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The Effect of Biotechnology and Biofuels on U.S. Corn Belt Cropping Systems 

The objective of this paper is to investigate the linkage between the use of genetically‐enhanced crops 

in production agriculture, bioenergy produced from these crops, and their combined effects on cropping 

patterns in the U.S. Corn Belt. Specifically, we investigate the relationship between the rapid increases in 

the production of genetically modified corn, the simultaneous upsurge in corn‐based ethanol 

production, and the resulting increase in the derived demand for corn. We empirically investigate the 

effect of genetically modified crop adoption and the enactment of ethanol policies on state‐level corn 

acreage intensity. Our empirical results suggest that the rapid increase in ethanol production due to 

biofuel policies – facilitated in part by the reliance on genetically‐enhanced corn varieties – exacerbated 

the long‐standing trend toward reducing the ratio of total corn acres to total acres planted. 

 

Linking Genetically Modified Corn Production, Ethanol Production, and Corn Acreage Intensity  

The period between 1996 and 2012 has been identified in the literature as one of a transition away from 

conventional crop rotation practices used in the Corn Belt, as documented by Wallander et al. (2011) 

and others. Genetically modified (GM) crop varieties were first introduced for commercial production in 

the United States in 1996. Since then, farmers have rapidly adopted herbicide tolerance (HT), insect 

resistance (Bt), and stacked (both traits) GM corn and soybean varieties. The U.S. adoption rates of GM 

corn and soybeans increased from zero in 1995, to 25 percent and 54 percent in 2000, and to 90 percent 

and 93 percent in 2013, respectively (Economic Research Service, 2014).  

 Numerous authors have noted the rapid adoption and diffusion of GM crops, and various 

studies provide documentation of an array of implications of the increased reliance on GM crop 

varieties. For example, Cattaneo (2006) analyzed the impacts of using transgenic cotton on biodiversity, 

pesticide use, and yield. Also, an earlier study by Van der Sluis et al. (2002) reported on economic costs, 

benefits, and risks involved with agricultural biotechnology at the farm and market levels, as well as for 
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the farm and food system overall. The authors argued that the analysis of the merits of GM products 

should not only include technical aspects, but other stakeholder concerns as well, such as those living in 

developing nations, environmental groups, and consumers. 

The development of corn and soybean‐based biofuel conversion technology as an alternative to 

fossil fuels allowed U.S. energy policy to include programs that require using minimal levels of biofuels 

blended in with transportation fuels. The overall goal of these mandates is to have biofuels become an 

important source of energy for the U.S. economy. The two primary legislative mandates are the 2005 

Energy Policy Act and the Energy Independence and Security Act of 2007. The legislation sets minimum 

annual consumption levels in four broad‐based biofuel categories: cellulosic, biomass‐based diesel, 

undifferentiated‐advanced, and renewable energy. While there is no explicit mandate for corn‐based 

ethanol, corn is by far the main source of biofuel production because of its comparative cost advantage 

relative to alternative biofuels.  

While agricultural practices change continuously in response to a variety of factors (Wardlow 

and Egbert, 2002), U.S. biofuel policies have had particularly far‐reaching consequences. The rapid 

adoption and diffusion of GM crops in combination with the increase in corn‐based biofuel production 

have led to major changes in the types of crops planted and their cropping patterns. This was confirmed 

by Kurkalova et al. (2012) and Marshall (2011), who found that corn demand, driven by increased corn‐

based ethanol production, influenced producer crop rotation patterns in the U.S.  

The Corn Belt region in particular has seen a major shift away from wheat and hay, as illustrated 

in Table 1. According to Claassen et al. (2010), the combined corn and soybean acreage nearly doubled 

from 20 percent to close to 40 percent of cultivated cropland over the ten‐year period between 1997 

and 2007. The authors suggest that the move toward increased corn and soybean plantings was 

facilitated primarily by policy changes embodied in the 1996 Farm Bill (P.L. 104‐127), commonly referred 

to as the “Freedom to Farm” bill, which decoupled the income support system for row crop producers 
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and removed the set‐aside requirements for support payments (Mercier, 2011). These policy changes 

allowed agricultural producers to respond more directly to market signals, policy incentives, and 

changes in technology. The latter includes the use of GM crops, which enabled farmers to reduce labor 

requirements for crop production during the planting season, as first documented by Fernandez‐Cornejo 

and McBride (2002). 

The issue of GMO diffusion linked to specific crop intensification goes beyond the borders of the 

U.S. For example, Cap and Malach (2012) reported on changes in land use patterns due to the increased 

area planted to soybeans in general, and the increased reliance on GM soybeans in particular, in four 

South American nations. The authors found that the commercial availability of glyphosate‐tolerant 

soybean varieties contributed to an increase in the area planted to soybeans in three of the four main 

South American soybean‐producing nations.  

Recent studies provide further confirmation of the finding that GM crop variety adoption rates 

may be linked to changes in agricultural producer production practices. For example, Fausti et al. (2012) 

found that the production of corn, hay, and sunflowers in South Dakota experienced an intensification 

of insecticide use in 2007, relative to levels reported in previous U.S. Census of Agriculture reporting 

years. The authors note the positive correlation between the amount of cropland treated with 

insecticides and the amount of cropland planted to GM crops. The authors document that other 

Midwestern states – which also had an increase in cropland acres planted to GM corn – saw an increase 

in cropland treated with pesticides as well.  

In their analysis of adoption and diffusion decisions and patterns, Scandizzo and Savastano 

(2010) noted that once farmers adopt GM crops in their production systems, it is costly to switch back to 

conventional crop varieties. The difficulty to return to conventional crops is due in part because farmers 

have incomplete information about pest pressures at the time of planting. Also, learning and 

experimenting with new technologies involves sunk costs, and adopting GM crops requires making 
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investments specific to the new technology. The authors suggest that GM crop adoption and diffusion 

may reduce biodiversity, enhance pest resistance, and cause irreversible biological effects due to the 

spread of genes to non‐target wild species. Thus, the irreversibility of the adoption of GM crops and 

their high diffusion rates represent a dramatic change in the types of agriculture observed, including the 

types of crop plantings and cropping patterns. The loss of biodiversity was also a focus of Atwell et al. 

(2009), who noted that market incentives have contributed to an increased reliance on row crops in 

general. While not unique to GM crops, the increased intensification of agriculture enhanced by the use 

of GM crops is associated with natural variability loss, and a rise in ecological imbalances.  

This short review of the literature suggests that the rapid adoption and diffusion of genetically 

modified crops in combination with a high rate of increase in corn‐based ethanol production has led to a 

variety of changes in production agriculture. The focus of our study is on analyzing changes in cropping 

patterns due to the increased reliance on genetically modified crops and the growth in the derived 

demand for corn stemming from the increased ethanol production since the mid‐1990s.  

 

Data  

Our analysis is based on secondary state‐level data on crop acres planted, GM crop coverage, and crop 

prices in eleven northern Corn Belt states for each year between 2000 and 2012. A total of 143 

observations were used in the analysis. We collected state‐level cropland acres planted for IA, IL, IN, NE, 

KS, MI, MN, MO, OH, SD, and WI for the years 1996 to 2012 from the National Agricultural Statistics 

Service (2013) Web site. We collected annual GM crop adoption rates for the eleven northern Corn Belt 

states from the Economic Research Service Web site (2013) from 2000 to 2012 (genetically modified 

crop adoption rates for years prior to 2000 were not available. A policy dummy variable was created 

based on the passage of the 2005 Energy Policy Act and the Energy Independence and Security Act of 

2007. The dummy variable has a value of one for the years 2005 to 2012. 
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Methodology 

Given the nature of our state‐level pooled time series/cross‐sectional data set, we adopted a linear 

mixed modeling approach to investigate the effect of GMO adoption and the enactment of ethanol 

policies on changes in state‐level corn acreage intensity. Our objective is to investigate how the 

proportion of corn acreage across northern Corn Belt states changed during this transition period. We 

hypothesize that agricultural sector heterogeneity between states – for example, differences in climate, 

soil, landscape, and state agricultural policies – result in dissimilar responses to the introduction of 

biotechnology and bioenergy policy during the transition period covered in our study.  

Using annual data, we apply a mixed regression modeling approach to estimate a fixed effect 

model with a random intercept by state. We hypothesize that data on acres planted are clustered due to 

the heterogeneity of individual state characteristics.1 The dependent variable (CSR) is the ratio of total 

corn acres to total acres planted, or corn acreage intensity by state. Explanatory variables include the 

ratio of annual corn to soybean prices (price ratio); an ethanol policy dummy variable (Reg=1 for years 

from 2005 to 2012); and the state‐level percentage of corn acres planted with GMO seed (GECorn). We 

assume each of these explanatory variables has a positive relationship with CSR. We also created 

interaction terms designed to identify the effect of GMO adoption rates and the RFS policy on state‐level 

CSR.2 We believe this set of explanatory variables captures the market valuation of corn relative to other 

crops, the supply side impact of biotechnology on corn production, and the effect of the increased 

demand for corn due to policy incentives associated with corn‐based ethanol production increases. 

1 Clustered data refer to attributes associated with an individual state’s agricultural sector, such as climate, soil 
type, landscape, and state‐level agricultural policies that would result in differences in cropping patterns 
between states. The existence of cluster data will result in biased standard errors.  
2 We tested both GECorn and RFS for random verses fixed effects. Both random effect hypotheses were 
rejected at the 5 percent level. Thus, the interaction terms capture individual state‐level fixed effect 
coefficients for the explanatory variables GECorn and RFS. The fixed effect interaction terms are both 
significant at less than 1 percent. 
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The standard assumptions associated with the linear mixed model (LML) are listed in equations 

1‐4. Using the standard vector notation provided on page 121 in the SAS/Stat 9.3 User Guide (SAS 

Institute, 2011), we define the general structure of the model:  

1.𝐶𝑅𝐶 = Χ𝛽 + 𝑍𝛾 +  𝜀, 

2. 𝛾 ∼ 𝑵(𝑂,𝐺), 

3. 𝜀 ∼ 𝑵(𝑂,𝑅), and  

4.𝐶𝑂𝑉(𝛾, 𝜖) = 0. 

The dependent variable CRC denotes the vector of dependent variable observation. Matrix X is 

the design matrix associated with β, which represents the vector of unknown fixed effect parameters. 

Matrix Z is the design matrix associated with ϒ, representing the vector of unknown random effect 

parameters. The error term, ε, reflects an unknown random error vector whose elements are not 

required to be homogenous and independent. Equation 4 states that ϒ and ε are independent, which 

implies that the variance of CRC (SAS Institute, 1999: p. 2087) can be defined as: 

  5.𝑉𝐴𝑅[𝐶𝑅𝐶] = 𝑍𝐺𝑍𝑇 +  𝑅. 3 

G and R are the covariance matrices associated with Z and ε, respectively.4 The LML procedure in SAS 

provides great flexibility when dealing with regression diagnostic issues (SAS Institute, 1999). First, we 

employed a “sandwich estimator” approach to produce robust standard errors associated for β (SAS 

Institute, 1999, chapter 41; and Diggle et al., 1994). The mixed procedure requires the covariance 

matrices G and R to be specified. The specification of the covariance matrices G and R were then 

determined using the “Null Model Likelihood Ratio Test” with a test statistic that follows an asymptotic 

chi‐square distribution with q‐1 degrees of freedom, were q is the number of covariance parameters 

associated with the alternative covariance matrix structures being compared.  

We estimated three models. The first model is a simple random intercept model containing 

3 The superscript notation “T” denotes the transpose matrix operation.  
4 The default covariance structure for the Mixed procedure is variance components (SAS 1999: p. 2088) 
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fixed effects for the price ratio, GMO, and RFS. The second is a random intercept model with a GMO 

interaction term, where the simple model is extended by adding a fixed effect interaction term for 

state*GMO. The interaction variable’s parameter estimate, δ, reflects each individual state’s slope 

coefficient for the effect of each specific state’s GMO adoption rate on the proportion of corn acres 

planted. The third model is a random intercept model with the RFS interaction term, where the simple 

model is extended by adding a fixed effect interaction term for state*RFS. The interaction variable’s 

parameter estimate, δ, captures each individual state’s fixed effect intercept adjustment coefficient for 

the effect of federal ethanol policy on each specific state’s proportion of corn acres planted.5 The linear 

form of the model to be estimated is: 

6.𝐶𝑅𝑆𝑖𝑡 =  𝛼 +  𝛽𝑋𝑖𝑗𝑡 +  𝛾𝑍𝑖𝑡 + 𝛿𝑍𝑖𝑡𝑋𝑖𝑗𝑡 + 𝜀𝑖𝑡 ,𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 11, 𝑗 = 1 𝑡𝑜 𝑛,𝑎𝑛𝑑 𝑡 = 1 𝑡𝑜 13.  

The parameter α is the fixed intercept, the subscript “i” denotes the state, “j” denotes explanatory 

variables, and “t” denotes time. Regression diagnostic analyses confirmed that the mixed model 

approach was more robust than a simple fixed effects model. Furthermore, the variance components 

estimating procedure found that the variance associated with matrix Z’s contribution to the variance of 

matrix V was significant at the one percent level. Regression diagnostics confirmed the presence of serial 

correlation in the GMO interaction model. The problem was corrected by specifying an AR(1) covariance 

structure for the R matrix defined in equation 3. Diagnostics confirm the AR(1) covariance structure was 

significant at the five percent level.  

 

Empirical Results  

Summary Statistics  

Tables 1 through 3 summarize changes in cropping patterns in the northern Corn Belt between 1996 and 

2012, divided over the first part (1996‐2004) and the second part (2005‐20012) of the period. The tables 

5 Note, due to multicollinearity, the two interaction effects needed to be modeled separately. 
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indicate that all of the Corn Belt states in our sample experienced an increase in corn acres planted as 

well as an increase in the proportion of acres planted to corn in the second period, relative to the first. 

During this period, the proportion of corn acres planted increased from 35.8 percent to 40.2 percent, 

while the proportion of soybean acres remained unchanged at about 32 percent. One interesting 

statistic is that the total acres under all crops declined after 2004 by about 2 percent. After 2004, the 

increase in corn acres planted took place at the expense of areas planted to wheat, hay, and other 

crops. This suggests that the increased corn area led producers to move away from conventional crop 

rotation practices.  

 

Regression Results 

Three models were estimated: (a) Model‐1, Simple Random Intercept Model, (b) Model‐2, Random 

Intercept Model with GMO/State interaction terms, and (c) Model‐3, Random Intercept Model with 

RFS/State interaction terms. The fit statistics and regression results for the three estimated models used 

in our analysis are provided in Tables 4 and 5. Model‐1 provides estimates for the fixed effect parameter 

estimates at the regional level. All fixed effect parameter estimates are statistically significant at one 

percent level. These findings suggest that an increase in the corn‐to‐soybean price ratio, the adoption 

and diffusion of GMO technology, and the passage of the biofuels acts of 2005 and 2007 all affected 

corn acreage intensity in the northern Corn Belt region.  

 In an effort to capture the state‐specific effects of the adoption and diffusion of GMO 

technology on cropping pattern changes, we dropped the GMO fixed effect variable and introduced 

interaction terms (Model‐2). The positive state‐specific slope coefficients indicate that corn acreage 

intensity in all states was positively impacted by the intensification of GMO adoption. However, 

comparison of the state‐specific GMO interaction coefficients in Model‐2 with the GMO coefficient in 

Model‐1 show that in seven of the Corn Belt states (IA, IL, KS, NE, MN, SD, and WI) the adoption and 
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diffusion of transgenic corn varieties disproportionately contributed to the increased corn acreage 

intensity in comparison to the region as a whole. In the remaining four states (IN, OH, MO, and MI) the 

spread of GM corn varieties had a smaller impact on corn acreage intensity relative to the regional 

average as estimated in Model‐1. 

 Similarly, to assess the impact of the federal biofuel policy on cropping pattern changes by state, 

we dropped the RFS as explanatory variable, and introduced state‐specific RFS interaction terms (Model‐

3). Comparing state‐specific fixed effect interaction coefficients in Model‐3 with the RFS coefficient in 

Model‐1 helps identify the states where the RFS policies intensified corn acreage plantings. The results 

indicate that the two federal biofuel laws had a disproportionately stronger impact on corn production 

patterns in IA, IL, NE, and SD relative to the region overall. On the other hand, the impacts of federal 

biofuel laws on cropping patterns in MN and WI were slightly below the regional average estimate 

provided by model‐1. This perhaps is due to state‐level policies favoring biofuels production and usage 

prior to the passage of federal regulations. The parameter estimates for the states in which the biofuel 

laws had a particularly strong impact on changing cropping patterns were highly significant, while those 

for the two states for which the biofuel laws had a slightly smaller impact than for the northern Corn 

Belt region as a whole were statistically significant at the five percent level. The parameter estimate for 

KS was equal to that of the region overall, and was significant at was significant at five percent. The 

parameter estimates for the remaining biofuel‐state interaction terms (IN, MI, MO, and OH) were not 

statistically significant. This implies that federal biofuel policy did not alter corn acreage levels in these 

states relative to the 2000‐2004 period. The unevenness of the effect of federal biofuel policy on the 

proportion of corn acres planted suggests state‐level idiosyncratic attributes played a role in policy 

effectiveness.   

 The parameter estimates of the random intercept component for the three models are highly 

consistent, as are those of the fixed effect intercepts, which range from 0.255 to 0.266. This range 
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reflects the proportion of corn acres planted at the state level assuming that GMO diffusion and biofuel 

policies were unchanged. The random intercept is interpreted as the state‐specific deviation from the 

fixed effect intercept for the region as a whole. All states not having a statistically significant random 

intercept reflect a proportion of corn acres planted equal to the regional average. These states include 

MI, MN, and OH. States with statistically significant positive intercept terms indicate that theses states’ 

proportion of corn acres planted were above the regional average prior the introduction of GMO seed 

and implementation of biofuel policies. The states with statistically significant and negative coefficients 

represent those with less corn intensity than the regional average prior to the widespread diffusion of 

GMO and implementation of biofuel policy incentives.  

One interesting insight gleaned from the parameter estimates is that IN, MI, MO and OH each 

had GMO interaction parameter estimates below the regional average estimate provided in Model‐1. 

These same states also were the only ones with insignificant RFS interaction parameter estimates. Thus, 

these results suggest that the sensitivity of corn intensity to GMO adoption is a factor that affects 

biofuel policy effectiveness. Thus we believe that the results indicate that there is a statistically positive 

relationship between increased GMO diffusion and increasing corn acre intensity due to the passage of 

biofuel policies.  

These results suggest that variables not captured in our analysis, including state‐level policies 

and agronomic characteristics, may also have affected corn planting increases at the state level. In 

particular, corn planting intensities in states with proactive biofuels policies, such as Minnesota, may 

have been more affected by state‐level policies than by federal policies.  

  

Discussion 

The empirical results presented in our study demonstrate that the corn planting intensification 

due to the introduction of GMOs and biofuel technology varied by state between 2000 and 2012. The 
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evidence also suggests that the significant increase in corn acreage intensity over the period of analysis 

is linked to biofuel policies and GMO adoption. Furthermore, the proportion of soybean acres has 

remained stable in the pre‐ and post‐RFS periods, indicating a decline in the acres planted to other crops 

used in conventional rotation practices in the region (Table 1). Empirical evidence also indicates that five 

of the eleven states (IA, IL, KS, MO, and SD) experienced a double‐digit percentage increase in corn acres 

planted. This suggests that the effects of using GMO technology on the production side and biofuel 

policies on the demand side vary by state. Empirical evidence suggests that IN, MI, MO, and OH 

experienced a below‐average boost from GMO on corn acres planted. These four states were also the 

states where biofuel policy had no effect on corn intensity.  The identification of the heterogonous 

factors across states may provide insights on how cropping patterns will change in the future.  

Cropping pattern changes in general and the growing dominance of corn in U.S. crop production 

systems in the northern Corn Belt have introduced a host of expected and unexpected consequences. 

For example, the relatively high corn prices experienced over the past several years contributed to price 

increases of other crops globally, a decline in the production of other crops, and an increase in the cost 

of raising livestock. The corn production intensification facilitated in part by the reliance on GM varieties 

also resulted in increased corn pest resistance and increased insecticide usage. Both the extent of the 

pest resistance and the subsequent relatively rapid increase in pesticide use were unanticipated at the 

onset of the widespread use of crop biotechnology. 

The result of our study build on the general consensus drawn from the literature that the rapid 

increase in corn‐based ethanol production has in part been facilitated by the increased use of GM corn 

varieties, and vice versa, the increased ethanol production – in part made possible by supportive federal 

and state policies – contributed to a prolonged period of high corn prices and thereby further facilitated 

the full‐scale adoption and diffusion of the use of GM corn varieties.  

We hypothesize that the combination of the shift in the demand for corn due to the increased 
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corn‐based ethanol production, and the corn supply shift caused by the rapid adoption and diffusion of 

GM corn varieties in agricultural production was facilitated by an agricultural policy environment that 

encouraged agricultural producers to respond to price incentives. In turn, the positive feedback loop 

between corn‐based ethanol production and the increased reliance on GM corn varieties in agricultural 

production embodied a crop management paradigm shift in the northern Corn Belt. While different 

from state‐to‐state, our research indicates that overall crop production patterns, the use of genetically 

modified technology in agricultural production, the reliance on ethanol markets as an outlet for corn 

production, and crop rotation patterns each has changed dramatically and interactively in the Corn Belt 

since the late 1990s.  

While based on data collected in the northern Corn Belt, the study is also of interest to other 

regions of the United States. Corn production has expanded not only in response to the widespread 

adoption of genetically modified corn varieties and biofuel policies, but also as a consequence of other 

forces such as climate change and plant breeding technology improvements. Thus, the issues addressed 

in our study represent a challenge for and are of critical importance to agriculture in the future 

throughout the United States. 
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Table 1. Changes in principal crops area in the Corn Belt, 1996 to 2012 

         Avg. (1996-2004) Avg. (2005-2012) Change in Area 

Crops 1,000 acres % 1,000 acres % 1,000 acres % 

       Corn, Planted Acres 64283 35.8% 71044 40.2% 6760 11% 
Soybean, Planted Acres 57103 31.8% 56651 32.1% ‐452 ‐1% 
Barley, Planted Acres 524 0.3% 226 0.1% ‐297 ‐57% 
Oats, Planted Acres 2077 1.2% 1378 0.8% ‐699 ‐34% 
Wheat, Planted Acres 22331 12.4% 20053 11.3% ‐2278 ‐10% 
Hay, Harvested Acres 24375 13.6% 21454 12.1% ‐2921 ‐12% 
Others  8886 4.9% 5945 3.4% ‐3727 ‐41.9% 

Total Planted Area 179580 100% 176751 100% ‐2829 ‐2% 
     Source: Compiled from USDA data, 
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1000). 
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Table 2. Changes in area under different crops in the Corn Belt, by state, 1996‐2012 

   
  

Corn Soybeans Barley Oats Wheat All Hay Total1 
State/ 

 
Acres Acres Acres Acres Acres Acres Planted 

Region Units Planted Planted Planted Planted Planted Harvested Area 

  
      ******** Avg.(2005-2012) compared to the Avg.(1996-2004)******** 

IA 1000 Acres 1292 ‐844 0 ‐92 ‐4 ‐209 ‐88 

 
(in % ) 10.5% ‐8.0% ‐ ‐35.3% ‐11.7% ‐24.8% ‐0.4% 

IL 1000 Acres 1318 ‐1245 0 ‐30 ‐239 ‐50 ‐556 
  (in % ) 11.8% ‐12.0% ‐ ‐41.2% ‐23.1% ‐7.3% ‐2.4% 
NE 1000 Acres 638 518 ‐8 ‐47 ‐207 ‐301 ‐134 

 
(in % ) 7.5% 12.1% ‐100% ‐30.1% ‐10.8% ‐18.4% ‐0.7% 

MN 1000 Acres 606 21 ‐205 ‐130 ‐380 ‐252 ‐395 
  (in % ) 8.4% 0.3% ‐65.8% ‐34.5% ‐18.1% ‐8.4% ‐2.0% 
IN 1000 Acres 169 ‐250 0 ‐17 ‐129 ‐163 ‐320 

 
(in % ) 2.9% ‐4.5% ‐ ‐49.0% ‐23.3% ‐13.5% ‐2.5% 

SD 1000 Acres 824 202 ‐53 ‐156 ‐268 ‐294 ‐299 
  (in % ) 20.1% 5.2% ‐52.4% ‐38.2% ‐7.9% ‐13.3% ‐1.7% 
WI 1000 Acres 259 249 ‐24 ‐117 116 ‐135 ‐9 

 
(in % ) 7.1% 18.3% ‐36.6% ‐28.5% 66.1% ‐3.3% 0.1% 

OH 1000 Acres 183 ‐40 ‐1 ‐32 ‐180 ‐443 ‐311 
  (in % ) 5.4% ‐0.9% ‐33.8% ‐32.3% ‐16.8% ‐14.3% ‐3.0% 
KS 1000 Acres 1049 724 4 ‐40 ‐767 ‐129 ‐497 

 
(in % ) 34.5% 27.4% 41.5% ‐32.1% ‐7.4% ‐10.2 ‐2.1% 

MO 1000 Acres 349 240 0 ‐17 ‐261 ‐540 13 
  (in % ) 12.3% 4.8% ‐ ‐41.7% ‐23.9% ‐13.1% 0.1% 
MI 1000 Acres 73 ‐26 ‐10 ‐20 42 ‐406 ‐235 

 
(in % ) 3.1% ‐1.3% ‐43.8% ‐22.5% 7.0% ‐18.1% ‐3.5% 

Corn Belt 1000 Acres 6760 ‐452 ‐297 ‐699 ‐2278 ‐2921 ‐2829 

 
(in % ) 10.5% ‐0.8% ‐56.8% ‐33.7% ‐10.2% ‐12.0% ‐1.6% 

     1Totals do not match because areas under other crops are not listed.  
     Source: Compiled from USDA data,              
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1000). 
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Table 3. Changes in crop area shares in the Corn Belt, by state, 1996 to 2012 

            Corn Soybeans Barley Oats Wheat All Hay 
State/ 

 
Acres Acres Acres Acres Acres Acres 

Region Period Planted Planted Planted Planted Planted Harvested 

  
     ********* As a Percent of Total Principal Crop Area********* 

IA 1996‐04 49.8 42.4 0.0 1.0 0.1 3.4 

 
2005‐12 55.2 39.1 0.0 0.7 0.1 2.6 

IL 1996‐04 47.2 44.0 0.0 0.3 4.4 2.9 
  2005‐12 54.1 39.7 0.0 0.2 3.5 2.7 
NE 1996‐04 44.3 22.5 0.0 0.8 10.1 8.6 

 
2005‐12 47.9 25.4 0.0 0.6 9.0 7.1 

MN 1996‐04 36.1 34.9 1.5 1.9 10.4 14.8 
  2005‐12 39.8 35.7 0.5 1.3 8.7 13.9 
IN 1996‐04 45.7 44.1 0.0 0.3 4.4 9.5 

 
2005‐12 48.3 43.2 0.0 0.1 3.5 8.5 

SD 1996‐04 23.8 22.5 0.6 2.4 19.7 12.9 
  2005‐12 29.1 24.1 0.3 1.5 18.4 11.4 
WI 1996‐04 45.3 16.8 0.8 5.1 2.2 50.2 

 
2005‐12 48.5 19.9 0.5 3.6 3.6 48.6 

OH 1996‐04 32.4 43.6 0.0 1.0 10.4 29.8 
  2005‐12 35.2 44.5 0.0 0.7 8.9 26.3 
KS 1996‐04 13.1 11.3 0.0 0.5 44.5 5.4 

 
2005‐12 18.1 14.8 0.1 0.4 42.2 5.0 

MO 1996‐04 20.7 36.2 0.0 0.3 8.0 30.1 
  2005‐12 23.3 37.9 0.0 0.2 6.1 26.2 
MI 1996‐04 34.6 29.5 0.3 1.3 8.8 33.1 

 
2005‐12 36.9 30.1 0.2 1.1 9.8 28.1 

Corn Belt 1996‐04 35.8 31.8 0.3 1.2 12.2 13.6 
  2005‐12 40.2 32.1 0.1 0.8 11.3 12.1 

             Source: Compiled from USDA data, 
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1000). 
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Table 4. Variance Components Statistics and Global Fit Statistics 
 

      Model-1 Model-2 Model-3 

  Random Int. Model: 
Simple 

Random Int. Model: 
GMO/State 

Random Int. Model: 
RFS/State 

Covariance Par Est.       
Random Int. Z=2.34:  P‐Value <0.01 Z=2.32:  P‐Value <0.02 Z=2.33:  P‐Value <0.01 
Residual Z=8.12:  P‐Value <0.01 Z=8.02:  P‐Value <0.01 Z=8.12:  P‐Value <0.01 
AR(1) N/A Z= ‐2.01: P‐Value <0.05 N/A 
Fit Statistics       
‐2 Log Likelihood ‐674.3 ‐707.6 ‐692.6 
AIC ‐662.3 ‐673.6 ‐660.6 
BIC ‐659.9 ‐666.8 ‐654.3 
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Table 5. Random intercept estimates for corn acreage intensity, by state, 2000‐2012 

            Model-1 Model-2 Model-3 

      
Random Int. Model: 
Simple 

Random Int. Model: 
GMO/State 

Random Int. Model: 
RFS/State 

     Fixed Effect 
 

      
  Intercept    0.266***   0.255***   0.266*** 
  GMO   0.060***     0.065*** 
  RFS   0.014***   0.009***   
  Price Ratio   0.186***   0.191***   0.182*** 
Interaction Term        
  IA 

 
    0.118***   0.031*** 

  IL 
 

    0.094***   0.027*** 
  NE 

 
    0.101**   0.021** 

  MN 
 

    0.075***   0.011*** 
  IN 

 
    0.029*** ‐0.007 

  SD 
 

    0.120***   0.026*** 
  WI 

 
    0.084***   0.013** 

  OH 
 

    0.021*** ‐0.005 
  KS 

 
    0.084***   0.014** 

  MO 
 

    0.047***   0.001 
  MI 

 
    0.052**   0.001 

Random Effect       
  IA 

 
  0.145***   0.120***   0.133*** 

  IL 
 

  0.140***   0.134***   0.130*** 
  NE 

 
  0.074**   0.057**   0.068** 

  MN 
 

‐0.003 ‐0.002 ‐0.003 
  IN 

 
  0.100***   0.125***   0.110*** 

  SD 
 

‐0.121*** ‐0.158*** ‐0.130*** 
  WI 

 
  0.091***   0.091***   0.091** 

  OH 
 

‐0.026   0.001 ‐0.015 
  KS 

 
‐0.222*** ‐0.227*** ‐0.224*** 

  MO 
 

‐0.157*** ‐0.139*** ‐0.150*** 
  MI   ‐0.018 ‐0.002 ‐0.010 
Note: ***, and ** indicate significance at 0.01 and 0.5 levels, respectively. Type 3 test for Fixed 
Effects indicated the interaction coefficient in Models 2 and 3 are significant (P‐value < 0.001). 
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