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1.0 INTRODUCTION 

Precision agriculture (PA), also referred to as “information-intensive” agriculture (Bramley 

2009),  is defined as a “set of technologies that combines sensors, information systems, enhanced 

machinery, and informed management to optimize inputs and production by accounting for variability 

and uncertainties within agricultural systems” (Gebbers and Adamchuck 2010). The value of PA “lies 

in improving the decision making process to increase the efficiency of allocation of productive 

inputs” (Batte 1999), which in turn can have a significantly positive effect on both profitability of the 

farm as well as the environmental sustainability.  

Numerous studies have been exploring economic viabilities of PA; however, significant gaps 

in knowledge remain. Specifically, the majority of studies focus on PA for field crops such as corn, 

wheat, soybean, and cotton (Swinton and Lowenberg-DeBoer 1998, Godwin et al. 2003) while much 

less attention is paid to application of PA technologies to horticultural crops (Griffin and Lowenberg-

DeBoer 2005, Bramley 2009). Even though some studies deal with citrus and grapes (Whitney et al. 

1999 and Stafford 2007), no studies were found that examine economic viability of PA for small fruit 

production, such as berries, which are considered high value crop.     

This study fills this gap of investigating PA technology for strawberry production as well as 

comparing its risk profile to that the traditional and new PA. The objective of the study is to conduct 

comparative risk analysis between the two production technologies that use two distinct fungicide 

treatment systems for strawberry production in the subtropical weather climate. The study uses 

experimental production data from trials in the grower fields from nine farms, where growers have 
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grown strawberries using both production methods simultaneously for three production seasons. 

Weather is the driver of stochastics in the model. Based on the stochastic dominance criteria and 

efficiency analysis for risk-adjusted profitability, we conduct a risk, profitability, and feasibility 

analysis for all possible risk preferences of the farmer. The study analyzes whether the farmer is 

sufficiently compensated for slightly increased risk in the new method of fungicide application.  

The U.S. is the world’s largest strawberry producer accounting for over a quarter of total world 

production (FAOSTAT 2012). California and Florida are the largest strawberry producing states in the 

U.S., whose average yearly production value is consistently around 80% and 15%, respectively, of the 

total U.S. production (Figure 1).  

 

Source: Based on data obtained from National Agricultural Statistical Services (NASS), 2013 
Figure 1. The Percentages of Total Yearly Production Value of Two Top Strawberry Producing States, 

1998-2011 

 

In the past ten years, total production value
 
increased by more than 60% (Figure 2). Most of the 

U.S. production is consumed domestically, and an increasing amount of strawberries are being produced 

for fresh-market uses (Boriss et al. 2010). Precision technologies could have a significant impact on 

strawberry input use, production costs, and environmental sustainability.  
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Source: National Agricultural Statistical Services (NASS), 2013 and Foreign Agricultural Service 

(FAS), 2013  

Figure 2. Strawberry Production and Exports Values for the U.S. 1997-2011 

 

While the effects of information about spatial factors (e.g., planting patterns, plant diversity, 

weed pressure, and soil type) have been extensively studied (Brophy and Mundt 1991, Mundt et al. 

1997, Waller et al. 1997, Mitchell et al. 2002, and Oliver and Robertson 2009), the economics of PA 

technologies addressing the temporal variability was addressed in only a few studies (e.g., Goodwin et 

al. 2003). Insufficient recognition of temporal variations has been identified as one of the critical issues 

in PA studies (McBratney et al. 2005).  

Difficulties in predicting profitability of PA technologies were elaborated extensively in 

existing studies (Atherton et al., 1999); however, PA profitability is found to be the main driver behind 

the adoption of PA technologies (Batte 2003). Thus, conducting profitability studies can be timely and 

urgent and can significantly increase the adoption rate of PAs. This study evaluates the profitability of 

one PA technology, Strawberry Advisory System (SAS), developed to assist agricultural producers in 

the southeastern U.S. in managing weather- and climate-related risks. SAS was developed to optimize 

the fungicide application timing in Florida strawberry production (Pavan et al. 2009). Specifically, SAS 

uses real-time information about air temperature and strawberry leaf wetness duration to tailor 

fungicide applications to the periods of high risks for anthracnose and Botrytis fruit rot developments. 
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SAS can be accessed on-line through the AgroClimate.org website, which is developed and maintained 

jointly by the Southeast Climate Consortium (SECC), Florida Climate Institute, and Florida Cooperative 

State Extension Service. Currently, there are 45 grower subscribers for SAS electronic alerts (including 

instant text messaging); and in 2012 the web-site was accessed 3,099 times by 617 people (interview 

Natalia Peres, 2013). 

2.0 STUDY AREA  

Strawberry is the most significant berry crop by production value in Florida. During the winter 

season Florida dominates the national strawberry market. In 2010, total production volume (in pounds) 

reached a record high of 2.5 million pounds (Figure 3). A year earlier, in 2011, the total value of 

production reached a record of $366.3 Million (Figure 4), and in 2012, a record of 10,100 acres was 

under strawberry production (NASS 2013).   

 

Source: Based on data from National Agricultural Statistical Services (NASS), 2013  

Figure 3. Florida Production in Millions of Pounds (1997-2012) 
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Source: Based on data obtained from the National Agricultural Statistical Services (NASS), 2013 

Figure 4. Strawberry Production Value in $ Millions 

 

Almost ninety percent of Florida’s strawberries are grown near Plant City in Hillsborough County, west 

central Florida. The production season starts in November and continues through March of the following 

year (Figure 5). The heaviest harvesting occurs between the months of February and March, driven by the 

climatic conditions and the dynamics of the strawberry market. Specifically, prices for strawberries 

generally peak in December or January and then experience steady downward pressure until bottoming 

out in May or June in response to the increasing strawberry supplies from California. 

Fungal diseases such as anthracnose (AFR) and Botrytis (BFR) fruit rots are major challenges for 

strawberry growers (Pavan et al. 2009). Even in carefully managed fields, losses from fruit rot can exceed 

50% when conditions favor disease development (Ellis and Grove 1982, Turechek et al. 2006). 

Fungicides are commonly used by the growers to stem off the development of these diseases. Currently 

fungicides are applied on a calendar based schedule, following a once a week program (Mertely et al. 

2009a; 2009b). Fungicide costs comprise approximately 7% of pre-harvest variable costs, which 

represents about $690 per acre (IFAS 2010). Significant issues facing the strawberry industry are 

increasing costs of fungicides, building resistance to the fungicides, and rising public concerns about 

potential health and environmental effects of fungicide use (Peres et al. 2010b). Production methods that 



7  

can reduce fungicide rates without negatively affecting strawberry yields and quality can provide 

significant economic and environmental benefits to Florida strawberry industry. 

 
3.0 STRAWBERRY ADVISORY SYSTEM 

Past research shows that accurate information about weather conditions can be used to tailor the 

fungicide applications to manage the anthracnose and Botrytis disease pressure (Wilson 1990, Mackenzie 

and Peres 2012, more on Botrytis).  Periods with warm and wet weather create favorable conditions for 

the development and spread of anthracnose and botrytis fruit rots increasing the risk of harvest losses. In 

contrast, given cool and dry conditions, the risk of this disease development is relatively minor.  

Bulger et al. (1987) and Wilson et al. (1990) developed a system that predicts the spread of 

anthracnose and Botrytis disease on berries based on the duration of leaf wetness and the average 

temperature during the wetness period. They found that the most conducive temperature for anthracnose 

disease development for both immature and mature fruit is between 25 and 30 C, while for Botrytis 

disease development  the most conducive temperature is between 15C and 25C with the absolute optimal 

temperature being 20 C (Bulger et al. 1987). Guided by this research, UF scientists conducted strawberry 

field experiments (Pavan et al 2006, 2011, Fraisse et al. 2006, Turecheck et al. 2006, Merteley et al. 2009) 

and in 2009 launched the on-line Strawberry Advisory System (SAS) (Pavan, 2011). SAS was designed 

to predict disease-conducive conditions by processing leaf wetness duration and average temperature 

during the wetness period, and to issue alerts for fungicide applications when conditions for disease 

development are favorable.  

In this study, we compare simulated yields for a 10-year planning horizon given a traditional 

fungicide application method and the precision fungicide application method that follows SAS 

recommendations. In the analysis the effect of two diseases, anthracnose and Botrytis, are accounted by 

the model as well as two type of different cultivars, more- and less-resistant ones, separately. 

3.1 The Difference between SAS- and Calendar-Based Fungicide Application Methods 

The fundamental differences between the two fungicide application methods, Calendar-based and 
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SAS-based, are demonstrated in Figure 5. The calendar-based application method involves routine 

fungicide application on the same day of every week during the production season. Since the Florida 

production season is on average 15 weeks, the average total number of applications for the entire season, 

  , is equal to 15 (Figure 5). In contrast, for the SAS-based method, the timing of the fungicide application 

depends on the trigger from SAS. SAS determines the probability of disease development based on the leaf 

wetness duration (W) and an average temperature during the wetness period (T). If the probability exceeds 

the thresholds of 15% (for Anthracnose,     
   ) or 50% (for Botrytis,     

   ), then SAS issues a trigger alert 

for fungicide application respectively for each disease. The total number of applications sums up to       

The fewer disease conducive days there are throughout the season, the lower is the number of applications 

under SAS-based method. Conversely, the more disease conducive days there are, the higher is the number 

of applications,     . In the worst case scenario      is equal to   .    

 

 

Figure 5.  Difference in Calendar and SAS-based Application Methods 
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3.2 SAS Operation 

SAS predicts the probability of disease infection based on the relationship between the wetness duration 

and temperature during the wet period, originally proposed by Wilson et al. (1990) and Bulger et al. 

(1987) for the Anthracnose and Botrytis diseases, respectively. They used a logit regression model, where 

the infection level of the disease was accurately described as a function of wetness duration (W) and 

temperature during the wet period (T). Equation (1) describes the relationship, where percentage of 

infection of ripe fruit and flowers,     , is the dependent variables within logit equation.  

   
    

      
                                                                                       

Two factors had to be taken into account in the regression analysis. First, the functional form of the model 

had to accurately represent the observed relationship between      and T, such that      increases to a 

maximum and then decreases. Second, in the regression model,      had to increase with increases in 

W, but should not exceed 1.0 or fall below 0.0 for any value of W. Wilson et al. (1990) and Bulger et al. 

(1987) used a logistic regression to model the proportion of immature and mature strawberry fruit infected 

by anthracnose (       , Equation 2) and by Botrytis (       , Equation 3), respectively, as a 

function of temperature, T, and leaf wetness duration, W:   

 

   
       

         
                                

                 

   
       

         
                                                             

Models (2) and (3) are referred to as the Wilson-Madden weather index for each of the diseases 

respectively.  

Denoting the left-hand side of equations (2) and (3) as the disease index, or DI, the proportion of 

strawberry fruit infected by the fungus can be specified as: 
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where D ∈[1:AFR, 2:BFR] to distinguish between two fungi diseases. The relationships (2), (3), and (4) 

were used by Mackenzie and Peres (2012) to develop the on-line Strawberry Advisory System (SAS) that 

indicates the level of anthracnose and Botrytis disease risks. SAS recommends fungicide application if the 

disease risk is high (Figure 5). Specifically, using strawberry production experiments and the knowledge of 

critical combinations of temperature and leaf wetness duration at which the disease pressure becomes 

critical (Wilson 1990), Mackenzie and Peres (2012) identified that given Florida growing conditions, an 

Anthracnose        = 0.15 should be considered as a threshold to trigger the fungicide application. 

Thus, when equation (4) estimates a 15% probability for anthracnose development in strawberries, SAS 

issues a warning of the “moderate” risk of disease development, and recommends spraying a “preventive” 

type of fungicide such as Captan (Captan 80WDG; Micro Flo Company LLC, Memphis, TN, Peres 

2010a). Furthermore, when equation (4) estimates at least a 50% probability of strawberries developing 

the disease (             ), SAS indicates “high” risk of disease, and recommends spraying “a 

curative” fungicide such as Cabrio (Cabrio 20EG; BASF Corporation, Research Triangle Park, NC, Peres 

2010a). For Botrytis there is only one threshold (       = 0.50) to trigger a fungicide application.  

The label restrictions on the maximum rate and frequency of fungicide applications are also accounted for in 

the SAS recommendations. Specifically, the maximum number of sequential applications for Cabrio is 

limited to two, and the maximum rate of its application is 70 oz (4.375 pounds) per acre per season 

(Cabrio Fungicide 2011). In turn, Captan can only be applied at the rate of one ounce per one gallon of 

water per 100 square feet of land; and sequential applications should be separated by at least seven days 

(Captan Fungicide 1998). To account for these restrictions, producers are asked to enter their past 

fungicide application practices into SAS, and the system modifies the recommendation based on the label 

specifications for each fungicide used by the growers. 

4.0 DATA 

The data span four production seasons: 2010-2011 through 2012-2013. The data are collected by 

Professor Natalia Peres from the University of Florida research farm at the Gulf Coast Research and 
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Education Center in Wimauma, Florida. The data are collected from seven different farms located 

throughout Balm region: Fancy Farms, Pacific Farm, BBI, Simmons Farm, Berry Bay, Ferry Farm, and 

Austin Farm. Seven different locations make it possible to conduct a large scale experiment that captures 

various growing conditions in the region. Each grower’s field was divided into two areas. The grower 

uses standard fungicide application practices in one area and SAS based applications - in the other. To 

replicate all possible harvest outcomes, five different cultivars are used, which come from ten different 

nurseries. The cultivars divide into more disease resistant such as Festival, Alafia, and Sanibel as well as 

less-disease resistant ones such as Treasure and Albion. The data consists of marketable weight, disease 

instances, and the number of triggers generated by SAS. Historical data for yearly state average 

strawberry prices and yields were collected from NASS. Third, strawberry production budget data was 

obtained from VanSickle et al. (2009) available from the University of Florida (UF).  

Marketable fruit were counted, weighed, and then cumulated for each production season. 

Diseased fruits were also counted for anthracnose (AFR) and Botrytis (BFR) incidences, and also 

cumulated for each production season. The number of berries tossed for reasons other than anthracnose 

and Botrytis diseases (i.e., cull) was also recorded and summed up for each season.  

During each season, leaf wetness interval (W) and the temperature during the wetness period (T) 

were recorded every 15 minutes by sensors at the Balm weather station.  Then, the temperature measures 

were averaged over all temperature readings during the wetness period. These measures were used as 

independent variables for the Wilson-Madden regression (Equations 2 and 3, respectively for each 

disease). If weather was conducive for disease development, SAS triggered a recommendation for a 

fungicide application. 

Thus, Weather Anthracnose and Weather Botrytis variables are constructed for Anthracnose and 

Botrytis diseases, respectively to capture the overall risk of disease development during the production 

season for each disease. Each data point is a summation of days for each production season, during 

which the 15% threshold (       ≥ 0.15) for anthracnose and 50% threshold (       ≥ 0.50) for 
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Botrytis is reached (Table 1).  

Table 1. The Number of Days with Weather Conditions Conducive for Anthracnose and Botrytis, 
Derived Weather Variables, and Number of Fungicide Applications 

Season Farm Cultivar 

Weather 

Anthracnose 

Weather 

Botrytis 

Model 

Application 

Calendar 

Application 

Percentage 

Change in 

Application 

Rate 

12/13 Ferry Farm Albion 22.0 14.0 6 15 60% 

12/13 Ferry Farm Festival 14.0 7.0 2 10 80% 

12/13 Austin Farms Festival 30.0 17.0 9 18 50% 

12/13 Fancy Farm Festival 22.0 13.0 9 18 50% 

12/13 Fancy Farm RH 21.0 16.0 7 11 36% 

12/13 Fancy Farm RP 21.0 16.0 7 11 36% 

12/13 Pacific Farm Alafia 41.0 26.0 9 16 44% 

Average 

  

24.4 15.6 7.0 14.1 51% 

11/12 Fancy Farm Festival 22 17 6 14 57% 

11/12 Fancy Farm Radiance 24 19 6 14 57% 

11/12 Simmons Radiance 24 19 7 11 36% 

11/12 Pacific Farm Sanibel 32 25 9 13 31% 

11/12 Berry Bay Radiance 13 7 3 12 75% 

11/12 Ferry Farm Albion 22 14 9 15 40% 

11/12 Ferry Farm Festival 24 19 7 13 46% 

Average 

  

23.0 17.1 6.7 13.1 49% 

10/11 Fancy Farms Festival 13 11 4 9 56% 

10/11 Fancy Farms Festival 13 11 3 8 63% 

10/11 Fancy Farms Festival 13 11 4 11 64% 

10/11 Simmons Festival 22 17 6 11 45% 

10/11 Pacific Alafia 21 17 4 11 64% 

Average     16.4 13.4 4.2 10 58% 

 
Lastly, Application variable is quantified by the number of total fungicide applications for the 

entire season combined for both diseases and two application methods, respectively (Table 1). Under the 

Calendar-based application method 8 to 18 applications are administered each production season, 

averaging around 15. Under the SAS-based method 5 to 9 fungicide treatments are applied each season, 

averaging around 6 applications per season, which is about 50% decrease compared to that of the 

Calendar based method.  

 
Manufactures’ specifications limit fungicide application rate to once a week. Thus, even if there 

are several triggers for disease development during a week, only one application is administered. 
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Therefore, for each given season the number of applications is smaller than the number of days 

conducive for the disease development.  

 
5.0 MODEL 

 

Weather conditions (i.e., a combination of temperature and leaf wetness) can be denoted by a random 

weather variable   ∈ Θ, where Θ represents all possible states of weather conditions. Yield is affected 

by random weather conditions, and fungicide application:       . The variability of revenue is a 

result of yield variability, that depends on the random weather events, and strawberry prices 

variability, that depends on the market, which in turn is a function of the supply and demand 

dynamics. Assuming inelastic demand, an increase in supply depresses prices. To reflect this 

dependence, the correlation between historical strawberry prices,     and historical yields,   , 

                is used.  

Alternatively, the producer can improve his/her knowledge about the random state variable, 

weather, by seeking additional information from SAS. For the SAS-based production practice, let X 

denote the set of possible number of fungicide applications, X ∈ [0,  ]1. SAS predicts the probability of 

disease development-conducive weather,        . Given predicted probability, SAS also issues a 

trigger alert for fungicide application, thus, it determines the number of applications             ∈ X 

for the entire season. For a 15-week long production season, SAS will result in zero applications if 

during the season, none of the 15 weeks had days conducive for disease development. The number of 

applications will be the maximum and equal to the number of applications of the traditional method if 

the season had days with disease development-conducive weather conditions in each week of the 

season: 

Since weather,  , and sale price,  , vary from season to season, calendar-based and SAS-based 

fungicide applications result in a distribution of profits for each application method.  

                                                           
1
 For anthracnose trials the experiments continues for an average of 15 weeks, and the maximum fungicide 

application rate is once a week, the maximum number of fungicide applications is fifteen. 
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6.0 SIMULATING KEY VARIABLES  

The weather, θ , is represented through two variables in the model, Weather Anthracnose and 

Weather Botrytis. The Weather variable is randomly drawn from a normal distribution with mean and 

variance obtained from the data collected from the field trials: 

                                                                                            

Since there are only six Weather variable observations from the experiment, these data cannot be 

tested for normality. To understand whether normal distribution can be used, historical data for 

temperature and humidity provided by Florida Automated Weather Network (FAWN) system 

(http://fawn.ifas.ufl.edu/) was tested for normality. The data included 14 production seasons starting in 

1998 and continuing to 2013. The hypothesis that the weather follows normal distribution could not be 

rejected at 5% significance level using Chi-Square test.  

The Weather Intensity variable is obtained by using a simple OLS regression with Weather as an 

independent variable: 

                                                                      

where     is the error term. Following the methodology of Richardson et al. (2000) we generate 

stochastic predicted values from the OLS regression (Equation 6).  First, the deviates from the trend are 

generated by dividing the error term by the predicted value of Weather Intensity measure as follows: 

   

                 . The deviates are then sorted and arranged from minimum to maximum in a vector, 

     . Next, a probability is assigned to each of the sorted deviates as having an equal chance of being 

observed (1/T) in history, where T is the number of historical observations, which are used in the 

regression. The distribution of these deviates based on each deviate’s assigned probability is represented 

by         . Finally, we define stochastically predicted Weather Intensity as: 

                                                                         

where             historical years, and              simulated years,       is a vector of 

deviates from trend as a percentage of predicted, and          represents distribution of deviates in the 

http://fawn.ifas.ufl.edu/
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      vector of sorted deviates , and MVE stands for Multivariate Empirical distribution whose functional 

form depends on                   . MVE is a distribution comprised of the deviates from the trend as a 

percentage of predicted from the regression of the Equation 7, 
   

                 .  

The number of fungicide applications is estimated using simple OLS regression with Weather 

as an independent variable: 

                                                                                                   

where    is the error term. Following the methodology of Richardson et al. (2000) we generate 

stochastic predicted values from the OLS regression (Equation 7).  The procedures are similar to the 

ones described when obtaining stochastically predicted Weather Intensity measure. The deviates from 

the trend are generated by dividing the error term by the predicted value of Application measure as 

follows: 
   

            . The deviates are then sorted and arranged from minimum to maximum in a vector, 

    . Next, a probability is assigned to each of the sorted deviates as having an equal chance of being 

observed (1/T) in history, where T is the number of historical observations, which are used in the 

regression. The distribution of these deviates based on each deviate’s assigned probability is represented 

by        . We define stochastically predicted Application as follows: 

                                                                        

where             historical years, and              simulated years,      is a sorted vector of 

deviates from trend as obtained from the regression (Equation 7),         represents distribution of 

deviates in the      vector of sorted deviates, and MVE stands for Multivariate Empirical distribution 

whose functional form depends on                 . MVE is a distribution comprised of the deviates from 

the trend as a percentage of predicted from the regression of the Equation 9, 
   

            . Since the 

regression in Equation 9 is dependent on the Weather variable, which happens to be from the normal 

distribution, F(.)’s functional form also follows a normal distribution.   

Two different types of cultivars were used in production experiments: a more disease-resistant 
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cultivar and a less disease-resistant cultivar – denoted M and L, respectively. In addition, in those trials 

three different methods of fungicide application were used: Control, Calendar-, and SAS-based. 

Therefore, to distinguish among yields in each different case, let’s denote yield as            
         , where 

Cultivar ∈            and Method ∈                   . 

Thus, the regression expression for the yield in general terms is as follows: 

           
                                                                         

        
             

where Cultivar ∈            Method ∈                   , and        
          

 is an error term.  

Based on data collected during the three year experiment, a functional form for strawberry yield 

in anthracnose trials            
         was obtained using OLS regression: 

 

           
                                                                      

                                                              

                                                       

                                                             

                                
             

where        
         is the error term specific to Cultivar and Method of fungicide application.  

The dependent variable Yield is strawberry weight (in pounds/acre). The descriptive summary of 

independent variables including            ,                    ,                 , 

              and         , and Cultivar, as well as various interactions of these terms is provided 

in Table 2. The yield for the Calendar-based application method is chosen to be a base case scenario, 

while the effect of SAS-based method is modeled using dummy variables. This choice was made 

because the Calendar-based method of fungicide application has persisted historically among the Florida 

growers; therefore, historical State-average Yield data generally reflect the practices of the Calendar-

based fungicide application.  
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Table 2. Independent variables used in regression analysis for Strawberry Yield 
Variable Description Expected Effect 

on Marketable 

Yield 

Mean Standard 

Deviation 

State Yield State Yield during the production seasons 

from 2006 to 2012 as obtained from NASS 

in pounds per acre. 
Positive 26364 3124.08 

Weather 

Anthracnose 

Cumulated number of days that are 

conducive for the development of the 

decease according to the Wilson-Madden 

weather index for the entire season (%Inf 

≥0.15). 

Negative 22.1 6.86 

Weather Botrytis Cumulated number of days that are 

conducive for the development of the 

decease according to the Wilson-Madden 

weather index for the entire season (%Inf 

≥0.50). 

Negative 15.8 4.85 

Weather 

Anthracnose^2 

Cumulated number of days that are 

conducive for the development of the 

decease according to the Wilson-Madden 

weather index for the entire season (%Inf 

≥0.15). 

Negative 534.3 350.20 

Weather Botrytis^2 Cumulated number of days that are 

conducive for the development of the 

decease according to the Wilson-Madden 

weather index for the entire season (%Inf 

≥0.50). 

Negative 274.3 160.96 

Applications Cumulated number of fungicide 

applications for one production season. Positive 9.5 4.11 

SAS-based Dummy variable, indicating the 

experimental plots treated with the model-

based method (i.e., precision disease 

management). 

Positive  0.50 0.50 

Cultivar Dummy Variable, indicating less disease 

resistant cultivar Negative 0.6 0.497 

SAS-

based*Application 

The effect of SAS-based applications 
Positive 3.1 3.49 

WeatherAnthracnos

e*SAS-based 

An interaction of Weather Anthracnose 

variable and SAS-based group. Weather's 

effect on SAS-based group. 
Na 11 8.09 

WeatherBotrytis*SA

S-based 

An interaction of Weather Anthracnose 

variable and SAS-based group. Weather's 

effect on SAS-based group. 
Na 7.9 8.65 

SAS-based*Less-

Resistant Cultivar 

The effect of SAS-based   

 
0.2 0.41 

 

In conclusion, based on method of generating stochastic predicted values from the OLS regression 

(Richardson et al. 2000), we obtain stochastically predicted: 
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where Cultivar ∈            and Method ∈                                           

historical years, and              simulated years,          
          

 is a vector of sorted deviates 

respectively to each method given a more- or less-resistant cultivar for each disease, and            
          is a 

vector of assigned probabilities to a specific deviate in          
          determined by the OLS regressions. It is 

important to mention that          
         is unique for each case (2 diseases, 3 methods, 2 cultivars) precisely 

because in each of those 12 cases a regression has own specific error term,        
           

7.0 RESULTS 

The results of the regression analysis for anthracnose disease are presented in Table 3. As 

defined in the Section 7.4, the intercept contains the effects on the Calendar treatment method.  

Tables 3. Coefficients from the Anthracnose regression for the Marketable Weight of Strawberries  

Anthracnose       

Variable Estimates   Standard Error 

Weather Anthracnose 0.35188085 
*** 

0.113785 

Weather Botrytis 0.40958837 
*** 

0.121357 

Weather Anthracnose^2 -0.0062001 
*** 

0.001665 

Weather Botrytis^2 -0.0131907 
*** 

0.003608 

Method 2.2215572 
*** 

0.718954 

Application 0.13308196 
* 

0.069404 

Method*Application -0.4008236 
*** 

0.089444 

Method*WeatherA 0.14792395 
** 

0.06574 

Method*WeatherB -0.0551831 
*** 

0.078799 

M 0.76386345 
** 

0.202253 

Method*L -0.4293453 
* 

0.290485 

*** signifies 0.01 significance level 

**  - 0.05 significance level 

*    - 0.10 significance level 
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The results of stochastic simulation for Yield in case of anthracnose disease for a more- and a 

less-resistant cultivars based on Equation 11 are displayed in the form of the probability density 

functions in Figure 6. It can be seen that SAS-based yield distribution is shifted to the right in 

comparison with the Calendar-based yield and Control yield, implying that at any given set of 

weather conditions the SAS based fungicide application method produces the highest yield as 

compared to the Calendar application method and Control. Table 4 presents summary statistics for 

the averages of the distributions that confirm visual results of the Figure 6.  

 

Figure 6. Probability Density Functions of Yields. 

 

The result is interesting because the difference between SAS and Calendar-based 

performances seems to be different for more- and less-resistant cultivars. Specifically, SAS performs 

better for the more resistant cultivar while Calendar based method performs better for the less 

resistant cultivar. Comparing Calendar Less Resistant outcome and Calendar More Resistant cultivar, 

we can see the second one yields better than the first. Table 4 lists the statistics after Monte Carlo 

simulation. 

0.00 10000.00 20000.00 30000.00 40000.00 50000.00 60000.00 

SAS (Less Resistant Cultivar) Calendar (Less Resistant Cultivar) 

SAS (More Resistant Cultivar) Calendar (More Resistant) 
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Table 4. Yield Summary Statistics after Monte Carlo Simulation  

Summary Statistics for Yield for both Cultivars in Case of Anthracnose Disease 

  Name Mean (lbs/acre) Std Dev Coef Var Minimum Maximum 

More-Resistant Cultivar 

    1 Calendar  28588.51 12754.7 44.61476 643.1702 55059.27 

2 SAS based  31793.06 12380.82 38.94191 1344.861 56230.35 

Less-Resistant Cultivar 

    1 Calendar 19523.63 10238.59 52.44202 299.6293 34048.81 

2 SAS based 13401.4 6511.862 48.59092 407.8245 22847.02 

 

The coefficient of variance of the simulated yield given the SAS-based method for a more-

resistant and less resistant cultivars is the lower than that of Calendar based (38.94 for a more-

resistant cultivar and 48.59 for a less-resistant cultivar). Overall, by coefficient of variance, the 

methods given cultivar rank as follow: SAS-based (more-resistant cultivar), Calendar (more-resistant 

cultivar), SAS-based (less-resistant cultivar), and Calendar (less-resistant cultivar). This shows that 

the Calendar model runs the most risks. However, in case of less-resistant cultivar its average yield is 

also higher than that of SAS-based. Interestingly, the difference between the coefficients of SAS-

based and Calendar variances is less in the less-resistant cultivar than that of more-resistant cultivar. 

This indicates that SAS-based method is significantly more effective for a more-resistant cultivar 

than for the less-resistant one.  

Inevitably, the question rises whether a slight risk increase of the SAS-based application 

method is worth taking given that the method provides an increase the yields. Therefore, stochastic 

dominance analysis is performed. The next step is, assuming negative exponential utility function, 

methods we will rank ranked by choosing most efficient set based on stochastic dominance with 

respect to a function.  
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