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Measuring and decomposing agricultural
productivity and profitability change*

Christopher J. O’Donnell†

Profitability change can be decomposed into the product of a total factor productivity
(TFP) index and an index measuring changes in relative prices. Many TFP indexes can
be further decomposed into measures of technical change, technical efficiency change,
scale efficiency change and mix efficiency change. The class of indexes that can be
decomposed in this way includes the Fisher, Törnqvist and Hicks–Moorsteen TFP
indexes but not the Malmquist TFP index of Caves, Christensen and Diewert (1982).
This paper develops data envelopment analysis methodology for computing and
decomposing the Hicks–Moorsteen index. The empirical feasibility of the methodol-
ogy is demonstrated using country-level agricultural data covering the period
1970–2001. The paper explains why relatively small countries tend to be the most pro-
ductive, and why favourable movements in relative prices tend to simultaneously
increase net returns and decrease productivity. Australia appears to have experienced
this relative price effect since at least 1970. Thus, if Australia is a price-taker in output
and input markets, Australian agricultural policy-makers should not be overly con-
cerned about the estimated 15 per cent decline in agricultural productivity that has
taken place over the last three decades.

Key words: economies of scale, economies of scope, mix efficiency, scale efficiency, technical
change, technical efficiency.

1. Introduction

Improvements in agricultural productivity are a fundamental precondition for
sustainable economic development. When agricultural productivity increases,
resources including labour and capital can be released from food production
to expand the nonagricultural sectors of the economy; resources such as land
and water can also be used for environmental purposes. In coming decades, if
populations continue to grow and natural resource stocks continue to be
depleted, growth in agricultural productivity will become increasingly impor-
tant for maintaining the environment and improving standards of living.
Effective public policy in this area requires the identification of the main

drivers of productivity growth. In agriculture, two important drivers are
technical progress and technical efficiency improvement. Technical progress
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mainly refers to expansions in the production possibilities set that come
about through increased knowledge, while technical efficiency improvement
refers to increases in output–input ratios made possible by, for example,
eliminating mistakes in the production process. Public policies designed to
improve agricultural productivity can be targeted at these different compo-
nents. For example, policies designed to improve the rate of technical pro-
gress include increased funding for scientific research and development;
complementary policies designed to increase technical efficiency include edu-
cation, training and extension programs. By carefully defining the various
components of agricultural productivity change, this paper provides insights
into the ways different public policies can promote or retard growth.
Included among these are policies that affect the prices of agricultural out-
puts and inputs.
To empirically measure the components of productivity growth, it is first

necessary to have a precise definition of productivity and then a productivity
index number formula that is consistent with this definition. In the case of
multiple-output multiple-input firms, total factor productivity (TFP) can be
defined as the ratio of an aggregate output to an aggregate input. This defini-
tion underpins the seminal work of Jorgenson and Griliches (1967) and is the
definition used in this paper. With this definition, index numbers that mea-
sure changes in TFP can be expressed as the ratio of an output quantity index
to an input quantity index (i.e., a measure of output growth divided by a mea-
sure of input growth). O’Donnell (2008) uses the term multiplicatively com-
plete to refer to TFP indexes constructed in this way. The class of
multiplicatively complete TFP indexes includes the well-known Paasche, Las-
peyres, Fisher and Törnqvist indexes. However, the popular Malmquist TFP
index of Caves et al. (1982) is not complete, implying that it may be an unreli-
able measure of TFP change.
O’Donnell (2008) shows that multiplicatively complete TFP indexes play a

central role in the analysis of profitability change, technical change and effi-
ciency change. First, he shows that profitability change can be written as the
product of a multiplicatively complete TFP index and an index measuring
changes in the terms of trade (TT).1 Second, he shows that all multiplicatively
complete TFP indexes can be decomposed into an unambiguous measure of
technical change and several recognizable measures of efficiency change.
Among the efficiency change components are familiar measures of input- and
output-oriented technical and scale efficiency change. Other less-familiar
components measure the increases in TFP that are possible when technically
efficient firms are permitted to vary their output and/or input mix. These

1 ‘Terms of trade’ refers to the relative prices (i.e., terms) at which goods and services are
exchanged (i.e., traded). The terminology is usually used in an international trade context.
However, Coelli et al. (2005, p. 63) also use it in the general context of individual firms (output
price divided by input price), while ABARE (2007) use it with specific reference to the farming
sector (index of prices received to prices paid). Alternative names for the terms of trade index
include price recovery index and price performance index (Balk 2003, p. 22).
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measures of so-called mix efficiency change are closely related to well-known
measures of allocative efficiency change. However, the two sets of measures
are generally only equivalent if aggregate quantities are constructed using
particular aggregator functions.
This paper briefly summarizes the conceptual framework of O’Donnell

(2008) and develops data envelopment analysis (DEA) methodology for com-
puting and decomposing the multiplicatively complete Hicks–Moorsteen
TFP index. This new methodology is then applied to country-level agricul-
tural data covering the period 1970–2001.
The structure of the paper is as follows. Section 2 outlines the mathemati-

cal relationship between profitability, TFP and the TT. Underpinning this
relationship is the definition of TFP as the ratio of an aggregate output to
an aggregate input. Section 3 defines well-known measures of technical and
scale efficiency in terms of these aggregates. It also explains O’Donnell’s
(2008) concepts of mix and TFP efficiency. Section 4 shows how any multi-
plicatively complete TFP index can be decomposed into a potentially infinite
number of efficiency and technical change components. Attention is then
concentrated on a handful of exhaustive decompositions that are economi-
cally meaningful. Section 5 explains that if Shephard (1953) distance func-
tions are used to aggregate inputs and outputs, then the resulting quantity
indexes are the Malmquist indexes of Caves et al. (1982). The Hicks–Moors-
teen TFP index is the ratio of these Malmquist indexes and can therefore be
expressed in terms of quantity aggregates. Section 6 develops DEA method-
ology for computing and decomposing the Hicks–Moorsteen index. More
familiar DEA linear programs (LPs) for decomposing Malmquist TFP
indexes are also motivated and presented. Section 7 applies the methodol-
ogy to FAO data on the agricultural inputs and outputs of 88 countries.
The discussion in this section centres on the components of agricultural
TFP change in Australia, New Zealand and the United States. The paper is
concluded in Section 8.

2. Productivity and profitability change

Some measures of economic and business performance are well defined and
understood. In the case of a single-input single-output firm, for example,
economists have well-defined measures of profit (revenue minus cost), profit-
ability (revenue–cost ratio),2 productivity (output–input ratio) and the TT
(relative prices at which goods and services are traded). Even in the case of
multiple-input multiple-output firms, the concepts of productivity, efficiency
and profitability are conceptually and mathematically well defined. This has
important implications for the measurement and decomposition of produc-
tivity and profitability change. It means, for example, that a measure of the

2 For this definition, see Althin et al. (1996), Balk (2003) and Coelli et al. (2005, p. 63).
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change in the TT cannot be computed without defining, implicitly or explic-
itly, a measure of the change in TFP.
Let qnt 2 RJ

þ and xnt 2 RK
þ denote the observed output and input vectors of

firm n in period t, and let pnt 2 RJ
þ and wnt 2 RK

þ denote the associated price
vectors. In this paper, TFP is defined as (e.g., Jorgenson and Griliches 1967;
O’Donnell 2008):

TFPnt �
Qnt

Xnt
ð2:1Þ

where Qnt = Q(qnt) is an aggregate output, Xnt = X(xnt) is an aggregate
input, and Q(.) and X(.) are nondecreasing linearly homogeneous aggregator
functions. With this definition, the index number that compares the TFP of
firm n in period t with the TFP of firm m in period s is

TFPms:nt �
TFPnt

TFPms
¼ Qnt=Xnt

Qms=Xms
¼ Qms;nt

Xms;nt
ð2:2Þ

where Qms,nt ” Qnt/Qms is an output quantity index and Xms,nt ” Xnt/Xms is
an input quantity index. Equation (2.2) demonstrates that TFP change can
be written as an index of output growth divided by an index of input growth.
O’Donnell (2008) uses the term multiplicatively complete to describe TFP

indexes that can be expanded in the form of Equation (2.2). He also demon-
strates that all such TFP indexes can be decomposed into a measure of tech-
nical change and several measures of efficiency change. His demonstration is
aided greatly by the ability to depict the TFP of a multiple-input multiple-
output firm in two-dimensional aggregate quantity space. The basic idea is
illustrated in Figure 1. In this figure, the TFP of firm n in period t is given

Figure 1 Total factor productivity change.
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by the slope of the ray passing through the origin and point A, while the
TFP of firm m in period s is given by the slope of the ray passing through
the origin and point Z. Let lower case a and z denote the angles between
the horizontal axis and the rays passing through points A and Z. Then, the
TFP index that measures the change in TFP between the two firms can be
compactly written TFPms,nt = tan a/tan z. This ability to write a multiplica-
tively complete TFP index as the ratio of (tangent) functions of angles in
aggregate quantity space is used by O’Donnell (2008) to conceptualize sev-
eral alternative decompositions of TFP change. For example, let e denote
the angle between the horizontal axis and the ray passing through the origin
and any non-negative point E. Then, it is clear from Figure 1 that the
difference in TFP between the two firms can be decomposed as
TFPms,nt = tan a/tan z = (tan a/tan e)(tan e/tan z). An infinite number of
points E can be used to effect such a decomposition. Section 3 considers the
points that feature in common definitions of input- and output-oriented
measures of efficiency.
Associated with the aggregate quantities Qnt and Xnt are aggregate prices

Pnt and Wnt with the properties PntQnt ¼ p0ntqnt and WntXnt ¼ w0ntxnt: These
properties are known as product rules and are trivially satisfied. The existence
of these price aggregates means that profitability (the revenue–cost ratio) can
be written as

PROFnt �
p0ntqnt
w0ntxnt

¼ PntQnt

WntXnt
: ð2:3Þ

Moreover, the index number that compares the profitability of firm n in per-
iod t with the profitability of firm m in period s is

PROFms;nt �
PROFnt

PROFms
¼ Pms;nt

Wms;nt

Qms;nt

Xms;nt
¼ TTms;nt � TFPms;nt ð2:4Þ

where Pms,nt ” Pnt/Pms is an output price index, Wms,nt ” Wnt/Wms is an input
price index, and TTms,nt ” Pms,nt/Wms,nt is a terms of trade index measuring
the growth in output prices relative to the growth in input prices. Thus, prof-
itability change can be written as the product of a multiplicatively complete
TFP index and an index measuring the change in the TT.
An important implication of Equation (2.4) is that changes in the TT can

be expected to induce changes in productivity, at least in the case of firms
who have access to a variable returns to scale (VRS) production technology
and whose preferences are strictly increasing in net returns.3 Such a case is

3 The argument presented in this paragraph is still valid even if the technology exhibits con-
stant returns to scale (CRS), provided it exhibits variable returns to scope – the production
frontier will also be strictly concave in this case. For details concerning the characteristics of
production frontiers represented in aggregate quantity space, see O’Donnell (2008).
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illustrated in Figure 2, where the curved line passing through points E, K and
G is a VRS production frontier. Point E is the aggregate input–output combi-
nation that maximizes TFP but not necessarily the combination that maxi-
mizes profit. To see this, suppose firm i in period t faces aggregate output and
input prices Pit and Wit. For this firm, profit is pit = PitQit ) WitXit and iso-
profit equations take the form Qit ¼ ðpit=PitÞ þ ðWit=PitÞXit. It is apparent
from Figure 2 that if the maximum TFP possible using the production
technology (the slope of the ray through point E) equals the inverse of the
TT (the slope of the isoprofit line), then the TFP-maximizing and profit-
maximizing points will coincide at point E and profits will be zero. It is also
clear that if the firm has a benefit function that is increasing in profits, then
an improvement in the TT will draw the optimizing firm away from the point
of maximum productivity to a point where profits are strictly positive – the
isoprofit line passing through point K, for example, has slope Wit=Pit< tan e
and intercept pit=Pit>0: Further improvements in the TT will lead to further
reductions in productivity until the firm reaches point G. At this limiting
point, the slope of the isoprofit line (the normalized input price) is zero and
aggregate output is maximized. The curved segment between points E and G
is the region of (locally) nonincreasing returns to scale (NIRS). It is apparent
from Figure 2 that productivity will be maximized by the smallest efficient
firm that operates in this region.4

Figure 2 Productivity, profitability and the terms of trade.

4 Productivity could also be maximized by the largest efficient firm operating in the region
of strictly increasing returns to scale (IRS). Such firms are ignored in this paper because
rational efficient profit-maximizing firms cannot generally operate in the region of IRS without
incurring a loss.
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3. Measures of efficiency

O’Donnell (2008) measures the overall productive efficiency of a firm as the
ratio of observed TFP to the maximum TFP possible using the available tech-
nology.5 Mathematically, the so-called TFP efficiency of firm n in period t is

TFPEnt ¼
TFPnt

TFP�t
¼ Qnt=Xnt

Q�nt=X
�
nt

ðTFP efficiencyÞ ð3:1Þ

where TFP�t denotes the maximum TFP possible using the period-t technol-
ogy, and Q�t and X�t denote the aggregate output and aggregate input at the
TFP-maximizing point (point E in Figure 2). O’Donnell (2008) also defines
several other measures of efficiency in terms of aggregate quantities. For
example, the efficiency measures that feature in an output-oriented decompo-
sition of TFP change are

OTEnt ¼
Qnt

�Qnt

; ðoutput�oriented technical efficiencyÞ ð3:2Þ

OSEnt ¼
�Qnt=Xnt

~Qnt= ~Xnt

; ðoutput�oriented scale efficiencyÞ ð3:3Þ

OMEnt ¼
�Qnt

Q̂nt

; ðoutput�oriented mix efficiencyÞ ð3:4Þ

ROSEnt¼
Q̂nt=Xnt

Q�t =X
�
t

ðresidual output�oriented scale efficiencyÞ and ð3:5Þ

RMEnt¼
~Qnt= ~Xnt

Q�nt=X
�
nt

ðresidual mix efficiencyÞ ð3:6Þ

where �Qnt is the maximum aggregate output that is technically feasible when
xnt is used to produce a scalar multiple of qnt; Q̂nt is the maximum aggregate
output that is feasible when using xnt to produce any output vector; and ~Qt

and ~Xt are the aggregate output and input obtained when TFP is maximized
subject to the constraint that the output and input vectors are scalar multiples
of qnt and xnt, respectively.
The OTE measure (3.2) is the measure proposed by Farrell (1957), while

the scale efficiency measure (3.3) is that discussed by, for example, Balk
(2001). The OME measure (3.4) is not well known, although it is closely

5 An input–output combination that maximizes productivity will exist if, for example, the
production technology is nondecreasing in inputs and at least one input is nonzero for any level
of output. If a point of maximum productivity does not exist then, of all the efficiency measures
discussed in this section, only the measure of TFP efficiency will be undefined.
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related to a measure of revenue-allocative efficiency first proposed by Farrell
(1957). O’Donnell (2008) motivates this unfamiliar measure by considering a
two-output case where the aggregator function is linear: Q(qnt) = a1q1nt +
a2q2nt. Figure 3 depicts this special case in output space. In this figure,
the curve passing through points V and C is the familiar production frontier
representing all technically efficient output combinations that can be pro-
duced using xnt. The dashed line passing through point A is an isooutput line
that maps all output combinations that have the same aggregate output as at
point A. If the output mix and the input vector are held fixed, then aggregate
output and TFP are maximized by radially expanding outputs to point C.
However, if restrictions on the output mix are relaxed, aggregate output and
TFP are maximized by moving around the frontier to point V. The ratio of
the distance 0A to the distance 0C in Figure 3 is the output-oriented measure
of technical efficiency defined by Equation (3.2): OTEnt ¼ Qnt

�
�Qnt ¼

0Ak k= 0Ck k: The ratio of the distance 0H to the distance 0V is the output-ori-
ented measure of mix efficiency defined by (3.4): OMEnt ¼ �Qnt

�
Q̂nt ¼

0Hk k= 0Vk k: Thus, the OME of a technically efficient firm is simply a measure
of the increase in TFP that comes about by holding inputs fixed and relaxing
restrictions on output mix. In the same way that scale efficiency is a measure
of the potential productivity gains that can be achieved through economies of
scale, mix efficiency is a measure of the potential gains that can be achieved
through economies of scope.
O’Donnell (2008) provides further insights into the relationships between

aggregate quantities and measures of efficiency by mapping multiple-input
multiple-output production points into aggregate quantity space. Figure 4
presents such a mapping for the input–output combinations represented by
points A, C and V in Figure 3. In Figure 4, the curve passing through point
C represents the frontier of a restricted production possibilities set. The set is

Figure 3 Output-oriented mix efficiency for a two-output firm.
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restricted in the sense that it only contains input and output vectors that can
be written as scalar multiples of xnt and qnt. When these mix restrictions are
relaxed, the firm has access to the expanded production possibilities set
bounded by the curve passing through points V and E. OTE measures the
proportionate increase in TFP that occurs as the firm moves from point A to
point C on the restricted frontier; OME measures the increase in TFP as the
firm moves from C to V on the unrestricted frontier; and the measure of
ROSE defined by (3.5) measures the increase in TFP as the firm moves
around the unrestricted frontier from V to E. O’Donnell (2008) uses the term
scale for this last measure because ‘any movement around an unrestricted
production frontier is a movement from one mix-efficient point to another, so
any improvement in TFP is essentially a scale effect … [He also uses] the term
residual because, even though all the points on the unrestricted frontier are
mix-efficient, they may nevertheless have different input and output mixes …
Thus, what is essentially a measure of scale efficiency may contain a residual
mix effect’ (p. 15).
Two related output-oriented measures of efficiency are depicted in

Figure 5. In this figure, point D represents the input–output combination
that maximizes TFP when the input and output mixes of the firm operating
at point A are held fixed. For this reason, point D is known as the point of
mix-invariant optimal scale (MIOS) (for the firm operating at point A). The
measure of residual mix efficiency defined by (3.6) is a measure of the pro-
portionate increase in TFP that occurs as the firm moves from point D to
point E. The term residual is also used here because, although the move
from point D on the mix-restricted frontier to point E on the unrestricted
frontier is primarily a mix effect, it may also involve a change in scale.
Residual mix efficiency can also be viewed as the component of TFP

Figure 4 Output-oriented measures of efficiency.
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change that remains after accounting for pure technical efficiency and pure
scale efficiency effects.
Finally, the measure of TFP efficiency defined by Equation (3.1) measures

the proportionate increase in TFP as the firm moves all the way from point A
to point E. Figures 4 and 5 illustrate two of many possible pathways from A
to E and therefore illustrate two of many possible decompositions of TFP
efficiency: in terms of angles,

TFPEnt ¼
tan a

tan e
¼ tan a

tan c
� tan c

tan v
� tan v

tan e

� �
¼ tan a

tan c
� tan c

tan d
� tan d

tan e

� �
; ð3:7Þ

in terms of aggregate quantities,

TFPEnt ¼
Qnt=Xnt

Q�nt=X
�
nt

¼ Qnt

�Qnt

�
�Qnt

Q̂nt

� Q̂nt=Xnt

Q�t =X
�
t

 !
¼ Qnt

�Qnt

�
�Qnt=Xnt

~Qnt= ~Xnt

�
~Qnt= ~Xnt

Q�nt=X
�
nt

� �
;

ð3:8Þ

and in terms of measures of efficiency,

TFPEnt ¼
TFPnt

TFP�t
¼ OTEnt �OMEnt � ROSEntð Þ

¼ OTEnt �OSEnt � RMEntð Þ:
ð3:9Þ

4. The components of TFP change

The measures of efficiency defined in Section 3 provide a basis for an output-
oriented decomposition of a multiplicatively complete TFP index. An easy
way to see this is to rewrite Equation (3.9) as

Figure 5 Output-oriented measures of efficiency.

536 C.J. O’Donnell

� 2010 The Author
AJARE � 2010 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



TFPnt ¼ TFP�t � OTEnt �OMEnt � ROSEntð Þ
¼ TFP�t � OTEnt �OSEnt � RMEntð Þ:

ð4:1Þ

A similar equation holds for firm m in period s. It follows that the index that
compares the TFP of firm n in period t with the TFP of firm m in period s can
be written

TFPms;nt ¼
TFPnt

TFPms
¼ TFP�t

TFP�s

� �
� OTEnt

OTEms
� OMEnt

OMEms
� ROSEnt

ROSEms

� �

¼ TFP�t
TFP�s

� �
� OTEnt

OTEms
� OSEnt

OSEms
� RMEnt

RMEms

� �
:

ð4:2Þ

The first term in parentheses on the right-hand side of Equation (4.2) is a
measure of technical change – it measures the difference between the maxi-
mum TFP possible using the period-t technology and the maximum TFP pos-
sible using the period-s technology. This can be seen in Figure 6 where, in
terms of angles, TFP�t =TFP

�
s ¼ tan e=tan r: The economy/industry experi-

ences technical progress or regress as TFP�t =TFP
�
s is greater than or less than

one. The other ratios on the right-hand side of Equation (4.2) are obvious
measures of technical efficiency change, (residual) mix efficiency change and
(residual) scale efficiency change.
O’Donnell (2008) derives the input-oriented counterparts to Equations

(4.1) and (4.2) and demonstrates that the input- and output-oriented mea-
sures of technical change are plausibly identical. For the sake of complete-
ness, the input-oriented analogue of Equation (4.2) is

Figure 6 Technical change.

Agricultural productivity and profitability change 537

� 2010 The Author
AJARE � 2010 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



TFPms;nt ¼
TFPnt

TFPms
¼ TFP�t

TFP�s

� �
� ITEnt

ITEms
� IMEnt

IMEms
� RISEnt

RISEms

� �

¼ TFP�t
TFP�s

� �
� ITEnt

ITEms
� ISEnt

ISEms
� RMEnt

RMEms

� � ð4:3Þ

where

ITEnt ¼
�Xnt

Xnt
ðinput�oriented technical efficiencyÞ; ð4:4Þ

ISEnt ¼
Qnt= �Xnt

~Qnt= ~Xnt

ðinput�oriented scale efficiencyÞ; ð4:5Þ

IMEnt ¼
X̂nt

�Xnt

ðinput�oriented mix efficiencyÞ; ð4:6Þ

RISEnt ¼
Qnt=X̂nt

Q�nt=X
�
nt

ðresidual input�oriented scale efficiencyÞ ð4:7Þ

and RMEnt is the measure of residual mix efficiency defined by Equation
(3.6). In Equations (4.4) to (4.7), �Xnt is the minimum aggregate input that is
possible when using a scalar multiple of xnt to produce qnt, while X̂nt is the
minimum aggregate input possible when using any input vector to produce
qnt.
Finally, it is important to remember that the decompositions given by

Equations (4.2) and (4.3) are only four of a potentially infinite number of
exhaustive decompositions of a multiplicatively complete TFP index. These
particular decompositions have been chosen because they can be expressed in
terms of well-known measures of output- and input-oriented technical and
scale efficiency, as well as some unfamiliar measures of mix and residual (scale
and mix) efficiency. Other exhaustive decompositions of TFP change may
also involve new definitions of efficiency. For example, one local measure of
technical change is the difference in TFP at points V and L in Figure 6, and
another is the difference in TFP at points S and T. If the geometric mean of
these two local measures is used to decompose the difference in TFP at points
A and Z, then, in terms of angles,

TFPms;nt ¼
tan a

tan z
¼ tan v

tan l

tan s

tan t

� �1=2
tan a

tan v

tan t

tan z

� �
tan v

tan s

tan l

tan t

� �1=2

: ð4:8Þ

The first term in parentheses on the right-hand side represents technical
change, the second term is the combined change in the measures of output-
oriented technical and mix efficiency defined by (3.2) and (3.4), while the last
term is the change in a measure of scale and mix efficiency that is yet to be
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defined in the efficiency literature. Observe that the decomposition given by
(4.8) does not involve points of maximum productivity (points E and R in
Figure 6) and is therefore feasible if such points do not exist.

5. Hicks–Moorsteen and Malmquist TFP indexes

With a view to eventually computing and decomposing Hicks–Moorsteen
TFP indexes, it is convenient to represent the production technology using
the Shephard (1953) output and input distance functions:

Dt
Oðx; qÞ ¼ min

d
fd>0 : ðx; q=dÞ 2 Ttg and ð5:1Þ

Dt
Iðx; qÞ ¼ max

q
fq>0 : ðx=q; qÞ 2 Ttg ð5:2Þ

where T t denotes the period-t production possibilities set. The output
distance function measures the inverse of the largest radial expansion of the
output vector that is possible while holding the input vector fixed, while the
input distance function measures the largest radial contraction of the input
vector that is feasible while holding the output vector fixed. The output dis-
tance is the Farrell (1957) output-oriented measure of technical efficiency,
while the input distance is the inverse of the Farrell (1957) input-oriented
measure. Irrespective of the returns to scale or scope properties of the tech-
nology, the output and input distance functions are linearly homogeneous
and nondecreasing in output quantities and input quantities, respectively.
The homogeneity and monotonicity properties of Shephard distance func-

tions make them natural candidates for use as output and input aggregator
functions. Indeed, for the types of binary comparisons discussed in Section 2,
it is common to implicitly aggregate output quantities using the period-t
output distance function defined over the inputs of firm n in period t:
QðqÞ ¼ Dt

Oðxnt; qÞ: If this aggregator function is used, then the index that com-
pares the outputs of firm n in period t with the outputs of firm m in period s is
the period-tMalmquist output quantity index of Caves et al. (1982, p. 1400):

Qms;nt ¼
QðqntÞ
QðqmsÞ

¼ Dt
Oðxnt; qntÞ

Dt
Oðxnt; qmsÞ

: ð5:3Þ

The monotonicity and homogeneity properties of the output distance func-
tion ensure that this index satisfies the basic axioms of index number theory,
including monotonicity, homogeneity, identity and proportionality. The iden-
tity axiom, for example, means the index only departs from unity as qnt
departs from qms. Another index of output change that satisfies these axioms
is obtained by aggregating outputs using the geometric average of the period-
t and period-s distance functions defined over the input vectors of the com-
parison and reference firms:
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QðqÞ ¼ Dt
Oðxnt; qÞDs

Oðxms; qÞ
� �1=2

: ð5:4Þ

The associated Malmquist output quantity index is

QM
ms;nt ¼

Dt
Oðxnt; qntÞDs

Oðxms; qntÞ
Dt

Oðxnt; qmsÞDs
Oðxms; qmsÞ

� �1=2

: ð5:5Þ

Similarly, if inputs are aggregated using the geometric average of the period-t
and period-s input distance functions,

XðxÞ ¼ Dt
Iðx; qntÞDs

Iðx; qmsÞ
� �1=2

; ð5:6Þ

then the associated Malmquist input quantity index is

XM
ms;nt ¼

Dt
Iðxnt; qntÞDs

Iðxnt; qmsÞ
Dt

Iðxms; qntÞDs
Iðxms; qmsÞ

� �1=2

: ð5:7Þ

Finally, the index formed as the ratio of the Malmquist output and input
quantity indexes given by (5.5) and (5.7) is a TFP index that has been attrib-
uted by Diewert (1992, p. 240) to Hicks (1961) and Moorsteen (1961):

TFPHM
ms;nt ¼

QM
ms;nt

XM
ms;nt

¼ Dt
Oðxnt; qntÞDs

Oðxms; qntÞ
Dt

Oðxnt; qmsÞDs
Oðxms; qmsÞ

Dt
Iðxms; qntÞDs

Iðxms; qmsÞ
Dt

Iðxnt; qntÞDs
Iðxnt; qmsÞ

� �1=2
:

ð5:8Þ
By the manner of its construction, this so-called Hicks–Moorsteen index is
consistent with the fundamental definition of TFP as the ratio of an aggregate
output to an aggregate input – in the terminology of O’Donnell (2008), it is
multiplicatively complete. Two related indexes that are not multiplicatively
complete are

TFPIM
ms;nt ¼

Dt
Iðxms; qmsÞDs

Iðxms; qmsÞ
Dt

Iðxnt; qntÞDs
Iðxnt; qntÞ

� �1=2
and ð5:9Þ

TFPOM
ms;nt ¼

Dt
Oðxnt; qntÞDs

Oðxnt; qntÞ
Dt

Oðxms; qmsÞDs
Oðxms; qmsÞ

� �1=2
: ð5:10Þ

These are input- and output-oriented Malmquist TFP indexes of the type
proposed by Caves et al. (1982). This class of indexes cannot in general6 be
expressed as the ratio of an output quantity index to an input quantity index.
Nevertheless, Malmquist TFP indexes such as these are widely used in prac-
tice, possibly because they can be easily decomposed. For example, Färe et al.
(1994, p. 71) rewrite the input-oriented index as

6 A sufficient condition is that the input and output distance functions exhibit constant
returns to scale (CRS) and inverse homotheticity – see Färe, Grosskopf and Roos (1998, p. 136).
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TFPIM
ms;nt ¼

Ds
Iðxms; qmsÞ

Dt
Iðxnt; qntÞ

� Dt
Iðxnt; qntÞDt

Iðxms; qmsÞ
Ds

Iðxnt; qntÞDs
Iðxms; qmsÞ

� �1=2

: ð5:11Þ

The first term on the right-hand side is the change in the input-oriented tech-
nical efficiency measure defined by Equation (4.4) – it is unambiguously a
measure of pure input-oriented technical efficiency change. The second term
is interpreted by Färe et al. (1994, p. 71) as a measure of technical change.
There are no measures of scale or mix efficiency change in this decomposition.

6. Using DEA to compute and decompose TFP indexes

In principle, any multiplicatively complete TFP index can be decomposed
using the framework developed by O’Donnell (2008). This section develops
the DEA problems needed to compute and decompose the Hicks–Moorsteen
index. This index was selected from among the class of multiplicatively
complete indexes primarily because it is a distance-based index and DEA
methodology for estimating distances is relatively straightforward. A second
reason is that it is closely related to theMalmquist index that has for some time
been the index number of choice in the productivity decomposition literature.
For purposes of comparison, this section also presents the DEA problems used
by Färe et al. (1994, p. 71) to compute and decompose theMalmquist index.

6.1 The DEA approach

Both input- and output-oriented DEA models are underpinned by the
assumption that the production frontier is locally linear. In the input-oriented
case, local linearity means that for any input vectors in the neighbourhood of
xnt, the production frontier takes the linear form

l0qnt ¼ aþ t0xnt ð6:1Þ

where l and t are non-negative and a is unsigned. The fact that a is unsigned
means the technology potentially exhibits VRS: if a < 0 the technology
exhibits local increasing returns to scale (IRS); if a ‡ 0 it exhibits local NIRS;
if a > 0 it exhibits local decreasing returns to scale (DRS); and if a = 0 it
exhibits local constant returns to scale (CRS). In the output-oriented case,
local linearity means that for output vectors in the neighbourhood of qnt, the
production frontier takes the form

g0qnt ¼ bþ /0xnt ð6:2Þ

where g and t are non-negative and the intercept b is again unsigned to allow
for VRS. Different notation is used for the parameters in (6.1) and (6.2) to
make it clear that they are defined with reference to possibly different neigh-
bourhoods.
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Associated with the (local) frontiers (6.1) and (6.2) are the (local) input and
output distance functions

Dt
Iðxnt; qntÞ ¼

t0xnt
l0qnt � a

� 1 and ð6:3Þ

Dt
Oðxnt; qntÞ ¼

g0qnt
bþ /0xnt

� 1: ð6:4Þ

DEA involves selecting values of the unknown parameters to minimize the
value of the input distance function (6.3) and/or maximize the value of the
output distance function (6.4).
A word of caution is in order concerning notation. Strictly speaking, the

unknown parameters in Equations (6.1) to (6.4) should also have firm and
time subscripts to indicate that these relationships only hold for observations
in the neighbourhoods of xnt (in the input-oriented case) and qnt (in the out-
put-oriented case). Different functions (i.e., different parameters) may be rele-
vant in the neighbourhoods of other input and output vectors xms and qms. In
this paper, these subscripts are suppressed, partly for notational simplicity
but mainly for consistency with the way DEA problems are presented in the
efficiency literature. However, it needs to be remembered that these parame-
ters may change from point to point, so the ratios on the right-hand sides of
Equations (6.3) and (6.4) cannot be blindly substituted into Equations (5.4)
and (5.6) to identify the aggregate inputs and outputs corresponding to differ-
ent input and output vectors.

6.2 Primal problems

The primal input-oriented DEA problem involves selecting values of l, t and
a to minimize Dt

Iðxnt; qntÞ (or, equivalently, choosing parameters to maximize
its inverse). Aside from the non-negativity restrictions on l and t, the only
constraints on the parameters are that they must satisfy Dt

Iðxir; qirÞ � 1 for
i = 1, …, N and r = 1, …, t. Imposing these constraints at these particular
data points (i.e., at the input–output choices of all firms in all periods up to
and including period t) implicitly prohibits technical regress; if technical
regress is to be permitted, then the constraints should only be imposed for
i = 1, …, N and r = t (all firms in period t only). Irrespective of the number
of points at which the constraints are imposed, there are infinitely many solu-
tions to the resulting minimization problem.7 A common method of identify-
ing a unique solution is to set t¢xnt = 1. With this normalizing constraint, the
input-oriented DEA LP for firm n in period t is

7 To see this, simply observe from the structure of the input distance function (6.3) that if
(a*, l*, t*) minimizes Dt

Iðxnt; qntÞ, then (ka*, kl*, kt*) also minimizes Dt
Iðxnt; qntÞ for all

k > 0.
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Dt
Iðxnt; qntÞ

�1 ¼max
a;l;t

l0qnt � a ð6:5aÞ

s.t. l0qir � t0xir � a � 0 for i ¼ 1; . . . ;N

and r ¼ 1; . . . ; t ð6:5bÞ
t0xnt ¼ 1 ð6:5cÞ
l; t � 0 ð6:5dÞ

Primal output-oriented DEA problems involve selecting values of g, / and b
to maximize Dt

Oðxnt; qntÞ: In the case where technical regress is prohibited, the
unknown parameters are constrained so that Dt

Oðxir; qirÞ � 1 for i = 1, …, N
and r = 1, …, t. A local solution can be identified using the normalization
g¢qnt = 1, in which case the output-oriented analogue of LP (6.5) is

Dt
Oðxnt; qntÞ

�1 ¼min
b;/;g

bþ /0xnt ð6:6aÞ

s.t. � g0qir þ /0xir þ b � 0 for i ¼ 1; . . . ;N

and r ¼ 1; . . . ; t ð6:6bÞ
g0qnt ¼ 1 ð6:6cÞ
g;/ � 0 ð6:6dÞ

Problems (6.5) and (6.6) can be solved using standard LP software pack-
ages. However, sometimes it is more convenient and enlightening to obtain
solutions after rewriting the problems in an alternative, dual, form.

6.3 Dual problems

Every normal primal LP has a dual form with the property that if both the
primal and the dual LPs have feasible solutions, then the optimized values of
the two objective functions are equal. The dual form of the normal maximiza-
tion LP (6.5), for example, is

Dt
Iðxnt; qntÞ

�1 ¼min
q;h

q ð6:7aÞ

s.t.
XN
i¼1

Xt
r¼1

hirqir � qnt ð6:7bÞ

qxnt �
XN
i¼1

Xt
r¼1

hirxir � 0 ð6:7cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ð6:7dÞ

q; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ð6:7eÞ

If the production possibilities set is convex, then this dual input-oriented
problem has a very simple interpretation. Convexity of the production
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possibilities set means that any convex combinations8 of observed data
points, such as the double-summations in (6.7b) and (6.7c), are technically
feasible output and input levels. This particular LP seeks to scale down
the input vector while holding the output vector fixed. Here, the role of
the constraints (6.7b) and (6.7c) is to ensure that the observed output and
scaled-down input vectors are technically feasible. The constraint (6.7d)
holds with strict equality because a in the primal problem (6.5) was
unsigned to allow for VRS. If a ‡ 0 (NIRS), then the constraint (6.7d)
becomes

XN
i¼1

Xt
r¼1

hir � 1: ð6:8Þ

If a = 0 (CRS), then the constraint (6.7d) is absent from the dual problem
altogether. Irrespective of the form of the returns to scale constraint, a basic
feasible solution (BFS) to this problem is q = 1 and hir = I(i = n, r = t),
where I(.) is an indicator function that takes the value 1 if the argument is true
and 0 otherwise.
The dual form of the output-oriented problem (6.6) has a similar structure:

Dt
Oðxnt; qntÞ

�1 ¼max
k;h

k ð6:9aÞ

s.t. kqnt �
XN
i¼1

Xt
r¼1

hirqir � 0 ð6:9bÞ

XN
i¼1

Xt
r¼1

hirxir � xnt ð6:9cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ð6:9dÞ

k; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ð6:9eÞ

This particular LP seeks to scale up the output vector while holding the input
vector fixed. The constraints (6.9b) and (6.9c) ensure the observed input and
scaled-up output vectors are technically feasible, while the constraint (6.9d)
allows for VRS. Again, to allow for NIRS we simply replace (6.9d) with (6.8),
and to allow for CRS we omit (6.9d) altogether. A BFS is k = 1 and hir =
I(i = n, r = t).
Several other LP problems are needed to compute and decompose the

Malmquist and Hicks–Moorsteen TFP indexes given by Equations (5.8) to

8 A convex combination is a linear combination of points where all coefficients are non-nega-
tive and sum to one. A convex combination of two points lies on the straight line segment con-
necting those two points.
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(5.10). To avoid repetition, the remainder of this section only considers input-
oriented problems. Corresponding output-oriented LPs are presented in the
Appendix.

6.4 Additional LPs for computing and decomposing the input-oriented

Malmquist index

Either of the dual LPs given by (6.7) or (6.9) can be used to identify the pro-
duction technology (production frontier), but this alone does not allow us to
compute and decompose Malmquist TFP indexes. In the input-oriented case
that involves solving the following additional LPs:9

Dt
Iðxms; qmsÞ�1 ¼min

q;h
q ð6:10aÞ

s.t.
XN
i¼1

Xt
r¼1

hirqir � qms ð6:10bÞ

qxms �
XN
i¼1

Xt
r¼1

hirxir � 0 ð6:10cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ð6:10dÞ

q; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ð6:10eÞ

and

Ds
Iðxnt; qntÞ

�1 ¼min
q;h

q ð6:11aÞ

s.t.
XN
i¼1

Xs
r¼1

hirqir � qnt ð6:11bÞ

qxnt �
XN
i¼1

Xs
r¼1

hirxir � 0 ð6:11cÞ

XN
i¼1

Xs
r¼1

hir ¼ 1 ð6:11dÞ

q; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; s: ð6:11eÞ

These problems do not always have a solution, even under the assumption of
CRS. For example, problem (6.10) is always infeasible if technical regress is

9 Computing the input-oriented Malmquist index also involves computing Ds
Iðxms; qmsÞ: This

distance measure is simply the value of Dt
Iðxnt; qntÞ for the base firm in the base period. Thus, it

can be computed using LP (6.7).
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permitted and no firms in period t produce a positive amount of an output
that is produced by firm m in period s. In this case, irrespective of the returns
to scale assumption, there are no values of hir that can satisfy constraint
(6.10b).

6.5 Additional LPs for computing and decomposing the Hicks–Moorsteen

index

Computing (but not decomposing) the Hicks–Moorsteen TFP index involves
solving two slightly different, and also possibly infeasible, input-oriented
problems:

Dt
Iðxms; qntÞ�1 ¼min

q;h
q ð6:12aÞ

s.t.
XN
i¼1

Xt
r¼1

hirqir � qnt ð6:12bÞ

qxms �
XN
i¼1

Xt
r¼1

hirxir � 0 ð6:12cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ð6:12dÞ

q; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ð6:12eÞ

and

Ds
Iðxnt; qmsÞ�1 ¼min

q;h
q ð6:13aÞ

s.t.
XN
i¼1

Xs
r¼1

hirqir � qms ð6:13bÞ

qxnt �
XN
i¼1

Xs
r¼1

hirxir � 0 ð6:13cÞ

XN
i¼1

Xs
r¼1

hir ¼ 1 ð6:13dÞ

q; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; s: ð6:13eÞ

Decomposing the index into the components identified by O’Donnell
(2008) then involves solving a further two LPs. To motivate these additional
LPs, it is convenient to rewrite the dual problem (6.7) in the alternative
form
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�Xnt=Xnt ¼min
q;h;v

ði0KxntÞ
�1ði0KvÞ ð6:14aÞ

s.t.
XN
i¼1

Xt
r¼1

hirqir � qnt ð6:14bÞ

v�
XN
i¼1

Xt
r¼1

hirxir � 0 ð6:14cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ð6:14dÞ

v� qxnt ¼ 0 ð6:14eÞ
q; v; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ð6:14fÞ

where iK denotes a K · 1 vector of ones, and �Xnt and Xnt are the aggregate
inputs used in Section 4 to define input-oriented technical efficiency:
ITEnt ¼ �Xnt=Xnt ¼ Dt

Iðxnt; qntÞ
�1: To see that the two problems (6.7) and

(6.14) are equivalent, substitute the equality constraint (6.14e) into both the
inequality constraint (6.14c) and the objective function (6.14a). The fact that
i¢Kxnt is a known scalar means the objective function is still linear in the deci-
sion variables, meaning the problem (6.14) is still a LP. This formulation is
useful because the constraint (6.14e) makes it explicit that input-oriented
technical efficiency involves holding the input mix fixed. Input-oriented mix
efficiency measures the improvement in TFP when this constraint is relaxed.
When (6.14e) is relaxed, the dual input-oriented DEA problem becomes

X̂nt=Xnt ¼min
h;v

ði0KxntÞ
�1ði0KvÞ ð6:15aÞ

s.t.
XN
i¼1

Xt
r¼1

hirqir � qnt ð6:15bÞ

v�
XN
i¼1

Xt
r¼1

hirxir � 0 ð6:15cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ð6:15dÞ

v; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t ð6:15eÞ

where X̂nt is the maximum aggregate output that is possible holding the out-
put vector fixed, and X̂nt=Xnt ¼ IMEnt � ITEnt is the product of the input-
oriented measures of mix and technical efficiency introduced in Section 4. A
BFS to this problem is v = xnt and hir = I(i = n, r = t). At this BFS, the
value of the objective function is one, implying that the minimized value of
the objective function (a measure of the product of technical and mix effi-
ciency) lies in the unit interval.
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Observe that problem (6.15) allows the input vector to be chosen freely
while holding the output vector fixed. A closely related LP that relaxes all
constraints on both the output and input vectors is

TFP�t ¼max
h;z;v

ði0JzÞ ð6:16aÞ

s.t. z�
XN
i¼1

Xt
r¼1

hirqir � 0 ð6:16bÞ

XN
i¼1

Xt
r¼1

hirxir � v � 0 ð6:16cÞ

i0Kv ¼ 1 ð6:16dÞ
z; v; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t ð6:16eÞ

where TFP�t ¼ Q�nt=X
�
nt denotes the maximum TFP that is possible using the

technology available in period t (see Section 3). The constraints (6.16b) and
(6.16c) ensure that the input and output vectors are technically feasible,
while the normalizing constraint (6.16d) identifies a unique solution to the
problem in much the same way that constraint (6.5c) identified a unique
solution to problem (6.5). A BFS is z = 0J, v = iK · K)1 and hir = 0
for all i = 1, …, N and r = 1, …, t, where 0J denotes a J · 1 vector of
zeros. At this BFS, the value of the objective function is zero, implying
TFP�t � 0:
Solutions to the LPs given by (6.5), (6.12) to (6.16) and their output-ori-

ented counterparts are all that are required to decompose the Hicks–Moors-
teen index into the measures of efficiency change defined by O’Donnell
(2008). They are also sufficient to separately identify levels of technical
efficiency, scale efficiency and mix efficiency for all observed input–output
combinations:

ITEnt ¼ Dt
Iðxnt; qntÞ

�1; ð6:17Þ

ISEnt ¼ Dt
Iðxnt; qntÞ=Ht

Iðxnt; qntÞ and ð6:18Þ

IMEnt ¼ Dt
Iðxnt; qntÞ � ðX̂nt=XntÞ ð6:19Þ

whereHt
Iðxnt; qntÞ is the input distance under the assumption of CRS.

7. Empirical example

Coelli and Rao (2005) use DEA to compute and decompose output-oriented
Malmquist TFP indexes of agricultural productivity change for 93 countries
from 1980 to 2000. They make an assumption that is necessary (but not suffi-
cient) for the Malmquist TFP index to be a reliable measure of productivity
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change, namely that the technology exhibits CRS. This paper computes and
decomposes Hicks–Moorsteen TFP indexes using the methodology described
in Sections 3–6. The Hicks–Moorsteen index is multiplicatively complete
under any returns to scale assumption, so in this paper the technology is per-
mitted to exhibit VRS.
Like Coelli and Rao (2005), this paper allows for technical regress. Techni-

cal regress can be narrowly conceptualized as the contraction in the produc-
tion possibilities set that occurs when we forget the things we know.
Conversely, technical progress can be thought of as the expansion in the pro-
duction possibilities set that comes about through scientific discovery. In this
paper, technical change is viewed as something involving more than just
changes in technical know-how – it is a measure of the change in the produc-
tion possibilities set caused by any changes in the external environment in
which production takes place. In agriculture, for example, weather and
climate typically have an influence on the amount of output that can be
produced using a given set of inputs. This paper accounts for omitted
environmental variables by allowing for technical regress – the production
possibilities set is permitted to expand or contract with (unmeasured) changes
in the environment as well as changes in the stock of knowledge.
The TFP and efficiency measures reported in this section were computed

using the DPIN software written by O’Donnell (2010).

7.1 Data

Data on two outputs (crops and animals) and five inputs (land, labour
livestock, tractors and fertilizer) were sourced from the FAO.10 Details
concerning the construction of the variables are available in Coelli and
Rao (2005, pp. 121–122). The data were quantity data for 88 countries
over the period 1970–2001. Some descriptive statistics are reported in
Table 1. The FAO database contains no reliable data on farm incomes or
costs, so profitability indexes were constructed as needed using data on
agricultural incomes and costs reported by statistical agencies in selected
countries.

7.2 Results

Indexes that measure changes in Australian agricultural profitability (PROF),
productivity (TFP) and the TT are presented in Figure 7 and in the first few
columns of Table 2. The profitability index was computed using data on the
gross value of farm production and farm costs published by ABARE (2007);
the TFP index is a Hicks–Moorsteen index computed using the DEA method-
ology described in Section 6; and the terms of trade index was computed

10 I am grateful to Tim Coelli and Prasada Rao for providing the data.
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residually using Equation (2.4).11 These indexes indicate that changes in the
TT have been an important driver of changes in Australian agricultural prof-
itability and that the TT effect on profitability has been moderated by com-
pensating changes in TFP. This is consistent with the theoretical argument,
developed in Section 2, that improvements in the TT encourage technically
efficient optimizing firms to expand their operations (further) into the region
of decreasing returns to scale (and scope), with the result that increases in
profitability are associated with falls in productivity. Conversely, adverse

Table 1 Descriptive statistics

Mean SD Min Max

Crop output 1.000 2.695 0.003852 32.24
Animal output 1.000 2.604 0.009128 31.37
Area 1.000 2.063 0.01215 12.84
Labour 1.000 4.420 0.005800 42.97
Livestock 1.000 2.401 0.01012 20.77
Tractors 1.000 2.830 1.406e)5 24.69
Fertilizer 1.000 3.142 8.273e)5 33.44
Crop output/area 2.068 2.671 0.001237 20.25
Crop output/labour 4.132 6.932 0.1424 52.22
Crop output/livestock 1.446 1.859 0.008842 13.29
Crop output/tractors 29.29 201.5 0.05071 5382.0
Crop output/fertilizer 17.90 82.66 0.09166 2098.0
Animal output/area 2.764 4.900 0.009106 39.07
Animal output/labour 10.92 22.69 0.04081 142.4
Animal output/livestock 1.282 1.248 0.1186 7.868
Animal output/tractors 12.68 38.53 0.1931 718.6
Animal output/fertilizer 8.555 27.37 0.1420 529.8

Figure 7 Components of profitability change: Australia, 1970–2001.

11 ABARE (2007) also reports a terms of trade index computed using Equation (2.4), but
the TFP index used in those calculations is a Fisher index of rates of growth in a much more
disaggregated set of inputs and outputs. Both terms of trade indexes reveal a similar pattern of
relative price movements over much of the study period (for the period 1977–2000, the correla-
tion coefficient is 0.92).
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Table 2 Indexes of changes in agricultural profitability, total factor productivity (TFP) and
terms of trade (TT): Australia (base 1970 = 1)

Year PROF
index

TT
index

TFP
index

Tech
change

TFPE
index

OTE
index

OSE
index

OME
index

ROSE
index

RME
index

1970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1971 1.008 1.027 0.982 1.105 0.888 1.000 1.000 1.000 0.888 0.888
1972 1.113 1.179 0.944 1.172 0.805 1.000 1.000 1.000 0.805 0.805
1973 1.246 1.403 0.888 1.132 0.785 1.000 1.000 1.000 0.785 0.785
1974 1.173 1.285 0.913 1.115 0.819 1.000 1.000 1.000 0.819 0.819
1975 0.986 1.125 0.877 1.110 0.790 1.000 1.000 1.000 0.790 0.790
1976 0.942 1.206 0.781 1.104 0.708 1.000 1.000 0.995 0.711 0.708
1977 0.920 1.310 0.702 1.084 0.648 1.000 1.000 0.980 0.661 0.648
1978 1.015 1.599 0.635 1.063 0.598 0.997 0.994 0.851 0.704 0.603
1979 1.125 1.693 0.665 1.035 0.642 1.000 1.000 0.900 0.714 0.642
1980 1.047 1.609 0.650 1.066 0.610 1.000 1.000 0.887 0.688 0.610
1981 0.947 1.502 0.630 1.052 0.599 0.944 0.993 0.902 0.704 0.639
1982 0.837 1.293 0.647 1.117 0.580 0.947 0.987 0.918 0.667 0.620
1983 0.841 1.322 0.636 1.115 0.571 0.960 0.995 0.894 0.665 0.597
1984 0.902 1.403 0.643 1.108 0.581 1.000 1.000 0.876 0.663 0.581
1985 0.843 1.280 0.658 1.116 0.590 0.940 0.995 0.958 0.655 0.631
1986 0.817 1.121 0.729 1.048 0.696 1.000 1.000 1.000 0.696 0.696
1987 0.853 1.292 0.661 1.079 0.613 0.973 0.997 0.999 0.630 0.631
1988 0.899 1.273 0.706 1.062 0.665 1.000 1.000 1.000 0.665 0.665
1989 0.894 1.148 0.778 1.051 0.740 1.000 1.000 1.000 0.740 0.740
1990 0.822 0.975 0.843 1.109 0.760 1.000 1.000 1.000 0.760 0.760
1991 0.789 0.863 0.915 1.078 0.849 1.000 1.000 1.000 0.849 0.849
1992 0.821 0.941 0.872 1.134 0.769 1.000 1.000 1.000 0.769 0.769
1993 0.850 1.021 0.833 1.125 0.741 1.000 1.000 1.000 0.741 0.741
1994 0.823 0.994 0.827 1.120 0.739 1.000 1.000 1.000 0.739 0.739
1995 0.821 1.001 0.820 1.188 0.690 1.000 1.000 1.000 0.690 0.690
1996 0.856 0.930 0.921 1.195 0.771 1.000 1.000 1.000 0.771 0.771
1997 0.853 1.004 0.850 1.170 0.727 1.000 1.000 1.000 0.727 0.727
1998 0.847 0.980 0.864 1.216 0.711 1.000 1.000 1.000 0.711 0.711
1999 0.851 0.947 0.899 1.306 0.688 1.000 1.000 1.000 0.688 0.688
2000 0.892 1.007 0.885 1.306 0.678 1.000 1.000 1.000 0.678 0.678
2001 0.980 1.153 0.850 1.310 0.649 1.000 1.000 1.000 0.649 0.649

OME, output-oriented mix efficiency; OTE, output-oriented technical efficiency; PROF, profitability;
ROSE, residual output-oriented scale efficiency.

Figure 8 Components of total factor productivity change: Australia, 1970–2001.
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movements in the TT can lead to simultaneous reductions in profitability and
improvements in productivity.
Further evidence of this type of optimizing response can be seen in the

indexes of technical change and output-oriented efficiency change presented
in Figure 8 and the remaining columns of Table 2. These indexes indicate
that important components of Australian agricultural TFP change have been
changes in OME and ROSE – precisely the measures of efficiency we would
expect to vary when technically efficient profit-maximizing firms respond
optimally to changes in the TT. Observe that there were two periods in the
1970s when Australian farmers experienced significant improvements in the
TT: 1970–1973 when the TT improved by 40 per cent, and 1975–1979 when it
improved by 50 per cent. Each of these periods was associated with a fall in a
combined measure of scale and mix efficiency – the product of the OME and
ROSE efficiency measures plausibly fell by 22 per cent and 19 per cent in each
period, respectively. Conversely, there were several periods when significant
declines in the TT were associated with increases in levels of scale and mix
efficiency (e.g., 1987–1991).
If (anticipated) changes in the TT have been driving changes in Australian

agricultural TFP, and if Australian farmers are price-takers in output and
input markets, then policy-makers should not be overly concerned that Aus-
tralian agricultural TFP in 2001 was only 85 per cent of what it had been in
1970 – it is likely that Australian farmers have rationally changed the scale
and mix of their operations in response to (anticipated) changes in relative
output and input prices and that productivity declines have been associated
with increases in (expected) net returns.
Figure 9 presents estimates of the efficiency components of New Zealand

agricultural TFP change. It is evident from this figure that in the 1970s, the
main source of variation in New Zealand agricultural TFP was variations in
OTE. These variations coincided with decisions taken by the New Zealand
government to increase levels of assistance to agriculture by, for example,
expanding farm lending programs and providing floor price schemes for all
major agricultural commodities. These types of measures can provide farmers
with opportunities and incentives to adopt relatively risky production plans,
and if New Zealand farmers adopted such plans then large variations in sea-
sonal conditions would explain the large variations in OTE and TFP evident
in Figure 9. The smoking gun is provided by Johnson (2000) who reports that
by the early 1980s the amount of government assistance provided to the New
Zealand pastoral sector by way of support prices had reached almost 10 per
cent of farm GDP.
In the second half of the study period, the main component of New Zea-

land agricultural TFP change appears to have been changes in ROSE. These
changes coincided with a program of major economic reform initiated by the
newly elected Labour government in 1984. The reform program involved
floating the exchange rate and phasing out all price support and input subsi-
dies for agriculture. Johnson (2000) reports that these reforms led to large
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and generally unfavourable variations in the agricultural TT – in the year to
June 1984, for example, the TT improved by 8 per cent, but in the year to
June 1986 it fell by 13 per cent. According to Johnson (2000), the 1980s was a
period of significant adjustment in which ‘some farmers had to exit the indus-
try, others had to consolidate their resources, others had to change their
enterprise mix’ (p. 32). The adjustments Johnson (2000) describes are consis-
tent with the estimated fluctuations in ROSE evident in Figure 9.
The US agricultural TFP experience is summarized in Figure 10. This

figure reveals that US agricultural productivity has been steadily increasing
over the study period and that the rate of productivity growth has outpaced
the rate of technical progress, particularly in the latter half of the sample per-
iod when all output-oriented measures of efficiency improved. Since 1990, US
agricultural productivity growth appears to have been primarily due to
technical progress and changes in both mix and scale. The US Department of
Agriculture estimates that between 1990 and 2001 US farmers experienced a
17 per cent fall in their TT. In the same period, this paper estimates that the
product of OME and ROSE plausibly increased by 27 per cent and that TFP
increased by 50 per cent.

Figure 9 Components of total factor productivity change: New Zealand, 1970–2001.

Figure 10 Components of total factor productivity change: United States, 1970–2001.
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Observe from Table 2 and Figures 8–10 that global agriculture has periodi-
cally experienced periods of rapid technical change and that expansions in the
production possibilities set have in some countries been associated with falls
in TFP. For example, productivity in Australian agriculture fell by about 1.8
per cent in 1971, at a time when the production possibilities set was expand-
ing at a rate of 10.5 per cent per annum (at least in the region of local CRS).
The reasons for these large variations in the estimated measure of technical
change are threefold. First, recall that technical change is a broad measure of
the change in the production possibilities set caused by any changes in the
environment in which production takes place. Thus, the measure will capture
the effects of annual variations in seasonal conditions as well as the longer-
term effects of new scientific discoveries and climate change. Second, DEA
methodology has been used to estimate the production frontier, and DEA
makes no allowance for measurement errors or other sources of statistical
noise. Third, recall from Section 4 that technical change is measured as the
difference in TFP at points R and E in Figure 6. When TFP at these points is
estimated using DEA, the measure of technical change will be sensitive to the
measured TFP of only a few efficient firms operating at the point of local
CRS (i.e., relatively small efficient firms). Table 3 reports TFP-maximizing
countries over the study period and reveals that TFP was maximized by
Nepal during the 1970s, Nepal and Zimbabwe during the 1980s and Nepal
and Thailand during the 1990s. The measures of technical change reported in
Table 2 and Figures 8–10 are indexes of change in the maximum TFP values
reported in Table 3. The average rate of technical change from 1970 to 2001
was 1.0 per cent per annum, marginally less than the 1.1 per cent reported by
Coelli and Rao (2005) using a Malmquist approach.
Finally, the efficiency indexes reported in Table 2 and Figures 8–10 are

estimates of efficiency change. Estimates of efficiency levels for a selection
of countries in a small number of years are reported in Table 4, while
estimates of efficiency levels for Australia for the entire study period are
presented in Figure 11. Methods for estimating levels of residual mix
and residual scale efficiency are not currently available, so Table 4 and
Figure 11 only report pure technical, scale and mix efficiency scores. Note
that the measures of technical and scale efficiency are the ones that have
been reported in the efficiency and productivity literature for decades – it
is only the measures of mix efficiency that are new. Also note that the out-
put-oriented efficiency scores depicted in Figure 11 are the ones used to
construct the corresponding efficiency indexes presented earlier in Table 2
and Figure 8 (the OTE and OME series depicted in Figure 8 are identical
to those in Figure 11 because OTE = OME = 1 in the base period,
1970). Figure 11 reveals that Australian farmers were highly technically,
scale and output mix-efficient throughout the study period, but less than
40 per cent input-mix inefficient. This low level of input-mix efficiency
reflects the relatively high land-to-labour and land-to-capital ratios that are
characteristic of Australian agriculture.
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8. Conclusion

Several methods can be used to compute indexes of TFP change, but fewmeth-
ods are available for breaking these indexes into economically meaningful
components. This paper develops DEA methodology for computing and
decomposingHicks–Moorsteen indexes of TFP change. TheHicks–Moorsteen
index is a member of the class of multiplicatively complete TFP index numbers,
which means it can be decomposed into a simple measure of technical change
and several recognizable measures of efficiency change (O’Donnell 2008).
Being able to identify the components of TFP change is critically important

for public policy-making. If welfare functions are increasing in net returns,
then only some drivers of TFP growth are unambiguously desirable. Included
among these are improvements in technical efficiency (movements towards
the production frontier) and technical progress (upward movements in the
production frontier). Public policies that promote these outcomes include the
provision of agricultural extension services and investment in scientific

Table 3 Total factor productivity (TFP)-maximizing countries

Year Country TFP

1970 NEP 1.032
1971 NEP 1.140
1972 NEP 1.209
1973 NEP 1.168
1974 NEP 1.150
1975 NEP 1.145
1976 NEP 1.139
1977 NEP 1.118
1978 NEP 1.096
1979 NEP 1.068
1980 ZIM 1.100
1981 NEP 1.085
1982 NEP 1.152
1983 NEP 1.150
1984 NEP 1.143
1985 ZIM 1.151
1986 ZIM 1.081
1987 ZIM 1.113
1988 ZIM 1.095
1989 ZIM 1.084
1990 NEP 1.144
1991 NEP 1.112
1992 THA 1.170
1993 NEP 1.160
1994 NEP 1.156
1995 NEP 1.226
1996 THA 1.232
1997 NEP 1.207
1998 THA 1.254
1999 THA 1.347
2000 THA 1.347
2001 NEP 1.351
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research and development. However, even the provision of extension services
can be wasteful if firms/sectors are already fully technically efficient (operat-
ing on the frontier).
Some drivers of TFP growth are not always associated with increases in net

returns. Included among these are improvements in mix and scale efficiency
(movements along the production frontier towards the point of maximum
productivity). Policies that can lead to these outcomes include reductions in

Table 4 Measures of technical, scale and mix efficiency

Year Country OTE OSE OME ITE ISE IME

1970 ANG 0.5011 0.9777 0.9992 0.4901 0.9997 0.2210
1970 ARG 1.000 1.000 1.000 1.000 1.000 0.5178
1970 AUS 1.000 1.000 1.000 1.000 1.000 0.3464
1970 AUT 0.9046 0.9274 0.9849 0.9903 0.8472 0.09643
1971 ANG 0.4880 0.9392 0.9967 0.4656 0.9843 0.2244
1971 ARG 1.000 1.000 1.000 1.000 1.000 0.5288
1971 AUS 1.000 1.000 1.000 1.000 1.000 0.3337
1971 AUT 0.8417 0.9408 0.9040 0.9689 0.8173 0.09870
1975 NZL 0.5845 0.8753 0.9083 0.6278 0.8151 0.5283
1976 NZL 1.000 1.000 1.000 1.000 1.000 0.3654
1977 NZL 1.000 1.000 1.000 1.000 1.000 0.3924
1978 NZL 1.000 0.9743 1.000 1.000 0.9743 0.4081
1979 NZL 0.3000 0.8612 1.000 0.7081 0.3648 0.5967
1999 USA 1.000 1.000 1.000 1.000 1.000 0.5404
1999 URU 0.8574 0.7087 0.9448 0.7263 0.8368 0.8596
1999 VEN 1.000 1.000 1.000 1.000 1.000 0.4271
1999 VIE 1.000 1.000 1.000 1.000 1.000 0.9106
1999 ZIM 1.000 1.000 1.000 1.000 1.000 1.000
2000 USA 1.000 1.000 1.000 1.000 1.000 0.5559
2000 URU 0.8166 0.7091 0.9578 0.6781 0.8539 0.8944
2000 VEN 1.000 1.000 1.000 1.000 1.000 0.4467
2000 VIE 1.000 1.000 1.000 1.000 1.000 1.000
2000 ZIM 1.000 1.000 1.000 1.000 1.000 1.000
Mean 0.8468 0.8672 0.9565 0.8414 0.8728 0.5193
Minimum 0.2079 0.2981 0.4895 0.2328 0.2981 0.06205
Maximum 1.000 1.000 1.000 1.000 1.000 1.000

OME, output-oriented mix efficiency; OTE, output-oriented technical efficiency.

Figure 11 Output- and input-oriented measures of efficiency: Australia, 1970–2001.
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levels of output price support, removal of input subsidies, increases in tax
rates and any other policies that cause deteriorations in the agricultural TT.
These policies can have the effect of simultaneously increasing productivity
and reducing net returns.
To illustrate some of these ideas, this paper used FAO country-level data

to compute and decompose Hicks–Moorsteen indexes of agricultural TFP
change for the period 1970–2001. The average rate of technical change was
estimated to be 1.0 per cent per annum, slightly less than the 1.1 per cent
reported by Coelli and Rao (2005) using a Malmquist index and a similar
FAO data set. The results indicate that agricultural productivity in Australia,
New Zealand and the United States has been responsive to changes in the
agricultural TT. This was especially noticeable in New Zealand in the second-
half of the 1980s when the newly-elected government implemented an exten-
sive program of agricultural reform – the phasing out of output price support
programs and the removal of input subsidies appears to have caused a rapid
deterioration in the agricultural TT and simultaneous improvements in mea-
sures of mix efficiency, scale efficiency and TFP.
Any multiplicatively complete TFP index can be decomposed within the

aggregate quantity-price framework developed by O’Donnell (2008). To illus-
trate, this paper used new DEA methodology and FAO data to compute and
decompose the Hicks–Moorsteen index. A problem with DEA is that it makes
no allowance for statistical noise, so any measurement errors in the data will
be reflected in estimates of both efficiency and TFP. In this paper, the measure-
ment error issue is complicated by the fact that the decomposition of TFP
change is exhaustive, so if one component of TFP change is estimated poorly
(e.g., technical change), then at least one other component must also be
estimated poorly (e.g., technical efficiency). One solution is to estimate the
technology using an econometric methodology that allows for statistical noise
(e.g., stochastic frontier analysis); another possibility is to aggregate any esti-
mated components of TFP change that are regarded as unreliable or poorly
identified (e.g., mix efficiency change and residual scale efficiency change). The
most appropriate way forward is likely to depend on the empirical context.
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Appendix

Output-oriented problems that correspond to the input-oriented problems
(6.10) to (6.13) and (6.15) in the main text are:

Dt
Oðxms; qmsÞ�1 ¼max

k;h
k ðA:10aÞ

s.t. kqms �
XN
i¼1

Xt
r¼1

hirqir � 0 ðA:10bÞ

XN
i¼1

Xt
r¼1

hirxir � xms ðA:10cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ðA:10dÞ

k; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ðA:10eÞ
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Ds
Oðxnt; qntÞ

�1 ¼max
k;h

k ðA:11aÞ

s.t. kqnt �
XN
i¼1

Xs
r¼1

hirqir � 0 ðA:11bÞ

XN
i¼1

Xs
r¼1

hirxir � xnt ðA:11cÞ

XN
i¼1

Xs
r¼1

hir ¼ 1 ðA:11dÞ

k; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; s: ðA:11eÞ

Dt
Oðxnt; qmsÞ�1 ¼max

k;h
k ðA:12aÞ

s.t. kqms �
XN
i¼1

Xt
r¼1

hirqir � 0 ðA:12bÞ

XN
i¼1

Xt
r¼1

hirxir � xnt ðA:12cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ðA:12dÞ

k; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ðA:12eÞ

Ds
Oðxms; qntÞ�1 ¼max

k;h
k ðA:13aÞ

s.t. kqnt �
XN
i¼1

Xs
r¼1

hirqir � 0 ðA:13bÞ

XN
i¼1

Xs
r¼1

hirxir � xms ðA:13cÞ

XN
i¼1

Xs
r¼1

hir ¼ 1 ðA:13dÞ

k; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; s: ðA:13eÞ
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Q̂nt=Qnt ¼max
h;z

ði0JqntÞ
�1ði0JzÞ ðA:15aÞ

s.t. z�
XN
i¼1

Xt
r¼1

hirqir � 0 ðA:15bÞ

XN
i¼1

Xt
r¼1

hirxir � xnt ðA:15cÞ

XN
i¼1

Xt
r¼1

hir ¼ 1 ðA:15dÞ

z; hir � 0 for i ¼ 1; . . . ;N and r ¼ 1; . . . ; t: ðA:15eÞ
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