) 

 0.0433 
(0.568) 

0.0363 
(0.568) 

 

Use Rain Water (0/1) 0.477 
(0.553) 

 0.141 
(0.553) 

0.319 
(0.553) 

 0.0499 
(0.553) 

0.0417 
(0.553) 

 

Use Municipal Water 
(0/1) 

0.628 
(0.491) 

 0.186 
(0.492) 

0.420 
(0.491) 

 0.0657 
(0.492) 

0.0550 
(0.491) 

 

Use Gray Water (0/1) 4.886*** 
(0.000) 

 1.444*** 
(0.001) 

3.268*** 
(0.001) 

 0.511*** 
(0.001) 

0.428*** 
(0.000) 

 

Use Water from Other 
Sources (0/1) 

-0.128 
(0.932) 

 -0.0377 
(0.932) 

-0.0854 
(0.932) 

 -0.0134 
(0.932) 

-0.0112 
(0.932) 

 

N 233 233 233 233 233 233 233 233 
p-values in parentheses. ***, **, * denote significantly different from zero at 1%, 5%, and 10% levels, respectively.   
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Table 9. Effects of Information Diffusion on the Share of Growers Willing to Purchase a Sensor Network at the Current Price 

Year Sensors Can Increase Irrigation Efficiency Sensors Can Reduce Irrigation Management Cost 
Annual Rate of Information Diffusion (Ω) Annual Rate of Information Diffusion (Ω) 
1% 10% 20% 1% 10% 20% 

0 0.19403 0.19403 0.19403 0.194030 0.194030 0.194030 
1 0.194328 0.196716 0.199702 0.194664 0.195299 0.205597 
2 0.194590 0.198843 0.204216 0.195037 0.196493 0.214291 
3 0.194739 0.200896 0.207313 0.195634 0.197500 0.222761 
4 0.195000 0.202313 0.209851 0.196269 0.198619 0.228843 
5 0.195299 0.203806 0.212351 0.196866 0.199179 0.233993 
6 0.195560 0.205411 0.213881 0.197500 0.199776 0.238172 
7 0.195597 0.207127 0.215037 0.197948 0.200299 0.241530 
8 0.195858 0.208209 0.216231 0.198619 0.200709 0.243769 
9 0.196045 0.209179 0.217127 0.199366 0.201045 0.246306 
10 0.196269 0.210336 0.217575 0.200187 0.201493 0.247873 
20 0.198396 0.216978 0.219888 0.205597 0.203806 0.252836 
30 0.200634 0.218843 0.220075 0.209925 0.251194 0.253694 
40 0.202724 0.219627 0.220149 0.214515 0.252649 0.253731 
50 0.204403 0.219963 0.220149 0.218619 0.253284 0.253731 
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Figure 1. Schematic of Sensor Network Base System 
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Figure 2. Cumulative Distribution of Estimated Willingness to Pay for a Base System 
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Figure 3. Distribution of Estimated Annual Profit from Investing in a Sensor Network 
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Figure 4. Distribution of Estimated Annual Profit from Investing in a Sensor Network as a Share of Revenue 
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