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Abstract  

Health Effects of Pesticide Use among Vegetable farmer in Kenya 

Paper investigates the determinants of pesticide related Cost of Illness (COI), and acute 

symptoms, using a balanced panel of 363 farmers interviewed in 2005 and 2008. Finding
 

shows that the incidences of pesticide-related health impairments have increased. Variation 

in number of symptoms and symptom severity significantly explained COI. The Personal 

Protective Equipment (PPE), education level, record keeping and geographical location 

considerably determined health impairments. Encouraging the proper use of PPE and 

record keeping of pesticide use could great reduce poisoning cases and COI. 

 

Key words: agriculture; cost-of-illness; farmer health; Kenya; personal protective 

equipment; pesticides; vegetables 

 

1. Introduction 

The health effects of pesticide use have became one of the major public health problems 

worldwide. In developing countries, frequent exposure to pesticides by farmers and farm 

workers is very common (Antle et al., 1998; Maumbe and Swinton, 2003; Garming and 

Waibel, 2009). The frequent exposure to pesticides results in both short-term (acute) and 

long-term (chronic) illnesses. Scientific confirmed pesticide related acute illnesses include: 

headaches, stomach pains, vomiting, skin rashes, respiratory problems, eye irritations, 

sneezing, seizures, and coma (Antle and Pingali, 1994). The chronic illnesses include: 

cancer, asthma, dermatitis, endocrine disruption, reproductive dysfunctions, 

immunotoxicity, neuro behavioral disorders and birth defects (Raschke and Burger, 1997; 

Horrigan et al., 2002; Alvanja et al., 2004; Kamel and Hoppin, 2004; Kishi, 2005; Dick, et 

al., 2007; Nasterlack, 2007; Kamel et al., 2007; Hancock et al., 2008). Furthermore, deaths 

resulting from direct exposure to pesticides are also common (Dasgupta and Meisner, 

2005). 

The World Health Organization (WHO) and the United Nations Environment Program 

(UNEP) estimates pesticide-poisoning rates of 2-3 per minute, with approximately 20,000 

workers dying from exposure every year (Dasgupta and Meisner, 2005). The largest 

number of poisonings and deaths are said to occur in developing countries (Wilson, 2005). 

It has been argued that pesticide related health issues constitute a serious threat to 

development and can easily reverse or undermine the gains made in agricultural growth 

(Binswanger and Townsend, 2000). Poor access to health services and medical profession 

that lacks the ability to recognize pesticide-related morbidity raises further concerns 

(Pesticide Trust, 1993). Although pesticide related poisoning is still not as high or more 

pronounced in Africa as in Asia, it is a growing problem as the increasing intensification of 

agricultural production with more widespread use of pesticides will result in possible 

increased in pesticide poisoning (London et al., 2005) 
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In Kenya, by some empirical studies the link between pesticide use and farmers health have 

been documented (Asfaw, 2008; Okello, 2005; Ohayo-Mitoko et al., 2000). However, these 

studies were based on a snap short cross sectional surveys and a clear trend of poisoning is 

not well understood. In addition, the only two studies that looked at the determinants of 

pesticide related acute poisoning symptoms among farmers are the studies by Asfaw (2008) 

and Okello (2005). However, the problem is that pesticide poisoning effects on human are 

not random but rather depend on other unobserved characteristics such as genetic 

characteristic. Such effects cannot be captured with cross sectional data as utilized in the 

above studies. Thus the true underlying causal relations may be very different-either larger 

or smaller-than those noted in those research. 

The objective of this article therefore is to examine the incidences and the determinants of 

acute pesticide poisoning among vegetable farmers in Kenya controlling for unobserved 

heterogeneity. 

 

2. Methods 

2.1. Surveys and data 

The study was conducted in seven major vegetable producing districts of Central and 

Eastern provinces of Kenya (namely Nyeri North, Kirinyaga, Kiambu, Nyandarua, Meru 

Central Makueni and Muranga districts, Figure 1) in the year 2005 with follow-up visits in 

2008.  

 

Figure 1 here  

 

The 2005 survey comprised of 839 interviews from the Diamondback moth biological 

control impact assessment survey (‘DBM’ with 295 farmers) and the Global Good 

Agricultural Practices (‘GLOBALGAP’ with 544 farmers) assessment survey. 

GLOBALGAP (formerly known as EUREPGAP) is a private sector body that sets 

voluntary standards for the certification of agricultural products around the globe. The aim 

is to establish one standard for Good Agricultural Practice (GAP) by translating consumer 

requirements into agricultural production. 

In both surveys, a multi-stage sampling procedure was used to select districts, sub-

locations, and farmers respectively. First, districts were purposely sampled according to 

intensity of vegetable production and agro-ecological zones. Lists of farmers that were 

compiled by extension workers at sub location level, served as sampling frame from which, 

839 farmers were randomly sampled by probability proportional to size (PPS) procedure. 

Sampled farmers were then, monitored in one cropping season and were trained in record 

keeping of their production activities by trained enumerators
1
. The trained enumerators 

                                                 
1Enumerators were trained for 4 days. One day was used for pre-testing the questionnaire. The pre-testing aimed at 

improving the skills of the enumerators and also testing the applicability of the questionnaire to the study area. During the 

first pre-testing, random selected enumerators did the interview, while the others listened and observed. A discussion of 
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under direct supervision of the researcher visited the farmers to check the records and 

transferred the information to the survey questionnaire. Due to budget constraints, the 2008 

survey was a recall survey of a random sub-sample of 425 farmers among the 839 farmers. 

Table 1 displays the distribution of farmers in the sampled districts. 

 

(Table 1 here) 

 

The semi-structured questionnaires employed, covered a wide range of topics, such as 

cropping systems, demographics, common farming practices, pesticide use and handling 

practices, type and quantities of pesticides sprayed. Health symptoms investigated were 

specified as those that only began during the spraying operation or within 24 hours after 

spraying. Additional information collected included: number of times the symptom 

occurred, workdays lost partially or completely due to the health impairment, medication 

taken by victims and direct costs due to the symptoms i.e. pharmacy cost, consulting fees 

and indirect costs such as travel expenses to and from health centre and dietary expenses 

resulting from illness like drinking milk or taking honey. 

It was decided to exclude from the sample the entire sampled farmers that did not have a 

balance data
2
 set for the 2005 and 2008. The sample size, thus after dropping those 

observations, reduces to a balanced panel of 363 farmers. 

 

2.2. Analytical framework  

As discussed earlier panel data setup was used to control for the unobserved heterogeneity. 

In general, panel data model offers some distinct advantages over the cross sectional data 

analysis. Greene (2008) concluded that the main advantage of panel data is that one can 

formally model the heterogeneity across groups that are typically present in panel data. 

Baltagi (2005) confirms this in his statement that the first benefit of panel data is 

“controlling for individual heterogeneity.” Additional benefits of using panel data include: 

panel data model is able to capture both cross-section and time-series variation in the 

dependent variable, panel data model is able to measure not only the effects that observable 

variables have on the dependent variable, but also the effects of relevant unobservable or 

non-measurable influences.  

A general panel regression model is presented as: 

 

                                                                                                                                                     
the experience under the guidance of the researcher was then conducted in a plenary every enumerator contributing to 

what he/she observed as an improvement or a mistake. The enumerators were then divided into groups of two and 

interviewed the respondents in turns. 

2 Unbalanced panel have a possibility that the causes of missing observations are endogenous to the model. Equally, if a 

balanced panel has been created artificially by eliminating all units of observation with missing observations, the resulting 

dataset may not be representative of its population. We compared the responses from unmatched farmers based on several 

characteristics and the two groups differ only marginally. 
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(1) 

 

Where yit is the response of the dependent variable (in our case this is the COI, number of 

acute symptoms, and health impairment) for the ith farmer in the sample at the tth year. α0 

is an intercept that may be different for each point in time, and β and γ are vectors of 

coefficients. Xit is the set of K-vector of time-variant covariates for the ith farmer at the tth 

year and Zi is another set of predictor variables that do not vary over-time (time-invariant) 

e.g. gender and location. Vit is the error term, which is decomposed into εi, and uit. εi is 

regarded as the combined effect on y of all unobserved variables that are constant over-time 

(time-constant unobserved heterogeneity such as cognitive ability, motivation e.t.c.), and μit 

representing the idiosyncratic error term (what is unaccounted for in the model) and varies 

over individual farmers and over-time.  

The two main methods of dealing with εi are to make the random effects (RE) or fixed 

effects (FE) assumption. Random effects, assumes that the εi are random variables (εi is 

i.i.d. (0, σε
2
) and that Cov (xit, εi) = 0, while with fixed effects, εi are assumed to be 

potentially correlated with Xit. In fixed effect regressions we cannot estimate the effects of 

time constant covariates as these are normally cancelled out by the within transformation. 

Thus, classic fixed effects approaches do not produce any estimates of the effects of 

variables that do not change over-time. Moreover, in some cases fixed effects estimates 

may have substantially larger standard errors than random-effects estimates, leading to 

higher p-values and wider confidence intervals. In addition, fixed effects estimate use only 

within-individual differences, essentially discarding any information about differences 

between individuals unlike random effects that uses information both within and between 

individuals. Thus, if predictor variables vary greatly across individuals but have little 

variation over-time for each individual, then fixed effects estimates will be rather 

imprecise. When neither the cross-sectional unit nor times have significant effects, all of 

the data can be pooled and one can have the constant coefficients model. 

The analysis was implemented in two steps. First, the COI
3
 model was estimated to 

evaluate the determinants of health costs among the vegetable farmers. In the second stage, 

the principal factors associated with the pesticide poisoning symptoms were examined 

seeking ones that are relevant at policy recommendation.  

 

2.3. The Models  

2.3.1. Cost-of-Illness Model 

                                                 
3 Computed as the sum of farmer-reported medical treatment costs to clinics and private physicians, the opportunity cost 

of workdays lost to illness, travel costs to and from health facility, time spent in traveling and the cost of home-based 

health care. 
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In previous studies, the health costs of pesticides were modeled using a Logarithmic 

regression model (Asfaw, 2008). In this study the estimations of the determinants of health 

costs was modeled using a censored
4
 random effects Tobit model (Xttobit), since zero costs 

from respondents who had suffered pesticide related illnesses but incurred no costs were 

considered. Using a Logarithmic model would have required adding a small unity value as 

log of zero is undefined. Estimation of dependent variables result into biased estimators in 

linear models (Tobin, 1958). The structural equation in the Tobit model is represented as: 

 

itiitti uxy  *  (2) 

 

where i ˜ N(0, σμ
2
), y* is a latent variable that is observed for values greater than T and 

censored otherwise. The observed y is defined by the following measurement equation: 
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
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

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y
ti *

**
 (3) 

 

In the typical Tobit model, we assume that T= 0, i.e. the data are censored at 0. For the 

empirical model, the explanatory factors for the model explaining health costs incorporate 

four broad classes of variables namely those related to health (number of acute symptoms 

and symptoms severity), farmer characteristics variables (age, education, gender), farm 

management variables (farm size
5
, GLOBALGAP certification, and record keeping), and 

location control (district dummies) (see equation 4). Variable definitions and descriptive 

statistics are presented in Table 2.  

It is hypothesized that the number of acute symptoms, symptom severity, age, and farm 

size are positively associated with the health costs, while a negative association is expected 

for level of education, GLOBALGAP certification, and record keeping. The direction of 

the effect of gender on health costs is not clear a priori. 

It is anticipated that young farmers may have a higher tendency to protect against 

pesticides exposure and consequently reduce the pesticide-related acute symptoms and 

associated health costs. Increased education is also expected to reduce health costs because 

farmers are more likely to read pesticide labels and follow the recommendation, again 

reducing the exposure and the acute symptoms. Likewise, GLOBALGAP certification, and 

record keeping can result in a more judicious use of pesticide use and higher tendency to 

protect against pesticide intoxication resulting in reduced acute symptoms. 

 

                                                 
4 Only farmers that reported health impairment were considered. 

5 Proxy for wealth. 
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HealthCost= f (TACUTE, SEVERE, AGE, AGESQ, EDUCATION, GENDER, 

FARMSIZE, GLOBALGAP, RECORD, District Dummies, YEAR2008 

Dummy 

(4) 

 

Acute symptoms Model 

The determinants of the number of acute symptoms were modeled as random effects. A 

Negative Binomial Regression model (Xtnbreg) was chosen to account for over-dispersion, 

since the equi-dispersion assumption that has to be met with the Poisson model was 

violated, i.e. the variance was larger than the mean and just over two third of the counts 

were zero. When there is over-dispersion, the Poisson regression is not appropriate because 

the standard errors estimated are biased downward and the p-values are small and spurious 

(Long, 1997). 

A Negative Binomial Regression model is a count data model and a good facet of the 

model is that the Poisson model is nested within it (Long, 1997). However, the assumption 

of the standard Poisson model that the variance of the dependent variable is equal to the 

mean is not binding for the negative binomial model (Cameron and Trivedi, 1998). 

Negative Binomial Regression model deal with the problem of over-dispersion by 

assuming that yit has a negative binomial distribution, which can be regarded as a 

generalization of the Poisson distribution with an additional parameter allowing the 

variance to exceed the mean. The negative binomial function can be presented as equation 

(5): 
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Where г is the gamma function, parameter uit is assumed both the mean and the variance 

and parameter εi is assumed constant over time for each individual, while the mean and 

variance of yit are given by: 

 

itiiititiit yyE  )1(var(,)(   (6) 

 

Under this model, the ratio of the variance to the mean is 1+εi that can vary across 

individuals but is constant over time. The basic idea for this model is that the predictor 

information is related to the rate of the response to increase or decrease in counts. 

For the empirical model, the acute symptom model aggregates skin irritation, diarrhea, 

sneezing, headache, dizziness, vomiting, stomach poisoning, blurred vision, eye irritation, 

and backache episodes incurred by the farmer during and/or soon after spraying pesticide 

as the dependent variable. For the explanatory variables, the medical literature indicates 

that the type and severity of pesticide poisoning depends on the toxicity of the pesticides, 
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amount of pesticides involved in the exposure and route of exposure (Extension 

Toxicology Network, 2004). The specification accounted for these factors. In addition, in 

order to understand farm management variables that can affect pesticide poisoning, 

GLOBALGAP certification and record keeping were included. Furthermore, following 

Antle and Pingali (1994), Wilson and Tisdell (2001) and Asfaw (2008), other control 

variables under farmer characteristics, i.e. age, gender, education and geographical location 

were also included (equation 7). 

A priori, it is anticipated that WHO class Ia, Ib and II pesticides are positively correlated 

with incidences of acute poisoning whereas negative correlation can be expected with 

category III and U pesticide
6
. Age could increase acute symptoms, as older farmers may be 

less concerned about health effects of pesticides. As already mentioned in cost of illness 

model it is expected that pesticide-related acute symptoms decrease with the increase in 

level of education, GLOBALGAP certification, record keeping of production activities and 

appropriate use of personal protective equipments. 

 

TACUTE= f (AGE, AGESQ, EDUCATION, GENDER, GLOBALGAP, RECORD, 

NPEST, PWHOIab, PWHOII, PWHOIII, PWHOU, COAT, GLOVE, 

GUMBOOT, MASK, District Dummies, YEAR2008 Dummy) 

(7) 

 

The models were estimated using the random effect estimator as the Hausman test showed 

the fixed effects were not correlated with the regressors. All variables were cross-checked 

for the problem of multicollinearity, through the simple correlation matrix and variance 

inflation factor (VIF). The highest correlation coefficient was 0.32 and VIF were by far less 

than three, indicating that correlation between explaining variables could not affect the 

estimation of coefficients. Likewise, for endogeneity none of the independent variables was 

suspected to be explained within the equation in which it appeared. Misspecifications of the 

models were also checked using a regression specification error test (Ramsey, 1969). In 

respect to the robustness of the Negative Binomial Regression model, a Poisson model was 

first fitted and the likelihood ratio test together with the statistical evidence of over-

dispersion indicated that the Negative Binomial Regression model was preferred to the 

Poisson model. In addition, to check the robustness of all the models other restricted 

models were estimated in which, subsequently insignificant variables were dropped. The 

statistical quality of the models, and the direction of the signs did not change, and the 

coefficients deviated only marginally. 

 

3. Empirical results and discussion 

                                                 
6 Pesticides in WHO Iab and WHO II are very toxic, while class III and U are relatively low in toxicity. 
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3.1. Descriptive statistics of variables used in empirical estimations 

Table 2 summarizes the main descriptive statistics comparing 2005 and 2008 with t and z 

tests for the main variables investigated. The results showed that the incidences of 

pesticide-related acute illness had increased by over 70%. By cross check, although not 

indicated in the tables the analysis showed that only 45% of the farmers consequently 

reported the effect once more in 2008 showing a high rate of new episodes cases. However, 

the number of symptoms per farmer dropped by almost half in 2008. In terms of frequency 

of symptom occurrence, headache and sneezing were reported as the main symptoms in 

both surveys. Dizziness as one of the major neurological effects of pesticide exposure was 

also found to have doubled in 2008. These symptoms have been associated with pesticides 

acute poisoning (Extension Toxicology Network, 2004). They are also consistent with 

other studies of pesticides exposure on farmers’ health elsewhere (Alavanja et al., 2001; 

Martin et al., 2002; Atreya, 2005). 

 

Table 2 here 

 

For minor poisoning, many farmers used home remedies such as milk, lemon juices, honey, 

and herbs. The medicines from the local pharmacy shops which were sometimes painkillers 

were bought in cases where the symptoms of illness were mild and farmers visited the 

health clinic if the symptoms either persisted or became serious, i.e. the victim was unable 

to talk, walk, see, or vomited continuously. This evidence seems to suggest that many 

farmers treat acute pesticide effects as minor problems that do not warrant medical 

attention. Although in only about a quarter of the cases, a physician was consulted, this cost 

component accounts for the largest share of the total. 

The health cost almost doubled in 2008 as compared to 2005. On average, health cost was 

estimated at US$ 6.55/farmer/season for 28% of the farmers who reported pesticide-related 

illnesses. These costs equal 47% of mean household chemical expenditures in 2008. 

Considering all the farmers this translates to a mean of US$ 1.77/farmer/season and 

assuming two crop seasons per year the costs amount to US$ 3.54/farmer/year. However, 

the true health costs are likely to be much higher because the costs arising from chronic 

diseases resulting from long-term pesticides exposure were not considered, as this would 

have required more detailed medical assessments. Moreover, only costs directly involving 

family members were reported, costs occurring to hired farm laborers were not included. 

Furthermore, other ‘costs’ to restore health status completely  and non-monetary costs like 

suffering and income lost by family members assisting in seeking treatment were not 

captured (Rola and Pingali, 1993; Freeman, 1993). In addition, preventive costs associated 

with precautions taken to reduce exposure such as wearing protective equipments were not 

considered because they were mainly improvised from old clothing or pieces of cloth 

wrapped around the nose and mouth to reduce inhalation exposure. The cloths were also 

used for other purposes like spraying on coffee, other farm work and it was difficult to 
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desegregate specifically for spraying pesticides on vegetable crops. However, the combined 

mean of personal protective equipments used increased by 43%, with the largest increment 

noted for gumboots. Over 20% of farmers also paid wage premiums of up to 32% above 

the normal wage to hired labour for spraying pesticides, which were normally paid in cash. 

Comparison with other studies conducted in developing countries like Indonesia, 

Philippines and Vietnam shows that 58%-99% of the farmers exposed to pesticides had at 

least one health effect symptom (Pingali et al., 1994). In Tanzania farmer spending on 

health due to pesticide, exposure ranges between US$ 0.018 and 116 in a year (Ngowi et 

al., 2007). In West Africa, the economic value of pesticide-related health costs equals to 

US$ 3.92/household/season in the case of cotton–rice systems (Ajayi et al., 2002). 

Zimbabwe Cotton growers incur a mean of US$ 4.73 in Sanyati and US$ 8.31 in Chipinge 

on pesticide-related direct and indirect acute health effects (Maumbe and Swinton, 2003). 

In Sri Lanka, cost to farmers from pesticide exposure equals 10 weeks’ income (Wilson, 

1998), while in India the average annual welfare loss to an applicator from pesticide 

exposure amounts to US$ 36 (Devi, 2007). The immediate costs of a typical intoxication 

(medical attention, medicines, days of recuperation, e.t.c.) equaled the value of 11 days of 

lost wages in Ecuador (Yanggen et al., 2003). 

Pesticide application rate/hectare/season also increased by 47%. Comparison between the 

years for the specific farmers who participated in the DBM survey showed that many 

farmers had reduced the pesticides application rate by 8%, while the GLOBALGAP 

surveyed farmer had increased by 40%. Similar findings in support of the reduction of 

pesticide use were reported by Jankowski (2007) and Löhr et al. (2007) where farmers in 

the study areas with DBM bio-control (Diadegma semiclausum) reduced pesticide 

applications with others even stopping spraying altogether. The increase in application rate 

by GLOBALGAP farmers can partially be explained by the low number of farmers who 

were certified at the time of survey and the failure of the farmer certified in 2005, to 

maintain their certification status, i.e. certified farmers dropped from 18% to 7%, with only 

31% of the farmers maintaining their certification for 2008.  

 

3.2. Model estimations 

3.2.1. Cost-of-Illness Estimation 

The estimation results of the Tobit models with the health costs as dependent variable are 

reported in Table 3. Result shows that health costs are positively associated with number of 

symptoms and symptoms severity, which implies that an increase in any of these variables 

spontaneously influences positively the health costs, holding other factors constant.  

The finding that the GLOBALGAP certification tends to decrease the health cost could 

indicate that the certified farmers use adequate safety precautions, or use low toxic 

pesticides, which generally reduce the health impairments and thus decrease costs. It could 

also be that these farmers are able to use the minimum treatment possibilities. 
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Among the farmers’ characteristics variables, i.e. age, education and gender none had any 

discernible effect on health costs. In addition, farm size, does not have a direct effect on 

health costs, though it has the correct sign. In addition, no direct association was found 

between record keeping and the health costs. 

District controls are insignificant, so location does not directly affect the health costs. 

When the model was re-estimated (restricted) by dropping insignificant variables, the 

estimates of the coefficients were robust. 

 

Table 3 here 

 

3.2.2. Acute Symptoms Estimation 

Given the critical contribution of pesticide-related acute symptoms to the health costs as 

indicated in Table 3, the principal determinants of these symptoms are reported in Table 4. 

The model shows that pesticide-related acute symptoms increase significantly with the 

number of pesticide products handled. This is not surprising, given that different pesticide 

products require different application rates and have different levels of toxicity. In addition, 

handling different pesticide products can increase incidences of symptoms since an 

interaction between pesticides can lead to unknown toxic chemical reactions (Yánez et al., 

2002). Likewise, although, the coefficients for pesticides in WHO Iab and II are 

insignificant, they are positively correlated with acute symptoms whereas negative 

correlation is observed with WHO III and WHO U pesticides. Pesticides in WHO Iab and 

WHO II are very harmful, while WHO III and WHO U are less harmful
7
. The significant 

negative sign of the variable “record keeping” suggests that the probability of pesticide-

related illnesses is less for farmers who keep records.  

The level of education reduces the probability of reported symptoms, which implies that 

farmers with a higher education level are more knowledgeable and therefore have a better 

understanding of the dangers posed by pesticides. In previous studies however, the contrary 

effect was found because respondents with higher knowledge were more likely to report 

more health symptoms (Maumbe and Swinton, 2003).  

The use of personal protective equipments particularly the use of a coat/apron and 

facemask significantly reduce the number of symptoms. Exposure to pesticides is often 

attributed to a failure to use protective equipments (Rola and Pingali, 1993). The positive 

sign of the use of boots although insignificant seems perverse and alarming at first glance. 

However, as the researcher had observed in the field, the improper use, i.e. putting the 

trouser inside the boots may offer a partial explanation of this apparently perverse result. 

                                                 
7 WHO category Ia or Ib (extremely or highly hazardous), WHO category II (moderately hazardous), WHO category III 

(slightly hazardous), WHO category U (unlikely to present any acute hazard in normal use). 
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This finding is analogous to that found by Ohayo-Mitoko (1999), where use of gumboots 

was associated with high acetyl cholinesterase
8
 inhibition. 

Location control for agro-ecology and differences in institutional settings shows that, 

farmers in the districts of Kiambu, Meru Central, Makueni, Nyandarua and Nyeri North 

experience significantly high cases of pesticide ascribed health symptoms as compared to 

the Kirinyaga (base). Perhaps this is due to the use of protective equipment by farmers 

located in Kirinyaga. 

Contrary to the expectations, the analysis does not support the hypothesis of a significant 

influence of GLOBALGAP certification on the outcome of health, but the variable has the 

correct signs. Once again, the low number of farmers who were certified and the failure of 

the certified farmers to maintain their certification may be the cause of the insignificance. 

The hypothesis that gender and age have a stronger relation to the acute symptoms is also 

not supported by the results. 

The likelihood ratio test used to assess the statistical quality of the model showed that the 

model was statistically valid
9
. The reduced model with only the variables that had a 

significant effect on the dependent variable shows that the statistical quality of the model 

does not differ much and the direction of the coefficient are identical, suggesting the 

robustness of the model. 

 

Table 4 here 

 

4. Conclusions and recommendations 

The results of the study give indications of increase of pesticide related health impairments 

with over 70% new episodes. The most frequently reported symptoms were sneezing, 

dizziness, headache and blurred vision and skin irritations. The result further shows that 

farmer loses on average US$ 3.54/farmer/year on pesticide related indirect health costs. 

These costs are significantly explained by variation in number of symptoms and severity of 

the symptoms. Pesticide-related acute symptoms increase significantly with the number of 

pesticide products handled and considerably reduce with level of education, use of PPE, 

and record keeping. These findings hint at some important points for policies aiming to 

reduce pesticide poisoning among vegetable farmers. Firstly, the results support the already 

widely know notion that proper use of PPE (coat/apron and facemask) reduce the pesticide 

related impairment. Encouraging the use of PPE and record keeping of pesticide use 

activities by farmer is thus recommended. 

                                                 
8 An enzyme that breaks down acetylcholine (ACh) into choline and acetic acid. It is released onto the sarcolemma of 

muscle fibres and destroys ACh after the ACh has combined with receptors on the muscle fibre. Thus, it prevents 

continued muscle contraction in the absence of additional nervous stimulation.  

9 Dispersion parameter alpha was greater than zero. 
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Future efforts to measure pesticide related health costs should cover the health costs of all 

individuals exposed to pesticides e.g. entire public, consumers and hired workers and also 

incorporate pesticide-induced chronic illnesses and deaths. 
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Table 1: Regional distribution of survey respondents 

Province District Main vegetable crops Previous 

surveys 

(2005) 

No. of farmers 

sampled 

(2008) 

Domestic Export 

Central Kiambu Cabbages, 

kales, spinach 

 48 27 

 Kirinyaga Peas, tomatoes French beans 155 74 

 Muranga  Tomatoes, kales French beans 51 24 

 Nyandarua Cabbages, 

potatoes 

 119 52 

 Nyeri North Peas, cabbage, 

onions, carrots 

French beans 277 116 

Eastern Makueni Cabbages, kales Asian 

vegetables
 a)

 

49 22 

 Meru 

Central 

Peas, tomatoes, 

cabbage, onions 

French beans 140 110 

a) 
Brinjals, karella, dudhi, okra, turia, valore and aubergine 

Source: Own presentation 

 

Table 2: Descriptive statistics of variables used in empirical estimations (N = 726) 

Variables Definition Unit  Mean 
a)

  t or z stat 
b)

 

   2005 2008  

Dependent variables     

TACUTE 
c)

 Number of symptoms  count  1.89 (0.13) 1.09 (0.03) -7.07*** 

TACUTE Number of symptoms  count 0.38 (0.48) 0.37 (0.03) -0.15 

HealthCost 
c)

 Cost of illness  US$ 4.15 (1.70) 7.98 (1.57) 1.57 

HealthCost Cost of illness  US$ 0.84 (0.35) 2.72 (0.58) 2.80** 

Farmer characteristics variables     

AGE Age of the farmer  years 43.19 

(0.66) 

46.18 

(0.67) 

6.30*** 

AGESQ Age of the farmer 

(years squared) 

years 2024.43 

(62.80) 

2292.64 

(66.85) 

65.21*** 

EDUCATION 0=None; 1=Pre-

primary; 2=Primary; 

3=Secondary; 

4=College  

ordinal 2.45 (0.05) 2.51 (0.04) 1.09 

GENDER Male  1/0 0.70 (0.02) 0.70 (0.02) 0.00 

EXPERIENCE Farming experience  years 18.42 

(0.74) 

20.56 

(0.07) 

2.38** 

Health-related and pesticide exposure variables  
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Variables Definition Unit  Mean 
a)

  t or z stat 
b)

 

   2005 2008  

HEALTH Farmer reported a 

symptom 

1/0 0.20 (0.02) 0.34 (0.02) 4.26*** 

SEVERE 1=mild, 2=severe, 

3=very severe 

ordinal 1.11 (0.08) 1.59 (0.36) 1.22 

PWHOIab WHO Ia and Ib 

(extremely hazardous) 

g 8.79  

(2.32) 

33.55 

(12.79) 

1.92** 

PWHOII WHO category II 

(moderately 

hazardous) 

g 129.87 

(10.15) 

432.63 

(25.20) 

10.97*** 

PWHOIII WHO category III 

(slightly hazardous)  

g 18.95  

(3.39) 

166.12 

(19.23) 

7.45*** 

PWHOU WHO category U 

(no hazard)  

g 79.87  

(7.47) 

167.79 

(16.86) 

4.87*** 

PESTHA Total amount applied  g/ha/ 

season 

1,473.00 

(201.82) 

2,124.87 

(118.28) 

2.97*** 

NPEST Pesticide products  count 2.89 (0.09) 3.32 (0.08) 3.37*** 

COAT Wear coat/apron  1/0 0.49 (0.03) 0.71 (0.02) 6.06*** 

GLOVE Wear gloves  1/0 0.26 (0.02) 0.35 (0.02) 2.49** 

GUMBOOT Wear boots 1/0 0.26 (0.02) 0.89 (0.02) 17.35*** 

MASK Wear facemask 1/0 0.24 (0.02) 0.40 (0.02) 4.36*** 

TPPE Protective equipments count 2.81 (0.07) 4.00 (0.11) 10.85*** 

Farm management variables     

FARMSIZE Total farm size  ha 1.46 (0.08) 1.06 (0.05) -4.46*** 

GLOBAL-

GAP 

GLOBALGAP 

certified 

1/0 0.07 (0.01) 0.19 (0.02) 0.15 

RECORD Keeps records  1/0 0.71 (0.02) 0.32 (0.01) -10.47*** 

All monetary variables e.g. health cost were adjusted (normalized) to US$ of 2008 to take 

account of inflation. US$ = 72 KSh (2005) and 75 KSh (2008)  
a) 

Figures in parenthesis are standard errors 
b) 

Statistical significant at the 0.01 (***), 0.05 (**), 0.1 (*) level of probability. Categorical 

variables were analyzed using z-test 
c) 

With only farmer who reported the health impairment 

Source: Own survey 

 

Table 3: Tobit model for Cost of illness estimations 

Model  Unrestricted  Restricted  

Variables (coefficient)
 a)

 z- value (coefficient) 
a)

 z- value 

TACUTE 7.45(4.08)** 1.83 6.20 (2.00)*** 3.10 
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Model  Unrestricted  Restricted  

SEVERE 9.01 (2.52)*** 3.58 11.07 (2.17)*** 5.12 

AGE -0.48 (1.09) -0.44   

AGESQ 0.01 (0.01) 0.61   

EDUCATION 1.46 (2.36) 0.62   

GENDER -2.84 (4.33) -0.66   

FARMSIZE 3.25 (2.88) 1.13   

GLOBALGAP -21.75 (3.40)* -1.62 -18.71 (7.47)** -2.50 

RECORD -1.08 (4.89) -0.22   

KIAMBU 2.50 (10.31) 0.24   

MAKUENI -15.08 (17.25) -0.87   

MERU CENTRAL 1.65 (8.71) 0.19   

MURANGA -5.48 (11.75) -0.47   

NYANDARUA -5.61 (8.81) -0.64   

NYERI NORTH 6.62 (8.47) 0.78   

YEAR2008 7.93 (9.15) 0.87   

Constant -23.23 (29.41) -0.79 -19.54 (4.45)*** -4.39 

Log Likelihood -464.10  -549.55  

Wald χ
2
/ LR χ

2
 40.18***  43.22***  

a) 
Figures in parenthesis are robust standard errors, statistical significant at the 0.01 (***), 

0.05 (**), 0.1 (*) level of probability  

Source: Own survey 

 

Table 4: Binomial Regression Model for the acute symptoms estimations 

Model  Unrestricted  Restricted  

Variables (coefficient)
 a)

 z- value (coefficient) 
a)

 z- value 

AGE 0.04 (0.04) 1.13   

AGESQ -0.00 (0.00) -1.21   

EDUCATION -0.16 (0.07)** -2.13 -0.14 (0.07)* -1.94 

GENDER -0.10 (0.16) -0.67   

GLOBALGAP -0.33 (0.29) -1.11   

RECORD -0.44 (0.17)*** -2.57 -0.55 (0.15)*** -3.77 

NPEST 0.09 (0.05)** 1.88 0.10 (0.05)** 2.39 

PWHOIab 0.00 (0.00) 1.28   

PWHOII 0.00 (0.00) 0.68   

PWHOIII -0.00 (0.00) -0.28   

PWHOU -0.00 (0.00) -0.13   

COAT -0.29 (0.16)* -1.82 -0.29 (0.15)** -2.03 

GLOVE -0.26 (0.21) -1.23   

GUMBOOT 0.32 (0.23) 1.36   
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Model  Unrestricted  Restricted  

MASK -0.35 (0.20)* -1.74 -0.39 (0.17)** -2.30 

KIAMBU 1.69 (0.36)*** 4.67 1.63 (0.32)*** 5.20 

MAKUENI 1.74 (0.49)*** 3.55 1.50 (0.46)*** 3.35 

MERU CENTRAL 1.18 (0.31)*** 3.82 0.95 (0.25)*** 3.77 

MURANGA 0.64 (0.46) 1.40   

NYANDARUA 0.90 (0.34)*** 2.66 0.80 (0.28)*** 2.81 

NYERI NORTH 0.93 (0.30)*** 3.07 0.79 (0.24)*** 3.26 

YEAR2008 -0.05 (0.21) -0.23   

Constant -1.22 (1.06) -1.15 -0.01 (0.48) -0.02 

Log Likelihood -518.85  -535.52  

Wald χ
2
 73.74***  60.96***  

a) 
Figures in parenthesis are robust standard errors, statistical significant at the 0.01 (***), 

0.05 (**), 0.1 (*) level of probability  

Source: Own survey 
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Figure 1: Study sites 

Source: Own presentation based on GIS mapping of potential vegetable production areas 
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