

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

 A

MICROCOPY RESOLUTION TEST CHART bgrional burcau of stangards 196a-A

LINEAR THEORY OF HYDROLOGIC SYSTEMS

Technical Bulletin No. 3468

Agricultural Research Service

UNITED STATES DEPARTMENT OF AGRICULTURE

For sale by the Superintendent of Documents, U.S. Government Printing Office Wrashington, D.C. 20402-Price $\$ 2.80$

Stock Number 0100-02747

PREFACE

This pubilication is a shortened version of lectures given by Professor J. C. X. Dooge, Department of Civil Engineering, University College, Dublin, Ireland, in August 1967 at the Department oi Agricultural Engineering, University of Maryland, under the sponsorship of the Agricultural Research Service, U.S. Department of Agriculture. Professor Dooge is a world authority on hydrologic systems, which are basic to computations for successfully planning the best use of soil and water resources in agricultural watersheds.
The original course consisted of 18 lectures supplemented by problem sessions and seminars; however, this publication is confined to the first 10 lectures, which dealt with the general principles of the linear theory of deterministic hydrologic systems. Some important material, originally dealt with in later lectures, has been included in ctommary form in lectures $7,8,9$, and 10 of this publication.

Trade names are used in this publication solely for the purpose of providing specific information. Mention of a trade name does not constitute a guarantee or warranty of the product by the United States Department of Agriculture or an endorsement by the Department over other products not mentioned.

ACKNOWLEDGMENTS

The ideas outlined in these lectures reflected the contribution of a very large number of research workers to the development of parametric hydrology. Where possible my indebtedness has been clearly acknowledged in the cited references. Apologies are offered for any failure to acknowledge such indebtedness. Apart from published papers and formal discussions, I have benefited greatly from many stimulating informal discussions with colleagues. In this connection I must particularly acknowiedge the influence on my thinking and my work of Eamonn Nash, Terenc: O'Donnell, and Dirk Kraijenhoff. I mention these three among my colleagues because I have continually tarned to them uver the years for stimulation or for comments on work in progress.
The material of the lectures which follows was a development in more comprehensive form of material which was the subject of seminars given at Imperial Coliege London, the University of Now South Wales, and The University of Wageningen. The initiative for giving the lectures came from Heggie Holtan who was a continual source of encouragement. In the detailed planuing of the lectures, 1 received invaluable assistance from Don Brakensiek.

CONTENTS

Introduction 1
LECTURE 1: HYDROLOGIC SYSTEMS 3
The Systems Appronch 3
Linear Time-Invariant Systems 17
Identification and Simulation 29
Problems on Hydrologic Systems 39
Literature Cited 40
LECIURE 2: REYIEW OF PHYSICAL HYDROLOGY. 43
Precipitation 44
Evaporation and Transpiration 45
Infiltration and Percolation 47
Ground Water Flow. 48
Overland Flow and Channel Flow 50
Problems on Physieal Hydrology 53
Literature Cited 54
LECTURE 3: REVIEW OF MATHEMATICS 58
Orthogonnl Polynomials and Functions 58
Fourior and Laplace Transforms. 62
Differential Equations 65
Matrices 67
Numerical Methods 70
Problems on Mathematics 71
Literature Cited 73
LECTURE 4: CLASSICAL METHODS OF RUNOFF PREDICTION 75
The Outflow Hydrograph 75
The Rational Method 79
Coit Hydrograph Coucepts 84
Separation of Base Plow 89
Analysis of Complex Storms 93
Problems on Classical Methods. 97
Literature Cited 98LECTCRE 5: IDENTIFICATION BASED ON OONTINUOUSDATA102
Transform Methods of Edentification. 102
Andysis by Fourier Series 105
Analysis by Fourier and Laplace Transforms 108
Noments and Cumulants 113
Laguerre Analysis of Systems 117
Time-Series Analysis 121
Problems on Identification Based on Continuous Data 124
Literature Cited 125
LECTURE E: IT ENTIFICAIION IASED ON DISCRETE DATA 127
Basic System Equations. 127
Matrix Methods of Identification 130
Discrete Transform Methods 133
Time-Series Analysis of Discrete Dita 138
Computational Methods 141
Problems on Discrete Systems Identification 145
Literature Cited 146
LECTURE 7: SIMULATION OF HYDROLOGIC SXSTEMS 148
Basic Ideas in Simulation 148
Regression Models. 151
Digital Simulation 160
Optimization 169
Amatogs and Physieal Models 175
Problems on Simulation 184
Literature Cited 185
LECTURE S: SYNTHETIC UNIT HYDROGRAPHS 190
Types of Synthetic Unit Hydrographs 190
Time-Area Metheds 193
Empirical Expressions for Unit Hydrograph Farameters 200
Empirical Shapes for the Unit Hydrograph 206
Conceptual Models of the U'uit Hydrograph 209
Comparison of Methods 216
Probjems on Synthetie Enit Hydrographs 224
Liturature Cited 227
LECTURE 9: MATHEMATICAL SIMULATION OF SURFACE FLOW: 232
()verland Flow 232
Custendy Flow in Open Channels. 243
Problems on Suriace Flow 261
Literature Cited 262
LECTURE 10: CON゙CEPTUAL MODELS OF SUBSURFACE FLOW 267
Movement of Soil Moisture 267
Unsteady Movement of Soil Moisture 272
Comparison of Infiltration Formulas 278
Basic Equations of Ground Water Flow 283
Problems on Subsurface Flow 291
Literature Cited 293
List of Symbols 296
APPENDIX TABLES 300
ACTHOR INDEX 316
SUBJECT INDEX 323

LINEAR THEORY OF HYDROLOGIC SYSTEMS

By James C. I. Dooge ${ }^{1}$

INTRODUCTION

These lectures were designed to introduce participants to the theory of deterministic hydrologic systems. In recent yeara, this theory has been named "parametric hydrology," but is also known as "dynamic hydrology" or "deterministic hydrology." One object of the course was to make the participants aware of certain theories and techniques rather than to give them a perfect knowledge of the theory or a complete mastery of the techniques. Attention was directed to the essential unity underlying the many methods that have appeared in the hydrologic literature as seemingly unrelated to one anotber. Another aim of the course was to reformulave established concepts and technicques in terms of a general systems approach and thus to extend their usefulness.

This publication follows the organization of the original esurse and is divided into lectures. Lecture 1 , which is far longer than any other, consists of a preview of the subject matter of the whole course. This is followed by two review lectures, one on physical hydrology and the other on the mathematics required for the study of deterministic hydrologic systems. Lectures 4, 5, and 6 deal essentially with the problem of the identification of deterministic hydrologic systems and, thus, with the analysis of the behavior of a given system. The next fou- lectures- 7 through 10 -deal with synthesis rather than analysis. In them, the question of simulating the behavior of natural hydrologic systems is discussed.

The original lectures were built around more than 100 figures, which were included with the handout material for the course, and also projected during the lectures. In this publication, many of these figures have been incorporated into the text. The handout material also contained a number of probiems and a large number of references for each lecture. These were not confined to what would have been directly necessary for a short, 2 -week course. Rather

[^0]they were chosen so that the participants could, after the completion of the course, go more deeply into any part of the subject which was of particular interest to them. These problems and references are included in this publication and aprear at the end of each lecture. So as to facilitate further study of individual aspects of the subject, some important references have been repeated in the various lectures rather than eross-referenced from one lecture to another.

LECTURE 1: HYDROLOGIC SYSTEMS

The Systems Approach

What is a system?

Before starting to discuss hydrologic systeme, it is well to be clear about what we mean in this context by a system. There are, of course, almost as many definitions of a system as there are books on the subject of systems analysis and systems synthesis. It is worthwhile to review a few of these definitions before arriving at a working definition which will serve our purpose,

The first definition by Stafiord Beer (6): an expert on management and cybernetics, merely defines a system as "Anything that consists of parts comnected together." This includes the essence of what a system is. It is something that consists of parts; there are separate parts in it, and they are connected together in some way. Of course, this does not bring us very far because philosophers will tell us that everything which is created, everything which changes, consists of parts. While it is true to say that everything is a system, this does not help us very much to build up a consistent theory of hydrologic systems.

A second definition is that given by MacFarlane (30) in his book on "Engineering Systems Analysis" in which he defines a system as "An ordered arrangement of physical or abstraet objects. ${ }^{\text {. }}$ Here, the notion of some sort of order enters the picture; tb: system is put together in accordance with some sort of plan. Also we have the idea that there are two types of systems-a physical or real system and an abstract one.

A third definition by Ackoff (P), who was a pioneer in operations research, states that a system is, "Auy entity, conceptual or physical, which consists of interdependent parts." Again we get the idea that the system can be conceptual or physical and that the system consists of interdependent parts.

The fourth definition, by Drenick (19), stresses the manner of operation of a system rather than its structure: "A device which accepts one or more inputs and generates from them one or more outputs." This concept of a system, as that which links inputs and outputs, is common in the literature. Further defnitions and descriptions of the systems approach in other disciplines are found in works by Bellman ($\tilde{7}$), Doebelin (14), Draper and others (18), Ellis and Ludwig (21), Koenig and Blackwell (24), Lee (27), Lynch and Truxal (29), Paynter (97), Stark (43) and Tustin (44).

Having considered a large number of definitions of a system, I decided to

[^1]accept as adequate for the present purpose, the definition that, "A system is any structure, device, scheme, or procedure, real or abstract, that interrelates in a given time reference, an input, cause, or stimulus, of matter, energy, or information, and an output, effect, or response, of information, energy, or matter." This definition includes the concepts contained in the defnitions given above. The emphasis is on the function of the system-that it interrelates, in some time reference, an input and an output. In mechanics, we tend to tati sbout inputs and outputs; physicists and philosophers often speak of causes and effects; workers in the biological sciences taik of stimuli and responses. These are merely alternative words for the same two concepts. Reference to an input does not restrict the concept to a single input. The input could consist of a whole group of inputs so that we would have an input vector rather than a input variable. In some cases, the input could be completely distributed in space and thus represented by a function of both space and time.

The definition refers to inputs (and outputs) as consisting of matter, energy, or information. In some systems, both the input and output would consist of material of some sort; in others, attention would be concentrated on the input and output of energy; while in other systems, the concern would be with the input and output of information. There is no need, however, for the input and the output to be alike. It is perfectly possible to have a system in which an supai of matter will produce an output of information or vice versa. That there is no necessity for the natures of the input and output to be the same has been emphasized in the definition by using the reverse order to describe the natures of the input and the output. The essence of a system-which can be real or abstract-is that it interrelates two things.

Concept of system operation

In dealing with problems in applied science, our concern is to predict the output from the system we are interested in. Figure 1-1 shows the three elements that together determine what this output will be. In the classical approach, certain assumptions are made about the nature of the system and the physical laws governing its behavior; these are then combined with the input to predict the output. To apply this elassical procedure, it is necessary to know the physical laws or to be able to make reasonable assumptions about them. It is also necessary to be able to describe the structure of the system and to specify the input. A distinction is made here between the nature of the system itself and the physical laws of its operation. The nature of the system refers only to its inherent structure, that is, to the nature of the components of the system and the way in which these components are connected.

In hydrology, as in many other areas, the classical approach tends to breakdown either because, on the one hand, the physical laws are impossible to determine or too complex to apply, or, on the other hand, the geometry of

Figure 1-1.-Factors affecting output.
the system is too complex or the laek of homogeneity too grest to enable us to apply classical methods to the prediction of the behavior of the system. In the systems approach, an attempt is made to evade the problems raised by the complexity of the physics, the complexity of the structure of the system, and the complexity of the input.
Figure 1-2 shows the essential nature of the systems approach to the problem. In figure 1-2, the elements of figure 1-1 are rearranged, and the concept of system operations is introduced. In the systems approach, the complexities arising from the physical laws involved and from the structure of the system being studied are combined into the single concept of the system operation of this particular system. If either the nature of the system or the physical laws are changed, then the systems operation will be changed. These effects are shown in the vertical relationships in figure 1-2. In dealing with one particular system, however, we can use this combined concept of system operation as being the element which accepts the input and converts it into an output.

Thus, in the systems approach, attention is concentrated on the borizontal relationship in figure 1-2. In systems analysis, we are concerned only with the way in which the system converts input to output. If we can deseribe this

Figure 1-2.-The concept of system operation.
system operation, we are not concerned in any way with the nature of the system-with the components of that system, their connection with one another, or with the physical laws which are involved. The systems approach is an overall one and does not concern itself with details which may or may not be important and which, in any case, may not be known.

The concern of the systems approach with overall behavior rather than details can be exemplified by the unit hydrograph approach to predicting storm runoff. In this approacl, precipitation excess is taken as the input and the direct storm runoff as the output. The operation of the whole watershed system in converting precipitation excess to direct storm runoff is summarized in the form of the unit hydrograph. We are not concerned with arguments about whetber there is, or is not, such a thing as interfiow, nor with arguments as to whether overland flow actually occurs; and if it does, what the friction factor is. We may overlook our ignorance of the physical laws actually determining the processes in various parts of the hydrologic cycle. We may ignore the problem of trying to describe the complex watershed with which we are dealing; we do not have to survey the whole watershed by taking cross sections on every stream as we would have to do if we wanted to solve the problems by classical hydraulics. Instad we assume that all the complex geometry in
the watershed and all the complex physics in the hydrologic cycle is described for that particular watershed (but of course for that one only) by the unit hydrograph. The systems approach is basically a generalization of this standard technique that has been used in applied hydrology for many years. The essential feature is that in dealing with the analysis of a particular system, aftention is concentrated on the three horizontal elements in figure 1-2.

This does not mean that the structure of the system or the physical laws can be completely ignored. If our problem is one of synthesis or simulation, rather than analysis, it is necessary to consider the vertical elements in figure 1-2. Again we have an anulogy with the unit hydrograph technique in applied hydrology. If we have no records of input and output (that is, of precipitation excess and of storm runoff) for a watershed, it is necessary to use synthetic unit hydrograph procedures. This is done in applied hydrology by correlating the parameters of the unit hydrograph with the catchment characteristics. In this way, the effect of the structure on the system operation is taken into account. Because the physics does not change from watershed to watershed, it might be thought that no assumptions are made about the physics of the problem in synthetie unit hydrograph procedures. This is not so. The whole unit hydrograph process of superimposing unit hydrographs and blocks of precipitation excess depends on the superposition principle, which will oniy apply, as we shall see later, if the system we are dealing with is linear. Therefore, unit hydrograph procedures make the fundamentai assumption that the physical laws governing direct surface runoff can be represented as operating in some linear fashion.
In the above example, the details of the operation of a system were ignored because they were too complex to be understood. In other cases, the details are ignored because they are not important. Again we can take an example from classical hydrology. The problem of routing a flow through an open channel can be solved by writing down the equation of continuity and the dynamic equation and proceeding to solve the problem for the given data by the methods of open channel hydraulics. Even with large, high-speed computers, the solution for the case of a nonuniform channel is extremely difficult. The solution proceeds step-by-step down the reach and marches out step-by-step in time. In practice, the detailed results for the discharge and depth at every point along the channel are not required since all we usually wish to know is the hydrograph at the downstream end. Whether we use the method of characteristics, an explicit finite difference scheme, or an implicit finite difference scheme, difficulties of one sort or another arise in the numerical solution of this problem. Most of the information which we have gained with such labor is of littl interest to us as applied hydrologists. More than 30 years ago, hydrologists dodged these difficulties by introducing the idea of hydrologic routing, that is, the idea of treating the whole reach as a unit, trying to link up the relationship between the upstream discharge and the downstream discharge without bothering with what went on in between.

Systems terminology

As in every other discipline, a terminology has grown up in systems analysis and systems engineering. The meaning of the more important concepts and terms mast be clear before we can understand what is written in the literature concerning the systems approach.

A complex system may be divided into subsystems, each of which can be identified as having a distinct input-output linkage. A system or a subsystem may also be divided into components, each of which is an input-output element, which is not further subdivided for the purpose of the study in hand. Thus, a system is composed of subsystems, and the subsystems themselves consist of components.
Reference is frequently made to the state of a system. This is a very general concept. Any change in any variables of the system produces a change of state. If all of the state variables are completely known, then the state of the system is known. Perhaps it is easiest to look at this in hydrologic terms. If we knew exactly where all the water in a watershed was-how much of it was on the surface, how much of it in each soil horizon, and how much of it in each channel-we would know the hydrologic state of the watershed. The state of a system may be determined in various ways. In some systems, it is determined historically, that is, the previous history of the system determines its present condition. In other cases, the state of the system is determined by some external factor which has not been included in the system under examination. In still other cases, the state of the system is stochastically determined or else assumed to be stochastically determined, that is, determined by a random factor.

A system is said to have a zero memory, a finite memory, or an infinite memory. The memory is the length of time in the past over which the input affects the present state. If a system has a zero memory, then its state and its output depend only on the present input. If it has an infinite memory, the state and the output will depend on the whole past history of the system. In a system with a finite memory, its behavior, its state, and its output depend only on the history of the system for a previous length of time equal to the memory.

The distinction between linear and nonlinear is of vital importance in systems theory as it is in classical mechanics. The analysis and synthesis of linear systems can draw on the immense storehouse of linear mathematics for techniques. The special properties of linear systems will be dealt with in detail later. For the moment, it will suffice to say that a linear system is one that has the property of suparposition and a nonlinear system is one that dof: not have this property.

Another important distinction is between time-variant and time-invariant systems. A time-invariant system is one whose input-output relationship does not depend on the time at which the input is applied. Most hydrologic systems
are actually time-variant; there are seasonal variations throughout the year and a variation of solar activity throughout the day. Nevertheless, the advantages of assuming the systems to be time-invariant is such that these real variations are usualiy neglected in practice.

It is necessary to distinguish between continuous and discrete systems, and also among continuous, discrete, and quantized systems. Whereas hydrologic systems are continuous, the inputs and outputs may be available in either continuous, discrete, or quantized form. A system is said to be continuous when the operation of the system takes place continuously. A system is said to be discrete when it changes its state at diserete intervals of time. An input or an output of a system is said to be continuous when the values of it are either known continuously or can be sampled so frequentiy as to provide a virtually continuous record. An input or an output is said to be discrete if the value is only known or can only be sampled at finite time intervals. An input or an output is said to be quantized when the vaiue only changes at certain discrete intervals of time and holds a constant value between these intervals. Many records of rainfall, which are only known in terms of the volume during certain intervals of time, are in effect quantized records.

We can talk of the input and output variables and the parameters of the system as being either lumped or distributed. A lumped variable or parameter is one whose variation in space is either nonexistent or has been ignored. Thus, the average rainfall over a watershed, which is used as the input in many hydrologic studies, is a lumped input. Where the variation in one or more space dimensions is taken into account, the parameter is a distributed one. Either the parameters of a system itseli or the inputs or outnuts ean be lumped. The behavior of lumped systems is governed by ordinary differential equations with time as the indepeudent variable. The behavior of distributed systems is governed by partial differential equations.

A distinction is also made between deterministic and probabilistic systems. In a deterministic system, the same input will always produce the same output. The input to a deterninistic system may be either itself deterministic or stochastic. A probabilistic system is one which contains one or more elements in which the relationship between input and output is statistical rather than deterministic. The present lectures are mainly concerned with deterministic systems.

The distinction is sometimes made between natural systems and devised systems. The essential feature of natural systems is that though the inputs and outputs and other state variables are measurable, they are not controllable. In a devised system, for example, an electronic system, the input may be both controllable and measurable.

Other descriptions of systems are that they are either simple or complex. Complex in this context usually means systems with feedback built into them. Some systems have negative feedbacks built into them to produce stability and others are designed for ultrastability, that is, to be stablo even against
unanticipated changes in the extermal environment. Beyond feedback we have adaptive systems which learn from their past history and improve their performance.
A causal system is one in which an output cannot occur carlicr than the corresponding input. In other words, the effects camnot precede the cause. In electrical engineering, the limitation to causal systems is sometimes abandoned to achieve certain results. All of the systems dealt with in hydrology are causal systems. Simulation systems are also referred to as being realizable. This has much the same meaning as causal insofar as it means that the system is tonanticipative in its operation.
A further important property of systems is their stability. A stable system is one in which if the input is bounded, then the output is similarly bounded. In hydrology, virtually all our systems are stable and extremely stable. In most cases, when the inf t to a hydrologic system is bounded, the bound on the output is considerably fess than that on the input.

Basic problems involving systems

We have already sean that a system is essentially something which interrelates an input and an output. Thus, from an overall viewpoint there are three elements to be considered-the input, the system operation, and the output. This general relationship can be represented either by a rectangular box, in which the system H converts the input $x(t)$ into the output $y(t)$. Alternatively, it may be represented by the general mathematical relationship:

$$
\begin{equation*}
y(t)=h(t) \psi x(t) \tag{1}
\end{equation*}
$$

where $h(t)$ is a mathematical function characterizing the system operation and ψ is a symbol denoting that the function $h(l)$ and the input function $x(t)$ are combined in some way to produce the output function $y(t)$. If the operation of the system ean be described in any way, then we are concerned with the interrelation of three functions-the input function, the system operation function, and the output function.

If we have derived a mathematical representation of the operation of the system and we know the input, then the problem of finding the output is a problem of prediction. In terms of the unit hydrograph approach, the problem is to determine the storm runoff knowing the unit hydrograph and the given or assumed effective rainfali.

If, however, we do not know the unit hydrograph, it is necessary to derive it from the past records. This is the problem of finding a function deseribing the system operation knowing the input and output; it may be described as the problem of system identification. The problem of system identification is much more difficult than the problem of output prediction. It is important to realize what we mean by system identification. We cannot identify the system uniquely in the same way as we might identify someone from their fingerprints.

Rather can we identify the behavior of the system much the same way as a criminal might be identified by his modus operandi. All that system identification tells us is the overall nature of the systems operation and not any details of the nature of the system itself.

The various problems that can arise are shown on figure 1-3. If we have a given system, then the problem is one of analysis, as in the case of the structural engineer who is faced with the analysis of a given design. There are three elements in the system relationship; hence there are three types of problems in analysis with which we must concern ourselves In each of these situations, the problem is to find one of the elements when given the other two.
The third prohlem of analysis is detection. This occurs when, knowing how our system operates and knowing the output, we wish to know what is the input. This is the problem of signal detection and the problem inherent in all instrumentation. In hydrology, as in many other fields of engineering, this particular problem has been widely ignored. The engineer has been too content to assume that his instruments are perfect, that is to assume that the input to an instrument is correctly given by the output recorded by the instrument. It is only in recent years that there has been any study of hydrologic instruments from a systems viewpoint. The problem of signal detection, or signal identification, is mathematically the same as the problem of system identification and, therefore, also substantially more difficult than the problem of output prediction.

The problem of prediction is that of working out the interrelationship of the two functions $h(t)$ and $x(t)$ shown on the right-hand side in equation 1 . The

PROBLEMS ARISING WITH SYSTEMS

TMPETOR DROBEW	4x, ${ }^{\text {ata }}$	$5{ }^{51}$	Hogisix
Prediction	\checkmark	\checkmark	?
Analysis Identification	\checkmark	?	\checkmark
Identification	?	\checkmark	\checkmark
Synthesis (Simulation)	\checkmark	??	\checkmark

Figure 1-3.-Chassification of systems problems.
problem of system identification or signal detection is that of unscrambling one of the components on the right-hand side of the equation. This involves a problem of inversion, which is inherently difficult.

Besides the problems of analysis, we have also the problems of synthesis. This corresponds to the problem of the structural engineer who has to design a structure as well ns know how to analyze it. In hydrology, we do not dasign watersheds, except possibly in urban hydrology, but even here we do not design them from a hydrologic viewpoint. We do, however, attempt to simulate complex hydrologic systems by simpler models, and this is essentially a problem of syathesis. The problem of synthesis is to devise a system which will convert a known input to a known output within certain limits of aceuracy. It involves the selection of a model and the testing of the operation of this model by analysis. This is even more difficult than the problem of identification, and hence the double question mark in figure 1-3.
A scientific approach to the analysis and synthesis of systems must rest on a firm mathematical foundation. In the following lectures, the mathematical techniques used at present in parametric bydrology are introduced and their application described. Those interested in studying more deeply the mathematics of system behavior can do so in books by Aseltine (5), Zadeh and deSoer (46), DeRusso and others (1S), Gupta (23), and Wymore (45).

Hydrologic systems

Although we have already referred to certain isolated problems in hydrology, it is well to consider the bydrologic cycle as a whole before considering the various hydrologic subsystems. Figure 1-4 shows a diagram of the hydrologic cycle by Ackerman and others (1).
Similar diagrams can be found in any standard textbook. These diagrams can be compared for such qualities as artistic merit and draftsmanship, but what do they mean from a systems point of view? Those who use the systems approach are known to have an aversion to such diagrams and to insist on drawing everything in terms of neat rectangles. These austere rectangular boxes do not even have the color of modern abstract art to save them from criticism. From their appearance one wouid deduce that they show much less information than the figures such as that shown in figure 1-4. Actually, this is not so. Figure 1-5 is a systems representation or block diagram of the hydrologic cycle and is based on figure 1-4. Actually there are less assumptions in the block diagram of figure 1-5 than in the representation in figure 1-4.

The whole hydrologic cyele is a closed system in the sense that the water circulating in the system always remains within the system. The whole system is driven by the excess of incoming radiation over outgoing radiation, and the movement of water through the tydrologic cycle is only possible because of this source of energy. In figure 1-5, the system represented by the hydrologic cycie has been divided into subsystems. Thus we have the atmospheric sub-
system, the subsystem represented by the surface of the ground, the subsuriace subsystem or unsaturated phase, the ground water subsystem or saturated phase, the channel network subsystem, and the ocean subsystem. Each of these subsystems will contaia individual components, but for the purpose of an overail analysis and overall discussion, these components have all been lumped into one subsystem. The hydrologic cycle shown in figure l-5 is a system in which the inputs and outputs are material. Water in one of its

Fsa. 1-4.--Representation of the hydrologic cycle.

Fiociae 1-5.-Block diagram of the hydrologic cycle.
phases either moves through the cycle or is stored in some part of the cyele at all times. Figure $1-6$ shows a representation of the hydrologic cycle developed by Kulandniswamy. ${ }^{3}$ The latter figure is similar to the systems representation used by electrical engineers.
Neither classical hydrology nor systems hydrology deals with the hydrologic cycle as a whole. Hydrology leaves the atmosphere to the meteorologists, the lithosphere to the geologists, and the seas to the oceanographer. The resulting subsystem is shown in figure 1-7. In outlining this subsystem we have cut across certain lines of water transport and, consequently, the system is no longer a elosed one. These lines of water transport-precipitation, evaporation, transpiration, and runoff-are now either inputs or outputs to our new

[^2]system. Whereas precipitation is clearly an input and runoff an output, it is not always casy to decide whether evaporation and transpiration are inputs or outputs. One reasolable standpoint is to consider potential evaporation as an input and actual evaporation as an output.
The systern shown in figure 1-7 is clearly a lumped system. But this does not involve any more assumptions than are made by classical hydrologists when they consider the individual basin, whether it be a parking lot, an experimental plot, or a natural watershed. These are all basins-they are all systems, which convert a certain hydrologic input into a hydrologic output. It is possible to divide up the system and subsystems shown in figure 1-7 into components. Thus, we could divide the soil into various layers, or divide the ground water into two grownd water components, one of which is shallow and subject to transpiration, and the other of which is so deep that no ground water loss can oecur through transpiration.
The distinction shown in figure 1-7 between overiand flow, interfow, and ground water flow is not generally made in applied hydrology because it is virtually impossible to separate the three types. Instead, applied hydrologists distinguish between surface flow and base flow and use a model of the hydrologic eycle something like that shown in figure 1-8. The precipitation is divided into (1) precipitation excess and (2) infiltration and other losses. The precipitation excess produces direct storm runoff. The infiltration replenishes soil storage which is drawn down upon by transpiration. Any excess infiltration after soil moisture storage is satisfied forms recharge to ground water, which eventually emerges as base flow. The presence of the threshold in the soil storage phase of the system maies it impossible to treat the whole system as linear, even where the evaporation and transpiration are completely known. The development of the unit hydrograph theory as a linear relationship between precipitation exces: and storm runoff avoided this difficulty by

Figure 1-6.-Kulandaiswamy's block diagram.

Figure 1-7.-.The catchment as a syatem.

Figure 1-8.-The simplitied catehment model.
the slimination of the base flow and the infiltration. It is the existence of this thresbold-rather than the difference in response time between the surface response and the ground water response-that necessitates the separation.

In applied hydrology, the full model shown in figure 1-8 is not used. In practice, the base flow is separated from the total hycrograph in some arbitrary fashion, and the precipitation excess is then taken so as to be equal in value to the storm runoff. On the other hand, in soil moisture accounting the threshold effect inherent in soil moisture storage is taken into account. It is only recently that studies have taken both phases into account. Also, it is only recently that the systems techniques developed for surface water have been applied to the problems of ground water response, notably by Kraijenhoff van de Leur ($2 \overline{0}$).

If we wish to consider the whole system shown in either figure 1-7 or figure 1-8, then we are of necessity dealing with a nonlinear system. This brings in all the difficulties of nonlinear mathematics. It is not surprising, therefore, that the concentration has been on the individual elements shown in figure $1-8$. Over the past 35 years, unit hydrograph techniques have been developed for denling with the direet response in runoff and these techniques are all based on the assumption of linear behavior. Similarly, drainage engineers dealing with the saturated zone have used linearized equations, though it was not until very recently that it was realized this would enable systems methods to be used without further loss of generality (25). The unsaturated phase involving soil moisture storage remains the most difficult part of the hydrologic cyele to handle. Not only does a threshold exist, but there is a feedback mechanism because the state of the soil moisture determines the amount of infiltration. It is in the unsaturated phase that the greatest difficulties will be cncountered and that the greatest amount of work needs to be done.

The systems approach has been fruitful in many other disciplines. Such work as has been doue on parts of the hydrologin cycle has been encouraging. There is every reason to believe that the application of the systems approach to the whole hydrologic cycle will produce a coherent theory of hydrologic systems, which can form the basis for an applied hydrology with a sce: ${ }^{\prime}$.ific basis. The development over the past 15 years can be followed in the references cited at the end of this lecture. General surveys of the problem from varying points of view have been given by Paynter (36), Amorocho and Hart (3), Kraijeuhoff van de Leur (26), Nash (33), and Dooge (17).

Linear Time-Invariant Systems

The essence of linearity is the principle of superposition, which may be described as follows (an arrow signifies that a particular input to the system results in a particular output):

$$
\text { If } x_{1}(t) \rightarrow y_{1}(t) \text { and } x_{2}(t) \rightarrow y_{2}(t),
$$

then the system is said to be linear if:

$$
x_{1}(i)+x_{2}(t) \rightarrow y_{1}(t)+y_{2}(t)
$$

This principle includes the principle of homogeneity in the special case in which $x_{1}=x_{2}$.
The principle of superposition, of course, is not confund to the addition of only two inputs. Any number of inputs can be added together as long as the principle holds; the output will be the sum of the individual corresponding outputs. Since integration is a limiting form of summation, if the input to the system can be expressed as the integral of any function $f(t)$, then the corresponding output ean be obtained by intcgrating the output due to an input. $f(t)$.

The system linearity defined by the principle of superposition must be distinguished from the existence of a general linear (that is, a straight line) functional relationship between input aud output. It can easily be verified that if the input to a system is x and the output is $y=a x+b$, the system is not linear.

A system is said to be time-invariant when its parameters do not change with time. For such a system, the form of the output depends only on the form of the input and not on the time at which the input is applied. Thus, if

$$
x(t) \rightarrow y(t)
$$

then for a time-invariant srstem:

$$
x(l+\tau) \rightarrow y(l+\tau)
$$

where τ is a time shift which may be either positive or negative.
In hydrology, the assumptions of linearity and time-invariance are not valid, but nevertheless have been used for a long time in applied hydrology because of the simplification they introduce. The ability to predict the output from a hydrologie system is based on past records of input and output. By the assumption of time-invariance, it is possible to prediet an output for a given input if that particular input has already occurred at some time during the period of record. Without the assumption of time-invariance this would not be possible. The further assumption of linearity allows the prediction to be made even though the slape of input in which we are interested has not occurred in the past. This is done by (1) breaking down the past input and the input being considered into basic elements of standard shape but varying volume, (2) deeomposing the past output so as to obtain the output due to a characteristic input flement of standard volume, (3) using the latter result to predict the output due to the individual characteristic elements of the input being considered, and (4) superimposing the outputs from these individual characteristic elements to obtain the total output. This is the basis of the unit hydrograph procedure, which deals with the storm runoff for a unit period.

The problems of systems analysis and synthesis are also greatly simplified if the input and output of a system are assumed to be lumped. In a lumped system with a single input and a single output, the behavior of the system would be governed by an ordinary differential equation. For the system with several inputs and several outputs, the behavior of the system would be described by a set of differential equations. If the inputs and outputs are not lumped, then the system behavior must be described by partial differential equations. Since partial differential equations are much more difficuit to handle than ordinary differential equations, there are distinct advantages in using lumped inputs and outputs in the first attempt to formulate a theory of system behavior.
The assumptions of linearity and time-invariance are also reflected in the type of differential equations which would deseribe the behavior of the system. Thus a lumped linear system would correspoad to an ordinary hinear differentiai equation. If the system were also time-invariant, then the differential equation would be an ordinary differential equation with constant coefficients. The fact that ordinary differential equations with constant coefficients are far easier to handie than any other type indicates the advantages of making the assumptions of lumping linearity and time-invariance in the handling of system operations.

The assumption of linearity helps us greatly with the problem of predirection. If a complex input an be described in terms of a set of simple characteristic functions and the output corresponding to each of these characteristic functions is known, then the output due to the complex input can be obtained by superposition. This question has been well discussed by Sievert (40). It is, of course, possible to expand an arbitrary function in a great variety of ways. Thus, we could expand the function in terms of a power series:

$$
\begin{equation*}
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+\ldots \ldots \tag{2}
\end{equation*}
$$

or in terms of an exponential series:

$$
\begin{equation*}
x(t)=c_{0}+c_{1} e^{-1}+c_{2} e^{-2 t}+\ldots . \tag{3}
\end{equation*}
$$

The trouble with such series is that in the case of a function which is given numerically, it is difficult to determine the values of the coefficients in the expansion with good accuracy. If, however, we expand $x(t)$ in terms of a set of functions $f_{1}(t)$:

$$
\begin{equation*}
x(t)=c_{0} f_{0}(t)+c_{1} f_{1}(t)+c_{2} f_{2}(t)+\ldots \ldots \tag{4}
\end{equation*}
$$

where the functions $f_{i}(t)$ are orthogonal (see "Orthogonal Polynomials and Functions," lecture 3) then the property of orthogonality can be used to find the coefficients c, relatively easily and with good accuracy.

In choosing between the orthogonal functions available it is, of course, convenient if the orthogonal series used to fit a given $x(t)$ is as short as
possible. Consequently, one set of orthogonal functions may be preferable to another set because of the nature of the input. If the input is expanded in terms of a set of orthogonal functions $f_{i}(i)$ in accordance with equation 4 and the output corresponding to each of these orthogonal functions is given by:

$$
\begin{equation*}
f_{i}(l) \rightarrow g_{i}(l) \tag{5}
\end{equation*}
$$

then the output from the system due to the input $x(t)$ is given by:

$$
\begin{equation*}
y(l)=\operatorname{cog}_{0}(t)+c_{1} g_{1}(t)+c_{2} g_{2}(t)+\ldots \ldots \tag{6}
\end{equation*}
$$

where the values of the respective coefficients in equations 4 and 6 are equal ${ }^{-}$ It is also convenient if the output torresponding to the typical orthogonal function is simple in form. Thus, the choice of a convenient set of orthogonal functions for representing the input, output, and response function depends both on the auture of the input and the nature of the system.

Electrical engineers deal with lightly damped systems in which the inputs are usually sinusoidal. Consequently, Fourier methods of analysis are of great utility in electrical eugineering, since the sine and cosine functions are orthogonal to one another and are of the same general form as the inputs and outputs. Consequently, the Fourier methods were the first to be developed in systems analysis. The various developments of Fourier methods-the Fourier integral for dealing with transients and the Laplace transform for dealing with unstable sy'stems-are natural developments. These well-established techniques can be found in standard texts such as Gardner and Barnes (92).

In hydrology, bowever, the systems are not lightly damped and the responses are not oscillatory in nature. Instead, we have systems that are very heavily damped. It would, therefore, be foolish to take over from the electrical engineer the techniques he has developed for his particular problems without close examination of their relevance to hydrolegic systems.

Continuous forms of the convolution equation

The derivation of the fundamental equation for system operation of a linear system depends on the use of the concepts of an impuls function and the impulse response. The impulse function-or Dirac delta function-is really a pseudofunction or distribution which is usually defined as having the properties:

$$
\begin{align*}
\delta\left(t-t_{0}\right) & =0, \text { when } t \neq t_{0} \tag{7}\\
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) d t & =1 \tag{8}
\end{align*}
$$

The delta function is usually visualized as the limiting form of a pulse of some particular shape as the duration of the pulse goes to zero. The more correct
mathematica! definition of the delta function:

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} \delta(t-\tau) x(\tau) d \tau \tag{9}
\end{equation*}
$$

is actually more directly useful for our purpose here. Siebert (40) has pointed out that equation 9 is a special limiting form of equation 4 , in which $f_{i}(t)$ is replaced by the orthogonal delta function $\delta\left(t-\tau_{i}\right)$ and the orthogonal coefficients c_{i} are given by $x\left(\tau_{i}\right)$.

The impulse response of a system, $h(t)$, is defined as the output from the system when the input takes the form of an impulse or delta function, that is, if $x(t)=\delta(t)$, then $y(t)=h(t)$. If the system is linear, the impulse response gives as complete a description of the system behavior as is needed. In surface water hydrology, the IUH is the impulse response of the catchment.

The two concepts given above can be used to derive a convenient mathematical formulation of system operation for a lumped linear time-invariant system. If the impulse response of the system is $\bar{h}(t)$, then we have:

$$
\delta(t) \rightarrow h(t)
$$

For a time-invariant system

$$
\delta(t-\tau) \rightarrow h(l-\tau)
$$

For a linear system

$$
x(\tau)(t-\tau) \rightarrow x(\tau) h(t-\tau)
$$

Any arbitrary input $x(l)$ can be considered as being made up from an infinite uumber of delta functions as indicated by equation 9 above. Since the operation of integration is linear, the output from such an input $x(t)$ will be given by integrating the weighted output $x(\tau) h(t-\tau)$ corresponding to the individual delta functions $\delta(t-\tau)$:

$$
\begin{equation*}
x(t) \rightarrow \int_{-\infty}^{\infty} h(t-\tau) x(\tau) d \tau \tag{10}
\end{equation*}
$$

Thus for an input $x(t)$ and an output $y(t)$, we have the relationship:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} h(t-\tau) x(\tau) d \tau \tag{11a}
\end{equation*}
$$

The right-hand side of this equation represents the well-known mathematical operation of convolution, which is often represented by an asterisk so that we can write:

$$
\begin{equation*}
y(t)=h(t) * x(t) \tag{11b}
\end{equation*}
$$

Thus, the completely general relationship indicated in equation 1 has been replaced by the definite convolution relationship represented by equation 11 for a lumped linear time-invariant system. As long as we confine our attention to such systems, we will be concerned with the solution of equation 11. The
problem of prediction now becomes the solution of equation 11 for known values of $x(t)$ and $h(t)$ and, hence, represents only the operations of multiplication and summation which are inherent in convolution.
The twin problems of system identification-the determination of $h(t)$ and of signal identification-the determination of $x(t)$-are now seen to involve the solution of an integral equation which is, of necessity, a much more difficult mathematical problem than that of convoluting two known functions. The problem of synthesis is now seen to be that of devising a simulation system whose impulse response will, to a sufficient degree of approximation, represent the function $h(t)$ which is required. The impulse response in equation 11 is the IUH used in hydrology. In other disciplines, it is variously referred to as an impulse response or a characteristic response or a weighting function; in mathematics it is referred to as a kernel function, a Green's function, or an influence function.

Though we are largely concerned with lumped linear time-invariant systems, it is instructive to consider briefly the more general forms of the mathematical relationship between input and output when these assumptions are relaxed. If instead of a single input, we had a number of lumped inputs, then the relationship would be as follows:

$$
\begin{equation*}
y(t)=\sum_{i=1}^{n} \int_{-\infty}^{\infty} x_{i}(\tau) h_{i}(t-\tau) d \tau \tag{12}
\end{equation*}
$$

An equation of the above type would apply to the case where the rainfall was measured at several points in the catchment and the values of $x_{i}(t)$ represented the individual rainfall records. In such a case, $h_{i}(t)$ would represent the contribution from the portion of the catchment area corresponding to the $i^{\text {th }}$ rain gage to the flow not at the outlet from that subcatchment but at the outlet from the whole catchment. The solution of the identification problem in this case would involve the solution of a set of simultaneous integral equations. If the rainfall were taken as completely distributed over the catchment area, then the equation for the outflow at the end of the area would be given by:

$$
\begin{equation*}
y(t)=\int_{0}^{a} \int_{-\infty}^{\infty} x(\tau, \alpha) h(t-\tau, a-\alpha) d \tau d \alpha \tag{13}
\end{equation*}
$$

In a system which has a lumped input, and is linear but time varying, then the impulse response $h(t, \tau)$ is a function of both the elapsed time t and the time τ at which the impulse of input is applied to the system. Thus we have the relationships:

$$
\begin{gathered}
\delta(t) \rightarrow h(t, 0) \\
\delta(t-\tau) \rightarrow h(t, \tau) \\
x(\tau) \delta(t \cdots \tau) \rightarrow x(\tau) h(t, \tau)
\end{gathered}
$$

Using the property of linearity, we would have for an input $x(t)$, the output given by:

$$
\begin{equation*}
x(t) \rightarrow \int_{-\infty}^{\infty} x(\tau) h(t, \tau) d \tau \tag{14}
\end{equation*}
$$

so that the system operation is defined by:

$$
\begin{equation*}
y(t)=\int_{-}^{\infty} x(\tau) h(t, \tau) d \tau \tag{15}
\end{equation*}
$$

Since equations $11,12,13$, and 15 are superposition integrals, they apply only to linear systems. There is no corresponding general formulas for the case where the system is nonlinear, but special formulas can be developed when the system is assumed to belong to a particular class of noninear systems.

If we make the assumptions of lumped inputs and outputs, linearity, and time-invariance, we have the geucral superposition integral given by equation 11a. Sinee in this equation, τ is a dummy variable of integration, we can replace it by $l-\tau$ in which case the superposition integral becomes:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \tag{1le}
\end{equation*}
$$

Equations 11a and 11c are equally valid formulations of the relationship among the input, the system opeation, and the output.

The limits of the superposition integral can be modified if we make the further assumption that the systems being considered are causal, that is, that the outpat cannot occur before the input. Since the impulse response $h(t)$ is the response to a delta function at time $t=0$, the impulse response function will be zero for a negative argument. Thus for causal systems, equation 11a can be written as:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau \tag{16a}
\end{equation*}
$$

and equation lle can be written as:

$$
\begin{equation*}
y(t)=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau \tag{16b}
\end{equation*}
$$

If the system has a finite memory, or if the input bas existed for only a finite time, then the limits will be further modified. If the length of the memory is n, then the impulse response will be zero for arguments greater than n and equation $16 a$ may be modified to read:

$$
\begin{equation*}
y(l)=\int_{t-n}^{t} x(\tau) h(l-\tau) d \tau \tag{17a}
\end{equation*}
$$

and equation 16 b will be modifed to read:

$$
\begin{equation*}
y(t)=\int_{0}^{n} h(\tau) x(t-\tau) d \tau \tag{17b}
\end{equation*}
$$

The equations given above will hoid for the case where the input has occurred for an infinite time in the past. For an isolateci input, it is convenient to take the time zero at the start of input. In this case, the value of the input $x(l)$ will be zero for negative argument. For an isolated input to a system with infinte memory, equation $16 a$ will be modified to:

$$
\begin{equation*}
y(l)=\int_{0}^{t} x(t) h(l-t) d t \tag{18a}
\end{equation*}
$$

and equation 16 b to:

$$
\begin{equation*}
y(t)=\int_{0}^{t} h(\tau) x(t-\tau) d \tau \tag{18b}
\end{equation*}
$$

For an isolated input to a system with finite memory the limits of integration in equation 17 will also be modified so that the range of integration will not exceed t, but in practice, it is more convenient in this case to retain the limits and record the zero values. Equation 18 is the normal form of the convolution equation which is dealt with in parametric hydrology. Except in special circumstances, which will be noted, it is the form used in the present lectures.

Classical systems analysis as developed by electrical engineers has grown up around frequency analysis, which is essentially the analysis of periodic phenomena. Care must be taken if these techniques are to be used in the analysis of hydrologic systems. Such techniques can cinly be used if the system under review has a finite memory. In such a case, if the input is of length M and the memory of length N, then the length of the output will be P where:

$$
P=M+N
$$

In hydrologie terms, M is the duration of rainfall excess; N is the base length of the ILH, and P is the duration of surface runof. Since, in the case of a single storm event, everything that we are interested in is contained between zero time and P, we could assume the whole phenomena as periodic with a period T, provided that T is equal to or greater than P. This would mean that both the input and the output would be assumed to be repeated at the chosen interval T. Since these would be repeated inputs and not isolated inputs, we would not be entitled to set the limits of the convolution integral at zero and t as in equation 18. If the memory were finite and equal to N,
the convolution equation would then become:

$$
\begin{align*}
& y(t \pm k T)=\int_{t-N}^{t} x(\tau \pm k T) h(t-\tau) d \tau \tag{19a}\\
& y(t \pm k T)=\int_{0}^{N} x(t-\tau \mp k T) h(\tau) d \tau \tag{19b}
\end{align*}
$$

where

$$
\begin{equation*}
x(t \pm k T)=0 \quad \text { for } \quad M<l<T \tag{19c}
\end{equation*}
$$

and

$$
\begin{equation*}
T \geq P=M+N \tag{19~d}
\end{equation*}
$$

Discrete forms of convolution equation

The form of the convolution equation given above as equation 18 is for the case where both the input and the output are continuously defined. If either the input or the output is given in quantized or discrete form rather than continuous form, the convolution equation must be modified accordingly.

In the classical tanit hydrograph procedures, the rainfall is frequently given as a histogram, that is, in quantized form. In such a case, we deal not with an 1 CH , but with the finite period unit hydrograph introcuced in 1932 by Shermmn (99). A histogram input with an interval D can be defined either in terms of the histogram ordinates $x(t)$, where t is the actual time elapsed, or in terms of the histogram areas $X(\sigma D)$, where σ is the number of intervald elapsed before the beginning of the interval in question. The latter is more convenient and is used below. The histogram of input can be expressed in terms of the volumes of input $X(\sigma D)$ in successive standard periods as follows:

$$
\begin{equation*}
x(t)=\sum_{a=-\infty}^{\infty} x(\sigma D) P_{D}(t-\sigma D) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{D}(\ell-\sigma D)=\frac{1}{D} \quad \text { for } \quad \sigma D<\ell<(\sigma+1) D \tag{21a}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{D}(t-\sigma D)=0 \quad \text { for other values of } t \tag{2Ib}
\end{equation*}
$$

Equation 21 is in effect the equation for a rectangular pulse of duration D and unit volume. Note that the volume of such a pulse is D and not unity.

Having replaced the deita function by the square pulse, we now replace the impulse response $h(t)$ by the pulse response $h_{D}(l)$ which is defined as being the output from the system when the input is given by the rectangular pulse defined in equation 21. Thus, we have:

$$
P_{D}(t) \rightarrow h_{D}(t)
$$

For a time-invariant system:

$$
P_{D}(l-\sigma D) \rightarrow h_{D}(l-\sigma D)
$$

For a linear system:

$$
X(\sigma D) \cdot h_{D}(l-c D) \rightarrow X(\sigma D) \cdot h_{D}(t-\sigma D)
$$

Since summation is a linear process, we can write the output due to the input defined by equation 21 as:

$$
\begin{equation*}
X(l) \rightarrow \sum_{\sigma=-\infty}^{\sigma+\infty} X(\sigma D) h_{D}(l-\sigma D) \tag{22}
\end{equation*}
$$

so that the relationship between input and output for the system is given:

$$
\begin{equation*}
y(t)=\sum_{o=-\infty}^{\infty} X(\sigma D) h_{D}(t-\sigma D) \tag{23a}
\end{equation*}
$$

which corresponds to equation 11 a for continuous input. As in equation 11 e , this equation can be written in the alternative form:

$$
\begin{equation*}
y(t)=\sum_{\sigma=-\infty}^{\infty} X(t-\sigma D) h_{D}(\sigma D) \tag{23b}
\end{equation*}
$$

As in the continuous case, the limits of summation will be affected by the further assumptions of causality, finite memory, or zero input for zero time. In particular, for a causal system with an infnite memory, we have for iso'ated input:

$$
\begin{align*}
& y(t)=\sum_{\sigma D=0}^{\sigma D-t} X(\sigma D) h_{D}(l-\sigma D) \tag{24a}\\
& y(t)=\sum_{\sigma D=0}^{\sigma D-t} X(t-\sigma D) h_{D}(\sigma D) \tag{24b}
\end{align*}
$$

Equation 24 is the convolution equation for a finite period unit hydrograph. Both the unit hydrograph and the output are defined continuously even though the input is defined in quantized form being constant over each interval of leagth D.

In some of the early unit hydrograph work, both the input of rainfall excess and the output of storm runoff were represented by volumes over a fixed interval. The convolution equation for this case would be:

$$
\begin{equation*}
Y(s D)=\sum_{\sigma=0}^{\sigma-1} X(\sigma D) d_{D}(s D-\sigma D) \tag{25}
\end{equation*}
$$

where both s and σ are discrete variabies and d_{D} is the distribution graph for the interval length D for the particular eatchment. The distribution graph d_{D} represents the proportion of the inflow during a standard interval which runs off in successive standard intervals.

In some cases, the input and output are only sampled and, thus, are only available in the form of functions known at discrete moments of time. In this case, the convolution equation would take the form:

$$
\begin{equation*}
y(s D)=\sum_{\sigma=-\infty}^{\infty} X(\sigma D) h_{D}(s D-\sigma D) \tag{26a}
\end{equation*}
$$

which can be written without ambiguity as:

$$
\begin{equation*}
y(s)=\sum_{\sigma=-\infty}^{\infty} X(\sigma) h_{D}(s-\sigma) \tag{26b}
\end{equation*}
$$

Here again both s and σ are diserete variables and h_{D} is the finite period unit hydrograph. For a causal system with an isolated input this, of course, can be written as:

$$
\begin{equation*}
y(s D)=\sum_{\sigma=0}^{\sigma-1} X(\sigma D) h_{D}(s D-\sigma D) \tag{27a}
\end{equation*}
$$

or

$$
\begin{equation*}
y(s)=\sum_{\sigma=0}^{\sigma-s} X(\sigma) h_{D}(s-\sigma) \tag{27b}
\end{equation*}
$$

where $y(s), X_{(\sigma)}$, and $h_{D}(s-\sigma)$ represent the ordinates of the output, the imput, and the finite peiod unit hydrograph, respectively, at standard intervals D.

Fquation 27 can also be written in the alternative form:

$$
\begin{align*}
& y_{i}=\sum_{j=0}^{j-j} x_{j} h_{i-j} \tag{28a}\\
& y_{i}=\sum_{j=0}^{j-i} x_{i-j} h_{j} \tag{28b}
\end{align*}
$$

In the above gquation, x has been used to represent the volumes of input which appear as X in equation 27 . This is done in the interest of simplifying matrix equations which are developed later.

When written out in full, equation 28b has the familiar form given in textbooks on classical hydrology which is given below for an input lasting for five
units of time and a system memory length of three units of time:

$$
\begin{align*}
& y_{0}=h_{0} x_{0} \tag{29a}\\
& y_{1}=h_{1} x_{0}+h_{0} x_{2} \tag{29b}\\
& y_{2}=h_{2} x_{0}+h_{1} x_{2}+h_{0} x_{2} \tag{29e}\\
& y_{3}=h_{3} x_{0}+h_{2} x_{1}+h_{1} x_{2}+h_{0} x_{3} \tag{29d}\\
& y_{4}=h_{3} x_{1}+h_{2} x_{2}+h_{1} x_{3}+h_{0} x_{4} \tag{29e}\\
& y_{5}=h_{3} x_{2}+h_{2} x_{3}+h_{4} x_{4} \tag{29f}\\
& y_{6}=h_{3} x_{3}+h_{3} x_{4} \tag{29~g}\\
& y_{7}=h_{3} x_{4} \tag{29~h}
\end{align*}
$$

The above set of simultaneous equations can be written in the matrix form:

$$
\begin{equation*}
\{y\}_{p+1,1}=[X]_{p+1, n+1}\{h\}_{n+1,1} \tag{30}
\end{equation*}
$$

Where the matrix of inputs which has $p+1$ rows and $n+1$ columns is given below:

$$
\left[\begin{array}{cccccc}
x_{0} & 0 & 0 & & & 0 \tag{31}\\
x_{1} & x_{0} & 0 & & & \\
x_{m} & & & & & \\
0 & x_{m} & x_{m-1} & \cdots & x_{1} x_{0} & \\
& & & & & 0 \\
& & & & & \\
& & & & & x_{0} \\
0 & & & & & 0 \\
& & & & & x_{m}
\end{array}\right] p+1, n+1
$$

An alternative matrix formulation of the discrete case is:

$$
\begin{equation*}
\{y\}_{p+1,1}=[H]_{p+1, n+1}\{x\}_{m+1,1} \tag{32}
\end{equation*}
$$

where the H matrix is rn. le up from the h vector in the same way as matrix 31 and has $p+1$ rows and $m+1$ columns.

Equations 27, 28, 29, and 30 are merely alternative ways of formulating the relationship between the volume of input and the rate of output. Where the input is defned strictly as a discrete function, it is necessary to adjust the equations. Thus equation 27 b for the relation between input volume and
output rate would be replaced by:

$$
\begin{equation*}
y(s)=\sum_{\sigma=1}^{\sigma=1} x(\sigma) h_{D}(s-\sigma) D \tag{33}
\end{equation*}
$$

Note that as D approaches zero, equation 33 approaches the form of the continuous convolution equation 11a.

Identification and Simulation

Classical unit hydrograph methods

The problem of identification is the characterization of the system response from a given record of input and output. In bydrologic terms, the problem is to derive the unit hydrograph from a given record of precipitation excess and storn runoff. The classical method of solving this problem was by trial and error. Though it has nothing of the systems approach about it, this method has been illustrated in a systems fashion in figure 1-9. In the classical approach, some form of the unit hydrograph, that is, the impulse response, or puise response, is assumed and applied to the given rainfall excess. The prediction of the output for this assumed unit hydrograph is merely a matter of simple multiplication and addition. The output based on the assumed unit hydrograph is then sempared with the actual output and a decision made as to whether the fit is close enough.
If the fit is judged to be sufficiently close, then the assumed unit hydrograph is accepted. Otherwise, the assumed unit hydrograph is modified and the procedure repeated until an exception fit is found.

While the above procedure may be acceptable as an ad hoc method of getting a specific answer to one particular problem, it cannot be accepted as deserving of the name of scientific hydrology unless both the criterion of acceptable fit and the rule for modifying the trial unit hydrograph are objectively defined. The technique of optimization by eye has been widely used,

Fiarre 1-9.--Identification by trial and error.
not only in unit hydrograph studies but also in many other branches of hydrology. The supposedly learned journals on scientific hydrology abound with papers in which two curves are said to be a sufficiently aecurate approximation of one another or in which a curve is said to represent some plotted data to a reasonable degree of accuracy. In a ratienal science, it should be possible for a second worker to use another scientist's data and reach exactly the same conclusion. The systems approach in hydrology attempts to achieve this latter objectivity instead of the subjectivity inherent in many of the methods in use today.
Figure $1-10$ is a systems represcutation of the Gollins (10) method of deriving the unit hydrograph. This is an iterative method and one which is a distinet improvement on the trial-and-error approach. In Collins' method the assumed unit bydrograph is not applied to the whole precipitation exeess record, but only to all the rainfall volumes other than the maximum. The resulting estimated runoff, therefore, represents the runoff due to rainfall in all periods except the period of maximum rainfall. When this estimate is subtracted from the artual runoff, the difference gives an estimate of the ruooff due to the rainfall in the unit period of maximum preeipitation exeess. When divided by the approprinte volume of precipitation excess in the period, this runoff due to maximum rainfall gives a new estimate of the unit hydrograph, and the whole process is then repeated. Exeept for unusunl conditions, the iterative procedure is convergent. If the unit hydrograph is constrained to be causal, that is, to have zero ordinates for negative time, then the effort of the Collins" procedure is to concentrate any error in the matehing of the rumofl hydrograph into the portion of that hydrograph due to rainfall before the period of maximum rainfall.

Transform methods of system identification

Parametric hydrology has roneerned itself with the development of such objeetive methoxls as the impulse response or the rectangular pulse response for determining the unit hedrograph. These methods will be discussed in

Ftorne 1-10. \rightarrow Identifieation by iteration (Collins' method).
detail in later lectures, but a brief preview is in order at this point. The methods used can be grouped into two general classes, one of which may be referred to as transform methods and the second as correlation methods.
Figure 1-11 shows the general approach of the transform methods to the problem. In these methods, the known input and the known output are transformed in some fashion. These transiormed inputs and transformed outputs are then used to determine the transform of the impulse response or the rectangular pulse response. If the transformed response can be inverted, the actual impulse response or pulse response will then be known in the original time domain. A complete transform method of identification therefore, contains three elements: (1) The transformation of the input and the output; (2) the use of a linkage equation, which defives the transform of the system response in terms of the transform of the input and the output; and (3) an inversion of the transformed system response to get the system response as a function of time.

The most widely used transform method in systems analysis is the Laplace transform. In this method, the Laplace transform of the input and the output are found. The Laplace transform of the impulse response-which is given the special name of the system function-is then found by dividing the Laplace transform of the output by the Laplace transform of the input. The system operation is thus described in the transform plane, but most hydrofogic situations will be described numerically rather than functionally. To determine the impulse response as a function of time involves the difficult problem of the numerical inversion of the Laplace transform.
In 1952, Paynter (36) applied the method of systems analysis based on the Laplace transform to various problems in hydraulic engneering. He was largely concerned with problems of water hammer and turbine governing, but in part III of his paper, he deait with the problem of flood routing. Unfortumately, for the development of systems hydrology, Paynter's ideas were not followed up at the time.
In 1959, Nash (31), then working in the Hydraulic Research Station in Great Britain, attempted to describe the IUH in terms of its statistical moments. He showed that for a linear time-invariant system, the moment of the input, the impulse response, and the output are connected by the equation-

$$
\begin{equation*}
M_{R}(y)=\sum_{k-0}^{k-R}\binom{R}{k} M_{k}(h) M_{R-k}(x) \tag{33}
\end{equation*}
$$

where $M_{k}(y)$ is the $R^{\text {th }}$ moment of the function $y(t)$. Woments may be taken Nither about the time origin or about the respective centers of the individual functions. This is essentially a transform approach since the moments of a function are a transform of it, and Nash's theorem of moments, given above as equation 33, is the liukage equation between the transformed input, the

Frocma 1-11.-Identification by transformation.
transiormed output, and the transformed systems response. The problem of inversion (finding the form of a function given its moments) is again an extremely difficult one and can be shown to be equivalent to the problem of numerically inverting a Laplace transform.

Next, O'Donnell (\$4) applied harmonic analysis to the problem discussed by Nash. O'Donnell's approach was to find the Fourier coefficients of the system response. The method depends on the fact that the terms of a Fourier series are orthogonal. The response function is known (to a degree of accuracy depending on the length of the series) once the Fourier coefficients for the function are known. Thus, the harmonic analysis method used by O'Donnell does not eacounter any difficulty in the inversion procedure. Because Fourier analysis is concerned with periodic functions, the method can, however, only be rapplied to systems with finite memory.
In 1964, Levi and Valdes (28), working in Mexico, applied the Fourier transform to the problem of systems identification in hydrology. In the same year, Diskin't took up Paynter's work and applied the Laplace transform in more detail to the study of unit hydrographs.

In 1965, Dooge (16) suggested the use of Laguerre coefficients rather than harmonic coefficients for the analysis of heavily damped systems, such as are encountered in hydrology. This method was developed because Dooge felt the method of harmonic analysis, which depeads on sine curves as its basic elements, was not entirely suitable in hydrology where many functions were of a dead beat type rather than an oscillatory one. It was thought that if an orthogonal method could be derived in which the elements of the series were of much the same form as the gamma distribution (which had proved so useful

[^3]in applied hydrology), that the number of terms required to represent a given response function would be less than in the harmonic method.

The above methods of systems identification will be discussed in greater detail in lecture 5 . Meanwhile, it is only necessary to note that they are all objective methods of system identification.

Correlation methods of system identification

The second group of objective methods of system identification consists of methods based on least squares correlation. The method of least squares was applied to the derivation of unit hydrographs by Snyder (41) in 1955 and also developed independently in Australia by Body (8) in 1959 Body published in detail the matrix operations involved and the adaption of the method for digital computers. Snyder (42) published the matrix formulation of the method in 1961.
The set of equations represented in equation 29 comprises $(p+1)$ equations in ($n+1$) unknown values of h and, consequently, is overdetermined. In theory, any group of ($n+1$) equations could be selected from the ($p+1$) equations available to solve the equations for the values of the unknown ordinates (h_{i}) of the unit hydrograph. In practice, of course, the data are not exact, and, consequentiy, no unique mathematical solution exists which would be valid for all inputs. If the first $(n+1)$ equations are chosen and the equations solved by forward substitution, the ordinates of the unit hydrograph may become unstable and unrealistic. The prncedure introduced by Snyder and Body is to use all the equations and the least squares criterion to produce the optimum values of the unknown ordinates of the unit hydrograph. The matrix form of the unit hydrograph equations is given by equation 30 :

$$
\begin{equation*}
\{y\}_{p+1}=[X]_{p+1, n+1}\{h\}_{n+1,1} \tag{30}
\end{equation*}
$$

The least squares formulation of the problem is given by:

$$
\begin{equation*}
\left.[X]_{n+1, p+1}[y]\right]_{p+1,2}=[X]_{n+1, p+}\left[[X]_{p+1, n+1}\{h\}_{n+1,1}\right. \tag{34}
\end{equation*}
$$

Since the product of the transposed matrix X^{r} and the original matrix X is necessarily square, this product can be inverted, and the vector of unknown unit hydrograph ordinates can be written as,

$$
\begin{equation*}
\{h\}_{n+1,1}=\left\{[X]^{r}[X]\right\}^{-t}[X] r\{y\} \tag{35}
\end{equation*}
$$

This procedure is shown diagrammatically in figure 1-12. The record of input is used to determine the input matrix, and this is then multiplied by its transpose. The output vector is also multiplied by the transpose of the input matrix, and these two products are used to determine the optimum unit hydrograph, which is then accepted as an estimate of the true unit hydrograph.
The method of time-series analysis, also shown in figure 1-12, can be classed as a correlation method. If the record is a continuous one, or a discrete record

Figcre 1-12.-Identification by correlation.
existing for infinite time, it is not possible to apply the least squares method, since the matrices become extremely large and impossible to invert. In the case of an infiow which is not isolated, it is also impossible to use the method of Laplace transforms or Fourier transforms since the function may not behave at infinity in accordance with the requirements of mathematical theory. However, a long.time scries can be transformed and described in terms of its autocorrelation function. The autocorrelation function of a time series is defined as the limit:

$$
\begin{equation*}
\phi_{x x}(k)=\frac{1}{n} \sum_{i=p}^{i-p} x(i) x(i+k) \tag{36}
\end{equation*}
$$

where $n=2 p+1$ is the number of data points as p tends to infinity.
Where two time series are known (for example, an input and an output), we can determine their cross-correlation coefficient which is defined as the limit:

$$
\begin{equation*}
\phi_{x y}(k)=\frac{1}{n} \sum_{i=-p}^{n} x(i) y(i+k) \tag{37}
\end{equation*}
$$

as p tends to infnity. If we have a causal, linear, time-invariant system, it
can be shown that the optimum impulse response in the least squares sense is given by:

$$
\begin{equation*}
\phi_{x v}(k)=\sum_{j=0}^{j=\infty} h_{\text {opt }}(j) \phi_{x x}(k-j) ; \quad \text { when } \quad k>0 \tag{38}
\end{equation*}
$$

which is a discrete Wiener-Hopf equation. We started off with the ordinary convolution equation (equation 26) and onded up with another convolution equation. However, equation 38 comects the cross correlation of x and y,

If the input, is isolated, no advantage has been gained, and it can be shown that equation 38 is equivalent to the least squares procedure of Snyder and Body, though more complicated. If, on the other hand, we have an infinitely long time serics which we are continuously sampling, then the problem has been reduced to managenble form. The time series approach is currently being developed at the Massachusetts Institute of Technology under Eagleson (20), and work is aiso being done by Bayazits of the Uuiversity of Ankara.

Methods of simulation

Even if we could completely solve the problem of identification, this would only earble us to predict the future outputs from an individual system. Complete identification would not help us in any way to predict the output from a system of the same class for which records of input and output were not available, or to study the effect of variations in the parameters of similar systems on their outputs. Furthermore, the identification of nonlinear systems is extremely difficult, and, in such cases, it is natural to turn to simulation rather than identification as the basis of a prediction. It is important to remember that we are still interested in the overall performance of the system rather than the details. We are looking for a reliable predictor rather than a photographic reproduction when we seek a model to simulate our system. The model system used to simulate an actual system may be either abstract or real. According to Chorafas (9), "Simulation is simply a working analogy. Amalogy means similarity of properties or relations without identity." A model may be defined as being a system which can reproduce some, but not all of the properties of the prototype.
Figure 1-13 shows the division of methods of simulation into three broad groups. It is intended as a basis for discussion rather than a strict classification. In this tentative classification, the problem of simulation is looked upon as

[^4]

Fioone 1-13.-Methods of simulation.
being a two stage problem. First, we take the actual field problem and abstract from it a conceptual model of the problem. This conceptual model might be very simple or it might be extremely complex. In other words, we might do a lot of the work at this stage or very little. The next step is to attempt to derive quantitative results from the conceptual model. The method in which this is done often depends on the extent to which the conceptual model has been developed. The two stages shown on the figure represent the two problems of abstraction and of completion.

If the conceptual model has not bin developed to any great extent, it will probably be necessary to use a direct method of simulation to get quantitative answers. An example from hydraulic engineering may be used to illustrate this.

In the design of a hydraulic structure, the conditions may be so complex that all we can say of our conceptual model is that we believe gravity forces to be dominant in the problem. We could then decide to build a model which was geometrically similar in some respect to the prototype and which would be designed according to model laws based on the Froude number. Such a hydraulic model would be a direct simulation of the problem and would be a cinse imitation of the prototype. It would be possible to recognize the different itts of the prototype in the model. On the other hand, a problem in the 'A. Anies of oper channels might be solved by developing a much more : \because te conceptual model. This model would be based on the geometry of
the situation, the equation of continuity, and the dynamic equation of unsteady open channel flow.

The finite difference equations incorporating physical assumptions and the geometry of prototype would constitute an abstract model of the actual problem. If it were completely specifed, the actual computations could be done on a general purpose computer of some type; thus, we might use a desk calculator, a digital computer, or a differential analyzer. In this type of indirect simulation, it would not be possible to identify visually any part of the prototype in the model. The physical model can only solve one particular ad hoc problem, but does not require a great deal of work at the conceptual phase. On the other hand, the indirect simulation on a computer of some type can solve a very wide variety of problems, but the amount of work done in setting up the problem, i.e., constructing the conceptual model is often very great. In between these two we have methods of semidirect simulation in which we can construct a model which will solve particular types of problems. Examples of these are network analyzers and Hele-Shaw models.

Simulation in hydrology

Figure 1-14 shows the Stanford Watershed Model Mark II used to simulate the land phase of the hydrologie cycle. Though the Mark II model is shown here, the Stanford model has since been developed to the Mark IV (11) and Mark V stage in which the performance of the model has been improved at a

Froure 1-14.-Stanford Watershed Model Mark II.
cost of extra complexity. Figure 1-14, however, shows the main features of the Stanford model. The model as shown is essentially a conceptual model and represents the first, or conceptual phase, of the simulation process as deseribed above. It is a flow diagram representing the main features of the simulation model, and it must be supplemented by operational rules for determining the amount of moisture movement from one component to another.
The computation, which is the second part of the simuiation process, is carried out on a digital computer. The model shown in figure 1-14 could, of course, be computed by any other means, but the digital computer is the most convenient method. There have been many other instances of the simulation of subsystems or components in the hydrologic cyole and the solution on a digital computer.

Dawdy and (O'Donnell (12) pioneered the systematic study of objective techniques for the optimization of parameters of simulation models. This key question is discussed in inter lectures.
Numerous attempts have been made to simulate the direct storm runoff from a watershed by a conceptus model, which would be simple in form but would have essentially the same operation as the watershed under study. Many of these conceptual models involve some simple arrangement of linear storage elements only, or else a simple arrangement of linere storage elements and linear channels (15). In most cases, the behavior of these conceptual models is predicted by amalytical methods; however, any method for final computation may be used.
Figure 1-15 shows the analog simulation of a linear storage element as given by Shen (58). In this case, the analog element is not a direct analog of a catchment clement, but an analog simulation of a conceptunl element for use where an arrangement of ronceptual elements has been synthesized to simulate the action of the watershed. Figure 1-16 shows the simulation of a linear channel also by Shen. A linear chantel is purely a conceptual clement because no one has ever seen one and no one ever will. The analog units shown in figures $1-15$ and $1-16$ are direct analog simulations of the conceptual elements, but it is also possible to have indirect analog simulations in which the mathematical equation for the conceptual element is written down and then an

Flowis 1-15.-Direct analog of linear reservoir.

Fiovar 1-16.--1) irect analog of tinear chamel.
amalog unit assembled in which each of the mathematical operators is simufated and appropriately comected.
This is the end of a review of the development of parametric hydrology and a preview of the material to be covered in the present course. The development of the subject has been going in many scattered directions since 1932, but in rceent years it has gathered pace and is begiming to settle into a consistent body of knowledge. No matter what our problem, no matter what types of models we seek to use, we face essentiaily the two difficult problems of system identification and system simulation. Our present knowledge is such that identifieation can only be carried out with some degree of success if we make the assumptions of linearity and time-invariance. We need not be restricted in simulation because we can build in the nonlinearity and time-variance into our model and predict the operation of the resulting nonlinear system in some fashion. Nevertheless, if we wish to simulate objectively, or indeed efficiently, it is desirable that the nonlinearities be reduced to a minimum and that if possible the nonlinearity be confined to one part of the model, while the remaining subsystems and their components are linear in action.

Problems on Hydrologic Systems

1. The following terms are commonly used in hydrology:

Tnit hydrograph
S-bydrograph
Instautaneous unit hydrograph (IUH)
In each case, write down the corresponding terms used in other disciplines to denote the same concept.
2. The Muskingum method is commonly used in flood routing. Describe this method and distinguish between the separate problems of prediction, identification, and simulation.
3. Describe a part of the hydrologic cycle with which you are familiar; use the nomenclature of the systems approach. Show the relationship of this part of the hydrologic cycle to the other parts of the cycle by means of a simple sketch. By means of a second sketch indicate how this part of the cycle might be considered as consisting of a number of subsystems.
4. For the part of the hydrologic eycle described in question 3, list one or more classical methods used in applied hydrology. Do these methods make the assumptions of linearity or time-invariance? Describe the methods using systems nomenclature.
5. For some particular part of the hydrologic cycle, give examples of the use of simulation in hydrologic forecasting.

Literature Cited

(1) Ackemman, W. C., Colman; E. A., and Ogrosky, H. O.
1055. fiom ocean to sky to hand to ocean. U.S. Dept. Agr. Yearbook 1955: +1-51, illus.
(2) Acкон⿱ R . L.
1962. scientific methods. 464 pp. New York.
(3) Amorocho, J., and Habt, W. E.

10G4. A critioue of cohrent method in hydiologic sygtems investiontions. Amer. Geophys. Union Trans. 45(2): 307-321.
(4) - and Oulob, G. T.
1961. non hineali analysis of hydrolobic systems. Water Resources Center, Univ. Calif. (Berkeley) Contrib, 40, 147 pp ., illus.
(5) Aseltine, Jonn A.
1958. thansfira methode in linear eystage analybis. 300 pp., illus. New York.
(6) Beer, S.
1959. criemetics and management. 214 pp., illus. New York.
(7) Bellman, R. E.
1961. diditive control processes: a guided touit. 255 pp . Princeton, N.J.
(8) Bobr, D. N.
1959. flood hetimation: untr glaph procedures utilizing a high-speed digital competen. Water Res. Found. Austral. (Sydney) Bul. 4, 41 pp., illus.
(9) Cuorafas, D. N.
1965. systems and simulation. 503 pp . New York.
(10) Collins, W. T.
1930. rdnoff distmidution alaphs fhom precipitation occurbing in more than one time bitt. Civ. Engin. 9(9): 559-561.
(11) Crahromd, N. H., and Linsley, R. K.
1966. digital simphation in hydrology: stanford waterghed model iv. Tech. Rpt. 39, 210 pp . Dept. Civ. Engin. Stanford University, Casif.
(12) Dawdy, D. R., and O'Donnsle, T.
1965. mathematical models of catchment behaviour. Amer. Soc. Civ. Engin., Jour. Hydraulits Div. 91(HY4): 123-139.
(13) DeResso, P. M., Roy, R. J., and Close, C. M.
1965. state valiables for engineelis. 608 pp . New York.
(14) Doemelin, E. O.
1066. meastrement systems: application and deston. 743 pp . New York.
(15) Dooae, J. C. I.
1959. a general theory of the enit hydrograph. Jour. Geophys. Res. 64(2): 241-256.
(16)
1960. analygis of hinear bystemb ay means of lamuehie functions. Soc. for Indus. and Appl. Math., Jour. Control, Ser. A, 2(3): 396-408. Philadelphia.
(17)
1967. the uydrologic cycle as a closed system. Intematl, Assoc. Sei. Hydrol. Bull., XIIF, Ann. 1: 58 -68. Centbrugge.
(18) Dhaper, C. S., McKar, W., and Laes, S.

195'2. instrument enoneering. 3 v. New York.
(19) Duentex, R.F.

196j. an appiahsal of the states and future of system theory. Proe. Sympositum on System Theory. 380 pp. New York.
(20) Eacleson, P. S., Meja-r, R., and Marce, F.
1960. compltation of optimem hializabie dint hydrographs. Water Resources Res. 2(4): 755-764.
(21) Ellis, D. O., and Ludwig, F. J.
1962. systems philosophy. 387 pp . New York.
(22) Galidner, M, F., and Barnes, J. L.
1942. thansients in linear systems. V. I: lumped constant systems. 389 pp ., illus. New York.
(93) Gutta, Someshwar C.
1906. tuansfobin and state variable method in linear bybtems. 426 pp . New York.
(24) Kobmia, H. E., and Blackwbll, W. A.

1961 electro-meghanical system theort. 504 pp . New York.
(25) Khajenhoff van de leur, D. A.

195S. a study of non-steady oround water flow with speclal reference (26) to a reseryorr coepricient. Ingenieur 70(19): 87.
1966. runoff models with linear elements. Part III, recent trends in hydrograph synthesis. TNO' Proc. and Inform. Note 13. The Hague.
(27) Lefe. I. W.
1960. statistical theory of communications. 509 pp ., illus. New York.
(2S) Levi, E., and Valdes, R.
1964. a method for direct analysis of hidrographs. Jour. Hydrol. 2(2): 182-190.

[^5](29) Lrnci, Wr. A, and Tumadt, J. G.

(30) MacFarlane, A. G. J.
1064. Enghebring ststems analysis. 272 pa, iltus. Reading, Mass.
(31) Ňash, J. 5.
 Geophys. Res. $04(1): 111 \sim 115$.
(32) $\rightarrow \cdots-\cdots$
 ©doements Inst. Civ. Lingin. Proc. 17: 249-282.
\qquad
 1) mblin.
(34) O'DONNELL, ?
 Internath. Assocs hec. Hydrol. Pub. 51: 5to-55t. Gentbrugge.
 Ill, recent trends in hydrograph synthesis. TNO Proc, and Inform. Note 13. The Kagre.
Payntelk, H. M.
 Soe Civ, Engin. Jonr, $39(2): 1: 0$.
\qquad
1960. andlysis and besign or enoneeting systems. Cumbridge, Mass.
(3S) SHEN. J.
1905. USE OF Anatoo momels in phte analisis of flood honoff. U.S. Geol. Survey Proi, Pqeer 50b-A, 2t [12.
(30) Sherman, L. K.
 Reer, 108: 50t-505.
(60) SLEbsut, W. M.

190h. sionals in unear pime-invabiant systems. In E. F. Bughdady, ed., ('ommanicaton System Theory, Ch. 3: 33-57. New York.
(41)SNyober, H.
 Civ. Engin, Jour. Hydraulies Div. 81: 1-25.
1961. mathix ornartion in ardhogibaly compreatons. TVA Res. Prper No. 1. Knoxville.
(43) STABx, L.
1908. NEvaOLoomeaf conmol sysmbms. Studies in Bioengineoring, 428 pp. New lork.
(4-4) Tustin, A.
1957. MECtanism of fconomic systems. Ed. 2, 191 pp . England.
(45) W rmone, A. W^iNe
1967. A Mstuematical theorit th systems enginfarina: the giements. 353
pp. New York.
(46) Zadeh, L. A., and beSobn, C. A.
1903. HNEAR SYETEM THEORY. 628 pp . New York.

LECTURE 2: REVIEW OF PHYSICAL HYDROLOGY

Lecture 9 is a review of physical hydrology. It might be wondered why we bother with a review of physieal hydrology sinee it has already been stated that the essence of the systems approach is to ignore the details of the physies involved. The systems approach was deseribed as being an attempt to get around the complex geometry and the complex physics of the hydrologic system. If we were solely concerned with problems of identification, this attitude of ignoring the details of the system would be a reasonable one. We can identify a system (that is, find an expression for its impulse response) without any knowledge of physical hydrology at all. In 1965, Dooge (12) developed a method of system identification based on the use of Laguerre functions, which he thought might be appropriate in hydrologic problems. However, the first application of the new method was in the problem of determining residence times in chenical engineering. This was possible because the method was merely a method of system identification, and such methods are not by any means tied to the hardware of the particular system being analyzed.

If, on the other hand, we are going to simulate a hydrologic system, our knowledge of physical hydrology will be of greater importance. Such a knowledge is useful in model building because the closer we simulate the physical reality, the better our model will be. If we build a model that is in conflict with the physical realities, then we can hardly expect to get very good results from such a model. The present review, therefore, will be a brief summary of physical hydrology from the point of view of its possible use in the simulation of hydrologic systems by models of various types.

Our quantitative knowledge of physical hydrology is summarized in the various formulas which are available in the literature. These formulas are themselves models of the physical process which they are taken to represent. The factors that are included in a formula and the relation between them all involve simplifying assumptions concerning the relevant physical processes. This lecture deals with the various parts of the hydrologic cycle in turn and discusses some typical concepts and formulas. These are dealt with in more detail in general reference works such as those by Linsley, Koher, and Paulhus (32) ; Che.r (6); Soil Conservation Service (50); and Eagleson (13). The problem of measuring the various hydrologic quantities is discussed in publications by the World Meteorological Organization (58), the International Association of Scientific Hydrology (25), and by Corbett (9). Some important books and papers containing further information on physical hydrology are included among those listed at the end of this lecture.

Precipitation

In most of our work on hydrologic systems, precipitation is taken as an input. Consequentiy, we are usually not worried about the processes of hydrometeorology (13, 15, 41). Our main problems are those concerned with measurement and with the sampling that is inherent in any system of measurement. However, the question of snowmelt, which is on the borderline between meteorology and the land phase of hydrology, is of interest to us. If we wish to include snowmelt in a simulation model, then we must either know something or assume something concerning the physical processes involved (14, 52). If some of the components of our simulation models seem somewhat crude, we may take some consolation from the fact that most of the physical equations and formulas used in applied hydrology are equally crude. Thus the daily snowmelt in inches is frequently computed by a formula like the following:

$$
\begin{equation*}
M=0.06\left(T_{\text {mean }}-24\right) \tag{1}
\end{equation*}
$$

where the daily snowmelt in inches (M) is related only to the mean daily temperature in degrees Farenheit (7). The additional effects of wind velocity and precpitation can be allowed for by using a formula of the following type:

$$
\begin{equation*}
M=\left(0.029+0.0084 k \mathrm{~K}^{-}+0.007 P_{\mathrm{r}}\right)\left(T_{\text {moan }}-32\right)+0.09 \tag{2}
\end{equation*}
$$

In the first equation, the snowmelt is related only to the mean temperature, which is a crude way of relating the euergy required to melt the snow to the euergy available from radiation. In the second formula, radiation, convection, and conduction have all been taken into account. A more complex equation proposed by Light (\$1) is derived from an eddy-conductivity equation based on the analysis of atmospheric turbuience, and expresses the rate of snowmelt D as:

$$
\begin{equation*}
D=\frac{\rho k_{0}^{2}}{80 \log _{e}\left(a / z_{0}\right) \log _{e}\left(b / z_{0}\right)} u\left[c_{p} T+(e-611) \frac{423}{p}\right] \tag{3}
\end{equation*}
$$

where

```
\(D=\) snowmelt in centimeters per second
    \(\rho=\) density of air
\(k_{0}=\) von Karman's coefficient (0.38)
\(a=\) elevation of anemometer in centimeters
\(z_{0}=\) roughness parameter ( 0.25 cm .)
\(b=\) elevation of hygrothermograph in centimeters
\(u=\) wind velocity at auemometer level in centimeters per second
\(c_{p}=\) specific heat of air (0.24)
\(T=\) air temperature, in degrees Centigrade, at hygrothermograph level
    \(e=\) vapor pressure of air in millibars
    \(p=\) atmospheric pressure in millibars
```

When we recall the nonhomogeneous nature of a watershed and the variations in the factors involved, we become somewhat doubtful of the advantage of using very complex equations.

Evaporation and Transpiration

Total evaporation has been defined as including water lost by evaporation from water surfaces, moist soil and snow, together with water lost by transpiration from vegetation, in the building of plant tissue and through interception (30). The concepts invoived and formulas used have been reviewed elsewhere ($18,17,44,45,53,57$).

The classical formula for evaporation from open waters was that given by Daiton (10):

$$
\begin{equation*}
E_{0}=C\left(e_{w}-\varepsilon_{a}\right) \tag{4}
\end{equation*}
$$

which related the rate of evaporation E_{0} from a water surface to the vapor pressure deficit ($e_{w}-e_{4}$). Since then, many more complex formulas have been derived. The Daiton formula is the simplest formula based on the mass transport approach to evaporation. If allowance is made for the windspeed, V, we get an empirical formula of the form:

$$
\begin{equation*}
E_{0}=(a+b V)\left(e_{w}-e_{a}\right) \tag{5}
\end{equation*}
$$

If the variation of wind with height is taken into account, more complex formulas are obtained. Typical of these is the equation by Thornthwaite and Holzman (46), which is based on the logarithmic wind law and is:

$$
\begin{equation*}
E_{0}=\frac{133.3\left(V_{2}-V_{1}\right)\left(e_{1}-e_{2}\right)}{(T-459.4) \log _{0}\left(h_{2} / h_{1}\right)^{2}} \tag{6}
\end{equation*}
$$

Still more complex formulas have been derived, and these were evaluated in the comprehensive Lake Hefner study (17). The study of the evaporation of Lake Hefner was a comprehensive operation lasting several years, but after a detailed study of the various formulas and a most careful measurement of conditions, it was concluded that the best equation for predicting evaporation from Lake Hefner would be of the form:

$$
\begin{equation*}
E_{0}=0.00177 \mathrm{~V}\left(e_{w}-e_{a}\right) \tag{7}
\end{equation*}
$$

which is of the same form as the empirical formulas used 50 years ago and only one step better than Dalton's original formula of 150 years ago.

An alternative approach to the subject of evaporation is the use of the energy budget. This can be summarized in the formula:

$$
\begin{equation*}
E_{0}=\frac{Q_{s}+Q_{a}-Q_{r}-Q_{b}-Q_{\mathrm{e}}}{\rho L(1+R)} \tag{8}
\end{equation*}
$$

The numerator in equation 8 gives the amount of energy available for the
transfer of both moisture and sensible heat from the water to the air in contact with it. It is given by the incoming shortwave radiation from the sun (Q.) plus the energy advecied into the body of water (Q_{a}) minus the total energy losses due to the combination of reflected shortwave radiation (Q_{r}), longwave back radiation (Q_{0}), and increased energy storage in the body of water (Q_{w}). To express the evaporation in terms of the amount of moisture transported, it is necessary to divide this net energy by the product of the density (ρ) and the latent heat of vaporization (L) corrected by means of the Bowen's (4) ratio (R) to allow for the transier of sensible heat.

In 1948, Penman (39) combined the two ideas of mass transport and energy budget to produce a combination formula which enables us to estimate the evaporation from readily avaidable climatic data. His basic formula is:

$$
\begin{equation*}
E_{0}=\frac{E_{\mathrm{c}}+(\Delta / \gamma) H}{1+(\Delta / \gamma)} \tag{9}
\end{equation*}
$$

where E_{c} is a measure of the nerodynamic evaporation or the evaporation from a mass trunsport point of view and H is a measure of the net energy required for evaporation. Penman and others have refined this approach in the past 20 years (54).

In the case of transpiration, we also have a wide variety of formulas of different degrees of complexity. In many of them, a figure for cumulative degree-days above a certain base temperature is used as a crude estimate of the energy. Thus, we have the Hedke formula (18), which was developed for use in irrigation work:

$$
\begin{equation*}
E_{T}=\Sigma k\left(T-T_{\theta}\right) \tag{10}
\end{equation*}
$$

where the cumulative value of degree-days is used as a measure of the energy required for total transpiration. Blaney and Criddle (3) developed a number of formulas of the same general type. In 1948, Thornthwaite (47) developed the following empirical formula:

$$
\begin{equation*}
E_{T}=1.6\left(\frac{10 T}{I}\right)^{c} \tag{11}
\end{equation*}
$$

which enables the monthly transpiration (E_{T}) to be calculated from elimatic data. In the formula, T is the monthly mean temperature and I is a temperature efficiency index which depends on the 12 monthly mean values of temperature. The exponent a is a function of I. The result obtained must be corrected for latitude and season to allow for the variation in the hours of sunshine. Penman (40) derived a formula for transpiration similar to his evaporation formula; it is written as:

$$
\begin{equation*}
E_{T}=\frac{E_{a}+(\Delta / \gamma) H_{T}}{1+(\Delta / \gamma)} \tag{12}
\end{equation*}
$$

In the above equation, the aerodynamic evaporation E_{a} is modified because
of change in the roughness factor of vegetation compared with open water and the energy term H_{T} is slightly changed because of the modification in the heat exchange occurring between the vegetation and the air. Penman found that in practice an extremely good estimate could be obtained by applying a coefficient to the estimate for open water evaporation:

$$
\begin{equation*}
E_{T}=f \cdot E_{0} \tag{13}
\end{equation*}
$$

The following formula by Ture (49) has been widely used in studies of water bulanee in Afriea by French hydrologists:

$$
\begin{equation*}
E_{r}=\frac{P}{\left[0.9+(P \cdot L)^{2}\right]^{1 / 2}} \tag{14}
\end{equation*}
$$

where P is precipitation and L is a temperature index.
We have, thus, a variety of formulas for evaporation and transpiation, all of which have a physieal foundation to a lesser or greater extent. The fival formulas are, however, all empirical and represent a simplifation of the very complex physics involved. In incorporating them into a simulation of the hydrolagie cyele or part of it, we are at liberty to choose the particular formula that suits our purpose best.

Infiltration and Percolation

The seil phase in the hydrologic eycle involves the phenomena of infiltration or the entry of water through the surface of the soil, its downward percolation through the unsaturated zone and its storage in that zone.
Information on infiltration may be obtained from the results of tests with inflitrometers, from the analysis of hydrographs from plot experiments and from the derivation of basin indices for complete watersheds. As in the case of other phenomena io the hydrologic cycle, a number of empiriesl formulas for infiltration are available. Kostiakov (29) proposed as an empirical formula for the amount of infiltration $(F$) during the period of high-rate infiltration:

$$
\begin{equation*}
F=b t^{1 / 2} \tag{15a}
\end{equation*}
$$

which is equivalent to an infiltration rate (f) of:

$$
\begin{equation*}
f=\frac{b}{2 t^{1 / 2}} \tag{15b}
\end{equation*}
$$

Horton (24) proposed an exponential formula for infiltration which has beea widely used:

$$
\begin{equation*}
f=f_{c}+\left(f_{0}-f_{c}\right) e^{-k t} \tag{16a}
\end{equation*}
$$

The corresponding formula for the amount of infiltration is:

$$
\begin{equation*}
F=f_{c} \cdot l+\left(\frac{f_{0}-f_{c}}{k}\right)\left(1-e^{-k s}\right) \tag{10̂b}
\end{equation*}
$$

Philip (42) analyzed the problem of infiltration using the principles of soil physies and developed a series solution which ean be approximated by:

$$
\begin{equation*}
r=S \cdot t^{1 / 2}+A t \tag{17a}
\end{equation*}
$$

or in terms of the infiltration rate:

$$
\begin{equation*}
f=\frac{S}{2 l^{1 / 2}}+A \tag{17b}
\end{equation*}
$$

The first turm of Phitip's equation is seen to be identical with the Kostiakov equation derived empirically 25 years earlier.
Holtan (2n) used the relationship:

$$
\begin{equation*}
f-f_{\mathrm{c}}=a(S-F)^{n} \tag{18a}
\end{equation*}
$$

For a value of $n=2$ the cquation for the infiltration rate can be written as:

$$
\begin{equation*}
f=f_{c} \cdot \sec ^{2}\left[\sqrt{a f c}\left(t_{c}-t\right)\right] \tag{18b}
\end{equation*}
$$

All of these formulas are empirical or have empirical coefficients and thus may be considered as atlempts to simulate the actun phenomena. Even if one takes the full equation due to Philip, to which equation 17 is an approximation, it is still a simulation of the process taking part in nature. This is because Philip's full equation is bused on the assumption that there is a perfectly uniform soil, perfectly graded with no roots or root holes and no worms living in the soil. For such an idealized case, Philip's full equation is the most accurate of all the formulas given (except for very long elapsed times), but the question arises whether, in view of the uncertaiaties in the field, it is worth aing anything more thun a simple cquation. We can never get away from simulation, and it is quite fratiess to argue about one equation being approximate and another one accurate. They all involve various degrees of approximation, and our choice is a free one. The balance is one between the need for simplicity on the one band and for accurscy on the other.

Ground Water Flow

The physical assumptions underlying these formulas are given in such referenees as ($2, \tilde{i}, 11,58,48$, and 56). For one-dimensional fow in the saturated zone (that is, for the Dupuit assumptions), Darcy's Law takes the form:

$$
\begin{equation*}
q=-k h \frac{\partial h}{\partial x} \tag{19}
\end{equation*}
$$

where g is the flow per unit area, k is the hydraulic conductivity, and h is
the depth of saturated flow. The equation of continuity for the same conditions takes the form:

$$
\begin{equation*}
\frac{\partial q}{\partial x}+f \frac{\partial h}{\partial t}=i(x, t) \tag{20}
\end{equation*}
$$

where f is the specific yield and $i(x, t)$ is the rate of recharge at the watertable surface. Combination of these two equations gives:

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left[k h \frac{\partial h}{\partial x}\right]+f \frac{\partial h}{\partial l}=i(x, t) \tag{21}
\end{equation*}
$$

Equation 21 is nonlinear, but in classical ground water hydraulics the equation is linearized in one of two ways. Eitber we write:

$$
\begin{equation*}
-k \bar{h} \frac{\partial^{2} h}{\partial x^{2}}+f \frac{\partial h}{\partial t}=i(x, t) \tag{22}
\end{equation*}
$$

or else we write:

$$
\begin{equation*}
-\frac{k}{2} \frac{\partial^{2}\left(h^{2}\right)}{\partial x^{2}}+\frac{f}{2 \tilde{h}} \frac{\partial\left(h^{2}\right)}{\partial t}=i(x, t) \tag{23}
\end{equation*}
$$

Ground water hydrologists have generally solved their problems on the basis of sucb linear equations, which suggests that the application of linear systems theory might be fruitful in this particular field. In view of the long use of linear methods in hydrology, it is remarkable that a general linear approach has not been used in ground water hydraulics except recently and then to a limited extent. Once the original nonlinear equations have been linearized, all of linear mathematics and all of linear systems theory are available for the solution of our problems.

Hydrologists frequently assume that the recession curve for base flow is given by:

$$
\begin{equation*}
Q=Q_{0} \exp \left(-\frac{t}{K}\right) \tag{24}
\end{equation*}
$$

This represents a more restrictive assumption than the simple one of linearity. Equation 24 not only assumes that the ground water action is linear, but that it acts as a single linear reservoir. Having made this assumption with regard to the recession, there is no reason why the same assumption should not be made in regard to the recharge of ground water and the whole ground water system modeled by a single linear reservoir. In general, however, one can assume linearity without restricting oneself to a single linear reservoir. If the system is assumed to be linear, it is perfectly possible to derive a ground water unit hydrograps just as is done for direct storm runoff.

Overland Flow and Channel Flow

In the case of overland fiow and open channel flow, we can write down the equation of continuity (including lateral inflow if necessary) and the dynamic equation. By using the classical methods of open channel hydraulics, we can, in theory at any rate, solve these equations for any particular case, Even with high-speed digital computers, the solution of such cases, even for simple geometry, is by no means an easy matter. Whether we use a characteristic solution or some method of finite differences based on a rectangular network, the computational problems are quite severe. In hydrology, the complexity of these problems has been avoided by using approximate methods of solution, most of which retain the continuity equation but replace the dynamic equation by some approximate relationship. This is to say that an applied hydrologist, when faced with the problem of overland flow or flood movement in rivers, has replaced the field situation by a simplified model $(20,59)$.

The fundamental problem of overland fow can be quite simply stated. Rain falls vertically on the plane surface at the upstream end of which is either a divide or a vertical boundary as shown in figure $2-1$. If the supply rate is constant, then for equilibrium conditions there will be a definite profile of steady overland flow. Even this steady flow problem is not an sasy one to solve precisely. We do not hnow the friction laws operating in such a flow, or the effects of lateral inflow on the velocity distribution, or what the effect would be if infiltration were occurring simultaneously.

In tackling the hydrology of overland flow, we wish to know far more than the profic of stealy state flow. What is required is the hydrograph of nonsteady flow, which oceurs due to any change in input conditions (for example, the relatively simple case of a steady input of rain starting from initially dry conditions) and also the nature of the recession from tro steady state after the

Figure 2-1.-Overland flow.
cessation of input. If the process were linear, one of these results would be sufficient to determine the hydrograph for any pattern of rainfall input. However, the phenomenon is nonlinear, and, thus, the principle of superposition cannot be used. Every shape of input becomes a separate case and must be handled on its own. Our interest is concentrated on three cases: (1) the rising hydrograph for a constant input and initially dry conditions, (2) the recession from steady outflow conditions after the cessation of input, and (3) the transition from one steady state to another when there are two different constant supply rates in successive intervals oi time.

One approximation to the overland flow problem assumes that there is, at all times, a definite power relationship between the outflow at the downstream end and the average detention on the surface. A large number of experiments during the 1930 's indicated that if the equilibrium runoff were plotted against the average equilibrium detention (that is, the storage at equilibrium divided by the surface area) for a given experimental plot, the relationship could be approximated by a straight line on $\log -\log$ paper. This relationship applied to the condition when steady flow had been attained and storage was no longer changing, that is, to the steady state solution. Horton (23) assumed that this power relationship would hold throughout the unsteady flow phase and used this assumption as the basis of the solution for the particular case where the discharge was proportional to the square of the average detention.

The general assumption of a power relationship between discharge per unit area (q) and detention or storage per unit area may be written as:

$$
\begin{equation*}
q=a s^{c} \tag{25}
\end{equation*}
$$

This equation in fact replaces the full dynamic equation and is combined with the contimuity equation:

$$
\begin{equation*}
q_{\mathrm{t}}-q=\frac{d s}{d l} \tag{26}
\end{equation*}
$$

to solve the problem. Equations 25 and 26 can be combined to give:

$$
\begin{equation*}
t=\frac{1}{a^{1 i c} q_{c} \frac{c-1}{c}} \int \frac{d\left({ }^{q} q_{\varepsilon}\right)^{1 / \epsilon}}{1-q / q_{v}} \tag{27}
\end{equation*}
$$

The integral on the right-hand side of equation 27 can be solved explicitly for $c=1$ the linear case) and also for $c=2,3$, and 4. By suitable transformations, it can also be solved for $c=\frac{3}{2}$ and for $c=\frac{1}{3}$. Horton solved the equation for $c=2$, obtaining the result:

$$
\begin{equation*}
\frac{q}{q_{e}}=\tan h^{2}\left(a^{1 / 2} g_{e}^{1 / 2} l\right) \tag{28}
\end{equation*}
$$

This cquation has since been used for solving the overiand fow problem and designing airport instaliations (51). Izzard (26) carried out a sories of notable
experiments on overland flow and proposed the use of a dimensionless rising hydrograph and dimensionless recession hydrograph, corresponding to the solution of equation 27 for $c=3$. Becsuse the integral in equation 27 is of exactly the same form as the Bakhmeteff (1) varied flow function, tables of the latter function can be used to solve equation 27 and hence the problem of the overland fow hydrograph for any value of c which is tabulated. The above class of solutions may be referred to as the Horton-Izzard solution. It is not the only solution to the problem of overland flow and is given here only as an example. The kinematic wave method has also been applied to the problem of overland flow. Both appronches are discussed in more detnil in lecture 9.

Hydrologic flood routing represents an early application of the systems appronch to a hydrologic problem. The full problem of flood movement in rivers is complex, and in any case the details of the flow between the upstreana and downstream ends of the reach under examination are not of great interest. When conditions in the whole reach are lumped, the continuity equation beeomes:

$$
\begin{equation*}
I-Q=\frac{d S}{d t} \tag{29}
\end{equation*}
$$

This equation is used in all flood routing methods and is combined with some special equation, which replaces the dynamic equation.

Among the well-established flood routing methods is the lag and route method which assumes:

$$
\begin{equation*}
S(t)=K \cdot Q\left(t+\frac{t_{u}}{2}\right) \tag{30}
\end{equation*}
$$

that is, that the storage in the reach is proportional to the outflow taken at sume fixed time later than the time at which the storage is measured. In uno ${ }^{+h}$ wer well-established routing method, the Muskingum method, the storage is taken as being proportional to weighted vailues of the infow and the outfow:

$$
\begin{equation*}
S(t)=K[x I(l)+(1-x) Q(t)] \tag{31}
\end{equation*}
$$

Among other important flood routing methods is the use of the diffusion amalogy, which was introduced by Hayami about 1950 (19). This approach was dealt with by Henderson (20). Nore recently, we have had the FalininMilyukov (2S) method which is now widely used in Eastern Europe. This latter method is based on the division of the reach into a number of characteristic lengths and the treatment of each of these lengths as a linear storage element. Routing through the whole reach thus consists of routing through a cascade of linear storage elements, and the impulse response function is the gamma distribution. Though the gamma distribution was used by Nash (36),

Gray (16), Reich (43), and a number of others to represent the unit hydrograph, it was not applied to flood routing until this was proposed by Falinin and Milyuhov.

It is of interest that the above methods of routing floods through an open chanmel are all linear methods, thus all are linear models of the actual process. The whole subject of linear routing in open channels is discussed in lecture 9 .

This brief review of physical hydrology is intended to give examples of the formulas which summarize our quantitative knowledge of physical hydrology and which are used in practice. In our best efforts at physical hydrology, we still make many assumptions that are, in truth, simulations. In many of these cases, the assumption of lincarity has aircady been made. When such an assumption has been made, the attitude in parametric hydrology is to make the most of the assumption.

Problems on Physical Hydrology

1. List a number of alternative definitions given for the physieal phenomena involved in one particular part of the hydrologic eycle. Discuss these definitions eriticully, and then list them in what you would consider to be their order of merit.
2. Briefly describe the methods used for measuring the physical phenomena involved in some partieular part of the hydrologic cycle. Discuss these techniques critically, stating their advantages, disadvantages, and possible improvements. How does the method of measurement used affect the definition of the physical phenomenon involved? What criteria could be used to determine a suitable observation network for the particular phenomena involved?
3. State what physieni principles are involved in one particular part of the hydrologic cyele. What physical formulas can be written down describing the physical phenomena of this part of the cycle? What physical phenomena are ignored in the formulas cited?
4. What empirical formulas are used in hydrology in connection with the phenomena discussed in question 3 ? What is the relationship between these empirical formulas and any physical formulas available? What is the range of validity of the empirical formula? What is the accuracy of the empirisal formulas?
j. What in your opinion are the most serious gaps in our knowledge of physical hydrology? Flow important are these gaps from the point oi view of applied hydrology? Outline a research program which you think might heip to bridge an important gap in our knowledge of this subject, and give a rough estimate of the cost and manpower invoived.

Literature Cited

(1) Bakhmeteff, B. A.
1932. hypradlics of open channels. 329 pp ., illus. New Yotk.
(2) Bear, J., Zaslaysky, D., and Ibmay, S.
1068. physical principles of water percolation and seepage. Unesco Arid Zone Res. XXIX. Paris. 465 pp , illus.
(3) Blaney, H. S., and Crmdle, W. I).
1950. determining water requhements in mmgated aheas from chmatolomigal and hbhgational data. [".S. Dept. Agr. SCS-TP-96, 48 pp. August.
(4) Bowen, I. B.
1926. the ratio of heat losses ay conduction and ur eyapobation from any water surface. Phys. Rey., Ser. 2, 27: 779-787.
(5) Cuids, E. C.
1907. the physics of land daanage. /n J. N. Luthin, ed., Draimage of Agticultura Lands. Agronomy 7; 1-78.
(6) Chow, Yen Tre, ed.
1964. handmook or apham hydhology. I41S pp, illus. New York.
(i) Colohado State Cnivemstti.
1963. symposiom on fbanstent groendwater hydbaulics. Civ. Engin. Sect. Fort Collins.
(8) Commitee for Hydholone Research, Two.
1964. hydbablics of steady flow to welis. TNO Proc. and Inform. Note 10. The Elague.
(9) Connetr, D. M., and Putce, C. H.
1943. Srmeam-gaching procedore. EV.S. Geol. Survey Water-Supply Paper 888, 243 pp . (Reprinted 1962.)
(10) Dabron, Jons.
1802. expermental essays on the constitdtion of mixed gases; on the force of strean or vapor from water. Manchester (England) Lit. \& Phil. Soc. Mem., v. 5, pt. 2: 536-602.
(ii) Dewiest, J. M. R.
1906. gronryroloor. 306 pp., illus. New York.
(I2) Dooas, J. C. I.
1965. analysis of binear ststems hy means of lagumbre punctions. Soc. Indus, and Appl. Math., Jour. Control 2(3): 390-408.
(i3) Eaqleson, P. S.
1969. drammic hydrology. 452 pp . New York.
(14) Garstid, W. V.
1964. Snow and snow sjrver. In Yen Te Chow, ed., Handbook of Applied Hydrology. Sec. 10,57 pp., illus. New York.
(15) Gilman, C. S.
1964. hainfall. In Ven Te Chow, ed., Hundbook of Applied Hydrology. Sec. 9, 69 pp , ilhus. New Sork.
(16) Giray, D. M.
1962. Derivation of hydrogathas for small watersheds from measuradle phisical characteristics. Iowa State Univ., Agr. and Home Econ. Expt. Sta. Res. Bul. $\mathbf{0} 06, \mathrm{pp} .514-570$. Ames.
(17) Farbeck, G. E., Dennis, P. E., Kennon, F. W., and others.
1954. Water loss inyestigations: lake hefner stodies. U.S. Geol. Survey Water Supply Paper 269. [Previously published as U.S. Geol. Survey Circ. 299, 1952, as part of U.S. Navy Electron. Lah. Rpt. 237.]
(i8) Habdina, S. T., chaimaan.
1930. consumphive use of water in hbigation: phoobess hepont of the dety of watels comittee of the ibrigation division. Amer. Soc. Giv. Eugin. Trans. 94: 1349-1399.
(19) Hay Ma, S.
fol. on the pholagation of flood waves. Bul. 1: 1-16. Disaster Prev. Res. Inst., Kyoto ['niversity Japan.
(20) Henderson, F. M.
1966. open channal flow. 529 pph, illus. New York.
(21) Holman, H. N.

19011 a concerp for inflemanton ebtimates in watershen enoneeming. I'S. Dept. Agr. Agr. Res. Serv. ARS $41-51,25 \mathrm{pp}$.
(22) Horton, R. E.
1935. shmpace henofy phenomena: part i, analysts of the hyblograph. Horton Hydrol. Lab. Pub. 101, 73 pp. Ann Arbor, Mich.
(23)
1038. the intemphetation and application of bevoff plot expemments WThe ueperbnee to son ehoshon ruoblems. Soil Sci. Soc. Amer. Proc. 3: $340-349$.
(ㄴ4)
1940. an aiproach tomatd a puysical interibetation of infilteation cadactry. Soil Aci. Amer. Proc, 5: 399-417
(15) Intelnational Association of Bementific Hydhologis.
1965). smaposiem on design of hydholooical netwomes (qubbbe). Pubs. 67 and 68 , Gentbrugge.
(2) Izzand, C.F.
 (Washington, D.C.) Proc. 26; 129-146.
(27) … - ...
1900. tentative resolita on capheity of cubb obening inlets. In Surface Drainage. Highway Res. Bd Res. Rpt. 11-B. Washington, D.C.

10.3. On haschete netstanovyshecosya dytheniya vody v otkirtikh msaiku fon the computation of unsteady flow in open chnmels.] Met. i. Cidrologiyn Zhuzurmal, 10: 10-18. Leningrad.
(29) Kostmanov, A. N.
1932. [on the dynamics of the coefficients of water percolation in soils.] 6th Comm. Interuatl. Soc. for Soil Sci. Pt. A, pp. 1b-21. Groningen and Moscow.
(30) Langhetr, W. B., and Isem, K. T.
1900. genghat inthoduction and hydrologic definitions. mancal of hidrologi: pait 1. generah strface, matel technioces. U.S. Geol. Liurveg Water-Supply Paper 1541-A, 29 pp .
(31) Liart, P.
1041. analysis of mgi bates of snowalelting. Amer. Geophys. Union Trans., pt. 1: 195-20 5.
(32) Linsley, R. K., Korleli. M. A., and Pachees, J. L. H.
1919. arpled hydrology. 689 pp., illus. Nem York.
(33) Lethis, J. N.. ed.

195̈. dranade of agmocultral hands. Agronomy $7_{1} 620 \mathrm{pp}$., illus. Madison, Wis.
(34) Meyent O H.
10.4. analysis of runoff chabacteristics. Amer. Soc. Civ. Engin. Trans. 105: 86.
(35) Mosorave, G. W., and Holtan, H. N.
1904. infilithation. In Ven Te Chow, ed., Handbook of applied hydrology. Sec. 12: 30 pp., illus. New York
(36) МАзн, J, E.
1958. the fobm of the instantaneous unit hydroghaph. General Assembly of Torunto, Internatl. Pub 42 , Compt Rend 3: 114-118. Gentbrugge.
1950. a note on the muskingom flood houtina methods. Jour. Geophys. Res. (in(8): 10 ㅎㄹ.
(38) Oveman, D. E.

19G4. Mathematical bafinement of an infiltuation bguation folt watershed Enginezuino. V.S. Dept. Agr. Agr. Res. Serv. ARS 4l-90. 11 pp.
(39) Pemman, H. L.

10t8. natybal evapolation from open water, bare soll and grags. Roy. Soe. London Proc., Ser. A 193(1032); 120-145.
(40)

1903 vegetation and hydhologr. Commonwealth Bur. Soils Tech. Comm. 53, 12.4 pp. Commonwealth Agr. Bur., Farnham Royal, England.
(41) Petrelasen, Sverue.

195S. intronuction to metrorology. Ed. 2, 327 pp. New York.
(-12) Philil, J, R.
195̄. the theoty of infiltiation: i-the inflitration equation and its solerton. Soil Sci. 83(5): 345-357.
(43) Rerch, B. M.
1962. peston hybrographs for tery small watersheds from rainfall. CER62BMR41, Civ. Engin. Sec., Colo. State Univ., 57 pp. Fort Collins.
(44) Seilers, W. D.
1905. physical chmatology. 272 pp. Chicago.
(45) Slatyer, R. O.
1967. plant-water zelationshif. 366 pp., ilhes. New York.
(46) Thonnthwate, C. W., and Holzman, B.
1939. the determination of evaporation fiom land and water surfaces. Monthly Weather Rev. 67(1): 4-11.
(4) ————
1948. an apploach toward a bational classification of climate. Geog. Rev. 38: 55-94.
(.SS) Todd, D. K.
1964. grorndwater, In Ven Te Chow, ed., Handbook of Applied Hydrology. Sec. 13,55 pp, illus.
(49) Tric, L.
190.4. le hlan d'eau sols. helations entre les precifitations, d'evap et l'bcoulement [the disthibution of water in solls. helatonships between precipitations, evaporation and flow]. Ann. Agron. 5: 491506.
(50) L'S. Department of Agriculture.

1964, h'dhology, Sec. IV, SCS Natl. Engin. Handbook. Washington, D.C.
(51) C.S. Department of the Army, Corp of Engineeus.
1955. (a) sumpace and (B) subsurface drainage facilities for afafields. Part 13, ch. 1 and 2. In Engineering Manual. Washington, D.C.
(5)
1956. SNOW hydhologr: semmart heport of the bnow investigations. 437 mp, illus. Porthand, Oreg.
(53) Criveasery or Wageninoen.
1906. anforbal meeming on physics and agmicuiture. Netherlands Jour, Agr. Sei. 4(1).
(54) van Bayel, C. El. M.

1906, the miek-rhase poman in hydrozogy. Symposium on water in the unsuturated zone. Intermath. Vuon Geod. and Geophys. Proc. Wageningen.
(65) …
 Yeabicarion. Water Resources Res. $2(3)$: 455-467.
(66) Yan bchilfgarde, Jan
1960. thansient design of dhanage systens. Amer. Soc. Civ. Engin. Proc., Irrig. and Drain. Div, Jour. 91(IR3): 9-29.
(57) Ve:mmeyex, F , J.
1964. Evapothanamation. In Ven Te Chow, ed., Handbook of Applied Hydrolugy. See. 11, 38 pes., illus. New York.
(58) Worlm Mhreohological Organization.

106ij. (ielde to mydomernorohogical phactices. WMO-No. 168, TP 82. Sce of the Word Met. Organ. Gieneva.
(50) Yevdevich, V. M.
1964. bhllography and discussion of flood hoethng methods and unstead flow in chanels. L.S. Geol. Survey Water-Supply Paper 1630, 235 pp.

LECTURE 3: REVIEW OF MATHEMATICS

If we are to develop bjective methods for the identification and simulation of hydrologie systems, sooner or later we find ourselves involved in mathematies and sometimes unfaniliar mathematics at that. The purpose of lecture 3 is to review some topies in mathematies that have been found useful in parametric hydrology. The individual topies will appear again in subsequent lectures when these mathematical techniques are drawn on as required. There is no necessity to attempt to master completely the mathematics reviewed in the present leclure.

In parametric hydrology, as in all onginecring, the best strategy for the applied seientist is to make himself generally aware of what mathematical fook are available but not to attempt to master them until he needs a particular pieee of mathematies to solve a purticular problem. Some of you may be more interested than others in particular aspects of the mathematical foundations of parametric hydrology or in its computational aspects. Those interested in such topies might find it useful to go through the references at the end of this locture in regard to the particular topic of interest and to work steadily through the problems refering to that particular topic. Those who are not interested in either analytical or computational mathematics need not worry unduly about this aspect of our subject, but can accept the progmatic view that the techiques diseussed here are well-founded and practicable. Books which the author has found useful in respect of more than one mathematical topic of interest in systems analysis are those by Gullemin (8), Raven (80), Korn and Korn (12), and Abramowitz and Stegun (1).

Orthogenal Polynomials and Functions

The following set of functions-

$$
g_{0}(t), g_{1}(t), \ldots \ldots g_{m}(l), \ldots \ldots g_{n}(t), \ldots \ldots
$$

is said to be orthogonal on the interval $a<t<b$ with respect to the positive weighting function ev(t) if:

$$
\begin{gather*}
\int_{a}^{b} u(l) g_{m}(t) \bar{g}_{n}(t) d t=0, m \neq n \tag{1a}\\
\int_{a}^{\delta} w(t) g_{n}(t) \bar{g}_{n}(t)=\gamma_{n} \tag{Ib}
\end{gather*}
$$

where the standardization factor (γ_{n}) is a constant depending only on the
value of n. These two equations can be combined as follows:

$$
\begin{equation*}
\int_{a}^{b} w(l) g_{m}(t) \bar{y}_{n}(l)=\gamma_{n} \cdot \delta_{m n} \tag{le}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta, which is equal to 1 when m equals n, but zero otherwise.
If a function is expanded in terms of a complete set of orthogonal functions as defined above:

$$
\begin{equation*}
f(l)=\sum_{k=0}^{k-\infty} c_{k} g_{k}(t) \tag{2}
\end{equation*}
$$

then the property of orthogenality can be used to show that the coefficient $\left(c_{k}\right)$ in the expansion is uniquely determined by:

$$
\begin{equation*}
c_{k}=\frac{1}{\gamma_{k}} \int_{a}^{b} w(t) \bar{g}_{n}(t) \int(t) d t \tag{3}
\end{equation*}
$$

If each of the functions $g_{k}(l)$ is so written that the factor of standardization γ_{k} is ineorporated into the function itself, the set of functions is said to be mormalized as well as orthogonal. In a similar fashion, the weighting function w $t /$ can for convenience be incorporated into the function $g_{k}(t)$.
At some time or other, most eugiueers come in contact with Fourier series, which are the basic classieal orthogonal functions in engineering mathematics. The vast majority of functions in engineering analysis and synthesis can be represented by an expansion of the form:

$$
\begin{equation*}
f(l)=\frac{1}{2} a_{0}+\sum_{k=1}^{k=\infty}\left(a_{k} \cos k t+b_{k} \sin k t\right) \tag{4}
\end{equation*}
$$

It can be shown 8 is that siues and cosines are orthogonal over a range of length 2π with respect to the weighting function 1 and with a standardization factor π as follows:

$$
\begin{align*}
& \int_{a}^{a+25} \cos (m t) \cos (n t) d t=\pi \cdot \delta_{m n} \tag{5a}\\
& \int_{a}^{a+2 \pi} \sin (m t) \sin (n t) d t= \pm \pi \cdot \delta_{m n} \tag{5b}\\
& \int_{a}^{a+2 \pi} \cos (m t) \sin (n t) d t=0 \tag{5c}
\end{align*}
$$

Because the terms of the lourier series have this property of orthogonality,
the coefieients a_{k} and b_{k} in equation 4 can be evaluated from:

$$
\begin{align*}
& a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (k t) d t \\
& b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (k l) d t \tag{6b}
\end{align*}
$$

From a systems viewpoint, the significance of equation 4 is that the fanction is decomposed into a number of elementary sigmals, each of which is sinuscidal in form. For mathematical manipulation, it is frequently more convenient to write the expansion given in equation 4 as a complex Fourier series:

$$
\begin{equation*}
f(t)=\sum_{k=-\infty}^{\infty} c_{k} \exp (i k t) \tag{7}
\end{equation*}
$$

For this exponential form of the Fourier series, the property of orthogonality is expressed as:

$$
\begin{equation*}
\int_{a}^{u+2 \pi} \exp [i(m-n) t] \delta \cdot d t=9 \pi \cdot \delta_{m n} \tag{8}
\end{equation*}
$$

Where $\delta_{m a}$ is the Kronecker delta, that is, is equal to 1 when $m=n$, but zero otherwise.

We ean determine the complex coefficients in equation 7 as:

$$
\begin{equation*}
C_{k}=\frac{1}{2 \pi} \int_{-r}^{\pi} \exp (-i k t) f(t) d t \tag{9}
\end{equation*}
$$

If the function being expanded is a real function, then the cocfficients a_{k} and b_{k} in equations 4 and 6 will be real, whereas the coefficient c_{k} in equations 7 and 9 will be complex. The relationships between the coefficients are given by:

$$
\begin{gather*}
c_{k}=1 / 2\left(a_{k}-i b_{k}\right) \tag{10a}\\
c_{-k}=1 / 2\left(a_{k}+i b_{k}\right) \tag{10b}
\end{gather*}
$$

Though lourier series are widely used in systems engineering, they are not the only types of orthogonal functions which are of use. There are three classical cases of orthogonal polynomials. These are (1) the Legendre polynomials, which are orthogonal on a finite interval with respect to a unit weighting function; (2) the Laguerre polynomials, which are orthogonal on a semi-infinite interval with respect to the weighting function $\exp (-l)$; and (3) the Hermite polynomials, which are orthogonal on an interval infinite in both directions with respeet to a weighting function $\exp \left(-t^{2}\right)$. Of these, only
the Lagnerre functions have been used in parametric hydrology. Their definition can be written as:

$$
\begin{equation*}
\int_{0}^{\infty} \exp (-t) L_{m}(t) L_{n}(t) d t=\delta_{m n} \tag{11a}
\end{equation*}
$$

It can be shown that the polynomials satisfying the above relationship are given by:

$$
\begin{equation*}
L_{n}(t)=\sum_{k=0}^{k=n}(-1)^{k}\binom{n}{k} \frac{t^{k}}{k!} \tag{12}
\end{equation*}
$$

By incorporating the weighting factor in the Laguerre polynomiai, we can define a Laguerre function ϕ_{n} as:

$$
\begin{align*}
\phi_{n}(t) & =\exp \left(-\frac{t}{2}\right) L_{n}(t) \tag{13a}\\
& =\sum_{k=0}^{k-n}(-1)^{k}\binom{n}{k} \frac{e^{-t / 2 t^{k}}}{k!} \tag{13b}
\end{align*}
$$

which will obey the simple relationship:

$$
\begin{equation*}
\int_{0}^{\infty} \phi_{m}(t) \phi_{n}(t) d t=\delta_{m n} \tag{11b}
\end{equation*}
$$

which is an alternative form of equation 11a.
It can be seen from equation 13 b that a Laguerre function can be expressed as a series of gamma distributions with integral exponents. Therefore, any function can conveniently be expanded through the medium of Laguerre functions in terms of a series of gamma distributions with integral exponents. This is of interest because of the use of the gamma distribution (not necessarily with an integral exponent) to simulate system responses in hydrology.

So far we have been talking about functions whose arguments are continuous and which are orthogonal under the operation of integration. In hydrology, our data are frequently defined only at certain discrete points or as averages over certain intervals so that the datia are not available in continuous form. Under these circumstances, it is necessarjr to use discrete rather than continuous mathematies. Unfortunately, most erigineers are trained in continuous mathematics and find some difficulty in going over to the discrete analogs of the continuous formulas and methods. Instead of defining orthogonal functions as in equation 1 , we can define discrete functions to be orthogonal if:

$$
\begin{equation*}
\sum_{s=a}^{\alpha-b} w(s) g_{m}(s) g_{n}(s)=\delta_{n} \delta_{m n} \tag{14}
\end{equation*}
$$

where s is a discrete variable.

The lourier approach ean be applied to a discrete set of equally spaced data as woll as to continaous data ase "Time Series Analysis of Diserefe Data," leture $\{1$. The method of harmonic analysis or trigonometrical interpolation is hased on the orthogonality under summation of the sines and cosimes of (2II $N \cdot k s)$. Apart from the special case of harmonic analysis, discrete orthugonal functions are not disenssed to any great extent in the mathematical literature.
If an attempt is made to apply Laguerre functions to discrete data, it is feund that the Lagurre functions are not orthogonal under summation. It was fornd that the discrete matog of the Lagurere function defined by cquation 13b was:

$$
\begin{equation*}
f_{n} t s 1=1_{2}, \cdots+n+1=\sum_{k=0}^{k-n}(-I)^{k}\left(k_{k}^{n}\right)\left(l_{k}^{k}\right) \tag{15}
\end{equation*}
$$

The polyomial in equation 1.5 is a special case of the Weixner polynomials. (omparisen of equation 1.5 with the comespondiag equation 13 for the continuous case reverls a number of signilicant differences. The weighting functim expl-t \because in equation 13 has been replaced by the weighting function
 replaed by ' ${ }_{x}$. If allowane is made for the difference in the operations in the continuras and diserete cases, these terms are seen to correspond. Thus, faput may be duned as the function whel differentiates into itself; similarly, the function $2+$ is a function which forward differences into itself. The diferentiation of t^{k} t! gives t^{k} ! $(k-1)$! while the forward differencing of $\left({ }_{k}^{\prime}\right)$ gives $\left\{\begin{array}{l}\text { \{ } \\ \text {, }\end{array}\right.$ 。

Further infomation cencerning Fourier seriss and orthogonal polynomiats ran be found in the refermess at the cod of the lecture; notably in Cuillemin 15; Hamming 19: Hiddhrand (10), Lanezos (14), and Rainville (17).

Fourier and Laplace Transforms

Fesurier and Laplace transforms have a number of applications in the linear theory of hedrolugic systems. They are useful in the solution of linear equafions in dealing with the operation of hinear systems and particularly in analyzing the trasism behavior of systems. In addition, when the moments of functions are used to characterize the functional relations between the input and output of a system, Fourier and Laplace transforms can be used to determine the moments of given functions.

Transformation of the original function is made to simplify the mathematicat proedure. On first attompting to master the techniques of Fourier and Laplace transforms, the engineer may think that very little simplification is
achieved. However, once mastered, the techniques are extremely useful, particularly sinee the Laplace trausforms and, to a lesser extent, the Fourier transforms are tabulated like logarithms or trigonometrical functions. By using the Laplace transform, it is possible to transform an ordinary linear differential equation with constant coefficients into an algebraic equation which is far casier to solve. It is also possible to convert a partial differential equation into an ordinary differential equation, again achieving a tremendous simplification in the type of problem to be solved. Of course, these simplincations are made at the cost of having to understand Laplace transforms.
The Fourier transform is particularly useful in the analysis of the transient behavior of stable systems. From one point of view, the Fourier transform may be looked on as a limiting form of a Fourier series. The latter apply to functions that are periodic outside the interval of integration and consist of an infinite series in which each term refers to a definite discrete frequency. If the interval of integration is increased indefinitely, the series will be replaced by an integral as follows:

$$
\begin{equation*}
f(l)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) \exp (i \omega t) d \omega \tag{16}
\end{equation*}
$$

whinh corresponds to equation 7 with $F(\omega)$ corresponding to c_{k}, with integration replacing summation, and with the term arising from the standardization constant (2 I) appearing in the equation of the series instead of appearing in the equation for ealculating the coefficients. Just as the coefficients c_{k} in equation 7 can be obtained from equation 9 , so the function $F(\omega)$ ean be obtained from:

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-i \omega t) d t \tag{17}
\end{equation*}
$$

It would be equally permissible to introduce the standardization constant 2 II in equation 17 and onit it from equation 16, or even to introduce the square root of the factor into each of the equations.

Instead of looking on equation 17 as a limiting form of equation 9 , it is possible to consider it merely as the equation defining the transformation of $f(t)$ from the time domain to the frequency domain. Equations 16 and 17 have the advantage that, unlike equations 7,8 , and 9 , they are not confined to periodic phenomena. This advantage, however, is offset by the fact that whereas equation 7 fnables us to evaluate the function to a high degree of accuracy by knowing the values of c_{k}, equation 16 , which represents the inversion of the Fourier transform, is not by any means as casy to handie.
If the system we are examining is not stable, or if the functions involved do not fulfil certain other conditions, then the Fourier transform not of $f(t)$ itself, but of f ithe $e^{-c t}$, where c is a real number. Making this change gives us
the bilateral Laplace transform of the function:

$$
\begin{align*}
F_{B}(s) & =\lambda_{B}[f(t)] \tag{18a}\\
& =F\left[e^{-c} f(t)\right] \tag{18b}\\
& =\int_{-\infty}^{\infty} e^{-c t f}(l) e^{-i \omega t} \cdot d t \tag{18c}\\
& =\int_{-\infty}^{\infty} f(l) e^{-s t} d t \tag{18d}
\end{align*}
$$

As ordinarily used, the Laplace transform is only defined between zero and plus infinity, and virtually all tables are for this unilateral Laplace transform. In this form we have:

$$
\begin{align*}
F(s) & =\lambda[f(t)] \tag{19a}\\
& =\int_{0}^{\infty} f(t) e^{-s t} d t \tag{19b}
\end{align*}
$$

Equation 19b is the Laplace transform equivalent of equation 17 above.
The Laplace transform can be inverted to give the original function in the same way as equation 16 by using the expression:

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) e^{i d} d s \tag{20}
\end{equation*}
$$

Again equation 20 is difficult to solve, but must be used unless the function $F(s)$ can be found in a set of Laplace transform tables. Numerical inversion of the Laplace transform is quite difficult and involves the use of orthogonal functions to represent the Laplace transform and the inversion of these functions term by term.
For discrete functions, the Laplace transform must be replaced by the Z-transform. This can be written as:

$$
\begin{align*}
Z[f(n T)] & =\lambda[f(n T) \delta(t-n T)] \tag{21a}\\
& =\sum_{n=0}^{n=\infty} f(n T) e^{-n T_{t}} \tag{21b}\\
& =\sum_{n=0}^{n=\infty} f(n T) Z^{-n} \tag{21c}
\end{align*}
$$

where

$$
\begin{equation*}
e^{T s}=Z \tag{2Id}
\end{equation*}
$$

This discrete transform has properties similar to those of the Laplace transform and has been tabulated.

Further information on transforms and their use in systems analysis can be
found in the following. Aseltine (2) Doetsch (4), Jury (11), and Papoulis (16). Extensive tables of transforms are available in Erdelyi (6) and Roberts and Eaufman (21).

Differential Equations

Ordinary differential equativis are differential equations in a single variable. If we are dealing with a lumped system, with lumped inputs and outputs, then we will have only ordinary differential equations to handle in which the single variable will be time. Ordinary differential equations are classified in respect to their order and degrec. The order of a differential equation is the order of the highest derivative present in the equation. The degree of the equation is the power to which the highest derivative is raised. A linear equation must of necessity be of the first degree because otherwise there would be an essential nonlinearity and the principle of superposition would not apply.
In a linear differential equation, all the derivatives in the equation must be to the first power and thcir coefficients must not be functions of the dependent varinble. Thus, if we have an ordinary differential equation-or system of ordinury dificrential equations-which describes the dependent variable (y) and its derivatives with respect to the independent variable (t) as functions of the independent variable (i), then there is no restriction on the order of the derivatives but each derivative must appear only to the first power, and, in addition, the coefficients of the derivatives cannot be functions of y but may be functions of t. The general form of such an equation is:

$$
\begin{equation*}
a_{v}(t) \frac{d^{\mathrm{n}} y}{d t^{\mathrm{n}}}+\ldots \ldots a_{n-k} \frac{d^{k} y}{d t^{k}}+\ldots a_{n}(t) y=x(t) \tag{22}
\end{equation*}
$$

If the coefficients are neither functions of y nor of t but are constants, then we have an ordinary differential equation with constant coefficients given by:

$$
\begin{equation*}
\frac{d^{n} y}{d t^{n}}+\ldots a_{n-k} \frac{d^{k} y}{d l^{k}}+\ldots a_{n} y=x(t) \tag{23a}
\end{equation*}
$$

Equation 22 could represent the operation of a lumped linear system, but for equation 23 to represent the operation of a system, the system would have to be both linear and time-invariant.
Since our starting point in syatems analysis is the study of lumped, linear, time-invariant systems, we will first be concerned in our analyses with the solution of linear ordinary differential equations with constant coefficients such as equation 23 a . An alternative form for the latter equation is:
where D is the differential operator. This may also be written as:

$$
\begin{equation*}
p(D)=x(t) \tag{23c}
\end{equation*}
$$

An equation such as 23 with a function of t on the right-hand side is said to be nonhomogeneous and is more difficult to solve than a homogencous equation where the right-hand side is zero.

In aceordance with the principle of solving simple problems first, the first step is to look at the homogencous equation:

$$
\begin{equation*}
p(D) y=0 \tag{24}
\end{equation*}
$$

and postpone solution of the full nonhomogeneous equation until a solution of the homogeneous equation has been found. The classical method of solving this equation is to assume that the solution is made up of terms of the form:

$$
\begin{equation*}
y=c \cdot \exp (s t) \tag{25a}
\end{equation*}
$$

Any value of s which satisfies:

$$
\begin{equation*}
p(s)=0 \tag{25b}
\end{equation*}
$$

where $p(s)$ is the same polynomial as $p(D)$ in equation 24 , will give a solution of equation 24. If the original equation is of the $n^{\text {th }}$ order, then there will be n roots, real or complex, for equation 25a. Consequently, the general solution of equation 24 , which is known as the complementary function, is given by:

$$
\begin{equation*}
y=\sum_{k=1}^{n} c_{k} \exp \left(s_{k} t\right) \tag{2cc}
\end{equation*}
$$

Real values of s_{k} give rise to exponential terms and complex values of s_{k} to sinusoidal terms. In hydrologic systems which are heavily damped, the roots are usually negative and real so that the solution consists of a series of exponentials with negative arguments. The n unknown constants c_{k} are obtained from the boundary conditions.

Having solved the homogeneous equation, we now move on to the problem of solving the nonhomogencous equation. If a particular solution of the nonhomogennous equation can be found:

$$
\begin{equation*}
y=y_{\mathrm{p}}(t) \tag{26}
\end{equation*}
$$

then the complete solution of the nonhomogeneous equation is given by:

$$
\begin{equation*}
y=y_{p}(t)+\sum_{k=1}^{n} c_{k} \exp \left(s_{k} t\right) \tag{27}
\end{equation*}
$$

in which the first term of a particular integral will satisfy the right-hand side of the equation, and the second term or complementary function will satisfy the boundary conditions.

The solution of ordinary differential equations, such as equation 23 , can be greatly facilitated by the use of the Laplace transform. By taking the Laplace transform of the equation and using the rules for the Laplace transform of a derivative, we obtain an algebraic equation for the variables in which the
boundary conditions are automatically incorporated. If the function on the right-haid side of the equation is simple, its Laplace transform may be included. If not, it may be replaced by a delta function and the solution for this case obtained. The solution for the aetual right-hand side is then obtained by convoluting the function on the right-hand side of the original equation with the solution obtained by using a delta function. If the system is a complex one, there may be derivatives on the right-hand side of the equatiot, and the use of the delta function may reguire some caution and a mastery of its manipulation.

If the system has distributed rather than lumped characteristics, then its operation will be deseribed by a partial differential ecuation. Most of the partind differential equations encountered in enginecring analysis are of the second oreter. loor one spaer dimension, the general second order homogeneous linear eguation with constant coefficients is given by:

The first thing to determine about a partial differential equation is whether it is hyperbolic, parabolie, or clliptic in form. This depends on whether the discriminate $b^{2}-4 a c$ is respectively greater than, cqual to, or less than zero. Hyberbolic and parabolie partial differential equations correspond to problems of propagation (in both directions respectively), whereas elliptic differential equations represent the way in which the condition around the boundary effects the interior of a space. The appropriate types of boundary conditions are different for the three different types of equations.

Further details on the subject of differential equations and their solution con be found in references by Lambe and Tranter (13), Fox (7), and Sneddon (22).

Matrices

Matrices are essentially mathematical shorthand for representing arrays of elements. A matrix is an array or table of numbers. Thus, we define the matrix Ans:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & \ldots \\
a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \cdots \\
\ldots & \ldots & \ldots & \cdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

This matris, which has m rows and n columns, is referred to as an m by n matrix.

Matrix algebra thils us what rules should be used to manipulate such arrays
of numbers. If a matrix C is composed of elements each of which is given by adding the corresponding elements of matrix A and matrix B, that is:

$$
\begin{equation*}
c_{i j}=a_{i j}+b_{i j} \tag{29a}
\end{equation*}
$$

then matrix C is said to be the sum of the two matrices A and B, and we write:

$$
\begin{equation*}
C=A+B=B+A \tag{29b}
\end{equation*}
$$

Matrix multiplication is defined as the result of the operation:

$$
\begin{equation*}
C=A \cdot B \tag{30a}
\end{equation*}
$$

where the elements of C are defined as:

$$
\begin{equation*}
C_{r t}=\sum_{t} a_{r} b_{r t} \tag{30b}
\end{equation*}
$$

that is to say, the element at the intersection of the $r^{\text {th }}$ row and the $t^{\text {th }}$ column in the C' matrix is obtained by multiplying, term by term, the $r^{\text {th }}$ row of the A matrix by the $t^{\text {th }}$ column of the B matrix and summing these products. This definition implies that matrix A has the same number of columns as matrix B has rows. It must be remembered that matrix multiplication is in general noncommutative, that is:

$$
\begin{equation*}
A \cdot B \neq B \cdot A \tag{30c}
\end{equation*}
$$

A certain amount of nomenclature must be learned in order to be able to usc matrix algebra. A square matrix with the number 1 on all points of the principal diagonal (that is, the one from top left to bottom right) and zero on all the oft-diagonal points is known as the unit matrix. It serves the same function as the number 1 in ordinary algebra; it can be verified that multiplication of a matrix by the unit matrix gives the original matrix. A diagoanal matrix is one in which the elements on the main diagonal are nonzero, but all the other elements are zero. An upper triangular matrix may have nonzero elements on the principal diagonal and above, but only zero elements below the main cliagonal; similarly, a lower triangular matrix has nonzero elements elements in the prineipal diagonal and below it, but only zeros above the diagonal. The transpose A^{T} of a matrix A is the matrix which is obtained from it by replacing each row by the corresponding column and vice versa. The inverse of a matrix A^{-1} is the matrix which when multiplied by the original matrix A gives the unit matrix I, that is:

$$
\begin{equation*}
A \cdot A^{-1}=A^{-2} \cdot A=I \tag{31}
\end{equation*}
$$

A matrix will only possess an inverse if it is square and nonsingular, that is, if its determinant is not equal to zero. The transpose of the inverse of a matrix is referred to as the reciprocal matrix. A matrix is said to be orthogonal if its iuverse is equal to its transpose, that is:

$$
\begin{equation*}
A^{T}=A^{-1} \tag{32a}
\end{equation*}
$$

which is equivalent to:

$$
\begin{equation*}
C=A \cdot A^{T}=I \tag{32b}
\end{equation*}
$$

and to:

$$
\begin{equation*}
c_{i j}=\sum_{k} a_{i k} a_{j k}=\delta_{i j} \tag{32c}
\end{equation*}
$$

The individual rows and columns of a matrix may be considered as row vectors. Thus, the row vector which consists of a single row is really a matrix of size 1 by n, whereas the column vector which consists of a single column is a matrix of size n by l . Two compatible vectnrs can be combined to give either an imer product or an outer product. This is illustrated next for a vector and its transpose.

The traspose of a row vector will be a column vector and vice versa. Consider a vector a which has n rows and one column; its transpose a^{T} will have one row and n columas. If we premultiply a by a^{2} we obtain:

$$
\begin{align*}
a^{T} t a & =\left[a_{1}, a_{2} \ldots \ldots a_{n}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\cdots \\
\because \\
a_{n}
\end{array}\right] \tag{33a}\\
& =a_{1}^{2}+a_{2}^{2}+\ldots a_{n}^{2} \tag{33b}\\
& =\sum_{i} u_{i}^{2} \tag{33c}
\end{align*}
$$

wo that the result of the multiplication is a one by one matrix, that is, a scalar. This is knowa the inner product. The outer product is obtained by postmultiplying a by a^{T} :

$$
a \cdot a^{T}=\left[\begin{array}{c}
a_{1} \tag{34a}\\
a_{2} \\
\cdots \\
\ldots \\
a_{n}
\end{array}\right]\left[a_{1} a_{2} \ldots \ldots a_{n}\right]
$$

Since this is the product of $n n \times 1$ matrix and a $1 \times n$ matrix, the result is an $n \times n$ matrix as follows:

The comparison of equations 33 and 34 is a good illustration of the fact that the multiphication of vectors is not commutative.

A set of simultaneous equations is represented in matrix form by:

$$
\begin{equation*}
A x=b \tag{3}
\end{equation*}
$$

where A is the matrix of coefficients, x is the vector of unknowns, and b is the vector of the right-hand sides of the simultancous equations. If it is required to solve the problem for different sets of values on the right-hand side, the most convenient method is to obtain the inverse of the coofficient matrix and write the solution as:

$$
\begin{equation*}
x=A^{-1} b \tag{36}
\end{equation*}
$$

A matrix only has an inverse if it is square and nonsingular; therefore, equation 34 can only be written if the eoefficient matrix is square. This is nothing more than the old criterion that the number of equations must be equal to the number of unknowns in order to obtain a direet solution. If, however, only one set of equations is being solved, there are more efficient computational routincs. From the point of view of actual compulation, a matrix may be nensingular but may still give rise to difficulty because the equations are ill-conditioned and the matrix is almost singular so that the numerical results may be unreliable. Special computer prograns are available for the inversion of matrices and for the solution of simultaneous equations.

Further information on matrices and their use is to be found in publications by Guillemin (S), Raven (20), Biekley and Thompson (3), and Wade (23).

Numerical Methods

Berause we deal with data and numbers rather than functions, the systems hydrologist must have a firm grasp of numerical methods. Because of the complexity of the systems with which he dends, most of his problems will require a solution on a digital computer. The various stages of the solution of a problem using a computer may be grouped as follows:

> (1) Problem identification
> (2) Mathematical description
> (3) Numerical annysis
> (4) Computer program
> (3) Program checkout
> (6) Production runs
> (7) Interpretation

It is outside the scope of these lectures to discuss these various stages. Nevertheless, those interested will be able to follow up any particular topic in the refermess by Hamming (9), Hildobrand (10), Mecracken and Dorn (15),

Ralston (1S), and Ralston and Wilf (19). In addition, a number of the problems at the end of this lecture and at the end of other lectures in the series will give practice in the solution of problems involving numerical methods.

Problems on Mathematics

Orthogonal polynomials and functions

1. Find the Fourier cosine and Fourier sine coefficients for the expansion of a number of the functions of a continuous variable given in Appendix table 1. From these determine the Fourier exponential.
2. Find the coefficients for the expansion of a number of the functions shown in Appendix table 1 in terms of Laguerre functions. Compare the results with those obtained in question I and comment on the difference.
3. Find the harmonic coefficients for the expansion of a number of the functions of a discrete variable shown in Appendix table 2. What is the difference between the expansion of a function of a continuous variable by means of a truncated Fourier series and the expansion of the same function by the harmonic analysis of the function of a discecte variable obtained by sampling the function of a continuous variable at the same number of points?
4. Determine the harmonic coefficients for the discrete set of values obtained by sampling one or more of the functions of a continuous variable given in Appendix table 1. What is the effect of the frequency?
万. In the case of a function which is zero outside a certain limited range, what is the relationship between the Fourier exponential coefficient and the moments of the function about the time origin?

Fourier and Laplace Transforms

6. Find the Fourier transform or Laplace transform of a number of the functions given in Appendix in table 1.
7. Show that the explicit form given in either the Laguerre or Hermite polynomials is identical to the Rodriguez form.
8. The impulse response of a given system may be represented by function 11 in Appendix table 1 and the input to the system may be represented by function 12 in Appendix table 1. Find the output from the system (1) by a direct convolution and (2) by means of the Laplace transform.
9 . If the ${ }^{\text {th }}$ moment of a function about the origin is given by

$$
L_{r}^{\mathrm{s}}=K^{\frac{(}{} \frac{(n+r-1)!}{(n-1)!}}
$$

and the fanctio t is afro for negative time, find the function.
10. Cise the $\%$-transform to find the function obtained when a Meixner polynomial of a sree m is convoluted with a Meixner polynomial of degree n.

Differential equations

11. A number of unequal hinear reservoirs are cascaded, that is, the outflow from one is the inflow to the next. Write the differential equation for the otatfow from the last reserveir in terms of the inflow to the first reservoir and the storage constants of the individual reservoirs. What is the form of the solution to this general equation? What is the form of the result if the linear reservoirs are all equal?
12. The following equation is the impulse response of a given linear system.

$$
h(l)=\left(C_{1} t+C_{2} t^{2}+C_{3} t^{3}\right) \cdot \exp (-l)
$$

Draw two alternative arrangements of equal linear storage elements of unit storage delay time which would have the same impulse response as the given system. Then derive the differential quation for the response $y(t)$ of the given system to any given inflow $x(i)$.
13. Find the solution of the following equation

$$
\frac{d y}{d t}+\left(\frac{l}{k}-n\right) y=0
$$

Does the result hok for all values of n ? What is the relationship between this result and the result obtained in question 11 for n equal linear reservoirs?
14. Solve the hande wave equation for a semi-infinite channel for zero initial conditions and a given condition at the upstream end. What would be the solution if only the first-order teras on the right-hand side of the equation were retained? What would be the solution if only the second-order terms on the lefl-hand side of the equation were retained? What type of flow is represented by these two solutions?
1.5. If in the linere wave equation the value of b and e are zero or of such magnitude that the second and third terms can be neglected, what form does the equation take, and what is the solution for tion boundary conditions given in problem 14? How does the form of this solution differ from the solutions found in problem 14 ?

Matrix methods

16. Write out the set of simultaneous equations relating the ordinates of the outfor hydrugraph to the ordinates of the ioput hydrograph and the unit hydrograph. Express this set of cquations in mantrix form in two alternative ways. Give the matrix formulation of the direct scilution and the least squares solution for the unit hydrograph ordinates.
17. If the volumes of effective raiafall are given by function 6 in Appendix table 2 and the ordinates of the unit hydrograph by function S in Appendix table 2 , use the matrix formulation to write down the ordinates of the outfow
bydrograph. Rework the problem with the volume of the unit hydrograph made equal to unity.
18. What maximum runoff would be predicted for the effective rain and the unit hydrograph shown in Appendix table 3.
19. The input to a lincar system is given by function 3 on Appendix table 2 and the output from the system is given by function 4 in Appendix table 2 . Find the pulse response of the system by means of matrix inversion.
20. If the output of the system in probiem 19 was taken as function 5 in Appendix table 2, fud the puise response indicated by this output both by the ordinary matrix method and by the least squares method.

Numerical methods

21. List several mothods for numerical quadrature of a given function. Draw a fow diagram for the application of one of these methods to the quadrature of one of the contimuous functions on Appendix table 1, using either a desk calculator or a digital computer. Give reasons for chosing the particular quadrature method.
22. Develop a fiew chart for a general computer program for determining the coefficients in any orthogonal expansion of any given function. Write the computer program for a section of the flow chart.
23. Write a computer program for matrix inversion and apply it to the solution of problem 19.
24. Develop a flow chart for the derivation of a unit hydrograph from records of total rainfall and total runoff. Write one section of the computer program.
2.5. Discuss the melhods available for the numerical solution of the linear wave equation. Write out the faite difference scheme for solving the equation by one of these nethods and discuss how the boundary conditions would be handicd. What problems would you expect to encounter in computing according to the chosen mothod?

Literature Cited

(1) Amamowitz, M.. and Stenen, I. A., eci.
1904. handroon of mathematical fonetions. U.S. Nati. Bur. Standards, Arpl. Math. Series 55, 1046 pp .
(2) Aselutive. J. A.

195S. thansform methods in llneal ststems analysts. 300 pp., illus. New york.
(3) Burkes, W. C., and Thompson, W. A.
1964. matrices: their meanisg and maniprlation. 168 pp . New York.
(1) Doetsem, (:

19GL. gude to the applichyons of lablace transfonms. 255 pp . New York.
(5) Elemarit. A., ect.
1954. Tablen of inteama thansfobms. Y. 1. New Iork.
(6) Fovent, Cl .
1965. Laplace tiansfomas in enoineeling. Hmagarinn Acad. Sci. Budapest.
(7) Fox, L.

1g02. nememeal solution of omdinary and fabtial differential eqtamions. 500 pp . Oxford, England.
(8) Gelbemin, E. A.
1949. the mathematics of chechi anal.rsis. 590 pp., illus. Canbrikge, Mass.
(9) Hammine, R, W.

(10) Madeahino. F. 13.
1056. Inthodecpon to newehical analxins. 511 pp, New York.
(11) Jura, E. I.

18bi. theory dnd application of tile z-thansfobm method. 330 pp. New York.
(12) Koms, (i. A., and Kome T. M.
1901. mathematichl handbook for scienthishiano engineers. 943 pp., illus. New York.
(13) Lamben ('. (1., and Tranten, C. J.
1061. difyermatial eochtions for enoneems and scientists. 372 ppr Londen.
(1if) Lanczos, (.
1957. apmated andlysis. 639 pp . Pitman, London.
(15) MaCuacken, 1). D., and Donn, W. S.
1964. Nomehted meyhods and fohtran proghaming. 457 pp. New York.
(16) Parorlis, A.
1902. the foimer inteoral and its application. 327 pp. New York.
(17) Rainmilue. E. D).
1960. shectal fonctions. 365 pp. New York.
(is) Ralston, A.
1965. A mast course ne nembical analests. 578 pp. New York.
(19) Ralston, A., and Whef. H. S.
1900. mathematical methods fois digital computers. V. 1, 293 pp. New Jork.
(10) Raven, le. H.

(Ph Robeats, C. E. and Kalfman, H.
1960. Table or tallace transromes. 365 pp., illus. Philadelphia.
(29) Swednos. I. A.

10̄̄̄̆. blements of partial differential equations. 323 pp. New York.
(23) Wade, 't. L
1951. the aloebra or vectons and mathees. 189 pp . Reading, Mass.

LECTURE 4: CLASSICAL METHODS OF RUNOFF PREDICTION

The Outflow Hydrograph

The purpose or lecture 4 is to review the classical methods of runoff prediction as used by applied hydrologists and to reformulate these methods in systems terms. Alost of the methods were derived during the golden age of classical hydrology between 1930 and 1945. Wheu some of these methods are looked at from a systematic point of view, the assumptions stand out more dearly, and both the limitations and the full range of applicability of the methods are revereded. In many cases, the seope of the methods is considerably wider than would appear from the elassical formulation of the method.
(لassical hydrology paid agreat deal of attention to the runoff hydrograph in an effort to determine how it could be predicted. Figuee 4-1 is taken from a contribution by Hoyt (18). He talks of five phases in the runoft cycle; four of these are illustrated in figures 4-1 to 4-4. The first phase relates to the and of a dry priod when the streamflow is relatively low, most of it being supplied by base flow (Q_{b}) from ground water storage. During this phase, the soil moisture will have been reduced by evaporation (E) and transpira(ion (T) so that a substantial field moisture deficit will exist. If the dry period has been very long, the rate of transpiration mey be severely reduced below the potential rute due to the drying out of the soil and the lowering of the water table. Phase $\underline{2}$ of Hoyt's runoff cyele relates to an initial period of rain and is shown on figure $4-2$. If the initial rain (P) is light, the amount infiltrated (F) will not be sufficient to make up the field moisture deficit and hemes, no recharge to ground water (R) will occur. During this second phase, a portion of the rain will be intercepted by vegetation (V) or stored in depression storage ! Di.

Fiocke 4-1.- Phase of low streamflow.

Fiorere 4-7.- Phase of initial rainfal.

The third phase, shown in figure 4-3, is associated with the continuation of min for some time. If this oceurs, the storage in the surface depressions (D) will be satistied and overland flow (Q_{o}) will oceur; similarly, if the infiltration into the soil is sufficient to fill the soil moisture stornge (S), then recharge (R) to the ground water will oceur. The streamflow will rise relatively rapidly due 10 overland flow $\left(Q_{a}\right)$ and any return of interfow $\left(Q_{i}\right)$ to the stream. Subsequently, there will be a more gradual increase in streamfiow due to outflow from the ground water reservoir $\left(Q_{b}\right)$, which is being recharged by gravitational soil water (R). When the general conditions are favorable to rainfall, there is a high relative humidity and both evaporation and transpiration thed to be reduced. In the amalysis of conditions during prolonged rainfall, evaporation and transpiration are frequently neglected. In this third

Ftarae t-3. - Phase of prolonged rainfall.
phase, the rapid rise of the level in the stream channels due to overland flow and interflow may result in increased bank storage, that is, a recharge of the ground water close to the stream as a result of the increased streamfow.

Hoyt characterized the fourth phase as a period when rainfall has continued sufficiently long and with sufficient intensity so that all available natural storage has been satisficd. This condition rarely occurs in natural watersheds of any appreciable size. In the case of small watersheds, both urban and rural, the storage may be satisfied and the condition reached where the rate of runoff is equal to the supply rate. This phase is not separately illustrated but is similar to the third phase shown in figure $4-3$.

The fifth phase described by Hoyt is illustrated in figure 4-4. It is the condition when the rain has cersed, but sufficient time has not clapsed for channel storage and surface reteation to be depleted to the level at which they were during the first phase. During this fifth phase, evaporation (E) and transpiration (T) may be considerable because the plentiful supply of moisture nilows evaporation to take place at almost the potential rate. Streamflow will decline but only gradually as surface storage, channel storage, and ground water storage are drawn upon in turn. This fifth phase is illustrated on the last line of figure 4-4.

We might argue about the details of this particular picture of the runoff cycle, but not about its general nature. How does this picture compare with the systems view of the same phenomena? Can Hoyt's approach interpreted from a systems point of view? At first glance there seems little in conmon between the elassical picture of figure $4-1$ to $4-4$ and the systems diagram shown in figure 1-8 (p. 16). On closer examination, however, we realize that the two can be related to one another. In figures $4-1$ to $4-4$, the channel storage and the storage in the soil above the water table are shown pictorinlly; in figure 1-8 the same storages are represented by rectangular boxes. Hoyt's elassification and illustration of the phases of the runoff cycle are based on two inputs,

Fiotre 4-4.- Phase of deelining streamflow.
one of precipitation and the other of potential evaporation and transpiration; these are also the essential inputs of figure $1-8$.

Classical hydrology, as exemplified by Hoyt's analysis of the runoff cycle, makes the assumption that there is either rainfall and no transpiration, or else transpiration and no rainfall. If this assumption is permitted in systems hydrology, as in classical hydrology, then the task of the systems hydrologist is greatly simplified. Instead of dealing with multiple inputs, it is possible to deal with alternating inputs; thus we might consider the precipitation and the potential evaporation for a given catchment as analogous to controls on a storage tank operated in such a way that when one valve is open, the other is shat and vice versa. While a complete model would have to take care of simultaneous multiple inputs, the first approximation could follow the ciassifcation of Hoyt.

In the systems formulation, it is only necessary to use two phases. The first phase would be the rainless period. The initial storage in the different parts of the watershed would be determined by the previous history of the system. The variation in that storage would be determined by the matural recession of storage plus the effect of potential evapotranspiration on the soil moisture. The second phase would be the rainy period. The initial condition would be set by the history of the system during the previous rainless period in which evaporation and transpirarion would be neglected leaving precipitation as the only input.

The decomposition of the total hydrograph into components is shown in figure $4-5$, which is based on a figure by Linsley, Kohler, and Paulhus (25). In figure 4-5, the total hydrograph has been drawn on semilog paper. The ground water recession is taken to be exponential, thus giving a straight line on this plot. The exponential recession is continued back from A to B, and B is then joined to the start of the rise of the hydrogranh. When the assumed ground water flow is subtracted from the total hydrcioraph, the hydrograph or surface runoff plus interflow plotted in figure 4-6 is obtained.
Again the straight line recession may be extended back from C to D, and the interfiow separated out leaving the surface runoff. Thus, the total hydrograph has been divided into three elements-ground water flow, interflow, and surface runoff-each of which is plotted as a triangle on semilog paper. This figure is reproduced here as an illustration of a particular concept of the components of the hydrograph without any comment on the extent to which it.reflects the position in most natural hydrographs. Whether we approach the problem of runoff prediction from a classical or a systems viewpoint, it is necessary to make some assumptions as a basis for the runoff prediction. The division of the runofi cycle into phases and the division of the runoff hydrograph into the three components described above are examples of such assumptions.

Figule 4-5.-Hydrograph of total flow.

The Rational Method

During the latter part of the 19th century and earlier part of the 20th century runoff was predicted in one of two ways. Most engineers used empirical formulas which were derived for particular cases and then applied to other cases on the assumption that conditions were similar enough for the predictions to be of some value. The second method used was that which has come to be known as the "rational method." In this review there is little need to examine the empirical formulas as they were ad hoc models whose parameters were derived for one particular case and then used in a wider context. The rational method, however, was essentially a procedure and, as its name implies, was an attempt to approach the problem of runoff prediction rationally. The assumptions which it made were unduly restrictive but, nevertheless, it is interesting to discuss this appronch here as it was the one which lead ultimately to the development of some important methods in classical and modern hydrology.

Though the rational method is often dated from the papers of Kuichling

Frame -1-6.-Surface runoff plus interfiow.
(28) and Lloyd-Duvies (20), the method is clearly outined in a paper by Mulvaney ($2 S$) presented to the Institution of Civil Engineers of Ireland in 1851 . In this paper, Mulvany gives a clear exposition of the concept of the time of concentration and its relation to the maximum runoff in the following terms:

Tha first matter of importance to be ascertained in the case of a small or mountainy catchment is the time which a food requires to attain its maximum height, during the continumace of a uniform rate of fall of rain. This may be assumed to be the time necessary for the rain which falls on the most remote portion of the catenment to travel to the outlet, for it appears to me that the discharge must be greatest when the supply from every portion of the catchment arrives simultaneously at the point of discharge supposing, as above premised, the rate of supply to remain constant, and this length of time being ascertained, we may assume that the discharge will be the greatest possible under the circumstances of a fall of rain oceurring, of the maximum uniform rate of fall for that time.

Mulvany then cites the example of a catchment with a time of concentration of 3 hours. He points out that I inch of rain falling in 3 hours on such a catchment would give a greater flow than 2 inches of rain falling in 24 hours. He goes on to discuss the factors which affect the time of concentration as
follows:
This question of time as regards any catchment, must depend chiefy on the extent, form and rate of inclimation of its surface; and therefore one great object for investigation is the relation between these causes and their effect; so that, haviag ascertained the extent, form and average inclination of any catehment, we may be able to determine in the first place, the duration of consiant rain required to produce a maximum discharge, and consequently to fix upon the maximum rate of raiufall applicable to the case. It is evident that, as a space of time is reduced, the rate of maximum rate of rain is increased.

Mulvany was concerned with the maximum rate of runoff and that he assumed a constant rate of rainfall. The circumstances of the development of the rational method have been deseribed elsewhere by Dooge (11).

The original rational method which was used to predict the maximum runoff was modified in the 1990's to allow for nonuniform intensities of rainfall during the storm and also to allow for irregularities in the shape of the catchment. The first proposal for adapting the classical rational method to take accome of variations of rainfall within the storm period appears to have been that by Hawken and Ross (15,87). A few years later, a second variation was introduced to overcome the defect in the original rational method that-in certain irregular shapes of catchment encountered in the design of sewerage schemes-the predicted discharge from a part of the catchment could be greater than the predicted discharge from the whole of the catchment. The first modifertion of this type appears to be that due to Reid (34) in 1926.

Methods of handing the nonuniform rainfall ean also be studied in papers by Rousculp (38), Coleman and Johnson ($\$$), Judson (21), Ormsby (38), Harte (14), and Laurenson (25). The method of allowing for a higher runoff from a partial area depends on the type of rainfall formula used. The methods are described in papers by Riley (35), Eseritt (13), and Munro (29). Some of these methods for allowing for the nonuniformity of rainfall and irregularity of area are discussed in somewhat more detail in lecture 8, (see "TimeAren Mtethods"), where they are related to the process of deriving synthetic unit hydrographs. In both of these lines of development, use was made of a time-area diagram, which indicates the distribution of the time of trayel from different parts of the eatchment.
Figure 4-7 top shows a watershed on which have been drawn isochrones of equal travel time. Thus, each point on the isochrone labeled $\tau=4$ has a travel time of 4 hours, that is, it takes 4 hours for water to travel from any point on that iscchrone to the outlet. If a detailed survey of the catchment is available, the position of the isochrones can be estimated by making allowance for the time of overland flow to a channel and then calculating the time of flow in the chanmel by Manning's formula or by some similar method.

If the area of that part of the catehment whose time of travel is less than or equal to a given value of τ, is plotted against that value of τ, we obtain a time-area diagram as shown in figure 4-7, bottom left. According to the rational

Figure 4-7.-Top: Isochromes of travel time. Bollom: Left, time-area curve; right, time-area-concentration curve.
method, this diagram shows for any value of τ, the area which will contribute to the maximum flow at the outlet due to rainfall with a duration equal to r. Often it is more convenient to use the time-area-concentration curve shown on figure 4-7, bollom right. The latter is the derivative of the time-area curve, and w base length is equal to the time of concentration $\left(t_{c}\right)$. The time-areaconcentration curve in the modified rational method corresponds to the instantaneous unit hydrograph (ILH) in the unit hydrograph method (90).
In applying the modified rational method, the maximum rate of runoff was obtained by superimposing the cumulative rainfall pattern (or the rainfall intensity pattern) and the time-area diagram (or the time-area-concentration curve). To facilitate comparison, the time scales on the two diagrams were made the sanye but with the time scale on the time-area diagram reading from left to right and the time scale of the storm rainfall curve reading from right to left. When the time-are-concentration curve and the rainfall intensity curves were used, the maximum runoff was obtained by superimposing the maximum rainfall intensity over the maximum of the time-area-concentration
curve, then multiplying corresponding ordinates of the two curves, and, finally, summing these products to obtain the maximum runoff. It is easy, in the hindsight of the systems approach, to interpret and describe this graphical and numerical procedure as a convolution of rainfall intensity and the time-area-concentration curve. By sliding one curve laterally over the other, it was possible, in the modified rational method, to obtain ordinates other than the maximum and, with patience, to obtain sufficient points to define a complete hydrograph of runoff (12).
In fact, we now realize that these mothods developed in the 1920's use the time-area coneentration curve as a synthetic unit hydrograph. Before the unit hydrograph had been invented, engineers were deriving synthetic unit hydrographs (or synthetic S-hydrographs) in the form of time-area-concentration eurves (or time-area diagrams) by using Manning's formula to estimate the time of travel. Because such synthetic unit hydrographs were based purely on transhation and did not take account of storage effects (either in the sewerage system or on the ground, in the soil, and in the channel network), it is not surprising that when combined with the true rainfall intensity pattern, they tended to overpredict the peak rate of runoff. It is worthwhile noting that in the original rational method in which a uniform rainfall intensity is assumed, the error due to assuming uniform rainfall intensity and the error due to neglecting storage were opposite in sign. Thus, the predicted peak would not be as great as in the modified rational method and might in fact be closer to the true prak.
Those who used empirical formulas for the time of concentration were also using a synthetic method; this time one based on empirical relationships between this particular parameter and the watershed characteristics. The rational method is still quite properly used in certain routine design problems such as small roadway culverts.

The rational method may be considered as a parametric method in which a simple model is used. The basic formula of the rational method is given by:

$$
\begin{equation*}
Q_{\max }=C \cdot i\left(t_{c}\right) \cdot A \tag{I}
\end{equation*}
$$

in which $Q_{\text {max }}$ is the estimated peak discharge, C is a coefficient whose value must be determined in some way, $i\left(l_{c}\right)$ is the intensity of rainfall of the chosen frequency for a duration equal to the time of concentration $\left(l_{c}\right)$, and A is the area of the catchment. In a recent publication, Nash (31) pointed out that the rational method might have been developed on the basis of parameter optimization. In this case, the data would have been examined to determine the values of C and t_{c} which gave the optimum fit in some defined sense. To do so for a reliabie set of data would be an interesting exercise.

Because these lectures are concerued with parametric hydrology, we have only discussed the application of the rational method to the prediction of individual storm events. Equation 1 can also be taken in a statistical sense
in which C represents the ratio of the peak rate of runof of a given frequency to the rainfall of the sume frequency and a duration equal to the time of concentration. The use of the rational method in this way is outside the scope of the present lectures, in which we are largely concerned with the rational method as a forerunner of unit hydrograph procedures.

Unit Hydrograph Concepts

The unit hydrograph concept and its development was one of the highlights of the classical period of hydrology. Figure 4-8 reproduces figure 1 of Sherman's basic paper (40) published in 1932. In this figure, Sherman illustrated for the case of a triangular unit hydrograph the effect of rain during suceessive standard periods in building up the shape of the surface runofi hydrograph through the superposition of displaced triangular unit hydrographs, which combine to give the total runoff hydrograph. If the duration of effective precipitation is greater than the base of the unit hydrograph, the runoff becomes constant. For about 25 years, unit hydrograph methods were widely used in applied hydrology without a recognition of the essential assumplion involved, namely that the relationship between rainfall excess and surface runoff was that of a linear time-invariant system.
It is instructive to quote a classical formulation of unit hydrograph pro-

Frovie 4-8.-Superposition of tunit hydrographs.
cedures and to compare this with the systems formulation of the same basic idea. One of the best classimi discussions of unit hydrograph procedures is that given in "Elements of Applied Hydrology" by Johnstone and Cross (20). They state the basic propositions of the unit hydrograph as follows:

> We are now in a position to state the three basic propositions of unitgraph theory, all of which refer solely to the surface-runoff hydrograph:
> I. For a given drainage basin, the duration of surlace runoff is essentially constant for all uniform-intensity storms of the same length, regardiess of diferences in the total volume of the surface runof.
> II. For a given drainge basin fwo uniform-intensity storms of the same length produce different total volumes of surface runof, then the rates of surface ranoff at corresponding times $t_{\text {, }}$ nfter the beginning of two storms, are in the same proportion to each other as the total volumes of the surface runof.
> III. The time distribution of surfare runoff from a given storm period is independent of concurrent runof from antecedent storm periods.

The classical statement of unit hydrograph theory quoted above can be summarized in six words: The system is linear and time-invariant. Proposition I and proposition II together make up the property of proportionality. If, the length of input remains constant but the volume of input increases, then the base length of the outfow is not altered, but the ordinates of the outfow are raised in proportion to the volume of input. Proposition III is the principle of superposition, which allows us to decompose the input into separate parts and then superimpose on one another the separate outputs to obtain the total output.

The classical mamer of stating the unit hydrograph concepts and properties was not questioned until about 1955 . Nowadays, we make the assumption that the watershed, in converting precipitation excess to direct storm runoff, acts as a linear time-invariant system. It is interesting to note the comments which Johnstone and Cross (20) make following their outlining of the three basic propositions:

All these propositions are empirical. It is not possible to prove them mathematically. In fuet, it is a rather simple matter to demonstrate by rational hydranhic analysis that not a single one of them is mathenatically accurate. Fortunately, nature is not aware of this.

In this regard our position has not changed. We are aware that the assumptions of linearity and time-invariance for a catchment system are not strictly correct, but we are content to ndopt them as long as they are useful. We can look at the fundamental equations of open channel flow and show that they are nonlinear; we can look at laboratory results which show that the runoff from model watersheds is nonlinear; we can look at feld results and demonstrate their nonlincarity. Nevertheless, we cling to the assumption of linear operation. The reasons are that linear methods are relatively simple, are by far the best-developed methods we have, and that the results obtained by using these linear methods are acceptable for engineering purposes. We will
continue to use them until such time as workable nonlinear methods are developed and that are more accurate without being unduly complex or costly.

The original unit hydrograph developed by Sherman was a continuous hydrograph of runoff due to uniform rainfall in unit period. Later, Bernard (4) introduced the iden of a distribution graph in which runoff is expressed, usually as a pereenage, in terms of volumes of runoff in standard periods. Where the flow is subsequently routed through reservoir storage or chamel storage, it may be convenient to use a distribution graph rather than a unit hydrograph.

The S-hydrograph, or S-curve, is defined as the hydrograph of surface runofl produed by a continuous effective rainfall of 1 inch per hour. If the mit hydrompaph has been normalized to unit volume, then the D-hour unit hydrograph eorresponds to rain falling at a rate of $1 / D$ inches per hour for D hours. For a rate of 1 inch per hour lasting for D hours, the ordinates of the D-hour unit hydrograph have to be multiplied by D. In the S-hydrograph, there are D inehes in the first unit period of D bours, D inches in the second unit period, D inches in the third unit period, and so on. The equation of the S-hydrograph is, therefore given by:

$$
\begin{equation*}
S(t)=D \sum_{i=0}^{n} h_{D}(t-i D) \text { for } n D<t<(n+1) D \tag{2}
\end{equation*}
$$

One of the big advances in classical unit hydrograph theory was the discovery that the s-hydrograph could be used to convert a unit bydrograph from one unit duration to another. Before this, it was necessary to find a storm of the appropriate duration to derive the required unit hydrograph from the data. If you wanted a 6 -hour unit hydrograph, you had to find a 6 -hour storm, or a storm whose duration was an even submutiple of 6 hours so that the shorter unit hydrograph could be developed and then shifted and superimposed to give a 6 -hour unit hydrograph. Figure 4-9 shows the classical diagram of the relationship between the S-hydrograph and the unit hydrograph. Onee the S-hydrograph has been obtained from any unit hydrograph, a unit bydrograph of a new given period can be derived from it by displacing the \mathbb{S}-curve by the required amount, subtracting the ordinates of the two S-curves, and normalizing the volume. This process can be represented by the equation:

$$
\begin{equation*}
h_{D}(t)=\frac{\left.S(t)-S_{1} t-D\right)}{D} \tag{3}
\end{equation*}
$$

As D becomes smaller and smalier, the process represented by the above equation comes closer and closer to the definition of differentiation, and in
the limit we have:

$$
\begin{equation*}
h_{0}(t)=\frac{d}{d l}[S(l)] \tag{4}
\end{equation*}
$$

The hydrograph defined by equation 4 is known as the instantaneous unit hydrograph ([ГH). It was developed in hydrology from hydrologic concepts rather than from systems analysis where it was already known under a variety of names, but most fommonly as the impulse response (see pages 20 and 25 , lecture 1). The main motivation for its derivation in hydrology appears to

Frocre 4-9.--Lnit hydrograph and $\$$-curve for 1,290 -square-mile drainage area.
have been the need to simplify the treatment of synthetic unit hydrographs. For a finite period unit hydrograph, the shape naturally depends on the unit period (D), and it was discovered that for very short durations the changes in shape were quite slight. Some workers in the field suggested going to the limit and using an IUH, thus getting rid of the variable D.

Once the IUH is accurately known, any other finite period unit hydrograph can be obtained through the S-hydrograph. Indeed, the time-to-peak of a finite period unit hydrograph of any given duration ean be found directly from the IUH. The peak of the finite period unit hydrograph, given by equation 3, is the time for which the above expression is a maximum. Since the derivative of the S-hydrograph is the IUH $h_{o}(t)$, then the condition for the maximum ordinate of the finite period unit hydrograph $h_{D}(t)$ is:

$$
\begin{equation*}
h_{o}(l)-h_{o}(l-D)=0 \tag{5}
\end{equation*}
$$

that is, the penk of the finite period unit hydrograph occurs at the time when the ordinate of the IUH is equal to the ordinate at a time D carlier. The ordinate of the finite period unit hydrograph at any time is given by the integral expression:

$$
\begin{equation*}
h_{D}(t)=\frac{1}{D} \int_{t-D}^{t} h_{0}(t) d t \tag{6}
\end{equation*}
$$

Looked at from the viewpoint of classical bydrologr, all of these results have to be proved before we are convineed that the IEH can be used to derive any other expression which we wish. From a systems viewpoint, we know from our basic theory that for a linear time-invariant system, the impulse response contains all the necessary information about the beharior of the system.

The process of deriving finite period unit hydrographs from an S-hydrograph is not as easy in practice as it appears on first sight. This is because the S-hydrograph may not be knowa continuously, but only at certain intervals of time. If we start of with Ω unit hydrograph which is defined only for 6 -hour intervals, the derived S-curve will be defined for the same intervals. We can certainiy try to derive the unit hydrograph for a period of 1 . hour, 2 hours, or 3 hours from this S-curve, but the results may not have much meaning. If there are inaecuracies in the original unit hydrograph, then there will probably be oscillations in what would be a smooth S-hydrograph. These oscillations may lead to grossly erroneous ordinates in a second unit hydrograph derived from the S-hydrograph. Though a smooth IUH will always produce a smooth S-hydrograph, there is no guarantee that the S-hydrograph derived from a smooth finite period unit hydrograph will itself be smooth. Some of the problems at the end of this lecture are designed to show the pitfalls in this particular comection. Though hydrologists attribute oscillations in S-curves to measurement and other errors in the data, it is quite possible
for oscillations to arise in S-hydrographs derived from synthetic finite period unit hydrographs which appear plysically reasonable.

Separation of Base Flow

The tirst step in analyzing an actual hydrograph is to separate the base flow from the direct storm runotl. Hydrologic literature abounds with methods for making this separation. The effect of different types of storm event on the hydrograph are shown schematically in figure ± 10 which are due to Horton. Figure 4-104 shows the effect of an intense rainfal of short duration. Beeause of the figh intensity there would be surface runoff, but due to the short duration and consequent smalk volume, the field moisture defieit might not be satisfied, and, thus, there would be no recharge to ground water. Under these conditions, the base flow recession before and after the storm event would follow the same general curve, and the response of the hydrograph would consist of a sharp rise and sharp recession back to the same master curve of base how recession.

Un the other hand, if we have prolonged rainfall of small intensity, we get the condition shown in figure $4-10 B$. In this case, the intensity does not exceed the potential infiltration rate, and, thus, there is no surface runoff. However, the rainfall is suffiently prolonged to make up the field moisture c oficiency and to give a recharge to ground water shortage. The effect of this recharge is to increase the amount of ground water outfow or baseflow, and the recession curve is shifted as shown in a stylized fashion on figure 4-10B. In this case, the recession curve after the rainstorm has the same shape as the recession before the rainstorm but is shifted in time. More usually, however, in storms which are of consequence in hydrologic analysis, both of the above effects are combined so that we get both the distinct peak and a measurable amount of surface runoti on the one hand and a recharge of ground water giving a shift in the mester recession curve on the other. This mixed condition is shown in figure $4-10 \mathrm{C}$. (bne of the first steps necessary in unit hydrograph analysis is to separate out thess two effects.
If during the analysis of a discharge hydrograph, we encounter a storm (vent of the first type, as shown on figure 4 -104, where there is no recharge to ground water, then there is no problem in separating the surface runoff from the basclow. All that has to be done is to join up the line of recession before and after the storm event and treat all fow above this single master recession curve as surface runoff. In the second case, as shown on figure 4-10C, where all the flow is base fow, no difficulty arises because this is not a storm event from the point of view of surface runoff.
For a storm event giving rise to both surface runoff and ground water recharge, some method of separating the two must be applied if the unit hydro-

High intensity, short duration

Low intensity, long duration

[^6]graph of direct runoff is to be derived. The applied hydrologist has quite a wide choise of such separation techniques to draw from in the technical literature, but few of them are soundly based. In these methods, the base flow is separated in some arbitrary fashion and then the total precipitation is adjusted so that the volume of effective precipitation is equal to the volume of direct storm runofi. There is no attempt to link infiltrating rainfall with ground water recharge and hence, with ground water outflow. Transition from the recession curve before the storm event to the recession curve after the storm event is usually taken as being of relatively little interest in applied hydrology, but this is a grave error. In fact, the form of this recession gives us the shape of the ground water unit hydrograph, a concept which has been studiously ignored by applied hydrologists over the past 35 years. If a block diagram is drawn of the procedure described above, it would show an open toop bet ween the infiltation into the soil and the ground water outlow. This would indicate that these two quantities would have to be cither separately measurd or else connected by a subsystem. In the systems formulation of catchment response, this open loop is closed as shown in figure $1-8$ (p. 16).

Most workers in applied hydrology are ready to accept that a good representation of the recession curve can be got by fitting a straight line to the recession part of the hydrograph plotted on semilog paper. This is equivalent to assuming that the ground water reservoir acts as a single linear reservoir. Oner this assumption bas been made, the maximum benefit should be obtained from it and the further assumption made that the ground water reservoir acts as a single inear reservoir during the recharge as well as during recession. Figure 4-11 shows the applieation of this approach. The total precipitation is taken as being divided into precipitation excess and a constant rate of infiltration; this represents a ϕ-index approach rather than the use of a more sophisticated infiltration equation. The frst part of the infiltration will recharge ground water at a constant rate. The ground water hydrograph will be as shown in figure $4-13$. From A to B during the replenishment of field moisture deficit, the base fow will continue to decline as before and we will have:

$$
\begin{equation*}
Q=Q_{A} \exp \left[-\left(\frac{t-t_{A}}{K}\right)\right] \tag{7}
\end{equation*}
$$

From B to C, the ground water reservoir will operate as a linear reservoir being recharged at a uniform rate (R_{o}) and the outflow will be:

$$
\begin{equation*}
Q=\left(Q_{B}-R_{o}\right) \exp \left[\frac{-\left(l-t_{B}\right)}{K}\right]+R_{a} \tag{8}
\end{equation*}
$$

After the cessation of rainfall and an allowance for time of travel through the soil, the recharge to ground water will cease and the recession will be ex-
ponential as before:

$$
\begin{equation*}
Q=Q_{c} \exp \left[\frac{\left(t-t_{c}\right)}{K}\right] \tag{9}
\end{equation*}
$$

The above approach to ground water separation is rational insofar as it is Eased on a defnite model of ground water behavior. As such, it is superior to purely empirical rules usually quoted.

There is little doubt that the actual separation of base fow made in practice in ad hoc hydrologic studies is superior to the separation that would be obtained by a bind application of the rules of thumb and empirical procedures quoted in the iexibooks. This is so because the hydrologist is usually familiar with the particular watershed under examination. He modifies these empirical rules to get a commonsense result based on his own sensitivity to hydrologic behavior and his knowledge of the watershed. The trouble is, however, that though the individual separation in ad hoc studies may be reasonably correct, it makes the comparison of results between one watershed and another very difficult when there is a large subjective element in the manner of separating base flow irom surface runoff.

In his study of 90 storn everits on 48 British catchments, Nash (32) proposed a method of base flow separation which, though not founded on any physical principle or model, had the great advantage of both being objective

Figure 4-11.-Separation of base fow.
and of affording some scope for inyestigating the effect of the assumption on the results obtained. He proposed separating the base flow by drawing a straight line from the start of the rising portion of the flood hydrograph to a point on the recession such that the time between the end of the effective rain and the point on the recession was equal to three times the lag between the center of effective rain and the center of storm runoff. The point on the recession to which the separation line was drawn could .jnly be determined by trial and error. In effect, Nash's method of separation gives an IUH whose base length is three times its lag.

Analysis of Complex Storms

Leaving aside for the moment the difficulty of ens.ring that the base flow separation has been correctly made, we turn to a consideration of the problem of deriving the shape of the unit hydrograph from the surface runoff hydrograph due to a complex pattern of effective precipitation. In the early unit hydrograph studies in the 1930's, the procedure was essentially one of trial and error. This approach has already been referred to in leeture 1 and illustrated on figure 1-9. Without an objective criterion for the accepiance or rejection of a trial unit hydrograph, the subjectivity of such an approach was necessarily very high.

At the end of the 1930 's, some less subjective methods were developed, but these still did not have the objectivity required of a really scientific method. In 1939, Collins (9) suggested an iterative method in which a trial unit hydrograph is assumed and applied to all periods of rainfall except the maximum. The trial surface runoff hydrograph thus generated is subtracted from the total measured hydrograph to give a net runoff hydrograph, which can be taken as the runof due to the ignored maxioum rainfall in a unit period but which will also contain the errors in outflow due to errors in the trial unit hydrograph. If this net hydrograph is then assumed to be the outflow duc only to the maximum rainfali in a unit period and ordinates are adjusted by dividing by the volume of the maximum rainfall, we obtain a second approximation to the shape of the finite period unit hydrograph. This process is repeated until there is no apprecisble change in the ordinates of the trial unit hydrograph. Another special method for determining the shape of the unit hydrograph from a complex runoff unit hydrograph is the graphical method described by Sherman (41). If consistently applied without modification, methods such as these could be ranked as objective methods of hydrograph derivation since strict application of the method would always give the same result. In practice, they were rarely objective since any anomalies in the derived hydrographs were arbitrarily corrected by the investigator.

In the 1940 's, the derivation of the unit hydrograph from complex storms was based on the solution of the set of simultaneous equations giving the ordinates of the finite period unit hydrograph (or volumes of the distribution
graph) and the rainfall volumes in each unit period. These cquations, which have alrendy been given in lecture 1 may be written as:

$$
\begin{align*}
& y_{0}=x_{0} h_{0} \\
& y_{1}=x_{i} h_{0}+x_{0} h_{1} \tag{10b}\\
& y_{2}=x_{0} h_{6}+x h_{1}+x_{0} h_{2} \tag{10c}
\end{align*}
$$

$$
\begin{align*}
& y_{m}=x_{m} h_{0}+x_{m-1} h_{1}+\ldots \ldots \tag{10~m}\\
& y_{m+1}=x_{m} h_{1}+\ldots \ldots \tag{10n}\\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{10p}\\
& y_{p}=\ldots \ldots \ldots \\
& x_{m} h_{p-m}
\end{align*}
$$

This set of efuations can, cic course, be summarized as:

$$
\begin{equation*}
y_{i}=\sum_{k=0}^{k-i} x_{k} h_{i-k} \tag{11}
\end{equation*}
$$

In the above set of equations, the values of $y_{0}, y_{1}, \ldots . y_{p}$ are assumed to be known, the valuts of $x_{0}, x_{1}, \ldots \ldots x_{m}$ are known, and the problem is to find the values of $h_{0}, h_{1}, \ldots . h_{p-m}$. From a mathematical viewpoint, this can be done by solving the first equation for h_{0}; substituting this value in the second equation and solving for h_{1}; substituting for the value of h_{0} and h_{2} in the third equation and solving for h_{4}; and so on until all the unknown values of h are determined. In practice, the existenee of errors in the values of the effective precipitation x, or the direct runoff y, will produce errors in the ordinates of the unit hydrograph h. The substitution of an inexact value of h_{8} in the second equalion will produce an crror in h_{1}, and the substitution of these two erroneous values in the third cquation will produce an error in h_{2}. Under certain circumstances, the crror in the values of h, that is, in the ordinates of the unit hydrograph, can grow rapidly and quite unreal values are obtained in the solution for the later ordinates of the unit hydrograph.
Several methods have been proposed to overcome this disadvantage of the above direct algebraic solution by forward substitution. One of these was the method of Icast squares, whose use is mentioned by Linsley, Kohler, and laulhus (25). The method was developed by Snyder (42) in the United States and Body ($\overline{0}$) in Australia and programed for the digital computer. The least squares method of unit hydrograph derivation will be discussed in greater detail in lecture 6. Another approach to this problem was that of Barnes (3). In his approach, any oscillations occurring in the unit hydrograph were eliminated by deriving the unit hydrograph in the reverse order. This is
in line with general experience in numerical methods-a calculation which is unstable in one direction is uswally stable if taken in the reverse direction. Barnes further suggested that the estimated effective precipitation should be adjusted until the unit hydrograph obtained in the forward and reverse directions was substantially the sa: re.

Although the derivation of the unit hydrograph from the outflow hydrograph due to a complex storm (that is, the problem of identification) is a difficult one to solve, the prediction of the flow hydrograph due to a complex storm when the unit hydrograph is known is relatively easy. All that is required is the application of each of the volumes of effective precipitation in a unit period to the known finite period unit hydrograph. To obtain the outflow hydrograph, carcfully locate each volume of effective precipitation in time and then sum the results. In terms of the set of simultaneous equations 10a to 10 p , the prodlem is simply to determine the left-hand side knowing all the values of x and all the values of h.

Classical hydrology nearly always made use of a finite period unit hydrograph and, therefore, of the superposition of a finite (and usually small) number of block rainfall events. Research workers who are interested in placing the classical unit hydrograph approach on a sounder theoretical basis tended to use the IUH rather than a finite period unit hydrograph. The prosedure for prediction is similar in this case except that summation is replaced by integration. The relationship is shown on figure 4-12. In the upper part of the figure, the rainfall falling between the time $\tau+d r$ has been shown as shaded. The volume of precipitation represented by this shaded area is $x(\tau) d \tau$. If $h(t)$ is the IUH produced by a unit volume of precipitation excess falling in an infinitesimal short time at $t=0$, then the shape of the hydrograph due to the shaded area of precipitation will be the same as the shape of this IUH, but the ordinate: nust be multiplied by $x(t) d r$, and the whole hydrograph must be displaced along the time axis by au amount τ. Each element of precipitation exeess will produce a similar hydrograph.

Instead of concentrating on the effect of all times in the future of a given element of precipitation exeess, we can concentrate on the outfiow at a given time and examine how this is made up from contributions from precipitation excess at all times in the past. As seen from figure 4-12, the contribution of the shaded area of effective precipitation to the outflow at a time, t, will be:

$$
\begin{equation*}
\delta y(t)=x(\tau) h(t-\tau) d \tau \tag{12}
\end{equation*}
$$

Because all elementary arcas of precipitation excess whose value of τ is less than t will contribute to the outfiow at a time t, we get for the outflow the relationship:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau \tag{13}
\end{equation*}
$$

which is the familiar convolution relationship for a lumped linear time-invari-

Frader 4-12.-Convolution of inflow with IUH.
ant causal system. The above derivation is inherent in the time-area version of the rational method, or isochrone method, as this method is sometimes known. The above physical demonstration parallels the purely mathematical derivation of the convolution relationship given in lecture 1.

In the 1950 's, a number of research workers in hydrology, working independently of one another, began to grasp that unit hydrograph methods represented the application in hydrology of systems techniques used in other disciplines. An essential step forward here was the recognition that the unit hydrograph method was merely the assumption that the watershed under examination was converting effective precipitation to storm runoff in a linear time-invariant fashion. The gradual development of the systems formulation of hydrologic problems can be traced in publications by Larriev (24), Nash (30), Dooge (10), Amorocho and Orlob (2), Kuchment (22), and Roche (96). The changes brought about by this new viewpoint can be appreciated
if the references given are compared with the treatment of the corresponding topics given in the number of textbooks on hydrology published in the 1940's by Meinzer (27), Foster (18), Johnstone and Cross (20), Wisler and Brater (45), Linsley, Kohler, and Paulhus (25), and the American Society of Civil Engineers (1).
All of the concepts and methods of the classical unit hydrograph approach can be neatly formulated in systems nomenclature. The only necessary assumptions in the unit hydrograph approach are those of linearity and timeinvariance (10). Once these assumptions are made, the relation between the input, the output, and the system response are given by the convolution equation. Where the inputs and outputs ate defined continuously, the convolution equation takes one of the continuous forms discussed on pages 28 to 35 of lecture 1 . The various methods available for the solution of the continuous convolution equation are discussed in detail in lecture 5 . If the input and output data aro only defined as discrete points, then the unit hydrograph approach can be formulated in terms of the discrete forms of the convolution equation discussed on pages 35 to 40 of lecture 1, and the methods of solution used in these cases are discussed in detail in lecture 6.

Problems on Classical Methods

1. The time-area variations of the rational method enable the complete hydrograph to be predicted for a given storm. What is the relationship between this method and the unit hydrograph method?
2. Table 3 in the Appendix shows the effective rainfall in inches and the runoff in cubic feet per sccond for the Big Muddy River at Plumfield, Ill., for April and May 1927. Derive the 24 -hour unit hydrograph from these figures.
3. The figures defined by function 9 in Appendix table 2 when reduced to unit volume represent the ordinates at hourly intervals of a 2 -hour unit hydrograph. (1) Determine the runoff if the volume of effective rain in successive 2 -hour periods is given $1, \mathrm{y}$ function 6 in Appendix table 2. (2) Calculate the ordinates of the S-curvend from these derive the ordinates of the 8 -hour unit hydrograph. (3) What would be" the effect of ignoring the variation of
 unit hydrograph.
4. Carry out the ealculations indicated in question 3 for the case where the -hour unit hydrograph is defined by a triangle of unit volume whose ordinates at hourly intervals are in the proportion indicated by function 8 in Appendix table 2. Comment on the results obtained.
5. Assume that the hydrograph of effective precipitation is given by function 12 on Appendix table 1 and the hydrograph of storm runoff by function 13 on Appendix table 1 . Determine as accurately as possible the form of the IUH.
6. List a number of conventional methods used for separating the base flow and the storm runoff. Compare these methods critically, and give your opinica as to the probable order of merit.
7. An effective rainfall lasting 2 days produces an outfow lasting 6 days. If the daily volumes of outflow are distributed according to function 11 in Appendix table 2, apply Barnes method to determine the distribution graph for the catchment.
8. For the outfow given in problem 7, show that a second unit hydrograph can be derived from the same outflow hydrograph. Is it possible to prove that there are no further exact solutions except these two?
9. (1) For the output obtained in either question 3 or question 4 , make a small alteration in one or more ordinates of the output and then seck to derive the unit hydrograph for the original input and the adjusted output. Compare the resulting unit hydrograph with the original unit hydrograph. (2) For the same example, make an adjustment in an ordinate of the input leaving the output unaltered und again proceed to derive a unit hydrograph. Contrast the effeets of errors in the input and the output.
10. Derive a matrix formulation for the Collins' method of deriving a unit hydrograph.

Literature Cited

(1) Mmemcan Societt of Cimia Enomeers.
1949. hydrologr handnook. Manual of Engin. Pract. No. 28, 184 pp.
(2) Amorocio, J., and Orlob, C. T.
1961. nonlinear analysis of hydrologic systems. Water Resources Center Contrib. 40 . I $4 \overline{\text { º pp., illus. L'niv. Calif, Berkeley. }}$
(3) Barnes, B. S.
1959. Consistency in untr-graphs. Amer. Soc. Civ. Engin. Trans. Jour. Hydraulics Div. 85 (HTS): 30-63.
(-) Bernard, M. M.
1035. an apphonch to determinate streamflow. Amer. Soc. Civ. Engin. Trans. 100: 347.
(5) Bodr, D. N.
1959. flood estmation: vit-graph procedures dtilaina a moh-sieed digtal comucter. Water Res. Found, Austrai, (Sydney) Bul. 4: 41 pp., illus.
(G) Chamer, G.
1897. capacities requtred for celverts and flood-openings. Inst. Civ. Engin. Proc. 134: 313.
(7) Chow, Ven Te.
1904. ac:nofr. In Yen Te Chow, ed., Hardbook of Applied Hydrology. Sec. 14: 54 pp. New York.
(S) Comman, G. S., and Johnson, A.
1931. hainfall arnoff. Inst. Munic. County Engin. Jour. 58: 1403.
(9) Collins, W. T.
1939. runjff disthibltion graphs from precipitation occurring in more than one thme tinet. Civ. Engin. $9(9)$: 559-561.
(10) Dooce, J. C. I.
1959. A general theory of the dnit hydrograph. Jour. Geophys. lies. 64(2): 241-256.
(11)
1957. the bational method fon estmating flood peaks. Engineering isf: 311-374. London.
(12) Escritt, L, 1 .
1950. surface wateu semersge. 200 pp., illus. London.
(I3) Foster, E. E.
1948. ranfall and renoff. 487 pp. New York.
(14) Habte, C. A.
1932. Discussion of ranfall-benoff cabectartons isy M. T. M. Ormsby. Inst. Munic. County Engin. Jour., v. 59, p. 978 .
(15) Hawken, W. H., and Ross, C. N.
1931. the calculation of flood discilabes by use of a time-contour plan. Jnst. Engin. Austral. Jour. 2: 8i-92.
(16) Horv, W. (.
 $57-67$.
(17) Hambon, L. L., and Cady, R. C.
1936. studes of helations of ranfall ano henoff in the e.S. TV.S. Geol. Survey Water-Suphy Paper 772, pp. 123-247.
(18) … - - -
1942. The runoff cyete: In Meimzer, O. E., ed., Physics of the Earth-IX: Hydrology: Ch. XId, pp. 507-E13. New York.
(19) Jexs, S. W.

194S. diminage of abport surfaces- some basic design considerations. Amer. Soc. Civ. Engin. Tinas. 113: 785-S09.
(20) Jonnstone, 1), and Cuoss, W. P.
1949. elements of Aphled hydrolocy. 266 pp . New York.
(21) Jupson, C. C.
1932. Bunoff calculations, a new method. Inst. Munic. Comenty Engin. Jour., v. 59. p. $\mathrm{N61}$.
(22) Kuchment, L. S.
1964. onobshomennaya fommooha dita raschera gidrografa stoka [a gengralized fommla for the calculation of a discharge hydrograpin.] Cent. Forecasting [init Trans. [Trudy], TsIP No. 113, p. 23. Moscow. NNES'V Transiation No. 3355. Sept. 1966. Boston Spa, Yorkshire, England.
(23) Kuthling, Emil.
isso. the relation metween the manfali and the dischafge of sewers in porcloes pistafts. Amer. Soc. Civ. Eagin. Trans. 2u: 1-50.
(24) Lakriey, J.
1954. confribution a l'ettde des crues [contribution to the study or floodsl. La. Houille Blanche 6: 725.
(D5) Lansef, R. K., Kohber, M. A., and Paubits, J. L. H.

(26) Leord-Davies, D). E.
1906. the blimnation of stom water from sewerage systems. Inst. Civ. Engin, Proc. 164: 41-67. London.
(27) Menzer, O. E., ed.
1942. physics of the earth-IX: hydrology. 712 pp., illus. New York.
(28) Mulvany, T. 3.
1850. on the use of self registering rain and flood gadges. Inst. Civ. Engin. Proc. 4(2): 1-8. Dublin.
(29) Munno, C. H.
1956. basic thyory of drban stoms draniage design. Inst. Engin. Austral. Jour. 28: 301.
(30) $\mathrm{N}_{\mathrm{Asin}}, \mathrm{J}, \mathrm{E}$.
1958. determining runoff from rainfall. Inst. Civ. Engin. Proc. 10: 163184.
(31)
1967. the role of parametric hydroloey. Inst. Water Engin. Jour. 21(5). Dublin.
(32)

196U. unit hyprogeaphs study with particular reference to british catch ments. Inst. Civ. Engin. Proc. 17: 249-282.
(33) Ormsuy, M. T. M.
1932. Rainfall and ronoff calculations. Inst. Munic. County Engin. Jour., v. 59, p. 978.
(34) Reid, John.
1926. the estimation of stori-water discharoe. Inst. Munic. County Engin. Jour., v. 53, p. 997.
(35) Riley, D. W.
1931. notes on calculating the flow of surface water in sewers. Inst. Munic. Ceunty Ergin. Jour., v. 58, p. 1,483.
(36) Rocite, M.
1905. point de vue matriciel sur di operatejr lineaire de transformation pluids-debits [pricary point of view on a linear operator for transformation of rainfall intenstty]. Proc. Symposium on Representative and Experimental Areas (Budapest). Internatl. Assoc. Sci. Hydrol. Pub. 66 (1): 234-246. Gentbrugge. (In French.)
(37) Ross, C. N.
1921. the calculation of fiood discharges by the die of a time contodr plan. Inst. Engin. Austrai. Trans. 2: 85.
(38) Rousculp, J. A.

192年. Rainfall-Ronoff analysis in storm-semer design. Engin. News-Rec. 98: 270.
(39) Sheradn, L. K.
1932. stredm flow from rainfall by the unit-grapr method. Engin. NewsRec. 108: 501-505.
(40)
1932. TEE RELATION OF hydrographs of hunoff to size and crapacter of drainage basins. Amer, Geophys. Union Trans. 13: 332-339.
(41)
1042. the unyt hydrograph method. In Meinzer, O. E., ed., Physics of the Earth-1X: Hydrology. Ch. XIe, pp. 514-525. New York.
(42) Smyder, W. M.
1955. hydrograph analysis by the method of least squares. Amer. Soc. Civ. Engin., Jour. Hydraulics Div. 31: 1-25.
(43)
1061. matrix operations in mydrograph comptations. Tenn. Val. Authority Res, Paper 1. Knoxville.
(44) Williams, G. R.
1950. mydrolocr. In H. Rouse, ed., Engineering Hydraulics. Pp. 229-320, illus. New York.
(45) Wisler, C. O., and Brater, E. F. 1949. hydhology. 419 pp ., illus. New York.

LECTURE 5: IDENTIFICATION BASED ON CONTINUOUS DATA

Transform Methods of Identification

Lecture 5 deals with the identification of linear time-invariant systems where the data are given in continuous form, that is, by functions of a continuous variable. Historically, unit hydrograph procedures were first developed for discrete or quantized data and only later adapted to continuous data. In a systomatic appronch, one can start either with continuous inputs and outputs or with disercte inputs or outputs. Since most hydrologists are more fumiliar with continuous mathematies than with discrete mathematies, the present lextures deal with continuous data before going on to discrete data. In lectures 5 and 6 , we will be dealing enty with the question of identification; the problem of simulation will be dealt with in lectures $7,8,9$, and 10 .

In tackling the problem of system identification, we are trying to develop objective methods for describing the way in which a particular system operates on inputs in order to produce outputs. This description-which roay be expressed in graphical, numerical, or functional form-will reflect the general operation of the system but will tell us nothing about the nature of the sytem, about the nature of any of its components, or the way in which these components are put together. If we can obtain a description of the operation of the system for some general class of inputs (and if our assumptions of linearity and time-invariance are reasonable), then we will have little difficulty in predicting the output from the system due to any input belonging to this general class. If linearity holds, then we can use the principle of superposition to predict the output from any shape of input; if time-invariance holds, we can apply the description of the operation of the system obtained from past ecords to a future time. These assumptions may appear unduly restrictive, but the strategy of parametric hydrology is to master the special case of linear time-invariant systems before relaxing these assumptions.

It was shown in lecture 1 that the assumptions of linearity and timeinvarianee allow us to relate the input and output of a particular system by the convolution relationship:

$$
\begin{equation*}
y(l)=\int_{-\infty}^{\infty} x(\tau) h(l-\tau) d \tau \tag{1a}
\end{equation*}
$$

or

$$
\begin{equation*}
y(l)=\int_{-\infty}^{\infty} x(l-\tau) h(\tau) d \tau \tag{1b}
\end{equation*}
$$

where $h(t)$ is the impulse response of the system and provides a complete
description of the operation of the system. If the system is a causal system, then the relationship between input and output is given by:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{1} x(\tau) h(t-\tau) d \tau \tag{2a}
\end{equation*}
$$

or

$$
\begin{equation*}
y(t)=\int_{\infty}^{0} x(t-\tau) h(\tau) d \tau \tag{2b}
\end{equation*}
$$

If, in addition to the system being causal, the input is isolated, then we can write:

$$
\begin{equation*}
y(t)=\int_{0}^{t} x(\tau) h(t-\tau) d \tau \tag{3a}
\end{equation*}
$$

or

$$
\begin{equation*}
y(t)=\int_{0}^{t} x(t-\tau) h(\tau) d \tau \tag{3b}
\end{equation*}
$$

provided the time origin is taken to be not later than the start of the input. In these circumstances, the problem of system identification reduces to the mathematical problem of determining the function $h(t)$ when given the functions $x(t)$ and $y(t)$ and the relationship indicated by equations 1,2 , or 3 .

The appronch to the solution of the identification problem by transform methods was mentioned in lecture 1. In these methods, the input, output, and impulse response, which are connected by the convolution relationship:

$$
\begin{equation*}
y(t)=x(t) * h(t) \tag{4}
\end{equation*}
$$

are cach subjected to the same transformation so that:

$$
\begin{align*}
& T(x)=T[x(t)] \tag{5a}\\
& T(y)=T[y(t)] \tag{5b}
\end{align*}
$$

and

$$
\begin{equation*}
T(h)=T[h(i)] \tag{5c}
\end{equation*}
$$

These transfomed functions are then connected by the relationship:

$$
\begin{equation*}
T(y)=T(x) \lambda T(h) \tag{6}
\end{equation*}
$$

where λ is the operation in the transform domain, which corresponds to convolution in the time domain.

If equation 6 -which may be described as a linkage equation (18) -is simple in form, then the transform of the system response may be expressed in terms of the transfurms of the input and the output. This transform of the
impulse response can then be inverted, though sometimes only with great difficulty, to obtain the system response in the time domain:

$$
\begin{equation*}
h(t)=T^{T-4}[T(h)] \tag{7}
\end{equation*}
$$

The general procedure is illustrated in figure 1-11. There are three separate stages in the identification process: (1) the transformation of the input and the output (equation 5), (2) the solution of the linkage equation (equation 6), and (3) the inversion to obtain the impulse response in the time domain (equation 7). The efferacy of any transform method depends on the ease with which these three operations may be carried out. Mearly all of the methods proposed for the identification of hydrologic systems with continuous input and output, where the input can be isolated, may be considered as transform methods. These methods are discussed in detail later in this lecture, but at the moment, it is only necessary to commend briefly on their relationship to one another.
System identifieation based on Fourier series involves the expansion of both the input and the output into a series of sine and cosine terms. In each case, the coofficients in the Fourier series represent the transformation of the respective function, and the determination of these Fourier coefficients represents the step corresponding to equation 5 above. Because the sines and cosines are orthogonal to one another, the Fourier coefficients for the input and output can easily be obtained by integration. If a linkage equation can be obtained corresponding to equation 6 , then the Fourier coefficients of the impulse response can be determined from the Fourier coefficients of the input and the output (18). The solution of equation 7, that is, the inversion of the transform, offers no diffieulty because the impuise response in the time domain can be reconstituted from its Fourier elements. Though the Fourier method is largely applied to periodic data, it can be applied, in the case of an isolated input, to a system with a finite memory by basing the analysis on the assumption that the input and the output are periodic with a period which is equal to or greater than the length of the output.

The restriction to isolated inputs and finite memories can be relaxed by using the Fourier integral or Fourier transform instead of Fourier series (20). This was the line of development adopted by electrical engineers in dealing with transient phenomena. The use of the Fourier transform, however, has the diss.dvantage that the problem of inversion is much more difficult than in Fourier serics. If the Fourier ccefficients of the impulse response are known, then the impulse response itself is known in the time domain to an accuracy depending on the number of Fourier terms. In contrast, the Fourier integral is difficult to invert, particularly if it is only known numerically. In systems analysis, the Fourier integral is usuaily repiaced by the Laplace transform to enable us to handle unstable systems or systems whose stability is in doubt.

The numerical inversion of the Laplace transform (6) is even more difficult than numerical inversion of the Fourier integral.

The first transformation method used to analyze hydrologie data was the method of moments proposed by Nash (17) in 1959. From a theorctical point of view, the moments (and the cumulants which will be discussed later) can be derived from the Fourier integral or the Laplace transform. Moments and cumulants share with the Fourier integral and the Laplace transform the advantage of a simple linkage equation coupled with the disadvantage of difficulty of inversion.
Dooge (9) has proposed the use of Laguerre functions in place of Fourier analysis. Laguerre analysis shares with the Fourier series the advantage of orthogonality and with the Fourier transform the property of covering the range from zero to infinity. However, Laguerre analysis has the disadvantage of requiring a more complicated linkage equation, which makes the determination of the coefficients of the impuise response numerically less stable than where the linkage equation consists of a single term.

Analysis by Fourier Series

The definition and properties of Fourier series and other orthogonal functions were discussed in lecture 3 (see pp. 86-93). In the present section, we are concerned with the application of Fourier series to the identification of linear time-invariant systems. For such a system, the input, impulse response, and output are connected by the convolution relationship:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{7a}
\end{equation*}
$$

If the system is causal, this relationship can be written as:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau \tag{7b}
\end{equation*}
$$

and if the system is causal and has a finite memory M, then we have:

$$
\begin{equation*}
h(t)=\int_{t-M}^{t} x(\tau) h(t-\tau) d \tau \tag{7c}
\end{equation*}
$$

Where the input is periodic with a period T, the output will be given by:

$$
\begin{equation*}
y(t+k T)=\int_{i-d r}^{t} x(\tau+k T) h(t-\tau) d \tau \tag{8}
\end{equation*}
$$

If the period of the input (T) is greater than the sum of the duration of
input (N) plus the memory length of the system (M), that is, if-

$$
\begin{equation*}
T \geq(M+N) \tag{9a}
\end{equation*}
$$

then the value of the output y will return to zero during each period. Equation 8 can be replaced by the equation for an isolated output due to an isolated input:

$$
\begin{equation*}
y(t)=\int_{t-M}^{t} x(\tau) h(l-\tau) d \tau \tag{9b}
\end{equation*}
$$

which is seen to be identical with equation 7 c . An isolated storm event can be analyzed by Fourier methods provided the assumed period T is greater than the duration of output, which is the condition given by equation 9 a.
In the Fourier analysis of systems, we need to obtain the Fourier coefficients of the output as a function of the Fourier coefficients of the input and the Fouricr coefficients of the impulse response. These coefficients appear in the Fourier series expansion of the three functions:

$$
\begin{align*}
& x(t)=\sum_{m=-\infty}^{\infty} c_{m} \exp \left(i \frac{m 2 \pi t}{T}\right) \tag{10a}\\
& h(t)=\sum_{n=-\infty}^{\infty} \gamma_{n} \exp \left(i \frac{n 2 \pi t}{T}\right) \tag{10b}\\
& y(t)=\sum_{p=-\infty}^{\infty} C_{p} \exp \left(i p \frac{2 \pi t}{T}\right) \tag{10c}
\end{align*}
$$

The exponential or complex form of the Fourier series has been used in the above equations because the linkage equation between the respective coefficients and other propertics take a particularly simple form in the complex coefficients. Since $h(t)$ is zero for values of t between $t=M$ and $t=T$, equation 9 b can also be written as:

$$
\begin{equation*}
y(t)=\int_{t-r}^{t} x(\tau) h(t-\tau) d \tau \tag{9c}
\end{equation*}
$$

By the property of orthogonality we have:

$$
\begin{equation*}
C_{\mathrm{p}}=\frac{1}{T} \int_{0}^{T} y(t) \exp \left(-i \cdot \frac{p 2 \pi t}{T}\right) d t \tag{I1}
\end{equation*}
$$

Substitution from equation 9 c into equation 11 gives:

$$
\begin{equation*}
C_{p}=\frac{1}{T} \int_{0}^{T} \exp \left(-i \cdot \frac{p 2 \pi t}{T}\right) \int_{t-T}^{t} x(\tau) h(t-\tau) d \tau d t \tag{12}
\end{equation*}
$$

Reversing the order of integration gives:

$$
\begin{equation*}
C_{p}=\frac{1}{T} \int_{t-T}^{t} x(\tau) \int_{0}^{T} \exp \left(-i \frac{p 2 \pi t}{T}\right) h(t-\tau) d t d \tau \tag{13}
\end{equation*}
$$

which can also be written as:

$$
\begin{equation*}
C_{p}=\frac{1}{T} \int_{t-T}^{t} x(\tau) \exp \left(-i \frac{p 2 \pi t}{T}\right) \int_{0}^{T} \exp \left(-i \frac{p 2 \pi t-\tau}{T}\right) h(t-r) d t \cdot d \tau \tag{14}
\end{equation*}
$$

Performing the inner integration with respect to ($t-\tau$) gives:

$$
\begin{equation*}
C_{p}=\int_{i-T}^{t} x(\tau) \exp \left(-i \frac{p 2 \pi \tau}{T}\right) \gamma_{p} d \tau \tag{15a}
\end{equation*}
$$

or

$$
\begin{equation*}
C_{p}=\gamma_{p} \int_{i-T}^{i} x(\tau) \exp \left(-i \frac{p 2 \pi \tau}{T}\right) d \tau \tag{15~b}
\end{equation*}
$$

so that on integration with respect to τ we obtain:

$$
\begin{equation*}
C_{p}=T \cdot \gamma_{p} \cdot c_{p} \tag{16}
\end{equation*}
$$

Which is the required linkage equation between the Fourier coefficients of the output C_{p} the Fourier coofficients of the input c_{p}, and the Fourier coefficients of the impulse response γ_{p}.

In practice, the linkage is not quite this simple, because for a real function the exponential Fourier coefficients will be complex. Accordingly, it is preferable to write the output in terms of cosine coefficients $\left(A_{k}\right)$ and sine coefficients (B_{k}), the input in terms of cosine coefficients (a_{k}) and sine coefficients $\left(b_{k}\right)$, and the impulse response in terms of cosine coefficients α_{k} and sine cocfficients β_{k}. Because we have:

$$
\begin{align*}
C_{k} & =1 / 2\left(A_{k}-i B_{k}\right) \tag{17a}\\
c_{k} & =1 / 2\left(a_{k}-i b_{k}\right) \tag{17b}\\
\gamma_{k} & =1 / 2\left(\alpha_{k}-i \beta_{k}\right) \tag{17c}
\end{align*}
$$

equation 16 can be written as:

$$
\begin{equation*}
1 / 2\left(A_{k}-i B_{k}\right)=T \cdot 1 / 2\left(a_{k}-i b_{k}\right) 1 / 2\left(\alpha_{k}-i \beta_{k}\right) \tag{18a}
\end{equation*}
$$

which the real part gives:

$$
\begin{equation*}
A_{k}=\frac{T}{2}\left(a_{k} \alpha_{k}-b_{k} \beta_{k}\right) \tag{18b}
\end{equation*}
$$

and the imaginary part:

$$
\begin{equation*}
B_{k}=\frac{T}{2}\left(a_{k} \beta_{k}+b_{k} \alpha_{k}\right) \tag{18c}
\end{equation*}
$$

In system identification, we need to express the coefficients of the impulse response (α and $\hat{\beta}$) in terms of the coefficients of the input (a and b) and the coeffeients of the output (A and B). These are obtained by solving equations 18 b and 18 c for α_{k} and β_{k}, getting:

$$
\begin{align*}
& \alpha_{k}=\frac{2}{T} \cdot \frac{a_{k} A_{k}+b_{k} B_{k}}{a_{k}{ }^{2}+b_{k}^{2}} \tag{19a}\\
& \beta_{k}=\frac{2}{T} \cdot \frac{a_{k} B_{k}-b_{k} A_{k}}{a_{k}{ }^{2}+b_{k}^{2}} \tag{19b}
\end{align*}
$$

Once the values of α_{k} and β_{k} have been obtained, the form of the impulise response is casily determined since it is given by:

$$
\begin{equation*}
h(t)=1 / 2 \alpha_{0}+\sum_{k=1}^{\infty}\left(\alpha_{k} \cos \frac{k 2 \pi t}{T}+\beta_{k} \sin \frac{k 2 \pi t}{T}\right) \tag{20}
\end{equation*}
$$

If only a limited number of coefficients are determined, the effect is that the high frequency components neglected by the truncation are not included in the impulse response. Because hydrologic systems are heavily damped, the neglect of high frequency components does not give rise to appreciable error.
The linkage equation derived above is for Fourier coefficients defined in terms of a continuous function. If the data were defined continuously, it would be possible to compute these coefficients either by Gaussian quadrature formula based on a very large number of equally spaced sample points. In lecture 6 , the same linkage equation is obtained for the pulse response where the input and the output are defined discretely. In the latter case, the linkage equation was derived and applied by 0^{\prime} Donnell (18) to actual data of surface runoff.

Analysis by Fourier and Laplace Transforms

As mentioned in lecture 3, the Fourier and Laplace transform techniques have been widely used in the analysis of nonperiodic phenomena (12,20). In these cases, a simple linkage equation can also be found. Most hydrologic systems are inherently stable and, thus, could be analyzed by Fourier transforms; however, Laplace transforms are more widely treated in the engineering and mathematical literature, and the tables of transforms are more extensive (12,23). In lecture 3 , both techniques were mentioned and both will be discussed in this lecture.

The Fourier transforms of the input, output, and impulse response are given by:

$$
\begin{equation*}
X(\omega)=\int_{-\infty}^{\infty} x(t) \exp (-i \omega t) d t \tag{21a}
\end{equation*}
$$

$$
\begin{align*}
& Y(\omega)=\int_{-\infty}^{\infty} y(t) \exp (-i \omega t) d t \tag{21b}\\
& H(\omega)=\int_{-\infty}^{\infty} h(t) \exp (-i \omega t) d t \tag{21c}
\end{align*}
$$

For a linear time-invariant system, we have the relationship:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{22}
\end{equation*}
$$

It is necessary to find the linkage, equation between the Fourier transform of the output and the Fourier transforms of the input and the impulse response. Substituting from cquation 21 into equation 22, we obtain:

$$
\begin{equation*}
Y(\omega)=\int_{-\infty}^{\infty} \exp (-i \omega l) \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau d t \tag{23}
\end{equation*}
$$

Reversing the order of integration gives:

$$
\begin{equation*}
Y(\omega)=\int_{-\infty}^{\infty} x(\tau) \int_{-\infty}^{\infty} \exp (-i \omega t) h(t-\tau) d t d \tau \tag{24}
\end{equation*}
$$

Replacing t by $(l-\tau)$ as a variable of integration in the inner integration and rearranging $\exp (-i \omega l)$ gives:

$$
\begin{equation*}
Y(\omega)=\int_{-\infty}^{\infty} x(\tau) \exp (-i \omega \tau) \int_{-\infty}^{\infty} \exp [-i \omega(l-\tau)] h(t-\tau) d(t-\tau) d \tau \tag{25}
\end{equation*}
$$

and performing the inner integration gives:

$$
\begin{align*}
Y(\omega) & =\int_{-\infty}^{\infty} x(\tau) \exp (-i \omega t) \cdot H(\omega) d \tau \tag{26a}\\
& =H(\omega) \int_{-\infty}^{\infty} x(\tau) \exp (-i \omega \tau) d \tau \tag{26b}
\end{align*}
$$

Performing the remaining integration then gives the required relationship:

$$
\begin{equation*}
Y(\omega)=H(\omega) \cdot X(\omega) \tag{27}
\end{equation*}
$$

As compared with analysis by Fourier series, the coefficients of the Fourier series analysis are replaced by the continuous functions of the Fourier transform. If we ellow for this difference, the linkage equation given by equation 27 is seen to be of the same form as the linkage equation for Fourier analysis given by equation 16 above.

While the form of the relationship shown in equation 26 is suitable for
analytical purposes, it is necessary for the purposes of calculation tos separate the real and imaginary part of the Fourier transform. Thus, we need to write:

$$
\begin{align*}
X(\omega) & =X_{R}(\omega)+i X_{I}(\omega) \tag{28a}\\
Y(\omega) & =Y_{R}(\omega)+i Y_{I}(\omega) \tag{28b}\\
H(\omega) & =H_{R}(\omega)+i H_{I}(\omega) \tag{28c}
\end{align*}
$$

Substituting the expressions from equation 28 into equation 27 and equating the real and imaginary parts, we obtain:

$$
\begin{align*}
& Y_{R}(\omega)=H_{R}(\omega) X_{R}(\omega)-H_{I}(\omega) X_{I}(\omega) \tag{29a}\\
& Y_{I}(\omega)=H_{R}(\omega) X_{I}(\omega)+H_{I}(\omega) X_{R}(\omega) \tag{29b}
\end{align*}
$$

In the identification problem, we need to express the real and imaginary parts of the Fourier transform of the impulse response in terms of the real and imaginary parts of the Fourier transforms of the input and the output. These are given by:

$$
\begin{align*}
& H_{R}(\omega)=\frac{X_{R}(\omega) Y_{R}(\omega)+X_{I}(\omega) Y_{I}(\omega)}{X_{R}(\omega)^{2}+X_{I}(\omega)^{2}} \tag{30a}\\
& H_{I}(\omega)=\frac{X_{R}(\omega) Y_{I}(\omega)-X_{I}(\omega) Y_{R}(\omega)}{X_{R}(\omega)^{2}+X_{I}(\omega)^{2}} \tag{30b}
\end{align*}
$$

In electrical enginecring, it is unusual to express the Fourier transiorm of the system in terms of the amplitude and the phase angle. In hydrologic systems, the formulation of equation 30 is probably more convenient.
The determination of $H_{R}(\omega)$ and $H_{I}(\omega)$ only specifies the impulse response in the frequency domain. To find the description of the impulse response in the time domain, it is necessary to invert the Fourier transform $H(\omega)$. This is given by:

$$
\begin{equation*}
h(t)=\frac{1}{2 \Pi} \int_{-\infty}^{\infty}\left[H_{R}(\omega) \cos \omega t-H_{I}(\omega) \sin \omega t\right] d \omega \tag{31a}
\end{equation*}
$$

Because $h(t)$ is real, we have:
and

$$
\begin{equation*}
H_{R}(-\omega)=H_{R}(\omega) \tag{31b}
\end{equation*}
$$

$$
\begin{equation*}
H_{I}(-\omega)=-H_{I}(\omega) \tag{31c}
\end{equation*}
$$

so that we can write:

$$
\begin{equation*}
h(t)=\frac{1}{\Pi} \int_{0}^{\infty}\left[H_{R}(\omega) \cos (\omega t)-H_{I}(\omega) \sin \omega t\right] d \omega \tag{31d}
\end{equation*}
$$

If $h(t)$ is causal, that is, if it is identically zero for all negative values of t,
we can also write:

$$
\begin{equation*}
h(l)=\frac{2}{\Pi} \int_{0}^{\omega} H_{R}(\omega) \cos (\omega t) d \omega \tag{31e}
\end{equation*}
$$

or

$$
\begin{equation*}
h(t)=\frac{2}{\Pi} \int_{0}^{\alpha} H_{I}(\omega) \sin (\omega t) d \omega \tag{31f}
\end{equation*}
$$

Equation 30 may be compared with equation 19. Again, the Fourier integral approach is similar to the Fourier series approach except for the replacement of summation by integration. The necessity to integrate suggests the possible use of values of ω determined by the requirements of Gaussian quadrature.

For the bilateral Laplace transiorm, defined by:

$$
\begin{align*}
F_{B}(s) & =\mathscr{L}_{B}[f(t)] \\
& =\int_{-\infty}^{\infty} f(t) \exp (-s t) d t \tag{32}
\end{align*}
$$

the development of the linkage follows exactly the same steps as in the Fourier transform. However, in the more usual unilateral Laplace transform defined by:

$$
\begin{align*}
F(s) & =\mathcal{L}[f(t)] \\
& =\int_{0}^{\infty} f(t) \exp (-s t) d t \tag{33}
\end{align*}
$$

care must be taken with the limits of integration.
For a linear time-invariant system for which the input is zero for negative time, we have the relationship:

$$
\begin{equation*}
y(t)=\int_{0}^{\infty} x(\tau) h(t-\tau) d \tau \tag{34}
\end{equation*}
$$

The Laplace transform of the outyut is given by:

$$
\begin{align*}
Y(s) & =\int_{0}^{\infty} y(t) \exp (-s t) d t \tag{35a}\\
& =\int_{0}^{\infty} \exp (-s t) \int_{0}^{\infty} x(\tau) h(t-\tau) d \tau d t \tag{35b}
\end{align*}
$$

Reversal of the order of integration gives:

$$
\begin{align*}
Y(s) & =\int_{0}^{\infty} x(\tau) \int_{0}^{\infty} \exp (-s t) h(t-\tau) d t d \tau \tag{368}\\
& =\int_{0}^{\infty} x(\tau) \exp (-s \tau) \int_{0}^{\infty} \exp [-s(t-\tau)] h(t-\tau) d t d \tau \tag{36b}
\end{align*}
$$

Because the system is causal, $h(l-\tau)$ will be zero for any value of t less than τ, and, consequently, the lower limit of integration for the right-hand integral can be set equal to τ, thus giving us:

$$
\begin{equation*}
Y(s)=\int_{0}^{\infty} x(\tau) \exp (-s \tau) \int_{\tau}^{\infty} \exp [-s(t-\tau)] h(t-\tau) d t d \tau \tag{37}
\end{equation*}
$$

Changing the variable in the inner integration from t to $u=t-\tau$, we obtain:

$$
\begin{align*}
& Y(s)=\int_{0}^{\infty} x(r) \exp (-s \tau) \int_{0}^{\infty} \exp (-s u) h(u) d u d \tau \tag{38a}\\
& Y(s)=\int_{0}^{\infty} x(\tau) \exp (-s \tau) \cdot H(s) d \tau \tag{38b}\\
& Y(s)=H(s) \int_{0}^{\infty} x(\tau) \exp (-s \tau) d \tau \tag{38c}\\
& Y(s)=H(s) \cdot X(s) \tag{38d}
\end{align*}
$$

Once again, the linkage equation has the same general form as in the case of Fourier series and Fourier transform. Equation 38d only gives us the Laplace transform of the impulse response or the system function as it is sometimes called. The numerical inversion of a Laplace transform is extremely difficult. One of the most efficient ways of doing it is to expand the Laplace transform in terms of a series of orthogonal polynomials and then invert this series term by term (6). It would appear, however, that if the orthogonals are going to be used for inversion, then we right as well start and base our whole analysis on the use of orthogonals.
Both the Fourier transform method and the Laplace transform method have been used for the identification of hydrologic systems. In 1952, Paynter (21) suggested the use of Laplace transform methods for the study of both hydraulic and hydrologic systems. Diskin ${ }^{1}$ determined the Laplace transforms for a large number of storm events. The watersheds examined were between

[^7]30 square miles and 1,420 square miles in area and between four and 10 storms were examined for each watershed. In the same year, Levi and Valdes (16) discussed the application of Fourier transform techniques to the determination of the IUH and applied the method to the Tuxpan River in Mexico. More recently, Blank and Delleur (7) used the Fourier transform approach in a study of 1,059 hydrographs from 55 watersheds in. Indiana.

Moments and Cumulants

The first transform method of identification applied to hydrologic data was based on moments used by Nash (17) in 1959. In systems analysis, moments are used in the same sense as in statistics. Thus, the $R^{\text {th }}$ moment of a function, which has beea normalized to unit area, about the point a, is defined as:

$$
\begin{equation*}
M_{u}(j)=\int_{-\infty}^{\infty} f(t) \cdot(t-a)^{R} d t \tag{39}
\end{equation*}
$$

In particular, moments about the time origin are defined as:

$$
\begin{equation*}
U_{R^{\prime}}(f)=\int_{-\infty}^{\infty} f(t) \cdot t^{R} \cdot d t \tag{40}
\end{equation*}
$$

and moments about the center of area are defined as:

$$
\begin{equation*}
U_{R}(f)=\int_{-\infty}^{\infty} f(t)\left(t-U_{i}^{\prime}\right)^{R} d t \tag{41}
\end{equation*}
$$

The moments are related to the Fourier transform and the Laplace transform; in the theory of statisties, the Fourier transform is used in the form of a characteristic function or a moment generating function. If we are dealing with functions that are zero for negative time and are only interested in moments about the origin, it is possible to perform all the operations necessary with the ordinary Laplace transform. If, however, we wish to deal with the moments about the center of area (or with functions which are not zero for negative time), then it is ne:essary to use either the Fourier transform or the bitateral Laplace transform. The following development is in terms of the bilateral Laplace transform, which is defined by:

$$
\begin{equation*}
F_{B}(s)=\int_{-\infty}^{\infty} f(t) \exp (-s t) d t \tag{42}
\end{equation*}
$$

If the above expression is differentiated with respect to s, we obtain:

$$
\begin{equation*}
\frac{d}{d s}\left[F_{B}(s)\right]=-\int_{-\infty}^{\infty} f(t) \cdot t \cdot \exp (-s t) d t \tag{43}
\end{equation*}
$$ and if the differentiation is carried out R times:

$$
\begin{equation*}
\frac{d^{R}}{d s^{R}}\left[F_{B}(s)\right]=(-1)^{R} \int_{-\infty}^{\infty} f(t) \cdot l^{R} \cdot \exp (-s t) d t \tag{44}
\end{equation*}
$$

By setting $s=0$ on both sides of the equation, we obtain:

$$
\begin{align*}
\frac{d^{R}}{d s^{R}}\left[F_{B}(s)\right]_{A-0} & =(-1)^{R} \int_{-\infty}^{\infty} f(t) \cdot t^{R} d t \tag{45a}\\
& =(-1)^{R} \cdot U_{R}^{\prime}(f) \tag{45b}
\end{align*}
$$

so that the $R^{\text {th }}$ moment about the origin ean be obtained from the Laplace transform provided that the transform exists and can be differentiated R times at $s=0$.

The relationship betwen the moments of the input and the outputand the impulse can be obtained as follows. For a linear time-invariant system, we have:

$$
\begin{equation*}
Y_{B}(s)=X_{B}(s) \cdot H_{B}(s) \tag{46}
\end{equation*}
$$

The $R^{\text {th }}$ moment of the output about the origin $t=0$ is given by:

$$
\begin{equation*}
U_{\alpha^{\prime}}(y)=(-1)^{R} \frac{d^{R}}{d s^{R}}\left[Y_{B}(s)\right]_{t=0} \tag{47}
\end{equation*}
$$

Substitution from equation 46 into equation 47 gives:

$$
\begin{equation*}
U_{R^{\prime}}(y)=(-1)^{R} \frac{d^{R}}{d s^{R}}\left[X_{B}(s) \cdot H_{B}(s)\right]_{-\infty} \tag{48}
\end{equation*}
$$

Using Leibnitz's formula for the continued differentiation of a product, we have:

$$
\begin{equation*}
U_{R^{\prime}}^{\prime}(y)=(-1)^{R} \sum_{k=0}^{k-R}\binom{k}{k} \frac{d^{k}}{d s^{k}}\left[X_{B}(s)\right],-0 \frac{d^{R-k}}{d s^{R-k}}\left[H_{B}(s)\right]_{r=0} \tag{49}
\end{equation*}
$$

which gives the relationship between the moments about the origin as:

$$
\begin{equation*}
U_{R^{\prime}}^{\prime}(y)=\sum_{k=0}^{k-R}\binom{R}{k} U_{k}^{\prime}(x) U_{r-k^{\prime}}(h) \tag{50}
\end{equation*}
$$

It can be shown that if the moments of the normalized output are taken around the point $l=a$, the moments of the normalized input around $t=b$, and the moments of the normalized response about the point $t=c$, and if $a=b+c$, then the relationships between the moments is the same form as equation 50 . In particular, if the moments are taken about the respective centers of area,
we have:

$$
\begin{equation*}
U_{R}(y)=\sum_{k=0}^{k-R}\binom{R}{k} U_{k}(x) U_{R-k}(h) \tag{51}
\end{equation*}
$$

which was the form of the theorem of moments for a linear time-invariant system published by Nash (i7). For the special case of $R=1$, equation 50 becomes:

$$
\begin{equation*}
l_{1}^{\prime}(y)=C_{1}^{\prime}(s)+C_{2}^{\prime}(h) \tag{52}
\end{equation*}
$$

which expresses the fact that the lag of the output is equal to the lag of the input plus the lag of the impulse response. For $R=2$ and $R=3$ in equation 51 , because $U_{1}()=0$, we have the special cases:

$$
\begin{align*}
& U_{2}(y)=U_{2}(x)+U_{2}(h) \tag{53a}\\
& U_{3}(y)=U_{3}(x)+U_{3}(k) \tag{53b}
\end{align*}
$$

This special additive relationship does not hold for any higher moments.
Equations 50 and 51 represent linkage equations between the moments of the output, the input, and the impulse response. Once the moments of the input and the output have been determined, the corresponding moments of the impulse response can also be determined. The final inversion of the latter can only be made via the Fourier transform or Laplace transform. The problem of moment inversion is to determine the nature of the function given the moments of that function. If the Laplace transform of the function is consistent when near zero, it may be expressed in terms of a Maclaurin series:

$$
\begin{equation*}
F(s)=\sum_{k=0}^{k=\infty} \frac{d^{k}}{d s^{k}}[F(s)]_{n=0} \cdot \frac{s^{k}}{k!} \tag{54}
\end{equation*}
$$

which can be written as:

$$
\begin{equation*}
F(s)=\sum_{k=0}^{k-\infty}(-1)^{k} U_{k}^{\prime}(f) \frac{s^{k}}{k!} \tag{55}
\end{equation*}
$$

Even if only a few moments are known, they give a certain amount of information about the Laplace transform near the origin and, therefore, of the original function at relatively large values of time.

Moments are not the only set of parameters which may be used to deseribe the response function; in some cases they are not the most convenient set. Another set of useful parameters used in statistics are the cumulants or socalled semivariants (14). These are defined as the set of parameters for which the logarithm of the characteristic function (or Fourier transform) is the gencrating function. All the cumulants except the first are unaffected by a change of origin. In a similar manner to the moments, the cumulants can be derived by continuous differentiation of the logarithm of the Fourier transform

116 TEGHNICAL BULLETIN NO. 1468, U.S. DEPT. OF AGRICULTURE

or the Laplace transform. Thus, the cumulants may be defined by:

$$
\begin{equation*}
K_{R}(f)=(-1)^{R} \frac{d^{R}}{d s^{R}}\left[\log F_{b}(s)\right]_{A-\infty} \tag{56}
\end{equation*}
$$

For a linear time-invariant system we have:

$$
\begin{equation*}
Y(s)=\mathrm{Y}(s) \cdot H(s) \tag{38a}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
\log Y(s)=\log X(s)+\log H(s) \tag{57}
\end{equation*}
$$

Differentiating both sides of equation $57 R$-times, and setting $s=0$, we obtnin:

$$
\begin{equation*}
\frac{d^{H}}{d s^{R}}[\log Y(s)]_{0-0}=\frac{d^{R}}{d s^{R}}[\log X(s)]_{t-0}+\frac{d^{R}}{d s^{R}}[\log I(s)]_{\infty} \tag{58}
\end{equation*}
$$

which is clearly equivalent to:

$$
\begin{equation*}
K_{R}^{\prime}(y)=K_{R}(x)+K_{R}(h) \tag{50}
\end{equation*}
$$

thus, indicating that in the case of cumulants we get the simple additive relationship of equation 59 for all orders of cumuinnt.

The simple form of the moments relationship in equation 52 and equation 53 is due to the fact that the first cumulant is equal to the first moment about the origin and the second and third cumulants are equal to the second and third moments about the center of area, respectively. The fourth cumulant is equal to the fourth moment about the center of area minus three times the square of the second moment about the center of area and is known in statistics as excess kurtosis. The Gnussian distribution has a first cumulant which determines the position of the mean and a second cumulant which determines the variation about the menn, but all cumulants above the second are zero. In the gamma distribution, which is widely used in hydrology, the $R^{\text {th }}$ cumulant takes the form

$$
\begin{equation*}
K_{R}=n(R-1)!K^{R} \tag{60}
\end{equation*}
$$

where a and K are the parameters of the gamma distribution.
Nash (17) also introduced the idea of plotting dimensionless shape factors derived from moments in order to compare the shape of derived unit hydrographs. He defined a dimensionless moment of order R as the $R^{\text {th }}$ moment about the center of area divided by the first moment about the origin raised to the power of R, that is,

$$
\begin{equation*}
m_{R}=\frac{U_{R}}{\left(U_{i}^{\prime}\right)^{R}} \tag{61}
\end{equation*}
$$

In dealing with the linear theory of open channel flow, Dooge ${ }^{2}$ found it more convenient to defne dimensionless shape factors in terms of the cumulants rather than the moments. These are defined as:

$$
\begin{equation*}
S_{R}=\frac{K_{R}}{\left(K_{i}\right)^{R}} \tag{62}
\end{equation*}
$$

and can be plotted against one another to compare different functions or models with one another or to compare a model with the data which it is attempting to simulate.

In the above discussion of moments and cumulants, it has been assumed, as indicated carlier, that all the distributions involved have been normalized to unit area. The use of normalized distributions is convenient both in theoretical investigations and in actual computations. If required, however, corresponding relationships can be derived for the case where the input and output have not been normalized.

Laguerre Analysis of Systems

It was noted previously that a Fourier analysis of systems had the advantage of orthogonality but the disadvantage that the method could only be used for an isolated input to a system with finite memory. The success of the method, however, would suggest that in systems with infinite memory an alternative method of analysis which might be useful would be one based on functions which are orthogonal over the whole range from zero to infinity instead of only over a finite range. Because Laguerre polynomials are orthogonal over the range 0 to ∞ with respect to the weighting factor $\exp (-\hat{\varepsilon})$, this suggests the use of Laguerre functions defined by:

$$
\begin{equation*}
f_{n}(t)=\exp \left(-\frac{t}{2}\right) \sum_{k=0}^{k-n}(-1)^{k}\binom{n}{k} t^{k} k! \tag{63}
\end{equation*}
$$

as the basis of the systems analysis. Dooge (9) has suggested that these functions may be more convenient than Fourier methods for heavily damped systems because the Laguerre functions can be seen to be made up of gamma distributions, a function which has been widely used to represent the damped response typical of natural watersheds.

If Laguerre functions are to be used as the basis of system identification, then it is necessary to express the input, output, and impulse response in

[^8]terms of Laguerre functions. Because the Laguerre functions are orthogonal to one another this is casily done. There is no guarantec, however, that the Laguerre functions would be convenient functions to use in the analysis of the system. The first step necessary is to examine what the effect is of convoluting one Laguerre function with another, that is:
\[

$$
\begin{equation*}
g(t)=\int_{0}^{t} f_{m}(\tau) f_{n}(t-\tau) d \tau \tag{64}
\end{equation*}
$$

\]

where $f_{n}(t)$ and $f_{n}(t)$ are Laguerre functions as defined by equation 63 . The right-hand side of equation 64 results from multiplying a power series of order m by a power series of order n and then integrating, thus producing a power serics of order $(m+n+1)$. The resulting power series could therefore consist of $(m+n+1)$ terms, each of which is a Laguerre function. In practice, all but two of the terms drop out and only the last two terms remain, the result being:

$$
\begin{equation*}
g(t)=f_{m+n}(t)-f_{m+n+1}(t) \tag{65}
\end{equation*}
$$

For the Lagucrre series analysis of a system, we proceed as before and expand the input, impuise response, and output in terms of Laguerre functions:

$$
\begin{align*}
& x(t)=\sum_{m=0}^{m-\infty} a_{m} f_{m}(t) \tag{66a}\\
& h(t)=\sum_{n=0}^{n-\infty} \alpha_{n} f_{n}(t) \tag{66b}\\
& y(t)=\sum_{p=0}^{p=\infty} A_{p} f_{p}(t) \tag{66c}
\end{align*}
$$

Due to the property of orthogonality, these coefficients are given by:

$$
\begin{align*}
a_{\mathrm{m}} & =\int_{0}^{\infty} x(l) f_{\mathrm{m}}(t) d t \tag{67a}\\
\alpha_{\mathrm{n}} & =\int_{0}^{\infty} h(t) f_{n}(l) d t \tag{67b}\\
A_{p} & =\int_{0}^{\infty} y(t) f_{p}(t) d t \tag{67c}
\end{align*}
$$

The linkage equation ear be derived as follows. Substituting for $y(t)$ in equation 67 c , we obtain:

$$
\begin{equation*}
A_{p}=\int_{0}^{\infty} f_{p}(t) \int_{0}^{t} x(\tau) h(t-\tau) d \tau d t \tag{68}
\end{equation*}
$$

and substifuting in this equation the expressions for $x(t)$ and $h(t)$ in equations 66 a and 66 b , we obtain:

$$
\begin{equation*}
A_{p}=\int_{0}^{\infty} f_{p}(t) \int_{0}^{t} \sum_{m=0}^{m m} a_{m} f_{m}(\tau) \sum_{n=0}^{n=\infty} \alpha_{n} f_{n}(t-\tau) d \tau d t \tag{69}
\end{equation*}
$$

Reversing the order of the summations and the integrations, we have:

$$
\begin{equation*}
A_{p}=\sum_{m m=0}^{m-\infty} a_{m} \sum_{n=0}^{x-\infty} \alpha_{n} \int_{0}^{\infty} f_{p}(t) \int_{0}^{1} f_{m}(\tau) f_{n}(t-\tau) d \tau d l \tag{70}
\end{equation*}
$$

Using the result of equation 65 , this becomes:

$$
\begin{equation*}
A_{p}=\sum_{m=0}^{m m \infty} a_{m} \sum_{n=0}^{n-\infty} \alpha_{n} \int_{0}^{\infty} f_{p}(l)\left[f_{m+n}(t)-f_{m+n+1}(t)\right] d t \tag{71}
\end{equation*}
$$

Integrating with respect to t and using the orthogonality relationship, we have:

$$
\begin{equation*}
A_{p}=\sum_{m=0}^{m-\infty} a_{m} \sum_{n=0}^{n m} \alpha_{n}\left[\delta_{p, m+n}-\delta_{p, m+n+1}\right] \tag{72}
\end{equation*}
$$

Performing the summation with respect to n results in:

$$
\begin{equation*}
A_{p}=\sum_{m=0}^{m-\infty} a_{m}\left[\alpha_{p-m}-\alpha_{p-m-1}^{\prime}\right] \tag{73a}
\end{equation*}
$$

Since the Laguerre coefficients of the impulse response are only defined for nomegative values of n, this can be written:

$$
\begin{equation*}
A_{p}=\sum_{m m 0}^{m-p} a_{m} \alpha_{p-m}-\sum_{m=0}^{m-p-1} a_{k} \alpha_{p-1-m} \tag{73b}
\end{equation*}
$$

which can be readily shown to be equivalent to:

$$
\begin{equation*}
\sum_{k=0}^{k=p} A_{k}=\sum_{m=0}^{m=p} a_{m} \alpha_{p-m} \tag{74}
\end{equation*}
$$

The problem of identification is to determine the values of α_{n} given the values of A_{p} and a_{m}. This can be done by successive calculation of the values of α in accordance with:

$$
\begin{equation*}
a_{0} \alpha_{p}=\sum_{k=0}^{k-p} A_{k}-\sum_{m=0}^{m-p-1} a_{m} \alpha_{p-m} \tag{75}
\end{equation*}
$$

Once the values of α_{n} are determined, the impulse response is easily found in terms of equation 66 b.

The main purpose of using orthogonal functions is to determine conveniently the coefficients in the expansions of the given input and output. It is possible by means of Laguerre analysis to express the linkage in terms of gamma distributions rather than coefficients of Laguerre functions. The input and other functions can be expanded in terms of gamma distribution as follows:

$$
\begin{equation*}
x(t)=\sum_{r=0}^{r-\infty} d_{r} \frac{e^{-1 / 2}(t / 2)^{r}}{2(r!)} \tag{76}
\end{equation*}
$$

Because gamma distributions are not orthogonal to one another, it is not possible to obtain the values of the coefficients, d_{r}, directly, but they can be exprcssed in terms of the corresponding Laguerre cocficients obtained from equation 67a, or corresponding equation. The relationship between the two sets of coefficients is given by:

$$
\begin{equation*}
d_{r}=(-2)^{r+i} \sum_{m=r}^{m, \infty}\binom{m}{m} a_{m} \tag{77}
\end{equation*}
$$

The result obtained by convoluting two gamma distributions, one of order m and the other of order n, is a gamma distribution of order $m+n+1$ as indicated by equation 78:

$$
\begin{align*}
g(t) & =\int_{0}^{1} \frac{e^{-r / 2}(\tau / 2)^{m}}{2(m!)} \cdot \frac{e^{-(t-r) / 2}(t-\tau / 2)^{n}}{2(n!)} d \tau \tag{78a}\\
& =\frac{e^{-t / 2}}{2(m!)(n!)} \cdot \frac{t^{m+n+1}}{2} \cdot \beta(m+1, n+1) \tag{78b}
\end{align*}
$$

where $\beta(m+1, n+1)$ is a beta function. Expressing the beta function in terms of factorials gives:

$$
\begin{equation*}
g(t)=\frac{e^{-t / 2} \cdot(t / 2)^{m+n+1}}{2(m+n+1)!} \tag{78c}
\end{equation*}
$$

When the input function, output function, and impulse response functions are all expanded in terms of gamma distributions, we have the relationship:

$$
\begin{equation*}
\sum_{p=0}^{p m \infty} D_{p} \frac{e^{-t / 2}(t / 2)^{p}}{p!}=\sum_{m=0}^{m=\infty} d_{m} \frac{e^{-t / 2}(l / 2)^{m}}{m!} * \sum_{n=0}^{n=\infty} n \frac{e^{-t / 2}(l / 2)^{n}}{n!} \tag{79}
\end{equation*}
$$

By comparing the terns on the two sides of this equation, we obtain the linkage relationship:

$$
\begin{equation*}
D_{p}=2 \cdot \sum_{k=0}^{k-p-1} d_{k} \delta_{p-k-1} \tag{80}
\end{equation*}
$$

Because, in the problem of identification, we need to express the valucs of δ
in terms of the values of D_{2} and we need the linkage cquation in the form:

$$
\begin{equation*}
d_{0} \delta_{p}=D_{p+1}-\sum_{k=1}^{k-p} d_{k} \delta_{p-k} \tag{81a}
\end{equation*}
$$

if the value of d_{0} is zero, then we can use:

$$
\begin{equation*}
d_{1} \hat{o}_{p-1}=D_{p+1}-\sum_{k=2}^{k=p} d_{k} \delta_{p-k} \tag{81b}
\end{equation*}
$$

It is not known whether use of the linkage equation in terms of gamma distributions is mumerically more stable than direct use of the Laguerre coefficients.

If a function is to be expanded in terms of a Laguerre series, the length of serics required to reproduer the function to a given degree of aceuracy will depend on the time seale chosen for the Laguerre functions. In any given furetion, it is possible to determine the optimum time seale for Laguerre representation. For a time scale other than the optimum to reproduce the function to the same aceuracy; a longer series would be reguired. In system identification, there would be different optimum time scales for the input and the output. The problem of chousing the optimum time scale in this case is currently under investigation.

Though Laguerre analysis has been applied to some discrete hydrologic field data (for which it is not orthogonal and therefore not appropriate), it has only been tested on synthetic hydrologic data of a contimous type $(9,10)$. The mothod has, however, been applicd to the analysis of caseaded systems in Chemical Fngincering by Anderssen and White (1).

Time-Series Analysis

If the interval between nonzero inputs is shorter than the memory of the system, then the output will not return to zero and the techniques described above will not be applicable. In such cases, the input and output can be vewed as time series and can be deseribed in terms of their autocorrelation and eross correlation as is done in the case of time series in communication theory (15).

The autocorrelation function may be defined by the limit:

$$
\begin{equation*}
\phi_{z \tau}(\tau)=\frac{1}{T} \int_{-T ; \%}^{T / 2} x(l) x(l+\tau) d t \text { as } T \rightarrow \infty \tag{82}
\end{equation*}
$$

and the cross correlation function by:

$$
\begin{equation*}
\phi_{z y}(\tau)=\frac{1}{T} \int_{-T, 2}^{T / 2} x(t) y(t+\tau) d t \text { as } T \rightarrow \infty \tag{83}
\end{equation*}
$$

If there were no errors in input or output, then any of the systems deseribed
earlier in this lecture should, apart from errors in computation, prediet the impulse response perfectly. If however, there are errors in the data, that is, noise on the sestem, then perfect prediction is not possible. Nethods of time series analysis have been proposed by lagken (1J) and by Bayazit (3) as a methed of handing this problem of noise in the same way as is done in commanications enginecring.
For any assumed enusal impulse response, the residual crror in the output ordinate is given by:

$$
\begin{equation*}
r(t)=y(t)-\int_{0}^{\infty} h(r) x(t-\tau) d \tau \tag{84}
\end{equation*}
$$

The optimum finear response is one whel minimizes the residual given by the above equation in some sense. If the criterion is taken as one of least squares, then the prohlem is to minimize the expression:

$$
\begin{equation*}
E[h(0)]=\frac{1}{T} \int_{-T 2}^{T 2}\left[r(n]^{2} d l \text { as } T \rightarrow \infty\right. \tag{S̄}
\end{equation*}
$$

Insertion of the value of $r(1)$ from equation 84 in equation 85 gives:

$$
\begin{equation*}
E[h(n)]=\frac{1}{T} \int_{-T n}^{T n}\left[y\left(n-\int_{0}^{\infty} h(\tau) x(t-r) d \tau\right]^{2} d t \text { as } T \rightarrow \infty\right. \tag{86}
\end{equation*}
$$

The problem, therefore, reduces itedf to finding the optimum value $h_{\text {opt }}(t)$, which, when used in cquation su, minimizes the expression $E[h(0)]$. Squaring the expression befween square brackets in equation 84 gives rise to three terms as follows:

$$
\begin{align*}
& \frac{1}{T} y(t) y(l) d t \text { as } T \rightarrow \infty \tag{87a}\\
& -\frac{2}{T} y(t) \int_{0}^{\infty} h(\tau) x(t-r) d t d t \text { as } T \rightarrow \infty \tag{87b}\\
& \tag{87c}\\
& \frac{1}{T} \int_{-T}^{T} \int_{0}^{\infty} h\left(r_{1}\right) x\left(t-r_{1}\right) d \tau_{1} \int_{0}^{\infty} h\left(\tau_{2}\right) x\left(t-\tau_{2}\right) d r_{2} d t \text { as } T \rightarrow \infty
\end{align*}
$$

Both the first and the third terms must be nonnegative because they are the result of squaring the terms inside the square brackets in equation 84 . The first of the three terms, that is. that given by equation 87 a , is clearly equal to $\phi_{v a}(0)$. The reversal of the order of integration in equations 87 b and 87 c and use of the definitions of the autocorrelation and cross correlation function given by cquations 82 and 83 reduce the second term to a single integral and the third term from a triple to a double integral. The expression to be mini-
mizel can now be written as:
$E[h(0)]=\phi_{v y}(0)-2 \int_{0}^{\infty} h(\tau) \phi_{x y}(\tau) d \tau+\int_{0}^{\infty} h\left(\tau_{1}\right) d \tau_{1} \int_{0}^{\infty} h\left(\tau_{2}\right) \phi_{x x}\left(\tau_{1}-\tau_{2}\right) d \tau_{2}$

The minimization of the above expression is obtained by a manipulation of the ordinates of the impulse response $h(t)$ until the optimum causal impulse response is ohtained. If the notimum causal linear response is denoted by $h_{\text {opt }}$ (h), then any nonoptimum linear response can be denoted by:

$$
\begin{equation*}
h(t)=h_{\text {opt }}(t)+\epsilon \cdot h^{\prime}(t) \tag{89}
\end{equation*}
$$

Where \in is an arinitrary real nonnegative number and $h^{\prime}(t)$ is an arbitrary rausal funetion. [f $h_{\text {opt }} t /$ is a true optimat, then we must have:

$$
\begin{equation*}
E[h(l)]=E\left[h_{\mathrm{op}}(l)+\epsilon \cdot h^{\prime}(t)\right] \geq E\left[h_{\mathrm{opt}}(t)\right] \tag{90}
\end{equation*}
$$

where $E[h: O]$ is the error criterion defined by equations 84 to 88 .
Substitution from equation S 9 into equation 88 and segregation of the terms involving $h_{\text {ope }}(1)$ and $h^{\prime}(0)$ results in the equation:

$$
\begin{align*}
E[h(l)]= & E\left[h_{\text {ort }}(l)\right]-2 \epsilon \int_{0}^{\infty} h^{\prime}(\tau) \phi_{s y}(\tau) d \tau \tag{91}\\
& +2 \epsilon \int_{0}^{\infty} h^{\prime}\left(\tau_{\mathrm{t}}\right) d \tau_{1} \int_{0}^{\infty} h_{\text {opt }}\left(\tau_{2}\right) \phi_{x x}\left(\tau_{1}-\tau_{2}\right) d \tau_{2} \\
& +\epsilon^{2} \int_{0}^{\infty} h^{\prime}\left(\tau_{1}\right) d \tau_{1} \int_{0}^{\infty} h^{\prime}\left(\tau_{2}\right) \phi_{x x}\left(\tau_{1}-\tau_{2}\right) d \tau_{2}
\end{align*}
$$

which can be written as:

$$
\begin{equation*}
E[h(0)]=E\left[h_{\mathrm{opt}}(t)\right]-2 \epsilon I_{\mathrm{t}}+\epsilon^{2} I_{\mathrm{n}} \tag{92}
\end{equation*}
$$

Where the second term on the right-hand side of equation 92 corresponds to the serond and third terms on the right-hand side of equation (91), and the third term on the right-hand side of equation 102 corresponds to the fourth term on the right-hand side of equation 91.

For $h_{\text {opt }} / l$ to be a true optimum, it is necessary for the condition of equation 90 to hold and hence for:

$$
\begin{equation*}
\left(I_{1}-\frac{\epsilon}{2} I_{2}\right) \leq 0 \tag{93}
\end{equation*}
$$

for any value of $h^{\prime}(h)$ and any nomergative value of ϵ. Because the fourth term on the right-hand side of equation 91 is a perfect square, then I_{2} must also be a perfect square, and thus for arbitrarily small values ϵ the condition for
optimality redures to:

$$
\begin{equation*}
I_{1} \leq 0 \tag{04}
\end{equation*}
$$

I_{1} can be serm from an inspection of the serond and third terms on the righthand side of acpation 91 b to be:

$$
\begin{equation*}
I_{1}=\int_{0}^{\infty} h^{\prime}(\tau) \phi_{s y}(\tau) d \tau-\int_{0}^{\infty} h^{\prime}\left(\tau_{1}\right) \int_{0}^{\infty} h_{\text {opp }}\left(\tau_{1}\right) \phi_{s_{2}}\left(\tau_{3}-\tau_{2}\right) d \tau_{2} d \tau_{1} \tag{95}
\end{equation*}
$$

If $I_{\text {a }}$ as given above is either zeroor negative, then the condition of equation 9t, and hence of equation 90, is satistiod. If, however, I_{4} is negative for a given function $h^{\prime}(0)$, then it will aceordiag to cquation no be positiwe if the sign of $h^{\prime}(t)$ is changed. Consequently, unkess I_{1} is zero, it is possibie to find a function $h^{\prime}(l)$ which makes I_{1} positive and therefore violates the condition of equation 04 for an arbitrarily smath value of ϵ. In these circumstances, the function $h_{\text {opt }}(t)$ wouk not be truly the optimum eausal linear response. Accordingly, the condition for the optimum response is:

$$
\begin{equation*}
I_{1}=0 \tag{96}
\end{equation*}
$$

Since the condition must hold for any arbitrary causal function $h^{\prime}(l)$, then we must have:

$$
\begin{equation*}
\phi_{x y}\left(\tau_{1}\right)-\int_{0}^{\infty} h_{\mathrm{out}}\left(\tau_{2}\right) \phi_{x r}\left(\tau_{1}-\tau_{2}\right) d \tau_{2}=0 \tag{97}
\end{equation*}
$$

Because $h^{\prime}(t)$ was defined as a cansal function, the above relationship need only hodd for nomegative values of τ_{1}.
The condition reperenented by equation 97 is frequently referred to as the Wiencr-Hopf equation, and the solution of this equation gives the optimal causal linear response for a system whose input and output are in the form of continuous time sories. It can be secm that determination of the optimum linear response in the least squares sense depends not on the original functions but only on the autocorrelation function of the input and the cross correlation function between the input and the output.

Problems on Identification Based on Continuous Data

1. Find the Fourier coefficients for the functions given in table 1 , of the Appondix.
2. Find the Fourier transform and Laplace transform for the functions chosen in problem 1.
3. Find the first 4 moments and cumulants for the functions chosen in problem 1 .
4. Find the Laguerre coefficients for the functions chosen in problem 1.
5. The input and output to a linear time-invariant system are given on Appendix table 1 by functions 12 and 13 , respectively. Find the impulse response of the system by some method of system identification suitable for continuous data.
6. Find the impulse response for the data of problem 5. Use a different method of system identification.
7. In Appendix table 1, the output from a linear time-invariant system is given by function 16 and the input, by function 15 . Find the impulse response of the system by some method of susem identifiration.
S. Find the impulse response by a second method of system identifieation for the data of problem 7.
8. Compare the results of problems 5 and 6 or problems 7 nad 8 , and the difficulties of the two methods used and give reasons for the differences found.
9. Write a general computer program for the idratification of linear timeinvariant systems for which the data are avainble in continuous form.

Literature Cited

(1) Andersses, A. S., and Wurte, E. P.
1069. the analisis of aesidence of time distribetion mbasurements using bacembervetions. Cand. Jour. Chem. Engin. 47: 28S-294.
(2) Aselimet, J. A.

105s. thansfoum methode in linear systems analysis. 300 pp, illus. New York.
(3) Bayazry, M.
 yaros. Teeh. laiv. Istambul Bul. 17(1).
1055. a ncaericna method to detrrmine the cnit hydrograph. Tech. Univ. Istanbu Bul. is(1).

196G. instantaneors chit hydhograbh demivation by spectral analysis avom nememcal aprtation. Central Treaty Organization Sym. posium on Hydrology and Water Resource Development Proceedings. Ankari.
(d) Beliman, R. E., Kalaba, R. E., mad Lockett, J.
1066. nemerical inyersion of the haplace thansform, 249 pp., illus. New York.
(T) Blank, 1), nud Delqerr, J. W.

190\%. a plogram for asthmang menoff for indana watersheds, part 1. lineak systems amalysis in serface hydhologi and tes appleation to nomsa watershfys. Tech. Rpt. 4, Water Resources Res. Center, Purdue ['niversity, Ind.
(s) Diskin, M. HI.

196i, a liflace thansfons proof of the theonem of moments for tre instantineots cint hidnoobaph. Water Resources Res. 3(2): 385-385.
(9) Dooce. J. C. I.
1965. anahisis of bingar ststems ar mbas of hagembe fonctions. Soc. Indus and Appl. Math., Jour. Control 2(3): 396-408.
 Cork, Ireland.
(li) Lindiason, P. si, Meda-R, K., and Marcit, F.

(12) (Gumser, M. F, amd Bansta, J. I. .
 illus. N New York.
(13) (ivoutams, lis. .
 (14) Kt:NDabi4, M. (i., fand Nreshr, A.
 lants. lomedon.
(15) LaER, Y: H .

(lit) lavi. lí, aml Vandrs, R,
 $150-1!0$
(17) Nisnt. S. Ji,
 (icumb? Res. 64(1): 111-11.)

 faform. Sute IB. The Hague.
(2) 1) PaOCLIA, A.

 Dass. Inst, Technol., Ifydrodyn. Lab. Rpt, No.

LECTURE 6: IDENTIFICATION BASED ON DISCRETE DATA

Basic System Equations

Because hydrologie systems are conthuous sysiems with contimuously defined inputs and outputs, it might be thought that the methods of system identifertion deseribed in lecture $\overline{5}$ would be the most appropriate techniques to use in identifying hydrologic systems. In many cases, however, hydrologic data are onty available in diserete or quantized form. A good deal of rainfall data is only reported as hourly volumes, and the input in these enses is represented by a number of suate pulses because all that we know are the volumes for the nean ratss) of rainfal daring cach interval. Modern recording equipment is usually digital in form, but the fregueney of sampheng is so high that the reoords could, if meossary, be trated mathematically as a continuous record whotht apprecinble error. leven where a comtinuots or virtually continuous record is avainble, it may be uneconomic lo process the complete revord. In this case, the reeord will be sampled and the sample data processed in some way, The data, though actunty recorded in continuous form, must be censidered discrefe data for the purpose of analysis.

If an attempt is made to amalyer a souare pulse by a series of continuously defined orthogemal functions, scrious dificulties of representation arise. Even if a large mamber of terms is used in the series, the discontimuties at the be ginning and the end of the pulse will not be fathfully reproduced and oscillations, known as (iblos' oscilltions, will occur. In harmonic analysis, certain mathematical tehniques are avabable for the smoothing of these oseillations. It serme profrrable, however, to aceept the discontimuous nature of the data, and instend of looking for the impulse response of the system, to try and identify the rasponse of the systom to a square puke of standard length. In shect, thas means seeking the finite period unit hydrograph rather than the ICH and, thas, retuming to the basic coneept used during the original devolopment of unit hydrograph methods.

If we define the putse response $h_{D}(t)$ as response of the system to an imput of unit volume occurring at a uniform rate for a period D, then as expressed in equation efa, lecture 1 , the relationship between input and output is given by:

$$
\begin{equation*}
y(t)=\sum_{\sigma D=0}^{\sigma D-t} \gamma_{(\sigma D) h_{D}(t-\sigma D)} \tag{I}
\end{equation*}
$$

where $\mathrm{X}(\sigma D)$ is the volume of input in the interval from time σD to $(\sigma+1) D$ and $y(t)$ is the continuous output. In the above case, both the finite pulse response and the output are continuously defined.
If the pulse response is only defined at certain intervals; then as expressed in lecture 1 , equation 27 a , the relationship between input, output, and pulse response is defined in terms of the discete variables s and σ :

$$
\begin{equation*}
y(s D)=\sum_{0=0}^{\sigma-1} X(\sigma D) h_{D}(s D-\sigma D) \tag{2a}
\end{equation*}
$$

which can be written as:

$$
\begin{equation*}
y(s)=\sum_{\sigma=0}^{\sigma n s} X(\sigma) h_{D}(s-\sigma) \tag{2b}
\end{equation*}
$$

where the interval between ordinates is D. It is neeessary for the interval at which the impulse response and output are determined to be a submultiple or a multiple of the unit period of input, D. Otherwise, interpolation will be necessary before the ordinates making up the output are summed together. If the output is taken in bloek form, as in Bernard's distribution graph, then we have:

$$
\begin{equation*}
y(s)=\sum_{\sigma=0}^{\sigma-1} X(\sigma)\left(d_{D} s-\sigma\right) \tag{2c}
\end{equation*}
$$

where d_{D} represents the distribution graph, that is, the distribution of volume of output for the unit period of input.

The above equations are for the case where the input is defined in terms of volumes. If the input is defined in terms of discrete ordinates, then the equation corresponding to equation 2 b would be:

$$
\begin{equation*}
y(s)=\sum_{\sigma=0}^{\sigma=1} x(\sigma) h_{D}(s-\sigma) D \tag{2d}
\end{equation*}
$$

for the discrete input $x(s)$.
The convolution relationship of equation 2 can be written in matrix form. (See lecture 1.)

$$
\begin{equation*}
\{y\}_{p+1,1}=[x]_{p+1, n+1}\{h\}_{n+1,1} \tag{3}
\end{equation*}
$$

where y is the vector of outputs, X is the matrix of inputs, and h is the vector of the pulse response. The general siructure of the matrix X formed from the input vector x is indicated in lecture 1. A typical matrix of inputs is formed as
follows:

$$
X=\left[\begin{array}{cccc}
x_{0} & 0 & 0 & 0 \tag{4n}\\
x_{1} & x_{0} & 0 & 0 \\
x_{2} & x_{1} & x_{0} & 0 \\
x_{3} & x_{2} & x_{1} & x_{0} \\
x_{4} & x_{3} & x_{2} & x_{1} \\
0 & x_{4} & x_{3} & x_{2} \\
0 & 0 & x_{4} & x_{3} \\
0 & 0 & 0 & x_{4}
\end{array}\right]
$$

The above example shows the case where the input lasts for five unit periods and the pulse response has four ordinates; it illustrates the general method of forming the matrix which might be called the convolution form of matrix. For the above case, the output has eight ordinates in accordance with the general relationship $p=n+m$, where there are m blocks of input, $n+1$ ordinates of the pulse response, and $p+1$ ordinates of output. It is equally possible to leave the input as a vector and convert the impulse response into a matrix:

$$
\begin{equation*}
\{y\}_{p+1,1}=[H]_{p+1, m+1}\{x\}_{m+1,1} \tag{4b}
\end{equation*}
$$

The form given in equation ta is most convenient in the identification of the pulse response; form 4 th is most conveniont where a derived pulse response has been adjusted to eliminate anomalios and where it is required to ascertain what corresponding adjustanent in the input should be made.

This lecture is concerned with the various methods which might be employed to solve equations of the forms given above. In contrast to the case of continuous data where the solution of an integral equation was called for, in discrete or qumatized data it is only neeessary to solve a set of simultancous mquations. Consequently, we would expect that matrix methods would be applicable to the identification problem for discrete data. We would also expect that discrete versions of the various transform methods and of time seties analysis described in lecture ;) would also be available. These are discussed in the remainder of the lecture.

Matrix Methods of Identification

If the available input and output were completrly fre from error there would be no difficulty in determining the ordinates of the pulse response or finite period unit hydrograph. The set of simultancous equations given in matrix form in equation ta can be written out as:

$$
\begin{align*}
& y_{0}=x_{0} h_{0} \tag{5a}\\
& y_{1}=x_{1} h_{0}+x_{0} h_{1} \tag{5b}\\
& y_{1}=x_{0} h_{0}+x_{1} h_{1}+x_{0} h_{2} \tag{5c}\\
& \vdots \\
& y_{i}-x_{1} h_{0}+\cdots+x_{0} h_{i} \tag{ii}\\
& \vdots \\
& y_{m-1}-x_{m-1} h_{0}+x_{m-n} h_{1}+\cdots+x_{0} h_{m-1} \tag{5m}\\
& y_{m} \cdots x_{m} h_{0}+\cdots+x_{0} h_{m} \\
& \vdots \tag{in}\\
& y_{p \sim 1}=x_{m} h_{n-1}+x_{m-1} h_{n} \tag{s}\\
& y_{p}=\quad \quad x_{m} h_{n}
\end{align*}
$$

If the output and input are known, then all the values of the vector x_{0}, x_{1}, $x_{2} \ldots x_{m}$ and of the output vector $y_{n}, y_{1}, y_{2}, \ldots y_{p-1}, y_{p}$ are known. The values of the unknown ordinates of the pulse response or unit hydrograph, that is, $h_{0}, h_{1}, h_{2} \ldots . . h_{n-1}, h_{n}$ can be dectermined succossively from the set of "quations. 3 . Thus, equation $\overline{\text { at }}$ is used to obtain the value of h_{0}; substitution of this value in equation ith anables us 10 ealeulate the value of h_{1}; and so on until atl the unknown ordimates of h have been determined. Where there is no fror in the data, the values obianed by the solution of the first n equations atomatically sutisfy the remaining equations. This method of solution by forward sulstitution is equivalent to solving a subset of the equations $\overline{\text { a }}$ to sp in the form:

$$
\begin{equation*}
\{y\}_{(n+1)} \cdot[X]_{(n+1)}\{h\}_{(n+1)} \tag{6}
\end{equation*}
$$

which indicates that maly the first $(n+1)$ values of output and the first $(n+1)$ rows of the A matris are used. There are now the same number of conations as unknowns, so that direct algelpraic solution is possible. We also note that the matrix of inputs X is now a square matrix and this can, therefore, be inverted. There is, of course, no neessity to use the first ($n+1$) rows 10 form the $(n+1)$ hy $(n+1)$ matrix. Any $(n+1)$ rows could be used, but if the first $(n+1)$ rows or the last $(n+1)$ rows are used, the matrix is triangular and therefore more casily inverted.

An alternative way of rquating the number of equations and the number of unknowns is to treat the unit hydrograph or pulse response as if the num-
ber of its ordinates were equal to the number of ordinates of runoff. In this case, the matrix equation becomes:

$$
\begin{equation*}
\{y\}_{p+1}=[X]_{p+1}\{h\}_{p+1} \tag{7}
\end{equation*}
$$

Again, the equations can be readily solved be direct algebraic methods. In the absener of errors in the input or output data, only the first n-ordinates will have vignifieant values, and the ordinates of the unit hydrograph between h_{n+1} and h_{p} will coms out as identienly zero.
The rule for culculating any ordinate of forward substitution (that is, the use of the first $(n+1)$ erguation is:

$$
\begin{align*}
& h_{1}=\frac{y_{1}-\sum \sum_{0}^{1-1} x_{i}-h_{j}}{x_{0}} \text { for } i \leq m \tag{8a}\\
& h_{1}=\frac{y_{1}-\sum_{2}^{i, 1}, m, x_{i-}, h_{y}}{x_{0}} \text { for } i \geq m \tag{8b}
\end{align*}
$$

which can be solved suceessively for $i=\phi, 1,2, \ldots \ldots n$.
For hackward sulstitution that is, the use of the last ($n+1$) rquations), the eorresponding formulas are:

$$
\begin{align*}
& h_{n-1}=\frac{y_{p-1}-\sum_{m 0}^{i-1} x_{m-i, f} h_{n-j}}{x_{m}} \text { for } i \leq m \tag{Sc}\\
& h_{n-i}=\frac{h_{p-1}-\sum_{m=i-m}^{i-1} x_{m-i}, h_{n-j}}{x_{m}} \text { for } i \geq m \tag{8d}
\end{align*}
$$

which can be solved sucensively for $i=\phi, 1,2 \ldots \ldots n$.
In the athener of urrers in the data and of arrors of computation, it is immaterial which set of $n+11$ erputions are used to solve for the ($n+1$) unknown ordinates of the unit hydrograph. The direct solution by forward substitution (or barkward substitution) is, however, unreliable in practice due to the presene of error. It ean readily be shown by the use of synthetic data that if errors oceur in the measurement of the input or the output, unrealistic unit hydrograph ordinates are obtained in the solution. We are thus facted with the problem of finding an optimum solution for the unit hydrograph using all the information available.

The matrix method based on least squares solves the problem in the form of equaten fat. It assumes that the length of the unit hydrograph is known by subtracting the length of the input from the length of the output and, therefors, that the ordmates of the unit hydrograph between h_{n+1} and h_{p} are zero. In the presene of error, therefore, we must restrain these particuiar ordinates and distribute the error on the other ordimates.
The method of least squares is based on minimizing the sum of the squares
of the residuals between the actual output and the output predicted by using any particular value of h. The residuals are given by the column vector:

$$
\begin{align*}
\{r\}_{p+1,1} & =\{y\}_{p+3,1}-[X]_{p+1, n+1}\{h\}_{n+1,1} \tag{9a}\\
& =\{y-X h\}_{p+1,1} \tag{9b}
\end{align*}
$$

the sum of the squares of these residuals is most conventently got by using the inner produel, that is, by multiplying r by its frampose r^{r}. Taking the inner produce (see page 99, lecture 1) and using the rule for the transpose of a produci, we obtain:

$$
\begin{equation*}
\sum r_{1}^{2}=r^{T} r=\left[y^{r}-h^{T} \lambda^{r}\right][y-N h] \tag{10}
\end{equation*}
$$

On multiplying out the terms, we get:

$$
\begin{equation*}
\sum r^{2}-y^{T} y-y^{T}-\mathrm{V} h-h^{T} \lambda^{r} y+h^{r} \mathrm{~N}^{T} \mathrm{X}^{2} h \tag{11}
\end{equation*}
$$

Sinee h and y are column wertors, their transposes will be row vectors, and, consequently, the second and third terms on the righthand side of equation 11 are scalar in form. Since a scalar transposes into itself, the two terms must be copal so that we can write:

$$
\begin{equation*}
\sum r_{1}^{2}=y^{T} y-3 h^{T} \Lambda^{T} y+h^{T} \Sigma^{T} X^{T} h \tag{12}
\end{equation*}
$$

The problem is to choose the ordinates of the response vector h so as to minimize the expression given in equation li. For ordinary functions, this ean be dome by taking cach ordinate in turn and setting the partial derivatives, with respeet to that particular ordinate equal to zero. However, the compression of verior notation may be used. Bereause the first ierm we are differentiating doses not involve h, the derivative for this term will be zero. Vecter differentiation of the second term on the righthand side of equation 12 with respect to h resembles the ordinary differentiation of the first power of a runction. Similarly, vector differentiation of the third term on the right-hand side of cquation 1? witl respect to h resembles the ordinary differentiation of the serend power of a function. The result of differentiation with respect to h ean be readily verified. Setting the result equal to zero is given by:

$$
\begin{equation*}
-2 X^{T} y+2 \Lambda^{T}{ }^{T} h=0 \tag{13a}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda^{T} \mathrm{X} h=\lambda^{T} y \tag{13b}
\end{equation*}
$$

The vector h which satisfies equation lizb makes $\sum r_{i}{ }^{2}$ a minimum. It is therefore the lest least squares solution to the ariginal set of cquations in to 5p. To solve equation 13 b for h, it is necessary to invert the matrix given by:

$$
\begin{equation*}
Z=\lambda^{T} X^{-} \tag{14a}
\end{equation*}
$$

thus obtaining the solution

$$
\begin{equation*}
h=Z^{-!} X^{T} y \tag{14b}
\end{equation*}
$$

Since the matrix formed by multiplying any matrix by its transpose is necessarily a square matrix, this inversion can be carriod out.

Note that the sum of the spuares of the residuals for the above solution is not an abolute minimum. It is a minimum subject to the restrant that h has a base length from zero to $n+1$, that is, that the values of the ordinates from h_{n-1} to h_{p} are zero. The offeet of other constraints and of errors generally will be diseussed later in the lecture.

Discrete Transform Methods

Transform methods are available for handing discrete data which correspond to the trmstom methods for continuous data discussed in lecture 5 , "Identifiention Based on Continuous Data." Thas the classieal Fourier series ean be replaced by the finite Fourier serise, which will reproduce exactly the functions involved at the sampled points and can be used to interpolate trigonometrically between these points. In place of the Laphace transform, we have the Z-transform which was developed for use with sampled-data systems. Dooge (written commun., 1966) has derived a discrete analog of the Laguerre methods of amalysis, but this has not yot been fully developed or published.

The method of harmonic analysis has been applied to hydrologic data by ()'bonnelf (9,10). If an output is specified af a number of equidistant diserete points, then it ean be fitted exactly at these points by a function of the form:

$$
\begin{equation*}
y(s)=\frac{A_{n}}{n}+\sum_{k=1}^{k+p} t_{k} \cos \binom{k^{2} \pi s}{n}+\sum_{k=1}^{k \infty p} B_{k} \sin \left(\frac{k^{2} \pi s}{n}\right) \tag{15}
\end{equation*}
$$

where $n=2 p+1$ is the number of data points. Since there are only n-pieces of information, it is impossible to derive more than n-mesningful coefficients A_{t} and B_{k} for the data. Sinee sines and cosines are orthogonal under summation, the coefticients can be determined from:

$$
\begin{align*}
& A_{k}=\frac{9}{n} \sum_{s=0}^{n-1} y(s) \cos \left(\frac{k^{\bullet}-2 s}{n}\right) \tag{16a}\\
& B_{k}=\frac{{ }^{2}}{n} \sum_{s=0}^{n-1} y(s) \sin \left(\frac{k^{2} \pi s}{n}\right) \tag{16b}
\end{align*}
$$

where k can take on the integral values $0,1,2 \ldots, \ldots-1, p$. The above formu-
lation ean also be expressed in the exponential form:

$$
\begin{align*}
y(s) & =\sum_{k=-n}^{p} C_{k} \exp \left(\frac{i k \cdot \pi s}{n}\right) \tag{17a}\\
C_{k} & =\frac{1}{n} \sum_{s=0}^{n-1} y(s) \exp \left(\frac{-i k \cdot \pi s}{n}\right) \tag{17b}
\end{align*}
$$

For a linear time-invariant system which is causal and has an isolated input, the diserete ordinates of the input, output, and pulse response are conneeted by:

$$
y(s D)=\sum_{a=0}^{\sigma m s} X(\sigma D) h_{D}(s D-\sigma D)
$$

where λ represents the volume of input in suceessive unit periods of length, D; h_{D} represents the finite period unit hydrograph for the unit period (D) defined at intervals equal to the unit period; and y represents the output defined at intervals equal to the unit period (D). For convenience, the unit period can be taken ats the unit of time and the relationstip writem as:

$$
\begin{equation*}
y(s)=\sum_{\sigma \sim 0}^{\sigma a s} X(\sigma) h_{D}(s-\sigma) \tag{18b}
\end{equation*}
$$

If the input is of finite duration and the memory of the system is finite, then we can use finite leourier series in the same way as infinite Fourier series were used in lecture :. The development is analogous and will not be repeated in detail. The diserete functions representing the input and the output are assumed to be periodie with a period equal to $n D$. Since the input is periodie, it is nefessary to write the relationship between input pulse response and output as:

$$
\begin{equation*}
y(s)=\sum_{\sigma=s=n+1}^{\sigma=n} X(\sigma) h_{D}(s-\sigma) \tag{18c}
\end{equation*}
$$

The linkage erguation can then be found in similar manner to that indicated by ceruations 11 to 16 , lecture $\overline{\text { a }}$.

By substituting equation 15 c in equation $1 \overline{\mathrm{c}}$, reversing the order of summation, and using the orthogonality relationship twice, it can be shown that in the discrete case, we have the linkage relationship:

$$
\begin{equation*}
C_{k}=n C_{k} \cdot \alpha_{k} \tag{19}
\end{equation*}
$$

which is the same as the linkage equation given by equation 16 of lecture 5 , exeept for the fact that the symbol n is used for the period in the discrete case, the symblol T for the periad in the eontinuous case. For the expansion in trigonometrical rather than exponential form, the linkage relationship takes the form:

$$
\begin{align*}
& A_{k}=\frac{n}{2}\left(a_{k} \alpha_{k}-b_{k} \beta_{k}\right) \tag{20a}\\
& B_{k}=\frac{n}{\underline{2}}\left(a_{k} \beta_{k}-b_{k} \alpha_{k}\right) \tag{20b}
\end{align*}
$$

which correspond to equations $18 b$ and $18 c$, respectively, in lecture 5 .
The fact that the trigonometrical functions are orthogonal under both integration and summation results in the same linkage relationship for continuous and diserete data. The coefficients appearing in equations 19 or 20 of the present lecture are frequently referred to as harmonic coeffecients and the coefficients appearing in equation 18 of lecture $\overline{5}$ are reforred to as Fourier coeffienents. The differnees between the two eases should, however, be elearly recognized. Hirstly, the eoefficients α_{k} and β_{k} in equation 20 of this lecture, define the finte period mit hydrograph $h_{D}(b)$; the corresponding coefficients in equation 12 , lecture $\overline{5}$, define the instantancous unit hydrograph $h_{0}(l)$. Secondy; the coefficients of equation 90 of this lecture are finite in number because only as many coofficients as there are data points can be determined altogether. For contimuous functions, there is no limit to the number of coeffecents whel can be cabculated if required. Thirdly, the coeffecents of equation 20 of this lecture, when substituted into the finite Fourier expansion, define the pulse response h_{D} at diserete points which are equally spaeed at the unit interval, D; whereas, the coeffieients derived in lecture is define the IUH continuously.

If a function only rxists at diserete points, or is only known at discrete points, it is not possible to obtain its laphee trunsform directly. Such a function can be eonsidered as being defined by:

$$
\begin{equation*}
f(l)=\sum_{n=0}^{\infty} f(l) \delta(t-n T) \tag{21}
\end{equation*}
$$

Where n is an integer and T is the interval between data points. If the Laplace transform is now taken, we have:

$$
\begin{equation*}
£[f(t)]=\sum_{n=0}^{\infty} f(n T) e^{-s n T} \tag{22}
\end{equation*}
$$

It is customary to write:

$$
\begin{equation*}
Z=\exp (\because T) \tag{23}
\end{equation*}
$$

and henee to write what is known as the Z-transform of the diserete variable as:

$$
\begin{equation*}
F(Z)=Z[f(n T)]=\sum_{n=0}^{\infty} f(n T) Z^{-n} \tag{24}
\end{equation*}
$$

The properties of the Z-transform (4) are similar to those of the Laplace transform, in particular, for a lincar time-imariant cansal system given by:

$$
\begin{equation*}
y(s)=\sum_{\sigma=0}^{\sigma \omega s} x(\sigma!/ h(s-\sigma) \tag{6}
\end{equation*}
$$

We have the following simple relationship between the Z-transform of the input:

$$
\begin{equation*}
Y(Z)=H(Z) \cdot \mathrm{Y}(Z) \tag{26}
\end{equation*}
$$

If $y(s)$ and $x(s)$ ars given tumerieally, it is possible to compute $\mathcal{V}^{\prime}(Z)$ and $X(Z)$ and, hence, to determine the Z-transform of the palse response:

$$
\begin{equation*}
H(Z)=\frac{\mathrm{Y}(Z)}{X(Z)} \tag{27}
\end{equation*}
$$

If $H(Z)$ ean be expanded in inverse powers of Z, lue coeflements of the expansion will give the ordinates of h(s) sinee by definition:

$$
\begin{equation*}
H(Z)=h(0)+h(1) Z^{-1}+h(2) Z^{-2}+\ldots . \tag{N}
\end{equation*}
$$

In proctioe, however, it is likely that, as in the Laplace transform the Ztansform will not be easily inverted in practien cases where we have numerial data rather that it mathematieal function.

The other 1 mansorm method diseussed in this lecture corresponds to the laguerre athalysis of systems with contimuous inputs and outputs. If an atfempt is mate to represent a square pulse by a series of Laguere functions, the diseontinuty emmot be well represented even if the mumber of terms in the expansien is cuite high; for 50 terms, the oscillations will be of the order of ${ }^{2}$, preent of the hoight of the pulse. Aecordingly, if it is wished in use fuandized data, the method of Laguetre analysis described in lecture \bar{i} is no longer atequate without modifention. Ar fires, it was hoped that the Laguere funcolinns might be orthogonal under summation as well as integration, ats with frigomometrie functions. Cnfortunately, this did not prove to be the ease, and it was necessary to derive the diserete andog of the Laguerre functions.

Though some books on numerical analysis mention that diserete analogs of the alasieal contimous orthogomal polynomials do axist, no deseription of These was available in any of the literatuer cited. Eventually, the form of the polynomiak orthegonal under summation from zero to infinity with respect to a damping factor exp(-s) was derived from first principles. It is

[^9]ensior, however, in retrospect to derive the form of the discrete analog to the Laguerre funetion by an analogy between diserete and continuous opertions.

Integration in the continuous case becomes summation in the diserete case and diffrentiation in the eontinuous cases is replaced by forward diferencing in the discrete case. The Laghere polyomiai is defined by:

$$
\begin{equation*}
L_{n}(l)=\sum_{k=0}^{k=n}(-1)^{k}\binom{n}{k} \frac{t^{k}}{k!} \tag{29a}
\end{equation*}
$$

In the above exation, the continuous variable t oceurs in the form $t k$. This function hat the proberty that when differentiated with respect to t, it mantains the same form but with the order redued by one degres. The analegus diserete polymomial might be expected to be that fanetion of the diserete varables which has the ambogous diserete property, that is, the function when forward difterneed with resperet to s maintains the same form but with the order reduced by one degrea. It can be verified that the form of diserete function requied is the binomial cosffieient (${ }_{k}$). Hence, we would expere the diserete ambeg to the Laguere polynomial to be of the form:

$$
M_{n}(s)=\sum_{k=0}^{k=n}(-1)^{k}\left(\begin{array}{l}
n \tag{29b}\\
k
\end{array} 0_{k}^{\pi}\right)
$$

It can be shown that the above expresson is a Moinner polynomial with a value of $b=0$ and $c=1.2$.

The Laguerre polyomials defined by equation $29 a$ are orthogonal in the range zero to infinty with respect to the weighing factor exp $(-t)$, that is,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-1} L_{m}\left(l L_{m}(l)=\hat{o}_{m n}\right. \tag{30a}
\end{equation*}
$$

If the Memen polynomiats are to be writen in similar form, it is necessary nut only to replace the interention by a summation but also to find the diserete amberg of the woighting factor exp(-b) The reciprocal of the weighting funetion in the eontinuous case, exp 0 , differentiates into itself. This suggests a fanetion whoh forward diferentiates into itself as a diserete analog. It may be readily shown that 2 has such a property and consecuenty, 1 . 2^{x} may be tried as a weghting factor. When this is done one obtains the orthogontal relationship:

$$
\begin{equation*}
\sum_{m=0}^{s \infty}\left({ }_{2}^{2}\right) \cdot M_{m}\left(n, 1 M_{n}(s)=\underline{2}^{n+1} \delta_{m n}\right. \tag{30b}
\end{equation*}
$$

[^10]The normalized orthogonal function in the continuous case is:

$$
\begin{equation*}
f_{n}(t)=\left.e^{-t i z} \sum_{k=0}^{k-n}(-1)^{k}\right|_{k} ^{\prime}, \frac{t}{k!} \tag{31a}
\end{equation*}
$$

and the normalized orihogonal function in the diserete case is:

$$
\begin{equation*}
\left.f_{\mathrm{n}}(s)=(1 \cdot)^{2}\right)^{(s+n+1): 2} \sum_{k=0}^{k=\pi}(-1)^{k}\binom{n}{k}\binom{d}{k} \tag{311}
\end{equation*}
$$

The function given in equation $31 b$ may be described as a Meixner function and its properties explored by the use of the Z-transform (6).
To derive a method of Aceixner analysis, it is necessary to determine first of all the effert of convoluting une Acrivere function with another as follows:

$$
\begin{equation*}
g(s):=\sum_{\sigma=0}^{\sigma=s} f_{m}\left(\sigma \cdot f_{n}(s-\sigma)\right. \tag{32}
\end{equation*}
$$

It can be shown that:

$$
\begin{equation*}
y(s) \quad\left[1, t: f_{m-n}(s)-f_{m+n+1}(s)\right. \tag{3}
\end{equation*}
$$

Again ther result is similar to that for Laguerre functions exeept for the seale factor 21: The linkage equation is derived in a similar manner as for Laguerre fonctions and is given by:

$$
\begin{equation*}
A_{p}=\sum_{k=1}^{k=p} 1 \cdot i^{1} \alpha_{k} \alpha_{p} a_{p-k}-\sum_{k=0}^{k=p-1} \alpha_{k} a_{p-1-k} \tag{3t}
\end{equation*}
$$

which corresponds with equation 73 of terture 5 . For the identifiention probtem, it is neersary to determine suecessively the values of the Deeixner coefficients for the reponse functions. These are given by:

$$
\begin{equation*}
\alpha_{p} a_{n}=\sum_{k=0}^{k=p}\left(1_{2}, p-k+1 \cdot\right)_{k}-\sum_{k=0}^{k=p-1} \alpha_{k} a_{p-k} \tag{35}
\end{equation*}
$$

The method of \backslash Ieixner amalysis is still under development and so far has only heon applied to sunthedic data. There is some indication that it is not as mumerically stable as the Laguerre analysis of continuous data. In Xeixner analysis, as in Lagurree analysis, it is necessary to choose an appropriate time seale to represent the functions involved by a relatively small number of coeflicients.

Time-Series Analysis of Discrete Data

The method of time series analysis developed by Wiener (i) and used in the theory of eommuneration has been applied to diserete hydrologic data by the group working at the Massachusetts Institute of Technology under

Eagleson (3). The problem is to determine for a given set of diserete inputs and outputs, the causal linear rasponse which is optimal in the least squares sense. It is neensary to define the diserete analogs of the autocorrelation and eross correlations defined berquation s'2 and $\overline{3} 3$ of fecture $\overline{5}$ for the continuous case. The autocorrelation function for a discrete variable $f(s)$ is defined as the limit:

$$
\begin{equation*}
\phi_{/ /}(k)=\frac{1}{n} \sum_{s=\sim p}^{p} f(s) f(s+k) \text { as } p \rightarrow \infty \tag{36a}
\end{equation*}
$$

where $n=2 p+1$ is the number of data points. The cross correlation function between two diserete variable f(x) and g(s) is defined as the limit:

$$
\begin{equation*}
\phi_{f}(k)=\frac{1}{n} \sum_{s, \ldots p}^{p} f(s) g(s+k) \text { as } p \rightarrow \infty \tag{36b}
\end{equation*}
$$

For a causal linear time-invariant systrm, we have:

$$
\begin{equation*}
y(s)=\sum_{\sigma==\infty}^{n} X(\sigma) h_{D}(s-\sigma) \tag{37a}
\end{equation*}
$$

or

$$
\begin{equation*}
y(s)=\sum_{\sigma=0}^{\infty} X(s-\sigma) h_{D}(\sigma) \tag{37b}
\end{equation*}
$$

where D is the interval between the equally spaced diserete or fuantized data tand eomserumenty also the unit peried of the finite period unit hydrograph or pulse response $h_{D}(x)$, which will enable us to predict the output with minimam error. The individual error predietion for the single ordinate is given by:

$$
\begin{equation*}
r_{1}=y_{1}-\sum_{\sigma=0}^{\infty} X_{(i-\sigma)} h_{D}(\sigma) \tag{38}
\end{equation*}
$$

where i is the integer dinoting the ordinate of output concerned. For a contimuous record which has been sampled or of diserete or quantized data, we wish to minimize the least spuares error, that is,

$$
\begin{equation*}
E[h(, n)]=\frac{1}{n} \sum_{i=-\mu}^{n}\left(r_{i}\right)^{2}=\text { minimum } \tag{39a}
\end{equation*}
$$

If this is to be done be menipulation of the ordinates of the response function, then we have the condtion:

$$
\begin{equation*}
\frac{\partial}{\partial h}, j, \sum_{i=1}^{n} r_{i}{ }^{2}=\sum_{i=1, j}^{n} 2 r_{i} \frac{\delta r_{1}}{\partial h(j)}=0 \tag{39b}
\end{equation*}
$$

It is chear from cquation 3 shat for cery valur of j greater than 0 :

$$
\begin{equation*}
\frac{\partial r_{i}}{\partial h(j)}=-X i(i-j) \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
-r_{i} \cdot{ }_{\partial h_{(j)}}^{\partial r_{i}}=X(i-j) y(i)-N(i-j) \sum_{\sigma=0}^{\infty} h_{D}(\sigma) X(i-\sigma) \tag{+1}
\end{equation*}
$$

The eriterion of equation 39 can now be writen as:

$$
\begin{equation*}
\sum_{i=-j}^{p} x\left(i-j 1 y(i)-\sum_{i=n}^{n} X(i-j) \sum_{\sigma=0}^{\infty} h_{D}(\sigma)(i-\sigma)=0\right. \tag{42}
\end{equation*}
$$

The above relatonship must hold for all values of j greater than 0 . Reversing the order of summation in the second torm gives:

$$
\begin{equation*}
\sum_{i=1}^{p} X(i-j) y(i)-\sum_{0=0}^{\infty} h_{D}(\sigma) \sum_{i=1}^{p} X(i-j) X(i-\sigma)=0 \tag{4.3}
\end{equation*}
$$

Fsing the defintion of autocorrettion and eross correation for discmef functions given by equations 3ban and 3 fbe above, equation 43 can be written as:

$$
\begin{equation*}
\alpha_{T y}(j)=\sum_{\sigma=0}^{\infty} h_{D}(\sigma) \phi_{x x}(j-\sigma) \tag{4.4}
\end{equation*}
$$

provided that the vathe of j is zero or positive. This is the diseref form of the Wiener-Hope apation use by Eagleson (3) in the ampas of hydrologice systems.

Where we are thening whin isolated inputs and systoms of finite memory we abse have isolated outputs. In this ctise, the correhation method of andysis of fime series can be shown to be ofureatent to the least suates mothod. As whown in lecture 6, mage 158 , the least sequares method arranges the input and rutpua data in the form:

$$
\begin{equation*}
X^{T} y=X^{T} \mathrm{~N}^{T} \tag{4.7}
\end{equation*}
$$

where the matrix X is of the form given by rquation 4 of the present lecture, that is, the iuput vertor has bern used to form a convolution-type matrix. . terordingly, for the example given on page 39, lecture 1 , and page 181 , lecture 6, the left-band side of equation 45 will be of the form:

$$
X T_{y}=\left[\begin{array}{llllllll}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & 0 & 0 & 0 \tag{40}\\
0 & x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & 0 & 0 \\
0 & 0 & x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & 0 \\
0 & 0 & 0 & x_{0} & x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{3} \\
y_{6} \\
y_{7}
\end{array}\right]
$$

In the above example, the matrix x hat Four rows and eight colums, and the column vector b has eight rows. The result of multiplying them together will be to produce a column vector with four rows. If we follow the rules of vector multiplieation, thess four rows will be given by:

$$
\begin{align*}
& x_{11} y_{1}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{3}+x_{4} y_{4}=\phi_{r y}(0) \tag{47a}\\
& x_{1} y_{2}+x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{3}=\phi_{r y}(1) \tag{47b}\\
& x_{1} y_{2}+x_{1} y_{3}+x_{2} y_{4}+x_{3} y_{3}+x_{4} y_{6}=\phi_{x y}(2) \tag{47C}\\
& x_{0} y_{3}+x_{1} y_{4}+x_{2} y_{3}+x_{3} y_{6}+x_{4} y_{7}=\phi_{r y}(3) \tag{47~d}
\end{align*}
$$

The lefthand side of aguation th is therefore seen to be of the wame form as the lefthenad side of ergation 4 th.
Similarly, it can be shown that:

$$
X^{T} X=\left[\begin{array}{llll}
\phi_{x r}(0) & \phi_{x x}(-1) & \phi_{r x}(-2) & \phi_{r x}(-3) \tag{48}\\
\phi_{r x}(1) & \phi_{x r}(0) & \phi_{r r}(-1) & \phi_{r x}(-2) \\
\phi_{x r}(2) & \phi_{r x}(1) & \phi_{r x}(0) & \phi_{r x}(-1) \\
\phi_{x x}(3) & \phi_{x r}(2) & \phi_{r x}(1) & \phi_{r s}(0)
\end{array}\right]
$$

Which can be seen to be a convolution-type matrix formed from the autocorreation cexfiedints of the input vector. Because the multiplication of this convolution-type wetor by the optimum response wetor h is equivalent to
 sponse vector, the right-hand side of equation 4.5 is equivalent to the righthand side of menation 4.4 .

In time series amalysis and the use of rquation 44 , the number of equations is not limited as in equation 47 , lf the system being investigated were a truly hower system with a finite memory and the input and output data were free from arrer, the eross correlation enofficients for values of j greater than the menory of the system would be zere, and the number of equations would be the same in both methods. [l, beowever, the system is not truly linear, or if there are cerors in the dath, the time series correlation method gives additimal equations which ean be included in the set of equations to be solved. In the latere case, the number of equations 10 be solved will be greater than the mumber of ordinates required in the pulse response and, hence, restraints can be introduces into the solution.

Computational Methods

In a truly linear system in which the input and output are given in the discrete form and ewo be delemined without error, all of the methods of system
identiferation described above will give the same answer within the limits of computational aror. For this case of efror-free data, the choies between methods is merely one of the case of computation, and there is no reason 10 go beyond the divect solution of the simultanoous equations involved by the method of forward sulstitution. For these ideal conditions, one the number of equations solved corresponds to the length of memory of the system, all the remaining equations will le automatically satisfied by the values for the ordinates of the output response alrewdy found. If, however, there are errors in the data, or if the system is not iruly tinear, then the values of the ordimates obtained for the optimum linear response may vary accordiag to the method used. In this more general case, the choier between the methods depends not only on the convencence of computation but also on the maner ia which the various methods handie croos in the data and linemerize any nonlinear propertits of the system under idenifieation. Execept for the basie case of solution by forward substitution, all of the methods reguire the use of a high-sperd digital computer undess the problem is trivialy small. The technigues used in the actual computations involved in the different methods are described in the literature cited at the end of this lecture.

Only the essembal features ned be mentioned here. In the least squares mothod, Body t 2) suggested that the data be loaded into the computer as a single unit in the form:

$$
\begin{equation*}
\left[X^{\prime}, y\right]_{p, y+1} \tag{49}
\end{equation*}
$$

In the least squares method, the input consists of ($m+1$) ordinates of the input and $(p+1)$ ordinates of the coutput. A convenient way of organizing the calculations is as follows. The input data can be used to compute the chments of:

$$
\begin{equation*}
Z=X^{T} X \tag{49a}
\end{equation*}
$$

which we have already seen to be the diserete autocorefation cofficient of the input. It is alse meessatry to calculate the clements of:

$$
\begin{equation*}
W=\lambda^{\tau} \tau_{y} \tag{49b}
\end{equation*}
$$

which are the cross correlation conflicients of the inpul and output. A standard routine for matrix inversion can now be used to solve for the unknown finite period unit hydrograph as follows:

$$
\begin{equation*}
h=Z^{-1}+H^{-} \tag{51}
\end{equation*}
$$

Z will be a square matrix of size $(p-m+1)$ and W will be a column vector with $n+1$) rows. The unknown pulse response h will also be a column vector with ($n+1$) rows.

Onee again, it must be emphasized that the least squares mothod involves optimization subject to the restraint that the lengh of the response function
does not excerd the amount given by the difference between the length of the output and the length of the input. The predietion of the output using the finite period unit hydrograph, which is optimum in the least squares sense, will not be as good as the prediction of the output by a unit bydrograph, which is allowed to be of the same length as the output. However, the use of the method of least squares reduces the tendeney towards unrealistic negative or wildly oscillating ordinates which may occur with the forward substitution method where there are errors in the data. If it were eertain that the system were linear and that these unrealistic values were soldy due to errors in the data, then there is a strong argument for introducing the restraints involved in the lemst sopures estimate. However, if negative ordinates result from the nttmpt to reprewent a nominear system in a linear fashion, then the ease for rejecting the negative ordinates is not nearly as strong.

For computation, further resorints are sometimes introduced into the calculation. Thus, Bedy $\{?$ made the assumption that from a certain point onward the fitite period unit hydrograph (pulse response) shows an expomontial decline and mate use of this assumption to reduce the amount of romputation requirod. Similarly, Newton and Vimyard (8), in their description of the Temuessee Valley Authority method, refereed to the introduction of the restriction that the ordinates of the pulse response may be replaced over a number of intervals by a straight line, thas simplifying the numerical computation at the cost of this restraint.
The sequence of computations is standard for any transform method based on orthogenal polyomials: 101 . The first step is to read in the input and output data and compute the cueflicients of the input data (c_{n}) and of the output data (f_{u}) for the particular orthogonal expansion assumed. The corresponding coefficients for the pulse response or finite period unit hydrograph ' γ_{n} ' are then calculated from the linkage equation. These coefficients in the expansion of the pulse response ean then be used to find the actual ordinates of the pulise response. In the harmenis analysis method applied to hydrologic data he (obamell 19 , the actual peried of runoff, when divided into standard intervals, provides a finice number of equidistant data points. The number of harmonie cerfficients derived is the same as the number of data points. In Mexiner analysis, however, the range is from zero to infinity so that account is taken not only of the fante number of chata points in the isolated output recored but also of the infinite number of printe after the conelusion of output. For perfert matehing, it would be neesesary to take an infinite number of ferms in the expansion of the pulse response. However, it is only necessary to carry the serves far enough so that the ordinates within the period of output are determined sufficiently accurately, and arrors in the zero ordinates after the ehsen of output in which we are interested may be ignored.

In times aries amatwis, the automerelation and cross correlation coefficients of the input and ouspou must first be determined. If we are dealing with an
isolated input to a linoar system ol limited memory, then the autocorrefation and cross corruation functions will become zero beyond a cerfain point. lf, on the other hand, we are dealing with a continuous time series, it would be a matter of decision as to the poind at which these functions should be truneated. After the autocorrelation and cross eorrelation comficients have been determined, it is still necessary to solve the Whener-Hopf equations given by equation +4 . If all of the equations are used, then it will be possible fo prediet the output closely but whealistic ordinates may be obtaiued. Eugleson (8) introduced the iden of solving the equations subject to the restraint that no negative ordinates occured. This neerssitates a computation of a linear programing solution to the W iener-Hopt equations.

The whole subject of the comparison between the various methods for sysfim identification in the presence of noise and of possible nonlinearity is one reguiring corefal investigation. Several researeh workers are known to be working on the problem at the moment, but none of the results have so fir been published. It may be instructive to consider briefly the effeel of an error on a simple ease using synthetie data. The data used are those in problems 1 and 2 at the end of thi iecture. If the values of the input and output from a system are given as:

$$
\begin{align*}
& x=2,6,1 \\
& y=0,4,14,8,1,0 \tag{j}
\end{align*}
$$

any of the mothods deseribed above can be used to show that the linear pulse rexponse for the system is given by:

$$
\begin{equation*}
h=0, \underline{2}, 1,0 \tag{53}
\end{equation*}
$$

If however, the output were mistakenly given as:

$$
\begin{equation*}
y=0,4,17, S, 1,0 \tag{3}
\end{equation*}
$$

then, the estimates of the optimum linear pulse response would vary with the melhod used. In this case, the methool of direct forward substitution would give the linear response as:

$$
\begin{equation*}
h=0,2, \cdot 2.5,-4 . \overline{5}, 12.7 .5,-36 \tag{5,3}
\end{equation*}
$$

which is elearly unstable.
In using the nexhod of least squares, it is necessary 10 decide the lenget of the pulse response to determine the size of the input convolution matrix. The oufpht is given at six points and the imput is given for three standard intervals. It could, therefure, lee assumed that the pulse response, which is the response due wo input in one standard interval, would not exeed four intervals in length. Aswaming the pulse reponse (the finite period unit hydrograph) to be four intervats lome, the leas spuares method gives as the optimum pulse
response:

$$
\begin{equation*}
h=-0.15,2.31,0.53,0.02 \tag{50}
\end{equation*}
$$

This resut is seen to give an turedistic megative ordinate at the beginning of the impulse response. If the restraint were inserted that this ordinate shouk be zevo, the result obtained would be:

$$
\begin{equation*}
h=0,2.23,0.76,0.01 \tag{57}
\end{equation*}
$$

The latter result is seon lo be not ton different from the true pulse response given by equation 3 . However, even ordinates as small as the fourth ordinate of 0.01 have the offect on the whation. If the foterth ordinate were constrained to be zero, the resull woud be:

It can be seren from tho above swries of rewth that the more information encerning the realistie form of the pabse respense that is fed into the computation, the closer the result will be to the true palse response, which hes been masked hy the eror in the output. Simitar varations in the result are obtaned in the correbtion method if a certain mamber of 1 H iener-Hopf equations are chosen or if additimal resuants are placed on the problem.

Problems on Discrete Systems Identification

1. If the input in a system is given in Appondix table 2 by function 3 and the output be function is, find the unit pulse response of the system bolh by the direst agebraic method and by the least souares solution.

2 . For the data of problem t, find the atocorrelation function of the input and the cross correhation function betwern the input and the oupput. Write down the set of diserete 11 iemer-Hope equations for these particular data. Verify that the solution obtamed in problom 1 is a solution to the latter equations.
3. Cse the Z-transform to dentify the patse response of the system in problem I for the given inaut and output.
4. Solyc problen I by dither hamonic amalysis or Meixner sories.
\therefore. In problems 1 to 4 , what is the effect on the solution if the output fumeLim corredty given by function $\frac{t}{}$ in Appendix table 2 is mistakenly taken as function 5 in Appondix table 9 ?
6. In Appendix table - , if the input to a linear time invariant system is siven by the diserote function d and the output by the diserete function 19 ,

7. Find the pulat response for the data of problem 6 by using harmonic analysis.
\therefore Appomdix table 4 gives the offection rain and the storm runoff for a ranfoll evont on tho Anhoosk catchmont. Find the unit hydrograph for the atchmont by a marix method.
9. Find the unit hydrograph for the data in Appendix table 4 by using harmonic analysis.
10. lind the unit hydrograph for the data in Appendix table 4 by using Mexners series.
11. Find the harmonic coefficients or the λ Deixner coefficients of the functions for a mumber of the diserete functions given in Appendix table 2 .
12. Find the Z-transtorm of the function for a number of functions given in Appendix table 2 ,

Literature Cited

(l) Bay.azi\%: IJ.

 Hydroh. and Water liesource Deypmo. Proe, Ankana.
(2) 30tw, 1) $\stackrel{\text { N. }}{ }$
 diemad comberer. Water lees. Found. Austral. Hul. 4. 41 pp., illus. Sydney.
(3) Linclesox, P. 太., Mrevth, R., and Marcen, F.

if) Jčus, E, I,
 Y゙ork.
(o) Kilasonswisy, Y. C.
 in a hasts stistam, Ph.l). thesis, lif. Eniv. (University Mierofims

(1) Latil: I'
flaki phorentes of Mrassen bowsommals. Dept. Elect. Engin. Nonnsh [nivervity, Nellamorne.
17) ILEF, Y. VI.

 Internatl. Assoc. sci. Hydrol. Puh. 51 , pp. 546-55t. Gentbrugge.

1hiti. methods of complotation in hyoboghapa analysis and syethesis.
 Inform. Note 13, 39 pp. The Hague.
(11. Restuepo. J. C. (), and Eagleson, P. S.
 Mass. Inst. Technol. Hydrotlyn. Lab. Rpt. SO. Cambridge.
(12) Roche, M.
1065. Ponta de ver mathemb ser te operatecu limahe de pransfonmation
 Formation of hanfali, intenstryl. Proc. Symposium on Representative and Experimental Areas (Budapest). Internatl. Asoe. Sei. Hydrol. Pub. (0, (1) : 234-2.6.
(13) Sisal. K. B.
 lh.i). Thesis, Ill. (niv. C'rban. (Nerox copy avalable by parchase from \{riversity Mierofilm, Ine., P.O. Box 134 , Amb Arbor, Mich, 4S106, Puh. © 0 -(2831.]
(1H) Sivmer, IV. M.
 Civ., Fugin. Jour. Hydroulies Div. S1: 1-2a.

LECTURE 7: SIMULATION OF HYDROLOGIC SYSTEMS

Basie Ideas in Simulation

Having spent three lectures on the problem of analysis, we now turn to the question of synthesis or simulation. It will be recalled from lecture 1 (see pages 5-7, 24, and 27) that simulation consisis essentially of synthesizing a system (absimet or real) which will operate on the given inputs so as to procluee an oulput wheh will approximate the output of the prototype system within a given degree of accurace, (horafas (18) has defined simulation as: "Simulation is simply a working ambogy. Analogy means similarity of properties as relations without identity."

A model or a simulation reprodues some but not all the characteristics of the prototype. Ideally, we might expeet the simulating system to reproduce the behavior of the protolype system exactly, but 10 do this the simulating system would have to be as complex as the prototype. It is necessary to fix the aceuracy required and to choose the features of the prototype system operation which we hope to imitate. Any attempt at simulation is intimately iied up with standards of accuracy and with a definition of objectives. Unless we are explicit on these maters, our simulation will not be seientifically respectable.

In many parts of hydrology, as in many paris of mechanies, we simulate the action of the system in which we are interested by a set of mathematical equations. Thus, we can simulate the physical problem of open channel flow by the equation of continuity and the dynamic equation. Already, two sucecssive simulations are involved. The finite difference algorithm may then be simulated on a digital computer so that there is a further degree of removal from the original physieal problem. At each level of simulation there is a danger that the simulating system will not correspond in some important respect to the system it is attempting to simulate. At each level, we must ensure that our imitation is sufficionly accurate for our purpose.

In open channel flow, we must be satisfied with the validity of the equations of contimuity and momentum; we must be satisfied that our finite differenee scheme is stable, convergent and aceurate; we must be satisfied that our computer program does not involve an undue buildup of round-off error; and so on.

In devising a simulating system, it is necessary to compromise between simplicity in the model and accuracy of prediction of the prototype behavior. A simple system may simulate a prototype system to a high degree of accuracy without resembling that system. In network theory, it is quite easy to show that eertain systems are equivalent to one another though quite different in structure. It must be remembered that synthetic systems used in simulation are at best only operationally equivalent to the prototype system.

Simulation has long been used in hydrohoge to iransfer results from one watershod to another. This can readily be done if we can find a relationship, between the operational behavior of a watershed for wheh measurements are avaifable and the charecteristics of that watershed. Thes all the methods for ohtainug a synthetic unit hydrograph used in apphed hydeology are methods of simutating the behavior of an ungaged watershed. Sophisticated methods of simulation have been introduced into hydrology in reeme sears. Simulation is used in stochastic hydrolegy, where long records of flow are synthesized from a refatively whort historicul record and used to study the behavior of a reservoir or a reservoir system. C'omplex water resouree systems have been simulated and the decisimmaking process included in the simulation (2S, $38,431$.

In these tectures, however, we are ondy eonermed with the use of simulation in paramerie hydology. Leeture S deals with the question of sympetie unit hydrographs and leenures 9 and 10 with the mathematieal simulation of hydrolugie systems be means of mathematical functions and conepual models. Aecordingly, these two topies will not be dealt with in the remainder of this tocture. lastead, attention whil be ementrated on the basie primeiples of simulaton and on the remaining types of simulation whech can be useful in hydroldgy. These may tre grouped under the headings of regression models, digital simulation, andolog simalation, and physical models. Sinee the discussion ranges ower so wide af fild, the eoneern will be with general prineiples and basie ideus rather than the detaik of any particular method of simulation. The emphasis will be on the essential similaritios between the basie steps involved in the different methods.

No mater what the field of application, the type of problem involved, or the type of simulation, the approach is essentialy simitar. It is necessary first of all to deride what type of model is to be used to smulate the action of the prototype. Having decided on this, it is meessary to chonse the components of the model and their intercomection. Onee a trinl model has been determined in this way, the ability of the model to simulate the prototype must be verifed on the basis of a record of inputs and outputs measured on the prototype sustem. For a physied model, this is done by verifying that the model cun preciet the output of the prototype system to an acceptable degree of aecuacy for a past event for which records are available. If it is unable to do sis, the model must be modified until adequate simulation is obtained. For a mathematical model, the verification may consist of applying the model to a cuar for which there is a known solution, as a prelude to applying it to a case in which ne solution is known. For a mathematical model, it may be necessary during the verifieation phase to modify the structure of the model or to change the values of some of the parameters of the model to achieve a satisfactory precision of prediction. In modern hydrology extensive use is made of parametric stothesis in which a form of mathematical or conceptual model is
assumed and the optimal value of the parameter is determined. Parameter values in a model are sad to bo optimal when these particular values result in a predietion of the output which is a eloser fit fin some defined sensed to the outpat from the prototepe than can be ohtained with any other parameter values for the same model.

There is a wide choice among types of modeds suitable for simulating deterministic hydrologie systems. We may decede to use a physieal model or an analog, model; we may decide to use a conceptual model comsisting of an arraneemont of linear channels, linome or nombinear reservoirs, thresholds or ferodhacks, and su forth; or we may derede to use a mathematical model to represont the hydrobgie sysim by a set of mathematieal equations. Fven after deciding the gemeral tree of moxdel to be used, there are still a number of maters to fre determined. Fur example, if we have decided to use an analog terbitgut, wo must decide whether we are going to use fal a direet analog moded in which various sertions of the prototype will be modeled directly and be mare or less recognizahle in the antag or 1 bl a general-purpose analog computer in wheh the mathematical beharior of the protype is simulated by abalog components representing specific mathmatieal operations. If, on the other hand, we have decided to uso a mathematical simulation, there is a choied between regression models, representation of the system by a sot of differntial equations, or representation of the system operation by a mathematical eurve bedonging to some particular family. In the cetwe of a eonceptual model, it is necossary to elecede whether the model is to be linear or nonlinear, whether shrestolds are to be inchuded, what particular types of eomponent are to be used, and how they are to be connected together.

In some types of hydrologie simulation, it is usual to determine parameter whates on the hasis of fodd measurements or of porsonal judgnent. However, the oprration of this initial version of the molel should be thoroughly verified and the model parameters adjusted until satisfactory operation is obtained. Only then can the model be safely used as the basis of prediction. For most mathematiocal and conceptual models, the values of the parameters are not predetermised but are optimized on the banis of kmown imput and output. There is some exeuse for a lack of objectivity in the optimization proeess when faced with ad hoe problems in applied hydrologrs. Even in this ease, however, optimization on an objective basis has the advantage that the results from this individual study can be comined with others in a meaningful fashion. In hydrobogic researeh, there is no exeuse for avoidable subjectivity. Severtheless, the hydrologic hiterature is full of models justified by a singie illustration which shows that the prediced output closely resembles the actual output. such "optimization by are" is incapable of being integrated into a general body of seientifie knowledge and is unworthy of the name of scientific hedrologe.

It e ran borow from siatisties and numerical antysis a number of eriteria of numination. These include the methods of moments, loast squares, mini-
max fror, and maximum likelihond. One such technique may be preferable in on' situation, and another in another situation. What is important is that the method be ohjertive, repeatable, and that it be clearly described in any reporting of the work.

Regression Models

 dion, Their main value is in predechom rather than in the investigation of causal linkages, (nee the decision has bera made to use a rgeression mothod, it is meresary wodede what type of regression model will be used.

An example ath of multiple linar ragression, a method which has been widely used in hydrology, is shown on figure $\bar{i}-1$. In this example, the following hasic rlatimship is assumed:

$$
\left.Q_{r}=a A_{1} b_{(} N\right)_{1}(S)^{d_{1}} I e_{1}\left(b_{t} O\right)^{v}
$$

In this formulation, the peak anmal food (Q_{r}, which is taken as the depondent variable, is assumed to be related to unknown powers of the various waterehod parameters $\left(A, \dot{A}, \Sigma_{t}, I, t\right.$, and O, which are taken as independent vambles. Q_{T} is the ambal peak discharge in cubie feet per second for a recurrene interval of T years; A is the dramage area in square miles; S is the main chand shope in feet per mile; s, is a measure of the surface storage area: l is the 24 -hemer ranfall in inches for a recurenes period of T years; t is a moasure of freving conditions in midwiner; and O is an orographical factor. If the relationship given by equation ia is expressed in logarithmic form as fothows:
$\log \left(h_{r}=\log a+b \log g h+c h \log N+d h \log h_{2}\right)$

$$
\begin{equation*}
+c(\log I)+f(\log t)+0(\log O) \tag{1b}
\end{equation*}
$$

then the redationshig is linear both in the new logarithmic variables and in thw unknown parameters. Consequently, the unknown parameters (a, b, c, d, o, f, and al can be determined by the standard techniques of multiple linas regression.

The assumption of the particular relationship given by equation fa or equation 1 b mokes this approach just as much a model as if the variables were fed into an analog computer. Indeed, to the hydrologist devoted to the analog approach, the method of muhipie linear regression models wou'd appear somewhat as shown in figure $7-1$. In this diagram, each of the dependent variables is fed into a function generator which raises it to the designated power. The resuling sutputs are then multiplied together to give the dependent wariable. For the parameters to be optimized cither in the regression myamion or in the analeg, the value of the exponents of the independent vari-
ables that give the best fit between the predieted peak flows and the observed peak flows mus! be determined. The logarithmic transformation of the variables would be paralleled in the analog ease by replacing the analog shown in figure $7-1$ by one in which the function generators would transform the independent variables logarithmically and the nultiplier would be replaced by an adder.

$$
Q_{T}=a(A)^{b}(S)^{c}\left(S_{T}\right)^{d}(1)^{e}(t)^{f}(0)^{g}
$$

$\log Q_{T}=\log a+b(\log A)+c(\log S)$
 $+d\left(\log S_{\uparrow}\right)+e(\log I)+f(\log t)$
 $+g(\log 0)$

Figure 1-1.-Regression analysis.

The standard regression technigue takes as a criterion the minimization of the sums of the sequares of deviations of the predieted values of Q_{T} from the measured values of Q_{T}, The model ean be evaluated by examining the value of the square of the multiple correlation confficient \mathbb{R}^{2}. For a perfect modet, e" would be equal to 1 and the eloser R^{2} approaches 1 , the better the simulation of the prototype sysiem. As in all exses of simulation, we must tey to reconcile the advantage of inereased aceuracy and the convenience of keeping the moded as simple as pussible. If one of the listed watershed parameters is dropped from erpation 1 -which is expivalont to fixing the appropriate exponent as zero-we can view this as efther simplifieation of the model or a renstraint on the parameter. If one or more parameters are held at are, the optimum values of the remaining parameters ean be determined and the corresponding value of R^{2} calcuhted. [f, subsequents, one of the previously comsumined paramoters is allowed to conter into the optimization procedures a new sed of paramerer values will be ohamed for all the variables, and the value of R^{2} will be incratsed provided the variable whech now enters the relationship has an influmer an the dependen variable not aceounted for by the oher watables in the refationship.
In the example of multiple linear regression quoted abow, which is taken from Benson's $1 /$) sudy of 1 betation records ian New England, the correlafion of the 10 -yar peak low Q_{0} with the area A atone gave a value of $R^{2}=$ 0.3 . This tigure may be cruduly interpreted as indicating an efficiency of simulation of \bar{C} peremb. If, instead of using a single input, the channd slope (N) is also taken into acrount, the value of R^{2} increases to $0 . S$ whem is a distinet improvement. The inclusion of the orographie factor (O) with the area and slope increases R^{2} to 0.932 ; the further adelition of the sterage parameler ist' results in ta smail inrease giving 0.945 ; indusion of the tempernture factor th: hrings the value up to 0.959 . Inclusion of the preeipitation factor 1 I' dores not give any further improvement. The exact values of the expments were simplified, thes giving a more convernient formula without appreciahle has of accuracy. The final regression equation with simplified exponents was:

$$
\begin{equation*}
Q_{T}=4.02^{-21 L^{0.4 t^{0.4}} \frac{100^{1.2}}{N_{1}^{1.3}}} \tag{2}
\end{equation*}
$$

This is an interesting and somewhat surprising illustation of what may happen whon using a regression model; though rainfall is an important physical pause of the runofl, the indusion of the rainfall factor does not improve the accuracy of predietion based on the other factors and rainfall is not included in the final equation. The fact: t the rainfall parameter does not improve the areurab of predieliom would suggest that it is highly corelated with the wabrebed parameters atredy included in the model and hernee, has no additional indepondent information to contribute.

If a lanar regression does not give a geod working model, the use of curvilinar regression may improwe the situation. The commonest moded used in carvilinear regression is phenomial regression, which for the ease of simple regression tomly one independent variable takes the form:

$$
\begin{equation*}
y=a+b x+c x^{2}+d x^{3}+\ldots \ldots \tag{3a}
\end{equation*}
$$

This is elearly equivalent to the multiple harar regression equation

$$
\begin{equation*}
y=a+b x_{1}+c x_{2}+d x_{3}+\ldots \ldots \tag{3n}
\end{equation*}
$$

if cuch of he perwers of x is considered as a sematate variable. Theugh equation 3a expresess a molinoter edationship betwern y and x, the ecpation is linear

 tended to cover multiph polynomial regression, which is represmed hy the rquation:

$$
\begin{equation*}
y=p_{1}\left(x_{1}\right)+p_{1}\left(x_{2}\right)+p_{3}\left(x_{3}\right) \ldots \ldots \tag{3C}
\end{equation*}
$$

where p. ${ }^{2}$ denoter a polymmial of x.
If the fathors are though fo eombine as produets rather than as sums, then an equation of the follewing form is appropriate:

$$
\begin{equation*}
y f_{1}+x_{2} \cdot \cdot f_{2} \cdot x_{2}, \cdot f_{3} \mid x_{3}, \ldots f_{n}\left(x_{n}\right) \tag{4}
\end{equation*}
$$

Fiquation ta on page 000 is a sperial case of equation 4 , which is adopted becallese it can be readiyy tranformed to the multiphe linear regression form
 sinulation, then another moxdel must ix tried. A model which is another sperial case of equation tis described hedre for the exse where there are three indeperdent variahles.
As a first appoximation, it may be assumed tha the individual watian of

$$
f_{1} x_{1}=a_{1}+b_{1} x_{1}+\ldots \ldots
$$

and a smilar buear retaionship is assumed for the other two independent sariables:

$$
\begin{align*}
& f_{2} 1 x_{2} 1: a_{2}+b_{2} x_{2}+\ldots \\
& f_{3} \cdot x_{3} 1=a_{3}+b_{3} x_{3}+\ldots \tag{袢}
\end{align*}
$$

The groural redationship for thes assumptiens can be written:

$$
\begin{align*}
y= & a_{1} t_{2} 2 t_{3} \\
& +b_{1} t_{2} t_{3} x_{1}+a_{1} b_{2} t_{3} x_{4}+a_{1} a_{2} b_{3} x_{3} \tag{d}\\
& +b_{1} b_{2} a_{3} x_{1} x_{2}+a_{1} b_{2} b_{3} r_{2} x_{3}+b_{2} a_{2} b_{3} x_{3} x_{1} \\
& +b_{1} b_{2} b_{3} r_{1} x_{2} x_{3}
\end{align*}
$$

The relationship beweren the depernent variable, y, the three original indeprodent wariables x_{1}, x_{2}, x_{3}, and the four products formed from them can now be analyed an:

If the fartors do now ate independently of une another, then a model of joint regressiom:

$$
\begin{equation*}
y=f_{1} x_{1}, x_{2}, x_{3} \ldots x_{n}, \tag{6,1}
\end{equation*}
$$

mast bused. The wery gromeal furm of equation ga may be modified by assuming that the varibles ant in graups so that we cen write some such ※guation tis:

$$
\begin{equation*}
y=f_{1}\left(x_{1}, x_{2}\right)+f_{2}\left(x_{3}, x_{2}\right)+\ldots . \tag{ti}
\end{equation*}
$$

Inhes there is some aprimi reasm to sugene a particular rolationship, joint rexresion analysis is morn pemveniemty handed by graphic than by algebeaio metheds. Fin join regressim, it is frequently helpfal tassume the model of multiphe linear rereresim, then plot the residual values of y against the indeproden varialdes and fit "romeres" if there is any indication of a joint rebben. In this coser, the jaint resresion term is added to the linear terms.

Muhtiph regression malysis makes the assumption that all the erross are ranemeated in the deperaden variable and also that the so-sebled independent variables are owt corredan with me another. Vinhtion of the later assumption dowe nest preven the derivation of a regression relationship which can be used as a predietion tow, hut it rembers meaningless the trats of signifieance used in a reqresith analysis, In hydrolegg, due to che operation of gemorphologiowl fartors, the watershen paramere wed as independent variables are oflon wry highly corredued anong themedves. Alutivariate analysis (33) sork to avod these two problems by treating all the variables alike and by performing componem antilysis of determine aty truly independent grouping
 the data for Now England floode referecel to on pages 000 to 000 . Wong dosuribul how th falatw orthugenal components and showel that for the average ambal flowe it was posible ta produce a relationship based on two parameters which was as atecurate as the mulaphe linear regrescion eforation based on five paramerer- some oher papers dealing with the application of multivariate andysis on hatrology tre induded among the referemers at the ond of this

The mothed of manal corrdation deseribed by Linsley, Foher, and Paulhts \quad : 2 : has hern widdy used in applied hydrology. Cowial corretation is ewsematly st graphic method of nomberer regression and is suitable for the solution of ad hoe problems. In some cases, the shape of curves used refleeted errain assumptions alwut the soil moisture areounting involver. In its ariginal form, coaxial bore bation was subjer to the disadvantage that the process was a culjeetive one and different workers woukd produer different diagrams from the sum ant of thata Those exprienced in the usie of the method tended
to fohow a fixed procedure and to produre eroxial correhtion diagrams whirh were similar in the general form.

If comind correlation is to be used as a tool in parametrie hydrology, it should explietty involve the asoumption of a given model of watershed belavior. This approwh to cowiad corrdation is reflected in the work of Beoker
 appoteh to coaxial corredaion based on physical rasoming and the use of a particular moke. The dagram is intended to be used to extimate the basin recharge foblewing rainfall. As indicated by arrews in figure $\overline{6}-2$, progression is from f to B to C^{\prime} guadrants. (Quadrant 4 is intended to give the relationwhip betwern petatial basin weharge and inital mosture emten, the later heing represented by an antecedent precipitation index. The sequate lines in quadrant A represent werk mombers and, therefore, different seasons of the Fare Quadrat B thows for the effer of ranfall duration cand hene of the rate of infitration and rephoniviment of soil menture on the basin recharge.

Quadrant (reflects the effect of the amount of rainfall on the actual basin recharge.

Becker argues that bectuse of the physieal processes involved, there are certain constraints on the shapes of the curves in the different guadrants. He invokes a simplified moded of the watershed behavior to determine the general mature of these restraints. The higher the whe of the anteedent precipitation, the less storage will be available in the watershed for recharge. If the anteredent precipitation index approachas an infmite value, then all the rainfall must run off, and there can be no recharge to the basin no matter what the value of the volume of ramfall or duration of ranfall. Beeker atrgues from this that all the lines in quadrants B and C must pass through the origin, wherens in the most of the published literature (see for example 51), the limes in quadrant B are drawn as parallol lines, and those in quadrant ('are drawn as meoting at a prim on the axis betweon quadrants A and D.
The next step in Becker's procedure is to take aceount of the fact that most premat-day models of total catchment response assume the existence of a threshold between seil moisture and direct runoff $\{39,54\}$. A simple threshold operates as follows. If the stom raimfall is less than the initial field moisture deffeit, there will be no direct rumofi, and all of the rainfall will be accounted for as basin recharge. If, however, the storm rainfall is greater than the mitial fied moisture doficit, then the soil moisture storage will reach its threshoid value and direct storm rumoff will occur. For a simple therehold, the amount of direct runof will be equal to the volume of rainfall minus the velume of the initial field moisture defieit.

If the duration of the ranfall is suffermaty long, the intensity of rainfall will be less than tay predetermined limiting infiltration rate. Beeker argues that for a finte amoum of rain and a very long duration, the line in quadrant (must consist of a limiting line which makes the ordinate bet ween quadrants B and (' equal to the ordinate betwere quadrants (' and I), together with a vertieal line, eorresponding to the amount of rainfall. When the deficit given on the ordinate betwer quadrants B and C is greater than the amount of rainfall, there is no diecet runoff then the recharge is equal to the amount of rainfall and is independent of the value of the initial defieit. In this ease, the walue of recharge to be read on the ordinate betweon quadrant (' and quadrant l is geverned by the vertical line corresponding to the rainfall amount. The inclined equal vahue line-wheh aets as an upper limit to the series of vertical lines-gowerns the determination of the basin recharge for the case where the rainfall is greater than the inital fied moisture deficit; in this case, the basin reveharge given on the ordinate between quadrants B and D.

Beeker recognizes that a quadrant (' pattern of this type (a serims of vertical lines for different rainfall amomets and one line at 4.5°) is essentially a simplified model based en a lumping of the characteristics of the catehment, which assumes that the rainfall distribution and the distribution of ficld moisture deflet are uniform throughout the cuthment. If allowane is made for the
variation of field mesisture defeit (or of rainfall) throughout the watershed, then the curve in gumant (' for any given rainfall amount will show anooh transition rather than a sharp break from the sloping 45° line to the appropriate verfical line. If the rainfalt is very high relative to the intial field moisture deficit thea the threshold will probably be axeeded in notary ail parts of the eatehment, and the basin recharge will closely approximate the initial defecti. If, on the other hand, the rainfall were very small relative to the initial deficit, then the thesshold capacity wouk probably not be reached in any part of the catehment, and thas the basin recharge would be equal to the amount of ramfall. For internediateratio of rainfall to moistare dehcit, a smooth transitisnal curve wouk be ohtained as shown in quadrant (C, figure $7-2$. The curves shown on the figure reflect the assumption of virying thresholds through tho watershed, that is, of at maticapacity accounting system (39 , 50,531 .

For very long durations, the low intensity of rainfall will ensure that all of the rainfall will infiltate into the soil, For such cases, the duration will not affeet the recharge to the basin, and hence the lime in quadrant B will be an inclined straght lime giving equat values on the ordiate betwen quadrant A and guadrant B and the ordimate between quadrants B and C. For the same ameunt of rain and a shorter daration, the rate of rainfall may exced the infiltation capacity of the soil at some time during the storm, and the full amount of potential hasin recharge may not be realized; consequently, water failing to infileate the wil will contribute to direct storm runoff. During a storm event, infleration is limited to the duration of rainfall (T_{R}) plus the time tor which overland fow persists after the rainfall ends (T_{o}). Becker assumes a limiting rate of infitration into the moist soil (f_{m}), and hence for a fiven daration of ramfall the recharge camon exeed the product of this infiltation rate phas the total duration of overdand fow (that is, the sum of the ramfall dumbion plas the time of overiand flow after the erssation of ration, Whieh is assumed to be comstant. This limitation on infliration is reflected in the horizonal lines in quatrant B for low durations of minfall; these fines revestent the limiling recharge $f_{m} T_{R}+T_{o}$).

Where the minfalf intensity is less than the limiting infltration rate for a wet surfere, the athal busin recharge depends on the rate at which moisture in the soil poofle is replenished. If the water infiftrating through the surface is in fxess of that required for soil moisture recharge, then interflow wint occur and contribute to direct storm rumoff. Becker assumes that the rate of soil maisture recharge is proportional to the soil moisture deficit, varying from zero when the defiet is zom that is, the soit is at field eapacity) to the rate of maximum intiltration into a dry soil when the deficit is equal to the field moisture captety. This assumption gives an exponemtal decline with time in the rate of woil mosture reharge. Becker shows that for a constant rate of infiltation into a dry soil f funct and a constant value of fied moisture ca-
pacity (NW) that the volume of recharge for a given duration (T_{R}) is proportional to the volume of soil moisture recharge for the same amount of rainfall and an infinite duration, Consequently, for all cases where the recharge is not limited by the rate of infiltration through a wet surface, the lines in quadrant B (which reffect the effeet of duration on recharge) will form a ray of lines through the center of the conxial system as shown in figure 7-2.
The general shape of the curves in quadrant a can be shown to be plausible by menns of arguments based on relatively simple assumptions. If the eatehment were homogeneous, one would expeet the lines in quadrat A to be struight lines joining the value of the soil moisture deficit under wilting conditions on the two axes. If, however, the eatehment is considered as being made up of a number of arens with differing maximum field moisture deficits, then the curve conneting the initial soil moisture (represented by the antecedent precipitation index) on the axis between quadrants at and D with the maximum possible recharge on the axis between quadrants at and B would take a general hyperloolic form. The existenee of different curves for different seasons of the yar would be expeeted due to the effect on moisture accounting of evaporation, transpiration, and eonsumptive use. Beeker showed that by drawing the conxial eorrelation diagram as fleseribed above, results could be obtained as good as (if not beter than) with the more conventional form usually recommended. His approach has the advantage that the pattern of lines in his diagram and the position of some of the lines can be related to a definite model and to physicaly reasonable catehment parameters. It would be interesting to link up Beeker's approach with some of the models which have been suggested for simufating the entire watershed response discussed later in this lerture. Becker ; 9 also includes a quadrant reflecting the effect of ground water leved on the relation among antecendent conditions, rainfall, and basin recharge. This quadrant is not shown in figure 7 -2.
In all types of regression analysis--linear or nonlinear, numerical or graphical, multiple regression, or multivarial(-it must be remembered that the choire of a partienar model and that the computational procedure merely represent a way of optimizing the parameters of this model. By optimizing the parameters on the basis of an actual record, we enable the particular model chnsen to simulate the operation of the prototype as nearly as possible in aceordane with some chosen rriterion. There is no guaranter, however, that we have chasen well in chossing the particular mothod or model used. lar twe litue has bern dome in the systematic expleration of the problem of choosing betwern modeds.

Regression moclets of all types share with models in greneral the feature that they may prediet the behavior of the prototype without resembling or revealing the nature of the proterype sestom. However, it is correct to say that the more elosely a medel is based on the physical nature of the prototype system the more likely is it ta prowe its worth as a general-purpose model (that is, to
prediet the behavior of the prototype under a wide variety of conditions) and facilitate the methinglul comparison of parameter values derived from using the same general model to simulate different prototypes.

Digital Simulation

Exeept in the simplest cases, the regresion modeds previously deseribed and the mathematical methods of simulation deseribed in lecture 9 require the use of digita! computers. In such cases, the use of the computer is not compulsory in the simulation of the hydrologic system, but rather it is the most convenient method of computation. In the present seetion, we are not comerned with the use of the computer for these purposes of calculation only hat rather with simulations of hydrologic systems involving telmiques which are only feasible on a digital computer, for example, systematic searching for optimum values of relatively hate numbers of parameters.

In the present sertion, a deseription will be given of some typieal simulations on the digital computer of the hadrohege proeesese involved in edements of the hydrologic cyele and the simatation of the total respense of the catchment. The highly important subjeet of the optimization techniques required to obtain objective estimates of the best values of the parameters to be used is left until the next section.

Digital simulation can be used to reproduce the behavior of any element in the hydrotogic eyrle. In leture 2 , we discussed the empirical formulas used in applied hydrology for estimating snowmelt. The simplest of these formalas was:

$$
\begin{equation*}
M=0.06\left(T_{\text {mean }}-2-2\right) \tag{6a}
\end{equation*}
$$

which relates the daily snowmelt in open areas in inches M to the mean daily temperature (T_{m}) in degress Fahrenchit. A complex formula which has been widely quoted is:

$$
\begin{equation*}
D=\frac{\rho \hat{0}_{0}^{2}}{N 0 \log _{e}\left(a z_{\theta}\right) \log \left(b: z_{0}\right)} u\left[e_{p} T+(e-611) \frac{423}{p}\right] \tag{6b}
\end{equation*}
$$

which relates the snownelt D to a number of micrometcorological factors. ${ }^{\text {. }}$
In contrast to the above formuas, figure $7-3$ shows a digital simulation model for snowmelt developed by Amorocho and Espildora (H). It can be seen that this simulation for the snowmelt process is much mure complex even than equation 6b. In the simulation proess, the inputs to the system are the meteorological conditions and the initial condition of the snow. The simulation model is shown in the form of the flow chart which can be readily programed for a digital computer. Indeed it would be difficult to apply the model shown in figure $\overline{-}-3$ without the use of a digital computer due to the

[^11]

Figine 7-3.-Simulation of snommelt.
large number of logical decisions as well as computations which are required. These logical decisions are represented by lozenge-shaped boxes on figure 7-3. The first question is asked in decision box 0 : Is there precipitation? If there is not precipitation, we travel by a route through box 1 and then consider the heat budget in box 15 which takes into account such vectors as incoming radiation. If there has been precipitation in the form of rain, the amount of interception is allowed for, and a distribution of the precipitation is made between bare soil and snow-covered soil in box 5 . The rain going directly to the soil is an output of the model and an input to the watershed. The rain falling on the snowpack is taken into account in a heat budget.
In this simulation, the snow cover is divided into layers which are treated separately. The effect of heat, rainfoll, or new snow on the existing snow layers are all taken into account. Each box in the fow chart represents a physical process; some of these processes are of a high complexity, and this is reflected in the computational equations used in the step. Thus, box 16 in figure $7-3$ has to be expanded into a flow chart as complex as figure 7-3 itself. Equations $6 a$ and 6 b and the flow chart shown in the figure aro simulations of certain physical processes. We can recognize the empirical equations of classical physical hydrology as very simple models of these physical processes. Due to the advent of the digital computer, we can now replace these simple physical cquations by simulation models involving both complex mathematical relationships and multiple decision processes. The simulation shown in outline on figure 7-3 and described briefly above is only one possible model of the snowmelt process, and other digital models have been developed and reported in the literature. One such simulation model by Anderson and Crawford forms part of the later versions of the Stanford watershed model (3,28).

The other individual processes in the hydrologic cycle may also be simulated in this way. The contrast between the classical empirical equations and more enmplex simulations based on the digital computer can also be illustrated for transpiration. Thus we could estimate transpiration according to a com-bination-type formula such as that of Penman (49):

$$
\begin{equation*}
E_{T}=\frac{E_{a}+\Delta / \gamma \cdot H_{T}}{1+\Delta / \gamma} \tag{7}
\end{equation*}
$$

where the potential transpiration E_{T} is estimated as a weighted average of the aerodynamic factor E_{n} and of the heat budget factor H_{T}, the weighting factor Δ / γ being a function of temperature. This equation may be contrasted with the simulation of transpiration shown in figure 7-4, taken from a recent niper in "Water Resources Research" (67). This represents the simulation of the action of a plant in removing moisture from the soil and transpiring it to the atmosphere. While it is not likely that such a detailed simulation would

Figure 7-4.-Simulation of transpiration.
be required in hydrology, it does indieate the complexity underlying the proeesses with whieh the hydrologist is coneerned.
The full simulation of the process is more complex even than shown on figure $7-4$. On the lower right-hand side of figure $7-4$, stomatal aperture control appears as an input factor. Figure $\bar{i}-\bar{j}$ shows that this factor, which is an input to the transpiration simulation, itself depends in a complex fashion on a number of inputs. When we look at simulations such as these, we realize that the complexity of a formula such as Penman's is negligible compared with the complexity of the physical processes which it is intended to represent. It is interesting, in the case of the two simulations for transpiration and stomatat control, that the authors first show the diagram from a botanical viewpoint, then from a more abstract system viewoont, and finally in terms of system functions of the different operations involved.

Figure 7-5.-Simulation of stomatal control.

Other elements of the hydrologie eycle can be similarly treated. The procases involved in flow-whether overhand, in open chameds, through soils, or from ground water reservoirs-can be simulated be models of warying complevity. These phemomena lend themselves to relatively simple simulation by overall mathematioal equations on by conceptual models. These methods will be diseussed in fecture 0 . If, however, we were not satisfied with the use of bulk friction formulas and insisted on taking into accoum the fine details of turbulente structure and viscous dissipation of energy, the simulation of these processes would become extremely complex. For flood nouting in natural channels, one may choose among the simple methods of flood routing used in applice hydrology, the rehatively simple conecptual methods which have been developed reecnty, and the solution of the problem in its full complexity on a digital computer.

In all theye enses, we are faced with the dilenma of using pither a simple model which is susy to manipulate and comprebend but which may be too crude a simplifieation of the physical process or, on the other hand, a highly complex medel which may be difficult to develop and expensive to operate to obtain further aceumacy. No matter how complex our simulation model may be, the odds are that it still will mot mirror the true complexity of the physical processes involved and henee not reflect the physical reality of the situation. While this falure might worry the pure scientist secking to determine the nature of things, it is of little consequence to the engineering hydrologist who secks only for a technique which will be sufficiently accurate for his immediate purpose. The research hydrologist comes somewhere between these two extremes. He seeks resuits and methods that are grounded on a general body of knowledge and henee of wide application.

Digital simulation etin also be used to model the total response of a watershed. Here again there is a choiee between a simple model, which will of necessity be crude, and a more complex model in which it may be difficult to optimize the parameters owing to their number and their interaction. The simplest model of total watershed operation which gives any semblance of reproducing the behavior of a watershed was discussed carlier in lecture 1 (see fig. 1-8). In its simplest form, such a model might attempt to simulate a watershed by assuming that (1) direct storm runoff could be obtained by routing precipitation excess tirough a single element of linear storage (K_{i}); (2) base flow, by routing recharge to ground water through another element of linear storage of longer storage delay time (K_{2}) ; (3) the division between precipitation excess and infiltration, by use of a constant infiltration rate $\left(f_{c}\right)$; and (4) the recharge to gromed water, by assuming a threshold of field moisture capacity $(1 / /)$. Even in this highly simplified form, four parameters would be reguired to describe the operation of the model, one for each of the four elements.

If we now seek to make the model more accurate or more realistic by a
detailecl simulation of any of the clements, a number of addionat parameters will be introdueed. The number of parameters quickly increases, and the problem of objeetively determining their oplimum vatuss stu he handled only on a digital computer. The determination of the values of these paramevers for opatmat repesentaton of the prototype is the key problem in digital simulation of total catchmemt response. We may insert values of the parameters hased on field metsurements made either in the watershed under study or in at similat watershed; but it would be foolish to take such measured values or any fextbok values as other than indicators of the order of magnifude of the parameters required for simulation.
()nee an athempl is made to simulate the operation of a watershed by a sperific model, a model parameter which is designed to correspond to some single physiend parameter in the fide may, in fact, take on other functions in the simulation process. If our desire is to understand in detail the physiend proeesses which ne involved, we have no option but to wek the parameters forresponding to these additional functions and synthesize a more complicuted modet. If, on the other hand, our only purpose is to reconstruct the operation of the prototype and prediet the outputs, then wo should seek the valur of the parameters of our model which optimize its performance.

The beet known work on the digital simulation of the total watershed is that dome at Stanford University ($21,22,23,40,45$). The Stanford modet Mark IV is shown on figure $7-6$. The various versions of the Stanford model are ssantially compromises between the oversimplification of the fourparameler modet shown on figure $1-8$ and the uncontrollable complexity of a moded whieh would attempt to include eversthing we know about physical hydrolegy. The imputs to the model are precipitation in the form of mean hourly manfall and evtpotranspiration in the form of daily means. The outputs are stremmfow in the form of: (1) summary tables of menn daily flow; (D) hydrographs of all stoms greater than a given base; and (3) some monthy data, such as volume of interflow and actual ovapotranspiration and intial and fime soil moisture conditions, Other outputs can be obtained on an opfional basis. A feature of the model is the division of soil moisture storage into upper zone storage from which evapotranspiration takes place at the potential rate and lower zone storage from which cyapotranspiration takes piace at a rate loss than the potential rate when the upper zone storage is exhausted. The routing of the various flows-overlind fow, interfow, ground water fow, and chamel flow-is based largely on reservoir routing. The Mark IV model, which is more compleated than earier versions, allows for such features as overland fow and snowmelt. There are 19 parameters in the model (exeluding snowmolt paramoters) and four initial parameters for setting the values of the various storage components. Ale bui four of these parameters are estimated from the records or from maps.

An alternative model of the total watershed response is that Dawdy and O'Donnell (24), which is shown on figure 7-7. This model is somewhat simpler than the Stanford model and was deliberately designed to be so. While the Stanford model on figure $7-6$ is drawn in block diagram form, the DawdyO'Donnell model is drawn in terms of tanks and overflows after the manner of Sugawara (60) and other Japanese workers in the field. It would be a useful exercise to attempt to redraw each of the models in the other form. Dawdy and O'Lomell were primarily interested in investigating the probiem of deyeloping the most efficient techniques for optimizing the parameters of a model, rather than in simulating any particular watershed. For this reason, they first fixed "correct" values of the parameters of the model shown on figure $7-7$, generated the output due to a synthetic input and then, starting from erroneous initial parameter values, tred to discover from the record of input and output the predetermined "correct" values of the nine parameters.

The inputs to the Dawdy-()Donall model are precipitation and evapotranspiration. The output is the eventual total runoff including surface runof and base flow. There are nine parameters in the model whose values are to be optimized. R^{*} is the depression storage which must be satisfied before overland flow oceurs. The operation of the linear chamel storage is characterized by a single storage delay time, K. The Horton equation is used to model the infiltration, thus accumulating three more parameters f_{c}, f_{c}, and k. Field

Figeta 7-7.-Dawdy-O'Doonell model.
moisture capacity is taken as I^{*} and acts as a threshoid on recharge to ground water. Further parameters introduced are a ground water eapacity, (${ }^{*}$, which enables the model to simulate water logging under very wet conditions and a maximum rate of capillary rise, $C_{\text {max, }}$ to simulate the loss of water from the ground water by capillary rise during very dry periods. The ground water reservoir is assumed to act as a linear reservoir, thus giving the ninth parameter, K_{G}. This model will be used to illustrate the problem of parameter optimization later in the lecture.

A number of other models of the total catchment response have been developed for various purposes and from various points of view. Among those which are described in the literature are the Temesser Valley Authority model (61,62) and models developed in Australia (12) and Japan (46). Because all models of this type will be compromises, they will be different from one another. The only way in which they can be judged is the efficiency with which they earry out their specific purpose. If models are constructed for different purposes, then it is impossible to compare them. We should be very carelui of saying that one model is better than another unless we are sure that the objectives of both models are the same or can be expressed in common terms.

Optimization

Frequent referenee has been made above to the optimization of the parameters of a simulation model. The present section deals with this problem of parameter optimization. The output predieted by the simulation model will vary with the value of each of the parameters in the model. If the efficiency of the model in predicting the output of the prototype is defined in terms of an objective criterion, then the optimal values of the model parameters are those values which give the optimum value of this defined eriterion of effciency. The choiee between models and the choice of synthesis must necessarily be subjective, but the optimal values of the parameters should be objectively determined. If this is done, we will know (in regard to the application of any particular model to any partieular set of data) that the model is operating at its highest efficiency and thus may be fairly compared with any other model operating at its own peak efficieney for the same set of data.

Optimization is essentially a mathematical idea and is, in a sense, somewhat at varimee with human nature. In our ordinary decisions of life, we "satisfize" rather than optimize. As soon as a certain level of satisfaction or performance is obtained, human judgment is usually satisfied and does not wish to go to complete optimization. In this context, the decision is a correct one because the rffort expended in going from a satisfactory solution to an optimal one maty be very great, and the resulting gain may be very small. Indeed, we make the same derision in simulation when we decide to compromise on a model of a certain degree of compiexity. However, if we are using mathematical
methods and a eligital computer to find values of parameters for our model, then the effort to optimize may not be apprectat)ly greater than that of achieving a certain lavel of performaner and the truly optimal solution has the added advantage of being umique or virually so. There are many eases in applied hydrologr and in hytrologie design in which the corecet decision is to halt the process onee a certain level of aceuracy las been obtained. In seientifie resureh, on the other hand, optimization is neessatry to eliminate as much subjeretivity as posible from the result.

If wo are going to optimize, we can only uptimiar with respeet to some
 whether the optimum has been nbtained. some hydrolegists are convineed that they are sufliciently experioned to optimize by personal judgenent or to opimize be ser if they are explicit in this respert, nobody will be deecived, but very ofter the subjectivity is impleit. Objective ariteria are, howerer, to be prefereed.

If we have chosen a specitie moded, then the predieded estimated outpoe is a funetion of the input and of the parameters of that model. Thus, in the case of a simphe model with hrere parameters, we pould write:

$$
\begin{equation*}
\bar{y}(\lambda)=\phi[x \| b, a, b, c] \tag{S}
\end{equation*}
$$

where x th is the imput, a, b, and c are the parameters of the model, an $1 \hat{y} t=$ is the output predieted by the model. The problem of optimization is to find values oll a, b, and c so that the predieted valuess of $g(t)$ are as close as possible to the measured values of $7 x t$ in some semse to be defined. The most common criterion is that the sum of the sputes of the differences betweron the predieted outpats and the actual outputs will be a minimum:

$$
\begin{equation*}
E\left(a, b, c \mid=\sum_{1}\left(y,-y_{1}\right)^{2}=\operatorname{minimum}\right. \tag{191}
\end{equation*}
$$

Ss an alternative to using a least squates eriterion, we rould adopt the (hebsshev criterion of minimizing the maximum error:

$$
\begin{equation*}
E(a, b, c)=\max \left(\eta_{1}-y_{1}\right)=\text { minimum } \tag{10}
\end{equation*}
$$

In this case, we avoid the oceurrence of ont or two large deviations bee ween predieted outpat and measured output whose presenere might be aecepted in the least spuares criterion, since therir effeet could be smoothed out by a faithful reproduction in the rematinder of the record.

Another criterion which can be used is moment matheng. Wre can say that if a model has the same firs n statistical moments as the prototepe, then the two systems are equivalent in some sense. Actually it can be proved that if the moments of the wo impulse responses are identical up to the $n^{\text {th }}$ moment, then the systems will give identieal outpot for any input which is
a polynomial of the degrese n or kess. Consequenty, a model system with a given mumber of parameters will reproduce the behavior of the prototype for polyomial iapus if the values of these parameters are determined by matching the apprepritare number of moments of the model with those of the prototype:

$$
\begin{equation*}
\mu_{K^{\prime} \cdot \hat{y}}=\overline{=}=\emptyset, a, b, c,=\mu_{R^{\prime}} \cdot y \prime \tag{1111}
\end{equation*}
$$

Where a harge nomber of paramoters are involvel, the mothod of moment matehing is mot suitable beatuse higher order moments berome une liable due Whe the ering offer of errem in the atal of the function on the values of the moments. Fowerer, the mothol of momens has the great value that in cases where the moments of the model system ram be expressed as a simple function of the parameters of the model, then the parameters can be edatively easily therived.
For criteria such as least muares or minman error, diere derivation of the paramens may be far from asy. In ertain caste, it is possible to express the eriterion to minimazed as a function of the parameters. To differentiate this fumener with respect to each parameder in turn, set all the results requal (1) zero and solve the resulting simultaneons cquations to fiod the optimat whe of the parameters. For any but the simplest model, it will probably be simpler to uptimize the parameters be ung a systematie search technique to lime thase perame cer values whing gise the minmum value of the error func-
 discused hater in this semion.

It is oftem neressary to deride wheher we wish to put hounds on the values of the parmoters, Any mole whith when we atempt to simulate the protosper will be based to a greater or lesser degree on our assumptions about the twat une of the physeal presesses in the hydrologie system under investigation. We are then laed with a dilemma if the optimized values of the parameter wi this makd tum ou to be physically unealistic. For example, we might
 monts, Such a madel has two parameters, the storage delay time (K) of the individual wemens and the number of equal rements 1 m .
In analysis of the data bemen mathing migh indicate that bothen and K are negative Similarly, we migh insert into a model of a watershed the Horton infleation cquation and then find on optimeing the parameters that the value of f turns ont to be 1,000 feet per second. Fven though we are interstent in predieting the ouput and the unrealistio parameter values give a gered predietion, we are inelined turyect such watues and pat bounds on the variation of the paramere. This is to bring a subjective element into our simulatim and to import kowtedge from physiral hydrology into parametric hydrolugy. It may or may not be the righ thing io do.

If the restriction ai the paramoter to realistic values does not increase the urror fuetien much abow its minimum value, then it is ecrtamy permissible
to use the model with the restricted range of parameters. If, however, the error function is greatly increased by refusing to allow the parameters to take on unrealistic values, then this may be an indication that the model itself is at fault and sheould be modified or replaced. One consequence of optimizing sub)ject to restraint is that the mathematics (and the computation) become more differut. In an analytical solution, partial derivatives must be replaced be the use of Lagrange multipliers. If the crerer function atad restraints are not linear, we may be involved in monlinatr programing which menns serious computatienal problems. In a systematic seareh techaique, the extra diffeculty createcl by the introduction of hounds on the parameters is not nemary as serious. It is important, however, to remember that the imposition of a restraint ahays results in some loss of optimality. Where the error function does not vary sharply, then the rffeet may not be serious.

As in all computations, our final task is to interpret our results. In the simulation of hydrologic systems, it is dificult to know how mudh meaning shoud be attached to the optimal values of the parameters found. It is probably correct to sty that the answer to this problem depends on the model used. If he model is an extremely good representation of the prototype, then there is a good chaner that the parameters are of physieal significanee, and there is likely to be a cluse connection between the values of these plysieal parameters and the corresponding field parameters of the prototype. If, however, the model is mueh more simple than the prototype, then there is no guaramee that the parameters will correspond to the real physical parameters of the protolype. It may well be that a particular parameter in the model is an amalgam of seyeral parameters in the prototype, but there is no guarantec of this. It may be dangerous to try and give a close physical meaning to some of the parameters found by optimization. It is safer to consider these parameters as the parameters of best fit and be satisfied with a model which does what we require it to do, anmely, prediet the output within a given margin of error.

The optimization of model parameters by a systematic search technique is a powerful approach made possible by the use of digital cemputers. It is, however, not cuile as easy as it might at first appear. If you consider the almost trivial ease of a two-parametri model, then the problem of optimizing these parameters subject to a least squares error criterion can be casily illustrated. We cana imagine the two parameters a and b as measured along coordinate axes and the squares of the deviations between the predicted and actual outputs as indicated by contours in the plane defined by these axes. The problem of optimizing our parameters is then equivalent to searching this relief map for the highest peak or the lowest valley, depending on the way in which we pose the problem. We have to search until we get, not merely a local optimum (maximum or minimum), but an absolute optimum. To examine every point of the plane would be prohibitive even to this simple
example. In using a search technique, we have no guarantee that we will find the true optimum.

The simplest method of searehing is to start at some point on the boundary and travel paralled to the other axis until the aptizum on that line is of taned. The direction of wearch can then be changed to a diretion at right angles to that just traversed and the seareh continued until the optimum atong that lite is chtaned. Again the direction can be changed and the process repented until a point has bern obtaned, which is the optimum in its immediate mighburhoud. There wouk be no gutantw, however, that it would be an ahsohte optimum. This simple methen of searehing turns out on ex amination to be quite inefficient even for a small number of parameters, and more sophistictad terhniguts have been developed 183, 64). Some of these are based on the sterpest desemt methods, which are considerably more reftiven than the univariate twehaigue described above. However, onee more than a few parameters are involved, even the sophisticated gradient methods become indievent rompared with a direct searehterhaique.

We saw that the simphest model for a total watershed would involve at lease four paramoters and that models now being developed and used have more than 90 parameters. Fwen enginers traned in descriptive geometry would fiml it hard to visulize the complexity of the searching technique in such a mutidimensional problem.

A direvt seareh technique basd on Rosenbroek's method (52) was used by Jandy and O'Demnell for the systematic optimization of the parameters of the model shown in figure $7-7$, 3 , 1 . The search through the maltidimensional parameter space was made in a sefuence of stages. In the first stage, an initial set of parameter values wat assumed, and saurches were made along the
 axes was chosen for the seareh, the best direction for the new search being determined from the progress made in the previous stage. During each stage, mowements were made along the new axes subject to their producing an improvement in the objective function and following a specific set of rules about the size and direvtion of movemon atomg the axes. These rules also specified when a stage should end and a now set of orthogonal axes begin. Progress was usually rapid in the first five or six stages but tailed off thereafter. The whole puceses was revitalized by starting a new round of stages with the latest parameter values from the end of the previous round of stages but starting again with the parameter axes as the orthogonal search directions.

It was ensier to ohtain reasomable approximations to the values of some of the parameters than others. If the parameters were initially set with a large error, some of them would be within a few pereentage points of the true value after a single round of stages, whereas others might show little improvement atter 20 rounds, and some might ond up further from their true value. A parameter can only be readily optimized if it strongly affects the output and
 imput for which the model is trated dose not eall a particular paraneder into play, the effere of this paramexter camot be jublated or its salue determined from that particular record. Thf paramotar in question cen take any value over a wide range whout afterifig the objeetive function. Thas, the opseration or even the existene of the parametar for maximum capilary rise in has
 containing a long try spell. Sinee the parameters diffeut to optimize fat the se which do wot after the output for the particular input used, failu\% io fod their vatues will mot ather tho model as a predelor provided it is ared wety for inputs wheth are, by and large, of a similar type to the input userd tor the optimization of the patameters.

There is a great deal mome work whe done befors the eompartion of imuhation models for hyobologie systoms san be pat on a proper objectiog basis. A moxel structure or a set of pammetar values that prodiet pefferiondy for one type of ioput and one type of cribrion of fit may prove guite inoflement Fer mother set of impal thata or another retiterion of predictiom. Wo must be elear at all liones what critrion we are using and what type of output we are Tring to prodict. Tabor a is taken from a paper by bawdy and Thompsen
 tion process. dn attempt was made to fit the model devoroged by Dawdy and
 fakel was to minimize the sums of the squares of the logathems of the ratio of computed to ohserved monthly discharges. As shown in the upper half of table 71 , 心2 triak resaled in the vatues of the objective function. The criterion was then chaged to wo hased on dally discharges rather than

Table: - - L, Restls of three optimizing runs during 1943-4, in Arrogo beco

monthy discharges. The next 360 trink were made on this basis with the resulte shown in the middle of table 7 - . The hast dot trials shown on the bottom half of the table $7-1$ were based on a critorion of peak disehtrges. For cach trial, the vabe of the objeretive function mexting to cach criterion Was evatuated though only the ohjeretive eriterion indieated was used to areareh for the tuptimal values of the parameters.

We can ser from table $7-1$ whether an optimization based on monthe gros ancwhere nete getting the degree of optimization which wouk be ohtained if we concentrated on daty diseharges or on peaks, It cha be sen that optimization hased on monthy disharges qives valuts of the parameters whoh are not wo for from the optimal for daly discharges and that optimigntion based on daily diseharges gives values of the parameters that are not tow far from the optimal for nonthly dishheges. The differenes, though sertons enough, of tut comemose, Howerer, when we compare the value of the objextive funcfion whot the patameres are optimized on the basis of perks with the value when the parmetars are oplimized on the basis of their daily or monthy dixeharges, we lind a tremendons differeme. The criterion for geak matehing can be redued to 0.01 when optimization is based on the perks themselves but only rathes a value of $0 . t!$ for optimiantion hased on monthe and 1.02 for optimization hased on taily diseharges.

These rexhleste axtembly internting when wo consider that what in inwhed here is wot a change of model but meroly a change in where of the pration of ths, whinh is the bexis of the opemization, The model is a retatively complex one, and the paramente used all have delinite physe al implications. Severthers, it is not equable of acting as a genembeprpose model for peaks, daty diseharges, when monthe disehagres. If wo aro only interested in one of thow at a time we eat whent war model parameters acoodingly. It would
 areount sadh al these sepatate objertive in some fashon. The wetghting of the different objertives, heworer, would itsolf tend to be subjective.

There is a seoge for a great deal of work in the fedd of digital simulation. A pete the this should be devoted to a syatmatie explemation of the subject Wing hat masefres syothetie data and syathetic data with controlled error. It should. for example, be pessible we determine Irom the imput and output reoth of a syem whether or mon on or more thresholds oreur in the sestem. It the same lime, another part of the work shoud be concerned with the simulation of field data and the further problems involved.

Analogs and Physical Models

The use di andure and phosieal mokels comes within the serpe of parametrie hydrobley sum these analogs and motels are used to simulate the aetion of the protetype setems. halegs may be divided into two type-indirect
analogs which solve the mathematical equations thought to govern the phenomena, and direct analogs which attempt to simulate the physical behavior of the prototypes by an analogous physical system. Though physical models have been used for a long time in hydraulies, their use in simulating hydrologic systems gives rise to a number of diffecuties which have not as yet been overcome.

As mentioned above, an indirect analog seeks to solve the mathematical rquations which themselves simulate the action of the prototype system. The most widdy used type of indirect analog is the indirect clectronic analog, atso known as an malog computer or a differential analyere. The actual solulion of the problem involves the standard technigues common to the large variety of problems for which the analog computer is suitable. In the use of an indirect andog for hydrologie systems, the key clement is the formulation of the mathematien equations to be solved, or the synthesis of conceptual models whose mathematical equations can easily be written down. This may be illustrated for the case of a very simple eonecptual model consisting of two linear reservoirs in series. Actwally, as will be seen later, this particular model caa be readily represented by a simple direct analog.

Fer the first linear reservoir, the inflow (I) and the oulfow $\left(Q_{2}\right)$ are conneeted by the relationship:

$$
\begin{equation*}
I-Q_{2}=K \frac{d Q_{1}}{d t} \tag{12}
\end{equation*}
$$

where K is the storage delay time of the reservoir. If two such clements are cascaded, that is, are placed in serics so that the output from the first $\left(Q_{1}\right)$ is the inflow to the second, we have for the operation of the second element the selationship:

$$
\begin{equation*}
Q_{1}-Q_{2}=K \frac{d Q_{2}}{d l} \tag{13}
\end{equation*}
$$

where Q_{2} is the outfow from the second reserver. Substitution of the value of Q_{1} from equation 13 into cquation 12 gives:

$$
\begin{equation*}
I-Q_{2}-K \frac{d Q_{2}}{d t}=K \cdot \frac{d Q_{2}}{d t}+K^{2} \cdot \frac{d^{2} Q_{2}}{d t^{2}} \tag{14a}
\end{equation*}
$$

or

$$
\begin{equation*}
K^{2} \frac{d^{2} Q_{2}}{d t^{2}}+\geqslant K^{d Q_{2}} \frac{d t}{d t}+Q_{2}=I \tag{14b}
\end{equation*}
$$

or

$$
\begin{equation*}
K^{2} \frac{d^{2} Q_{2}}{d t^{2}}=-2 K \frac{d Q_{2}}{d l}-Q_{2}+I \tag{Ifc}
\end{equation*}
$$

In setting up an indirect analog for any system, it is wise to follow a basic step-by-step procedure (4). The first step in the basic procedure is to draw a block diagram of the type shown in figure 7-8 for two linear reservoirs in series represented by equation 14. The highest derivative in the differential equation is assumed to be known, and blocks are inserted to integrate it to obtain the lower order derivatives and the unknown function itself, as shown in figure 7-\$. The appropriate terms are then combined by elementary arithematical operations, also shown in the diagram by blocks, to construct the highest derivative in accordance with the equation which is being simulated. Thus, in our case, the first derivative is multiplied by $2 K$ and both the derivate and the unknown function Q are reversed in sign before being added to the original inflow; the sum of these three components is then divided by K^{2} to produce the second derivative.
Since the scalers, adders, and integrators in an analog circuit reverse the sign of the voltage, the block diagram must next be modified to allow for the change in sign; at the same time, the individual symbols for the various opera-

Fiacre T-8.-Block diagram for indirect analog.
tions may be inserted as shown on figure $7-9$. It may be possible at the same time to take advantage of the possibility of combining several operations into one block.
After the block diagram has been modified, an equation is written for each block in the diagram, and the seale factor is determined for each variable in the circuit. This sealing is necessary to avoid overloading any element in the computing eircuit. To do this, it is necessary to have some estimate of the maximum value of eath of the variables. The analog of the system can now be redrawn as shown in figure 7-10 and is seen to require two integrators and one operational amplifier together with the necessary potentiometers. The indirect analog has the advantage of allowing an extremely rapid adjustment of parameters and visual presentation of the comparison of the simulated output and the aetual output. It has great advantages for exploratory work and could be used with advantage in hydrologic investigations. A team at Utah State University has pioneered the simulation of the total watershed response on an electronic computer. The Mark I model contained 46 operational amplifiers, thee multipliers, two function generators, and 192 potentiometers. The Drark LI model contaius additions to the above components together with some nonlincar dements and arrangement for greater fexibility of operation (5t).

There are a variety of types of direct eleetrical analog. They may be classified as continuous direct analogs, diserete direet analogs, or combined direct

Ftaure $7-0,-$ Modified block diagrum.

Figuke i-10. - Indirect amlog for two linear reservoirs in series.
nualogs. They have been used widely in the field of ground water flow (5 , $20,56)$, but there have also been a number of applications to flow in the unsaturated zone (13, 14, 31) and to fow in open channels ($32,38,55$). Two well-known forms of continuous direct electrical analog are the electrolytic tank and Teledeltos resistance paper. These analogs are used in studying the flow through porous media by utilizing the similarity between the differential equations governing flow through porous media and those governing the flow of electrical currents through conductive materials. For exploratory studies, a simple electrolytic tank or Teledeltos resistance paper (or sheets of some other conductive material) may be used. In the case of the elcetrolytic tank, more sophisticated and necurate work is possible in both two and three dimensions. The method can be applied to anisotropic media by means of scale distertion. In the case of eontinuous analogs, every point in the analog simulates the corresponding point in the prototype.

1 Diserete direct analogs have been more widely used in hydrology than the contimuous type. Such diserete analogs are usually discretized only in respect of the space dimension, and time is left as a continuous variable when unsteady fow cases are studied. Such a diserctization is subject to the same types of error as are involved in the representation of a differential equation by its finite difference form.

For problems involving the steady flow of ground water, a complex prototype system can be simulated by a direet analog made up from resistances only. These resistances may be set out in either a symmetrical or an asymmetrical network and may be applied to two-dimensional plane flow, axisymmetrical flow, or thre-dimensional flow. For other types of electrical analog, it is necessary to determine the sealing of the analog earefully.
Unstendy flow problems in porous media can be successfully studied by an
analog network containing both resistances and capacitors ($\mathrm{R}-\mathrm{C}$ network). In such analogs, the electrical resistances simulate the resistance to flow, and the capacitors simulate the storage properties of the aquifer. A discrete direct analog for the one-dimensional linear diffusion equation used to solve land drainage problems is shown in figure 7-11. Two types of R-C network analogs are used. Slow analogs (time constants of the order of 10 minutes) record the solution of the problem on paper charts, while rapid or repetitive analogs (time constants of the order of a tenth of a second) show the solution on an oscilloscope.

Direct electrical analogs based on $\mathrm{R}-\mathrm{C}$ networks have been applicd to other phases of the hydrologie cycle besides the ground water phase. Becruse the flow through unsaturated porous media esm be represented by a diffusion type equation, it is possible to represent this phase of the hydrologic cyele by a similar analog to that used for ground water flow. It can also be shown that a diffusion model gives a very elose approximation to the complete solution of the linearized equations fur unsteady flow in open channels. Consequently, the same type of R-C analog network could be used in this case also. This suggests the possibility of simulating the various subsystems of the hydrologic cycle by the same type of network analog.

Many other types of direct discrete electrical analogs have been applied to surface water hydrology. Some of these were attempts to simulate specific models of the hydrologie process as in the case of the electrical analog of the Muskingum (41) and Kalinin-Milyukov (37) methods of flood routing. Some parts of the hydrologic cycle can be simulated by conceptual models consisting of standard clements, such as distortionless linear channels and linear storage elements. These elements can, in turn, be simulated by a direet electrical analog and the operation of the prototype system studied in this way.

Figures 7-11 and 7-13 show three simple elements which could be used as

Figure 7-11.-Analog for unsteady ground water flow.
building blocks in a direct electrical analog of a hydrologic system or of a conceptual model of that hydrologic system. The element in figure 7-11 represents the typical element used to simulate a diffusion-type equation already referred to. These elements can be linked as shown and as mentioned above, more than one phase of the hydrologic eycle might be simulated by the use of such elements. Migure 7-12 shows the direct electrical analog of a linear storage element and the connection of two such elements in series. The latter arrangement corresponds to the indirect analog for the same system shown on figure 7-10. Comparison of the two analogs shows little similarity between them. Figure 7-13 shows the direct analog circuit suggested by Shen (56) for a distortiontess linear chamel. Such an element could be used as part of a lag and route model or similar conceptual model.

Because any function ean be expanded in terms of Laguerre functions, it can be shown theoretically that any linear system can be represented by an analog system consisting entirely of linear storage elements, though the analog system might need to inelude a large number of such elements connected in scrics and in parallel. If a particular system can be represented by a small number of such elements, then a direct analog with elements as shown on figure 7-12 can be constructed.

The basic types of direct electrical analogs deseribed above can be adapted to deal with special problems. It is possible to combine continuous and discrete elements in the one analog. While the discussion given above is concentrated on the simulation of linearized hydrologic systems, the techniques indicated can be adpated to include nonlinear elements, though this naturally introduces certain complexities and difficulties.

There are a number of other direct analogs besides electrical analogs, and some of these have polential applications in simulating hydrologic systems. The best known nonelectrical direct analog is the Hele-Shaw apparatus or viscous flow analog, which is widely used in two-dimensional ground water investigations. In this type of analog, a viscous liquid is allowed to flow between parallel plat's whose distance apart is about I mm. Properly used, the Hele-Shaw model can be a powerful scientific instrument and not just a piece of demonstration apparatus. Vertical versions of the Hele-Shaw apparatus can be used to study such problems as flow to a parallel drainage system,

Figure 7-17.-Direct annlog two linear reservoirs.

Fiovan 7-13.--Jirect analog for distortionless tinear channel.
while horizontal Frele-Shaw models can be used to study conditions in a largescale aquifer. Another analog with possible applications in the study of ground water systems is the membrane analogy, which has been applied to some problems of flow towards wells.

The fact that still other analogs are available for hydrologic systems is illustrated by the recent development by Diskin (20) of a salt-concentration analogy for flow from a watershed. It would be a grave pity if absorption with the digital computer was to lead hydrologists to neglect the many useful tools available in the form of anologs.
If the space between a pair of parallel plates is filled with sand, or glass beads, we have not a Hele-Shaw apparatus but a sandbox or granular model. Such a devier is more correctly deseribed as a physical model than an analog. Many problems involving the flow in unsaturated and saturated porous media can be studied on such a model (6). The effect of the capillary fringe is relatively larger on such a model than in the prototype, and this may give rise to considerable difficulty.
In the case of unsaturated flow, there are difficulties in the problem of model scaling, but recent work indicates that these problems are being overcome. In one particular version of the granular model, the filling material is glass beads or crushed glass, the walls are transparent, and the liquid used has the same refractive index as that of the glass. This enables themovement of a dye traeer to be followed with ease. Columns of glass beads ar used by soil physicists in the study of the problems of infiltration and percolation of water in the unsaturated zone. These represent idealization of the actual movement
in the suil and as such are atempe to simuhate the prototype soil system on simplifiod physieal moxeles.
l'roblems on the boundery hetwern hydrolegy and wen chand hydraulies
 developerl and widely lestod trednidues are available. The moted of the Atississppi, operated hy the (orps of Fugherers, handere what is essentially
 tarios. The reduetion in the time seale of the model compared with the proto-
 of numerical amputatom objere to the terhnigue of introducing arificial somghnes to mature veribeation of a hydruble model. Surh people sem to forget that the digital simulation of the same problem wises a so-e alled roughmese codiciont which is mom a repository of unknown effects than a roughones factor. In many digital simulations, the vatues of X [amanerg's n aro adjustod both whe stave and along the ehamel wat the required downstream dischares is obsained. Whelleer we simulate an the hedratide model or on a digital enmpure, veribeation is neesesary if our werk is to be worthwhile.
 dofnemible.
. Wh masual model af the hydorologie srotem of Lake Ifofner was tested in
 vestigatod :ad the rexporation from the lake was suceresfully studied on a smatl seale.
 Waterhad. If suell models attemph fo do more then solve purely hydetulic problemes an a latomatory sealde they rom into a great number of difficulties ${ }^{2}$
 both aif labmaty-size eatehmunts and of highly instrumented oudoor "model" "atehments. What has hern reported an far fends to underline the ditiruliter involved in this line ait resemerh. Lt may not be posible to use such

 will yidd extumbly wion data which should hod to a boter understanding
 With s.ram paramotros. Dita from sueh smath-seale haboratory catchments, Which would be intormedite betwern syntherie mathematiet date and field abservations, shend prow extremply aseful for tesing other methods of simulation.

[^12]
Problems on Simulation

1. Discuss one particular typ of simblation in terms of the phases of the simulation promess discussed on bage 150.
$\xrightarrow{2}$. Commst the dilforent mothods of simulation from the point of view of mombener, aceuracy, ath stahility for some part of the hydrologie cerele with which wounce familiar.
2. Appodix table $\begin{aligned} \text { a shows some digital computer data for the linear re- }\end{aligned}$ sponse of the miform ofen shamed. Heprefully, this data will be used to de-

 amalsic would be watable in this particular caso, and how would you ge about applatug it to this parievar problem?
3. Deseribe how the poobem pused in question is migh be whyed by analoge simulatiom.
\therefore I beseribe what wouk be neresone vif the same problem were to be solved by a serists of flame experiments.
4. What criteria of hat are nost rommonly used in deriving empitien exprowions w hat hatrokgie data? What other eritoria coud also be used? Discuss the merits of the diferent eriterta.
5. (ompute the extapmation and potentiad transpiration bex a mamber of formulas fer the data given in Appondix able s. C nder what conditions would Sou exper each empitial formula work lest? (an you draw atagram
 toctoai athe posential transpiration?
\therefore. Diseuss the redationship between tomplex simulation of the snownelt processand formala whang the rate of stowmelf lo degree days.
6. Compare a number of the tetal eatehment modeh whid have been propused in the heraure. What are their common dements and how do they dilfor?
7. Diseus the mothod deseribed in the literature to obtain the optimum parameters for varions modeds of (a) the unit hydrograph, (b) ground water rejpense, and (e) lofal catehment response. Discuss how these melhods might in improved, and wimate the optimum parameters for some sample in lifeature which, in your opinion, have net beron optimized.
8. Dorive a direet and an indiect analog representation for both the Forfon and the lhilip erquations for inflemation.
1.3. Draw up a dassification of the various types of analog and physical models ued in hydrology.

Literature Cited

(1). Monocion. J., : had Espridors, 13.

(2) anditatr. W. L .

 'niversity, Contif.
(i) Aallet. J. R.

(a) fazit. J. : atel scumbiez, J.
 Water Storage stuly. T.AHAL, Terh. Rpt. 29. Tol-, tviv.

:T1 Beaker, A.

 Internath. Assoce. Sci. Hydrol. Bul. XIte): 121-130.
 home axstems mesermatme. Fort Collins Internatomal Hydrology Sympritum. Compt. Rend 1: 9t-to2.
(10)

110
Wisserwittehaft-Wassertech. 18(1): 10-21.
(11) Brexsos, M. A .

(12) Bramiatos. W.
 Res. labl, Rpt. is, is plo, illus, luiversity of New South Wales, Austral,
(1; Bolwar. II.
 two theigation frhrows with an blegtrical hesterance network.

 Soil Sci. Sort Amer. Proc. 23: $01-96$.

 Eugin., Cuhoradn AEMC College. Fort Collins.

(17) ('meny. D. L.

 Shate luiv.. Lagan.

19. ('mow, Vex Tm, ed.

 rersity. Calit.
ten and lossoky. R. K

 Dhot. ('iv. Engin.. Tesh, Rat. 39.210 pp, Stanford Coniversity, Calif.

 Hydrologic Symposinm Proc. Compt. Retal. 1: 3s-4.5, Fort Collins, Colo.
(23) Earktal., M., :m Fox, К. А.

(ご) Fimerint, M.

 Lab. Rat. $\overline{7}$. School of Enginering. Massachusetts Ynstitute of Terhmolurs (ambrige.
(30)

 Nassumbetts Institute of Techoologs, Cambridge.
(31) Hansi, R. J., anm Bowers, ミ, A.
 moximatos with an blecerte smationa. Suil Science Soc. Amer.

(32) Yimberk. J. A.

(:33) Hamms. 1t, [1.

 'Ted. Rept. I, 1:0 mp. Witer Resinures Res. Center. P'urdue Coiversity, Lalbyette, Tul.
:3bl Jomatone. D., :and ('moss. W. P.

(38) Kamsin (i. P'., and lavis. A. (i.

 meansigo stok
 for Selentilic Translation, tobo,

(12) Kishtak. MI. A., and P.uchers, J. D. IT.
1049. Arpmed nymototis. is9 ppo, ilhts. New Vork.
(43) Muts, 1. . A. and others.

(11) Maratas. N. C.. aml Rembar, B. J.
解 $11:-213$.
(4, Nemen, M.
19h7. model of sedmant viend of a mothment. Dept. Civ. Engin. Tech. Rept. a b, Stanford Conersity, Cahif.

(th) Parver, II. M.
 Soc. Civ. Fugin. Jour. 3042): 120-165.
(ti) -al .

(143) Pramas, IT, I.

 H1'DR(0-t, Wamhytes.

 Water lesources Lahoratory, Itah State l'niversity, Logan.

 64: $1273-12 \times 65$
(.5) 'uEN. J.
 Survey lrof. Maper $506-$. . 2.4 p .

 Thet. Water Engin. Jour. 1743i: 2l6-230. London.
(.37) Swom, W. M.
 Tena. Val. (wath. Hydrol. Data Branch. Cinoxville.
 Jutr. Ciephys. Res (int 2): $721-729$.
(69) and trate. J. B.
 Soe. Civ. Fagin., Jour. Hydraulics biv, 91(II 4): $85-99$.
(60) Sisoamana, M.
 Jap. Jour. (eophys 2(4): 1-76.
(61) Tewnesmes Vafley Aiphorits.
1003. A wateu yteld model for andissis of monthby henoff data. Tributary Area Derlpmat. Res. Paper 2, 7 S pp. Knoxville, Tem,
 comrelation. Tributary Area Devlpme. Res. Paper 4. Knoxville, Tena.
(63) WiLde, 1). J.
1964. ormmem semkine mathods. 202 pp . Englewood Cliffs, N.J.
(64) … and Behohtler, C. S.
1963. Folvditions of opmintition. 4 S0 pp. Englewood Clifs, N.J.
(0i) Withlams, E.J.
1969. hegreshion analysts. $21 \cdot 4 \mathrm{pd}$. New York.
(66) WoNc, s , 'l.
1963. A meltipabiate mathetchl modela for predicting mens anncal flood in new england. Assoc. Amer, (Geog. Aim. 3 3: 208-311.
(iii) Woo, 1). ('., Boersma, L., and Stone, l. N.
1906. dymale simelation model of the thassphatos phocess, Water Resourres Res, e(1): $\mathrm{S}, \mathrm{5}-97$.
(iS) … ... Stone. L. N., and Boemsma, L.
196i, a conceptran model of stomata comphon mechanhems. Water Resources Res 2(1): 71-84.
(69) Yepdewich, V. M.
 Chow, Ven Te, ed., Handirook of Applied Hydrology: New York.

LECTURE 8: SYNTHETIC UNIT HYDROGRAPHS

Lecture 8 is laregely devoted to a discussion of synthetie unit hydergraphs as drveloped in classeal hydrology, and then as modifed with the emergence of the systems approath. The lecture is intended to serve the same purpose ior simutation as heture 4 on "Classical Methods of Rumoff Predietion" was intencled to serve for omalysis.

In both chassical hydrolugy and parametric hydrulogy, simulation techniques were first developed line surfaee water hydrology. Thus, in this leeture we will be primarily conerened with the direct storm runofit and its rehationship to precipitation excess. The problem of syuthesis is to devise a system which will operate on am input, $x(t)$, to reproduee the required output, $y(t)$, to a given degres of areuracy: The dream of the applied hydrologist is to be able to forecast direct storm runoff from a catchment map; this means being able to prodict the unit hydrograph from a contoured map (preferably with information on seil types) where no records are available for the derivation of a unit hydrograph.

Types of Synthetic Unit Hydrographs

The standard synthetie proecture has been to derive a series of unit hydrugraphe in some systomatie fashion for watersheds with adequate records and then fo correlate these unit hectrographs in some way with the watershed charactoristies. These correlations are then used to prediet the seale and shape oi the unit hydrograph for some watershed whose chatacteristics are known but for which no records of outfow are available.

In chassical hydrologs, synthetie unit hydrographs devoloped along two matin lines, both of whet converged at the time of the emergenee of parametric hydrology. These two lines of development are shown in figure 8-1. The methods at the left-hand side made the gencral assumption that cach catchment hat a unique unit hydrograph, and those at the right-hand side made the general assumption that all unit hydrographs might be represented by a single curve, or a family of curves, or a single equation.

The first fitie of development ($16,44,45$) derived from the rational method. (see lecture 4, pp. 75-101). About the year 1920 (54), the rational method was modified to inchade the effect of nonumiform rainfall distribution by the use and time-area curve or the timo-area-concentration curve. This modification was, in effect. an attempt to synthesize the response of the watershed on the basis of the characteristics which could be read from a map. By using a contoured map and the Manning formula, it was possible to construet the time-area-concentration curve or the time-area-curve. This was assumed to be

Figure 8-1.-Type of synthetic unit hydrogruph.
the instantanous unt hydrograph (IUH) (or the S-hydrograph) for the watershed involved, thougi the unit hydrograph method was not to be developed for another 10 years. Since, in each case, the time-area-concentration curve was built up from the information available for the particular eatchment, each unit hydrograph was unique. In the 1930's, Zoch (71)-and afterwards Turner and Bourdoin (65) and Clark (9)-assumed that the response of the watershed would be given by routing the time-area-concentration curve through an element of linear storage. In this case also, each unit hydrograph would be unique, but the variation bet seen them would be reduced and differences in watershed characteristies smoothed out to a greater or lesser extent depending on the degree of damping introduced by the storage routing.

On the other hatd, the second line of development tended to ignore variations in watershed characteristies and in the unit hydrographs. Thus, we find in the hydrologic literature a number of curves which are preseated as giving the unique shape of the unit hydragraph. One, by Commons (12) was published in 1942. Unique representations of unit hydrograph shape were also put forward by Williams (69), the SCS (68), and others. These ussumed, in effect, that there is one shape for the unit hydrograph, though in most cases the seale is still left free and the specified shape is given in terms of dimensionless discharges (for example, $q^{\prime} q_{\text {max }}$) and dimensionless time (for example, $t / t_{\text {ponk }}$). Since the volume of the unit hydrograph is conventionally taken as unity, there is only one parameter to be fixed to determine the unit hydrograph. All that is required in this empirical curve approach is to know the time-to-peak, or the peak rate of discharge, and then to use the standard shape of unit hydrograph to determine the unit hydrograph for the watershed. This is in
distinet eontrast to the time-aren eurve mothod where all the watershed information must be useci.

As rurther studies were made of senthetic unit hydrographes, it was realized that a one-parameter mether was wot sufficiently flexible and that twoparameter methods were requared for adequate representation. These would require the use of a family of curves from which the unit hydrograph could be taken. Sinere it is casior to represent a two-parametor moded be an equation Father thate in family of curves, the matural development of this approach wats towards the suggestion of empirion ("puations which woukd represent all mit hydrographs. It is remarkable that people working in many diferent countries all tarned towards the same ompirisal equation for the representation of the unit hydropraph. The indepondence of this dovelomanent is proved by the fact that they expreser this single equation in differenf forms. The equation in guestion wat the fwo-parameler gamma distribution or Pearson typer ILI ompirical distribution.

Nont 15 fats ago, these apparently guite separato lines of devolopment started to appronch one ather, oblly, Nash, and Farrell working in the Lrish ()flie of buble Works found that there was wessontial loss in aceuracy if the rouled timenrea-coneentration curve was roplaed by a routed isosectes triangle tifol. In their early work, this group had followed the approach of (Cark, 9) and laboriously doveloped a time-area-conentration curve lar each entehment and then routed through a linear storage in order to obtain the IlH. It the individual time-area-roncentration curves for matural watersheds could be replaced by isosceles triangles without serious distortion of the resulting unit hydrogmph, this was an indiention that the smoothing of the lincar rasorvoir was such that the individual variations in catchment charneteristies wore romoved by routing. Thus, the line development which started ont by treating every unit hydrograph as unique had been modified so as to represent each unit hydrograph by a two-parameter system, one-parameter being ueded to fix the base of the triange (T) and the other the storage delay time (K) of the linear resorvoir. A somewhat similar approach was adopted by the ACS though, in this case, the triangle was monisoseeles. In our modern terminologs. find the unit hydrograph by routing a triangular inflow through a limear reservoir represents using a coneeptual model for the IUH.

While this development was taking place among exponents of the routed time-area eurve approach, there was a similar development among those who followed the tradition based on empirieal curves and empirical equations. About 10 or 15 years ago, Japanese hydrologists (56,61, 62) attempted to simulate the response of rivers by models consisting of one or two linear storage alements. Following this line, Nash (40) suggested the two-parameter gamma distribution as having the general shape required for the IUH and pointed out that the gamma distribution eould be eonsidered as the impulse response for a raseade of equal linear reservoirs. He suggested that the number of reservoirs
could be taken as nomintegren if neecssary. In this way, the seeond tradition also arrived at at conerptual model but in this case, a different one. The routed triangle had two parameters and generated a family of curves with a particular shape clue to the nature of the model. Similarls, the easeade model had two paramoters- the number of reservoirs n and the storage delay time of cach K-and generated a family of shapes specific to this model.

In 15.59, Dooge attempted to develop a genemal representation of the unit hydrograph based on the Ahskingum method of routing. When this died not prove satisfactory, the assumption was made that the translation and storage elements in the watersheds reould be separated and the action of the watershed represented by linear distortiondess channels and linear storage dewents or reservoirs (/fr). This represented a morer genemal type of conceptual model than the routed triangle of the easeade of reservoiss and, in fact, ineluded the two of them as sperial ceses.

One this stage had heen reached, the way was open for atiempts to represent the unit hydrograph by all types of eoneeptual models. It may be dangerous to think of these comereptuat models as anything more than an attempt to simulate the walershed. Dooge ($/ \sim f^{\prime}$) was quite eonvined that the linear storage colrments whind were part of the proposed gencral model had a real physical moming. Now he is be no means so sure. It may be that a breakthrough in understanding the morphology of watersheds would in the future, allow a close link to be established between the nature of the prototype and the structure of the optimum simulating sestem. Meanwhile, it is saler to think of these models merely as attempts to simulate and to judge them by their performance in doing so.

Time-Area Methods

It is instructive to review the subject of synthetic unit hydrographs from its origins in the time-arem versions of the rational method which were in use even befure the unit hydregraph method was discovered. In this way, we can empare the approaches of the modified rational method, elassical empirical unit hyedrograph methods, and modern methods of parametric hydrology to the same problem and to the various clements of that problem. With the hindsight alforded to us bey our knowledge of unit hydrograph methods and of the newor methods of parametrie lydrology', we can recognize the carlier methods used as specinl eases of the later approneh.

As mentioned in lecture 4 , pages $79-84$, the original rational method was intended for predicting the maximum discharge from a catchment and was not eoneerned with the predietion of the whole hydrograph (7, 34, 40, 48). Later developments of the method allowed for variations in rainfall intensity during the design storm and, in doing so, enabled a full hydrograph of runoff to be developed if required ($11,24,20,28,30,50,54,55)$. Other developments allowed determination of the question of whether a storm centered over part
of the area might not give a grouter prak canoff than one sprad over the whole of the catchment area ($21,44, \overline{0}, 2,53$). Thuse variations of the rational method are summarized as follows:

Ramfall Assumption			
TMpe	- -... m-	-u.-----	Athors
	Arezz	Intensily	
Chassictl rational method.	fol!	uniform	Mulvany (1850)
			Guthting (1880)
			Chamiar (180\%)
			Eloyd-itavies (LDtaj)
'limerama	full	hypothetieal	Ross (192!)
			Runsenip (1027)
			Ornslsy (1932)
			Fiart (1932)
		critical	Hawken (1921)
			Judson (1932)
		typum	Coleman \& Johmson (1031)
			Lturensun (1932)
			Jens (1948)
'Tingent' metirexs.	\|artiat	uniform	Reid (1920)
			Riley (1931)
			Escritt (1950)
			Munro (1950)

La low , Ross (:5) surgested that a hypothetieal stom be derived from the "uree of ramball intensity versus duration and then used in conjunction with the timearea-conequtation diagram to prodict the maximum rate of runoff and, if nerd be, the wholes hydrograph. In an appendix to Ress' paper, Hawken - Sh sugesesed introducing a factor of safoty by shafling the unit periods of ramiall infon mitimal pattern of stom, thet is, one in which the most intense ramiall wouk be emored over the maximum ordinate of the time-areaconerentation curve. the serond most intense rainfall over the second highest urdinate of the purve, and wo on. While the methods proposed by Ross and Fawken dan give sate values for design, they would, of their nature, tend to overestimate the peak rate of runof. In 1931, Coleman and Johnson (11) suggested that the pattem ol the stom rainal be based on typical storms for thes area under investigation.

Geder bertain conditions which arise mostly in urban catehments) the rumof astimated by the rational method for part of the area may exeed the rumolf astimated by the same method for the whok area. Special techniques were devoloped where the rainfall intensity-duration relationship was assumed to be of the form:

$$
\begin{equation*}
i=\frac{a}{b+c t} \tag{1}
\end{equation*}
$$

where i is the average rainfoll intensity; t the duration of rainfall; and a, b, and c are empirieal coeffieicuts. In such cases, the partial arca giving the greatest estimated rumoli can be determined by drawing a tangent to the time-aren curve, thus giving rise to the name "tangent mothod" for such teehniques. Where the rainsell formula is of exponential form:

$$
\begin{equation*}
i=\frac{a}{b^{b}} \tag{2}
\end{equation*}
$$

the crition partial area may be found by the use of a series of overny curves (21, 44). The critical aren may also be tound by locating the intersection of the two eurves given by the time-area-corve (sealed up by a factor of b) and the produet on the time-area-coneentration curve and the time clapsed. These time-area mothods were widely applied in urban hydrology and, to a lesser extent, in the hydrokgy of agricultural watersheds.

The time-aren variations of the rational method (known in the Russian literature as genetie or isochrone methods) were actually crude methods for developing syuthotic unit hydrographs. The hypothetical or typical storm was plotted to the same seale as the time-area-concentration curve, but in one case the time seade was plotted in a reverse direetion. The two curves were then superimposed, and the products of eorresponding ordinates taken and summed together to obtain the runoff at any given time. The runoff for any particular time was obtained by superimposing the zero point of the reversed manfall-intensity curve on the point of the abseissa of the time-area-concentration curve corresponding to the required time. By shifting the two curves relative to one mother, colough points could be determined to give a representation of the whole hydrograph of runoff for the pattern of rainfall intensity used. This, in effect, was a graphical method of carrying out the mathematical process of eonvohtion. The time-area-conentration curve in such methods has the same function as the ItH in unit hydrograph procedures. Thus, the timearem-coneentration curve, however found, was in fact a synthetic unit hydrograph.

If the time-area-conentration curve was based merely ou an estimate of the time of translation over the ground and in channels, then the results obtaned tended to overestimate the peak rate of discharge from the watershed. This was only to be experted sinee the effects of surface storage, soil storage, and chancl storage are all ignored, and the time-area-concentration curve was based purely on translation. In practice, design engineers spon developed ways of aveiding the tedium of constructing a time-area-coneentration curve for cach separate watershed. Where they were interested only in the peak rate of runofit, they developed empirieal formulas for the time of concentration $\left(t_{r}\right)$ and for the eoefficient of runoff (C) in the cquation:

$$
\begin{equation*}
Q=C \cdot i\left(l_{c}\right) \cdot A \tag{3}
\end{equation*}
$$

where Q is the peak discharge, A is the area of the catchment, and i is the rainfall intensity for a duration equal to the time of coneentration, t_{c}, and for the particular frequeney of recurrence raosen for the design. Others derived the time-area-concentration curve but, realizing that their values of runoff were too high, used empirical values for the time of concentration to correct the time scale of the time-area-concentration curve. This was possible because the time ol coneentration is equal to the base length of the time-area-concentration curve, that is, the IEF.

In urban design, rules of thumb for estimating the time of concentration were used. The time of concentration was usually taken by ealcalating the time of traved in the sewer and adding to it an inlet time, which usually is within the range from 5 to 30 minutes. In such urban catchments, the coefficient C^{*} in equation 3 depended largely on the amount of impervious area in the catehment and was also affected by any storage in the system. A typical empirical formula for the value of C was one which related the coefficient of runoff (C) to the number of houses per acre (N) in the following way (21):

$$
\begin{equation*}
C=\sqrt{\bar{N}} / 10 \tag{4}
\end{equation*}
$$

The range of coefficients normally used for different types of urban areas can be found in standard reference books such as the American Society of Civil Engineers " λ [anual on the Design and Construction of Sanitary and Storm Sowers" (1). More sophisticated methods have been developed in recent years for the design of storm water sewers, but the discussion of them is outside the seope of this lecture.

For agricultural catchments, a commonly used formula for the time of concentration is that of Kirpich (31):

$$
\begin{equation*}
t_{c}=0.0078\left(\frac{L}{S}\right)^{0 . \pi} \tag{5}
\end{equation*}
$$

where l_{c} is the time ol eoneentration in minutes, L the length of flow in feet, and S is the ground slope. The coefficient of runoff C may be related to a number of factors by:

$$
\begin{equation*}
C=1.00-\left(C_{T}+C_{S}+C_{s}\right) \tag{6}
\end{equation*}
$$

where C_{T} varies inversely with the slope and has values between 0.1 and 0.3 ; Cs varios between 0.1 for a tight clay and 0.4 for sandy loam; and C_{6} varies with the vegetal cover botween 0.1 for cultivated land and 0.2 for woodands. These remarks on the rational formula are nade not as an encouragement to its use but as a background against which to judge the further development of syathetie unit hydrograph methods.

As indieated on figure 8-1, the time-area methods were, for unit hydrograph purposes, replaed by a method in which the time-area-coneentration curve was routud through a linear reservoir. Zoch (71) put forward a general physi-
eal theory of streamfow based on the assumption that, at any time, the rate of discharge was proportional to the amount of rainfall remaining within the soil at that time. He amalyed runoff due to a unifurm rainfall of finite cluation and obtained the equations for four separate segments of the hydrograph. Zoch solved these equations for two simple cases-a rectamgular time-areaconcentration curve and a trianguar timearea-conemtration eurve. He pointed out that the extension to the general ease would involve the integration of a function of the type:

$$
\begin{equation*}
\phi(x)=w(x) \cdot \exp (\kappa x) \tag{7}
\end{equation*}
$$

where $e(x)$ represents the time-aren-concentration curve and K is a constant. He suggested the ase of series approximation or numerieal integration.

Horton ($2 \sim$) introcluced the iden of the virtunl chanad inflow graph. This was an attempt to derive from the outfow hydrograph a simple form of inflow hadrograph which when routed through a linear reservoir would give the outfow graph. The start of the chamel inflow was taken at the same time as the start of chanom outflow and the cod of chanud inflow at the time corresponding to the point oi contraflexare on the recession limb of the outflow hydrograph. This, in fart, represented the estimation of the time of eonecntration from the outfiow hydrograpl. Beenase of the further assumption of routing through a single storage element, the recession limb of the virtual channel inflow graph had to pass through the peak of the outfow graph. The only remaining condition was that the volume under the iufiow and outflow hydrographs slould be the same.
Clark (9) suggested that the unit hydrograph for instantaneous rainfali could be derived by reuting the time-area-conerntration eurve through a single riement of linenr storage. Physienaly, this is "quivalent to Zoch's formulation, but the efgutions are simplified by reducing the rainfall duration to zero and rephacing the numerienl integration of the term in equation (9) with the reserwoir routing procedure. The Zoch-Clark method elearly represented an advance over the timearen or isochrone methods, which ignored stomge afferts and only took account of variations in the time of translation to the outlet. The allowane for storage throughout the catchment by a single reservoir at the outiet sems a highly simplifying assumption but, nevertheless, a step in the right dieretion.

As mentioned carlier in this lecture, O'Kelly and his coworkers (49) replaced the time-aren-eoncentration curve by an isoseeles triangle and thas produced the IUH by routing an isoseeles triangle through a linear reservoir. This was, in effect, a eombination of the Zoch-Clark approach with Horton's virtual chanmel intlow graph.

The methods of Zoch, Clark, and O'Kelly only became synthetic unit hydrograph methods in the real sense of the term when empirical relationships bof ween some of the parameters of the proeess and the catchment characteris-
ties wore derived. An mpirical relationship is required which correlates the base of the timeareateoneentration dingram (that is, the time of eoncentration) to catchment characteristies. Exeept in the ease of ()'以elly mothod, some method is required for estimating the shape of the time-area-eoncentration diagram itsell onee the base leagth has been determined. Fiatly, a mothod of estimating the storage fuetor (k) must be preseribed. In the case of a guged catchment, the value of the storage constant k can be estimated from the recession of the hydrograph. In the absence of reeords of storm runoff the hatter method cmanot be used.

Jo'nstone (29) using the Clark method derived relationships based on 19 eatchments with arms betwoen 25 and $1,624 \mathrm{sq}$. mi. in the Seotie and Sandusky River busias. Johnstone proposed the following relationship for the base of the time-aren-conematration curve:

$$
\begin{equation*}
t_{\mathrm{c}}=\frac{4.7}{r^{2}}\left(\frac{L}{S}\right)^{0.5} \tag{8a}
\end{equation*}
$$

where t is the base of the time-area-concenteation curve (that is, the time of concentration) in hours, L is the lengtl of the prineipal stream in the catchment in miles, is is the average slope of the man stream in feet per mile, and r is a bratuching factor based on the stream pattem. Johnstone found that there was little loss of acruracy in neglecting the branching factor and writing,

$$
\begin{equation*}
t_{\mathrm{c}}=5.0\left(\frac{L}{\sqrt{5}}\right)^{0.5} \tag{8b}
\end{equation*}
$$

where the terms have the shme meaning as in equation 8 . Johnstone also derived an empirimal expression lor the storage delay time (K) which is the ratio of storage to outfow for the linear reservoir through which the time-areaeomentration curve is rauted. On the basis of the catchments studied by him, he proposed the fullowing empirical rebtionship for the storage delay time K :

$$
\begin{equation*}
K=1.5+90 \frac{A}{L R} \tag{8c}
\end{equation*}
$$

Where A is the area of the entehment in square miles, L is the length of the main stream in miles, and R is an ovarland sloper factor in foet per mile estimated by phacing a square grid over the contour map and counting the number of intersections of contour lines and grid lines.

Eaton (19) did a smilar comelation study for seven Tasmanian rivers with cateloment areas varying from 48 to 322 sq. mi. He estimated the base lengths of the time-area-conentration diagram to be given by:

$$
\begin{equation*}
t_{\mathrm{c}}=1.3 \overline{5}\left(\frac{A L}{r}\right)^{0.37} \tag{9a}
\end{equation*}
$$

Where t_{e} is the bass of the timearen-conentrixtion curve in hours, A is the
catchment urea in square miles, L is the length of the main channel in miles, and r is a branching factor varying between 1.0 and 2.0. Eaton's use of a branching factor rather than a slope factor ean be explained by the lack of contour maps for the region studied. He found that for five of the seven basins the storage constant K was acecquately detined by:

$$
\begin{equation*}
K=1.2\left(\frac{A^{2}}{L^{2} r}\right)^{1 / 3} \tag{9b}
\end{equation*}
$$

where K is the storage delay time in hours and the catchment factors are defined lor cequation 9 a.
()'Kelly (49) presented results for 10 catehments in Ireland ranging in area from 56 to $366 \mathrm{sq} . \mathrm{mi}$. In his paper, the results are reduced to a standard eatchment area of 100 sq . mi. by assuming a hydrologic time-scale factor based on one-fourth root of the aren and then expressed graphically as a function of the overland slope.

In a diseussion of O'Lelly's paper, Dooge (15) indicated that a logical atension of the idea of a model catchment (based on Froude similarity) would be to cxpress the base of the isoseches triangle (T) as:

$$
\begin{equation*}
T=a \frac{A^{1 / 4}}{S^{1 / 2}} \tag{10a}
\end{equation*}
$$

where T is the base length ol the inflow triangle in hours, A is the catchment area in spuare miles, s is the slope in parts per 10,000, and a is an empirical constant. For the values of T derived by O'Kelly (49), the parameter (a) varied from 1^{n} at a slope of $10 \mathrm{in} 10,000$ to 14 at a slope of 500 in 10,000 . On a similar besis the values of K could be expressed as:

$$
\begin{equation*}
K=b \frac{A^{1 / 4}}{S^{1 / 2}} \tag{10~b}
\end{equation*}
$$

where K is the storage delay time of the linear reservoir in hours, b is an mpirictal constant, and the other factors are as for cquation 10a. For the values of K derived by Othelly, b could be taken in equation 10 b as varying from 13 for a slope of 10 in 10,000 to 10 for a slope of 500 in 10,000. Dooge ${ }^{\text {e }}$ also dorived the rolationship:

$$
\begin{equation*}
T=2.58 \frac{A^{0.41}}{S^{0.17}} \tag{11a}
\end{equation*}
$$

based on a lanst squates analysis of O'Felly's data and his estimated values

[^13]of T. In equation Ina, A is the catehment in square miles and S is the overhand slope in parts per 10,000 . A least squares analysis of the values of K derived by O'Kelly gives:
\[

$$
\begin{equation*}
K=100.5 \frac{A^{40.92}}{S^{0.70}} \tag{I1b}
\end{equation*}
$$

\]

where K is the storage delay time in hours, A is the area in square miles, and S is the slope in parts per 10,000 .

Empirical Expressions for Unit Hydrograph Parameters

Wr now turn to a review of the empirical line of development of synthetic unit hydrographs based on the representation of all unit hydrographs by a single curve or a family of eurves. The procedures based on this approach follow a standard pattern in nearly all cases. A number of unit hydrograph parameters are chosen as the basis for defining the unit hydrograph.
At the same time, a number of catehment characteristics are chosen which are thought to have the strongest influence on the shape of the unit hydrograph. For a number of catchments with adequate records of rainfall and runoff, unit hydrographs are derived and the values of the unit hydrograph parameters determined. These are then correlated with the chosen caiciment characteristics. This correhtion can then be applied to the catchment characteristics of a catchment without adequate runoff records in order to estimate the parameters of the unit hydrograph for such a catchment. The latter parameters are then used to derive the full unit hydrograph by using a standard shape of unit hydrograph or by using additional relationships between the basic unit hydrograph parameters and other features of the unit hydrograph.
In the time-area methods reviewed in the last section, we discussed first the shape of the unit hydrograph (that is, the time-area-coneentration curve routed through a single linear reservoir) and after this the empirical relationships by means of which the catchment characteristics could be used to estimate the two parameters required, that is, the base of the time-areaconcentration curve (t_{c}) and the storage constant characterizing the linear reservoir (K). In dealing with the second line of development, the order of discussion will be reversed. In the present section, we will discuss the empirical rehationships between the unit hydrograph parameters and the catchment characteristies, leaving until the next section the question of the shape of the empirical synthetic unit hydrograph. In this review of empirical methods, attention will be coneentrated on the main lines of approach, which will be illustrated by examples. No attempt will be made to list all methods or all features of the methods mentioned. Those interested in the latter can read
details of procedures in the original papers that are referenced at the end of this lecture.
As mentioned above, the first two steps are the choice of unit hydrograph parameters and catchment characteristics. Three types of unit hydrograph parameters are used-time parameters, peak discharge parameters, and recession parameters. There are a targe number of time parameters used in unit hydrograpla studies, the most important of which are shown on figure 8-2. In this illustration, D is used to denote the duration of precipitation excess, which is assumed to occur at a uniform intensity over this unit period. Common time parameters used to characterize the outfow hydrograph are: the time of rise $\left(t_{r}\right)$, that is, the time from the beginning of runoff to the time of peak discharge; the time of virtual inflow (T), that is, from the begiming of runoff to the point of contrafiexure on the recession limb of the outflow hydrograph; and the total ruwof time or base length of the unit hydrograph (B). The common time parumeters used to connect the precipitation excess and the hydrograph of direct runoff are: the lag time (i_{L}), that is, the time from the conter of mass of precipitation excess to the center of mass of direct runoff; the lag to peak time (t_{p}), that is, the time from the center of mass of effective rainfall to the peak of the hydrograph; and the time to peak ($t_{p}{ }^{\prime}$), that is, the interval between the start of rain and the peak of the outflow hydrograph.

Figure \&-2.-Unit hydrograph parameters.

One of the most important factors in surfaee water hydrology is the delay imposed on the precipitation rexess by the aetion of the eatehment. If the parameter representing this delay is to be useful for eorrehation studios, it should, if possible, be independent of the intensity and daration of manfall. In the ease of a linear system-and unit hydrograph theory assumes that the sysem under study is linear- the time parameters are independent of the intensity of precipitation exeess, but only the lag time (t_{L}) has the property of being independent of both the intensity and the duration. Aceordingls, with the hindsight given by the systems approach, we can say that only the lag time should be used as a duration parameter in unit hydrograph studies.

In reghed to discharge parameters, the peak discharge ($q_{\text {max }}$) is almost invariably used when sueh a marmetor is required. Another parameter, which ean be estimated for a dorived unit hydrograph, is the time parameter K, wheh characterizes the reession of the unit hydrograph when this recession is of declining exponentinl form. In suth eases, the unit hedrograph may be consideted as having been routed through a linear reservoir whose stomag delay time is K. If the recossion can be represented in this form, a logarithm of the diseharge ploted against time will give a st might lime, and the value of K can be stimated from the slope of this line. Allematively, the value of K may be determined at my print on the reeession curve by dividing the remaining outflew after that point by the ordinate of outfow at the point. Other parameters used to characterize unit hydrographs are the values of W-50 and W-70, wheh are the width of the unit hydrograph for ordinates at 50 pereent and 75 pereent of the poak, respertively.

Nash (46.47,4S) suggested the use of the statistien moments of the IUH as the defermining parameters of the unit hydrogroph. The first moment C_{1}^{F} is equal to the lag of the IUH $/ \mathrm{L}$. For higher moments, Nash suggested the use of the dimensiondess moment factors obtained by dividing the moment of any order about the enater of area by the first moment raised to a power correpponding to the order of the moments. Sash showed that the moments of the zuit hydrograph could be derived lrom the moments of the precipitation excess and the moments of the direct runofl without the necessity of deriving the unit hydrograph itself.

The second stage in the standard procedure is the choice of catehment characteristies. As might be expected, all procedures involve a seale factor, but a variety of sate factors is used. The simplest scale factor is to use the area of the eatchment itself (A). Others commonly used are the length of the main channel or leagth of highest order stream (L); the length to the center of area of the catchment ($L_{c c}$); or for small eatchments, the length of overland flow (L_{0}). Where only one catchment characteristic is used (in a one-parameter model), the eatehment characteristic used is always a length or area parameter.

A review of synthetic unit hydrograph proedures reveals slope as the second most frequently used catchment characteristic and, thercfore, if the
applied hydrologists have ehosen wisely, the second most important catehment characteristic. Sinee slope varies throughout a watershed, a standard definition of some representative slope is required. The slope parameters most often used are the average slope of the main chanuel or some average slope of the ground surface. The measurement of average slope parameters usually iavolves tedious computations (10,60).

Athough area or stream length and chamel slope or ground slope have been used amost universally, there is no agreement about the remaining paramcters. The shape of the eatchment must have some elfect, but there is such a varicty of shape factors to choose from-horm factors, circularity ratios, clongation ratios, leminisenter ratios, and others-that the lack of uniformity is not surprising. Another factor which must affeet the hydrograph is the strem pattera. This may be represented by drainage density or stream freguency or some such parameter.
Although parameters representing mean characteristies must have a primary influence, the variations in certain characteristics from part to part of the watersined will give rise to secoudary parameters, which may not be negligible. Thus, linving taken area aud slope into aceount, the third most important parameter may well be variation of length or of slope rather than shape or draingere densits: The ehoie of catchment characteristies for correlation with unit hydrograph parameters will remain a subjective matter until we have a deeper knowledge of the morphology of natural catehments. The latier is a vital subject for modern hydrology. If we neglect the study of geomorphological proeesses to eoneentrate on mathematical manipulations which have no phesical foundations, then the whole progress of hydrologe may be impeded.

Having derided on the unit hydrograph parameters and the catchment characteristies, it is nevessary to correate the two. In most methods used in chasical hydrology, the correlation has been one of liucar regression. It may be that the use of factor analysis would reveal signifieant groupings of entehment characheristics. If the same or similar groupings appeared in a number nif difierent regional studies, the eatehment parameter thus indicated could be tentatively nssumed to have general validity and could be used consistently in a variety of studies. The use of such general parameters might disimprove shighty the degree of eocredation between unit hydrograph parameters and eatehments characteristics for each individual study, but it would make the various studies remparable with one another and point the way towards general laws of eathment bebavior. It is uncertain, of course, whether the extra insight gained would be worth the extra work involved in following this particular line.
li. the same year in whirh he published his classical paper on the unit hydrograph ($\tilde{\sigma}^{\sim}$), Sherman published nother paper (5S) in which he proposed that lor a eatchment without records a unit hydrograph be transposed from a patchment of similar characteristics but with alf the time factors adjusted in
proportion to the square root of the ratio of the two areas. In the following years, a large variety of synthetic models were suggested which involved correlations between catchment characteristics on the one hand and the unit hydrograph parameters (or in some cases selected ordinates of the unit hydrograph) on the other.

The most important of these were those proposed by Bernard (4), XeCarthy, ${ }^{2}$ Snyder (59), Morgan and Hullinghorst, ${ }^{3}$ Mitchell (41), Taylor and Schwartz (63), the Bureau of Reclamation (66), and the Corps of Engineers (6\%). Probably the most widely used method for synthetie unit hydrographs is that proposed by Suyder, which has since been adauted by many workers for their own needs. This method will be discussed briefly below and comparative details of the other methods ean be read in the references indiented above, details of which are given at the end of this lecture.

Snyder's work ($\overline{\sigma 9}$) was based on data from 20 eatehments in the Appalachians. He took as the basic unit hydrograph parameter the lag time to peak (l_{p}) defined as the interval in hours between the center of rainfall exeess and the peak of the unit hydrograph and took as the basic catchment characteristic the product of the length of the main chanel in miles (L) and the length from the outlet to the center of area of the catehment in miles $\left(L_{\mathrm{cu}}\right)$. Hes suggested that the unit hydrograph parameter and the catchment parameter could be comected by:

$$
\begin{equation*}
t_{p}=C_{t}\left(L L_{c a}\right)^{0.3} \tag{12a}
\end{equation*}
$$

Having determined the time to peak of the unit hydrograph, Snyder assumed that the recession from peak to zero flow took 3 days. He derived the base length of the unit hydrograph from the formula:

$$
\begin{equation*}
B=3\left(1+\frac{t_{p}}{24}\right) \tag{12b}
\end{equation*}
$$

where B is the base length in days and t_{p} the time lag to peak in hours. Snyder related the peak of his unit hydrograph to the lag to peak already determined by the relation:

$$
\begin{equation*}
q_{\max }=640 \cdot \frac{C_{p}}{l_{p}} \tag{12c}
\end{equation*}
$$

where $q_{\text {max }}$ is the unit hydrograph peak in cubic feet per second per square

[^14]mile, l_{p} is the time to penk in hours, and C_{p} is a coefficient that takes account of the flood wave storage effered in the ratehment.
For the catehments which he studied in the Appalachians, Suyder found C_{t} to vary between 1.8 and 2.2, and (${ }^{2}$, to vary between 0.56 and 0.60 . Snyder used a standard duration of ramfall (D) such that:
\[

$$
\begin{equation*}
t_{p}=\overline{5} . \bar{\delta} D \tag{12d}
\end{equation*}
$$

\]

and the poak of the unit hydrograph had to be adjusted for other rainfall durations. In his origimal paper, Suyder ($\overline{\sigma 9}$) published a diagram for deriving the et-hour distribution graph, but this was not adopted by fater workers who used his basie method.

A number of stbsequent workers used Snyder's form of relationship betweon the lag time to peak and the eatchment length parameters. Linsley (39) found the value (' varied from 0.7 to 1.0 for catehments in the Sierra Nevada. The Corps of Enginees (6) found values of the same parameter varying from 0.4 in southern Califormia to 8.0 for States bordering the Gulf of Mexico and reemmended that the value C_{t} be determined in a given ease from ncighboring or similar eatelmonts. The Corps of Engineers investigations indiented that the value of C_{p} eould vary from 0.31 in the Gulf of Mexico States to 0.9.4 in southera California.
In general, the empirical methods for synthetic unit hydrographs tended to adopt a correlation equation of the general type:

$$
\begin{equation*}
t_{L}\left(\text { or } l_{p} \text { or } t_{p}{ }^{\prime}\right)=\frac{C L 4)^{\mathrm{a}}}{S^{b}} \text { or } \frac{C\left(L L_{\mathrm{ca}}\right)^{a}}{S^{b}} \tag{13}
\end{equation*}
$$

The values of the exponents and the coeffeients varied as might be expected. For example, Nitchell (4) m his study of 58 Illinois streams found the lag rime in hours (i_{L}) could be related to the area in square miles (A) by:

$$
\begin{equation*}
t_{L}=1.05(A)^{8.5} \tag{14}
\end{equation*}
$$

and that the slope did not improve the correlation substantially. This result becomes understandable when we realize that, for the catchments studied by Mitehell, the coefficient of correlation between area and slope was of the order of 0.9 .
Some of the synthetic unit hydrograph methods resemble Snyder's in that there is only one correlation with catchment characteristics. If a fixed shape of unit hydrograph is used, then the synthetic unit hydrograph method is a one-parameter method. If, however, a further degree of freedom is introduced by using a relationship between unit hydrograph parameters involving an adjustable coefficient, as in the case of equation 12c, then the metho will become a two-parameter onc. In other cases, such as the method proposed by Taylor and Schwartz (64), there are two independent correlations of unit
hydrograph parameters with catchment parameters and again in this case, we: have a two-parancter method for deriving a syathetic unit hydrograph.

Empirical Shapes for the Lnit Hydrograph

Whea unit hydrograph parameters have beon determined, it is still neessary to derive the complete unit hydrograph. It the time-te-peak, the paak diswhrge, and the base length of the unit hydrograph are known, then we know three points on the unit hydrograph, and a curve ran be sketehed in by tral and error to pass through thess three points and to have the requisite ara. A number of authors have suggested particular shapes of dimensionless unit hydrographes or of S -curves which can be used to determme a complete unit hydrograph or s-curve, once a single parameter has been determined. Examphes of such standard shapes are these deseribed be Langbedn (35̈), Commons 122) , the Burenu of Rechamation (661, the SCS (6S), Wiliams (69), and Bender and Roberson (3). Sinee a single curve is used to represent all unit hydrographs for all wit hydrographs within a given region, or all tmit hydrographs within a given range of watershed size), it is only neecessary to determine one parameter from the cotchment characteristies to fix the scale of the artual unit hydrograph.
If it is desired to introdure more fexibility into the empirical approach, it would be neressary to develop a family of curves to represent the shape of the mit hydrograph. In this cast, it would be necessary to derive two unit hydrograph parameters from the eatehment characteristics. However, if we whoh to synthesize unit hydrographs with two parameters, that is, with two degrees of frectom, then it is mom convenient to use an empirical equation rather than ompirical curves to reperent the syothetic unit hydrographs.
The first suggestion of an mpirical equation to fit the unit hydrograph appeats to have been made by Edsen 120 . He argued that the time area curve for a catchment would have the gemeral parabolie form:

$$
\begin{equation*}
A(t) \propto t^{a} \tag{15}
\end{equation*}
$$

and that the valley storage aets as a reservoir so that the discharge with time decreases exponomially:

$$
\begin{equation*}
Q(t) \times c^{-b t} \tag{16}
\end{equation*}
$$

Edson argued that both offects operate throughout the hydrograph and therefore that the combined effects could be written as:

$$
\begin{equation*}
Q(t) \propto t^{a} e^{-b t} \tag{17}
\end{equation*}
$$

which ean be normalized and written as:

$$
\begin{equation*}
Q(n)=c \cdot \frac{b(b t)^{a} e^{-b t}}{\Gamma(a+1)} \tag{18}
\end{equation*}
$$

where Q is the diseharge per unit area, t is the time, (is a constant depending on both the volume of inflow and the units used, and a and b are the parmeters determining the shape of the unit hydrograph. The reasoning used by Fdson (20) to arrive at eruation 18 is latulty, beeause he uses ordinary multiplication insterad of eonvolution to represeat the efiect of storage on the timearea curve. Nevertheless, he arrived at a form of the IDH.

Same vears later, Japanese workers in hydrobogy (ob, ot, be) based the form of the L'H on a eonceptun model eonsisting of herar reservoirs and used tis its cquation:

$$
\begin{equation*}
h_{0}(t)=\left(a_{0}+a_{t} t+a_{2} t-\right) \operatorname{sxp}(-\lambda t) \tag{19}
\end{equation*}
$$

Pollowing this Nash (fot) suggested the model of a easeade of equal haner reservirs wheh gave the equation of the unit hydrograph as:

$$
\begin{equation*}
h_{0}(l)=\frac{1(k)^{n-1} \exp (l h)}{\mu \ln (n)} \tag{20}
\end{equation*}
$$

Where houl is the ordmate of the IVH, n is the number of reservoirs, and K is the storage delay time of emeh of the resorvoirs. Xash suggested that in fitting mation 20 to unit hydeographe, the value of n ared not neesessarily be
 mationl function to fit darived anif hedrograble and to syathesize further hydregraphs.

The funtion represented be equations 18 and 20 (which are obviously equavalents is variously kuown in the hydrologieal literature as the "gamma distribution" or "Nash's model." It is the same as the Pearson Type III mpinical distribution used in statisties, wheh is commonly written in the form:

$$
\begin{equation*}
f(x)=K\left(1+\frac{x}{a}\right)^{\mu} \operatorname{xp}\left(-\frac{m x}{a}\right) \quad-a<x<\infty \tag{2la}
\end{equation*}
$$

or

$$
\begin{equation*}
f(x)=\frac{1}{\Gamma(\lambda)} x^{x-1} e^{-x} \quad 0<x<\infty \tag{21b}
\end{equation*}
$$

sequation 21 is charly equivalont to equations 18 and 20.
The shape or distribution requesented by equation 20 , or the equivalent equation dS, is a twoparameter distribution, K (or b) boing a seale factor and a wor at being a shape factor. 'lhus, for eomplete syonthesis, it would be necessary to have two independent relationships between the two parameters of the gatman distribution and fwo independent catchment chameteristies.

[^15]Edson suggested the direet use of the paramelers for correlatom purposes, and this has been done by some later workers. Nash prefered to use the first moment about the origin the lag) and the serond moment about the center for comenation. Since these moments can be expressed as very simple expressions involving the parameters n and k, the values determined by one type of corvhtion can, in practice, masily be converted to the other. Fxamples are given in the next seetion of the correlation of gamm distribution parameters with eatchment characteristios as derived by Nash (f) and Wu (ro). As mentimed above, the gamma distribution has heen widely und in hydrologic studies.
The model developed by TYA (ay) uses an empirical equation which essentinlly involves a time transermation of the gamma distribution. It is given by:
where

$$
\begin{equation*}
w=\binom{a+1}{m} \tag{22b}
\end{equation*}
$$

where a, b, and m are parameters. When m has the value of 1 , equation 22 redures to the fom of equation 18. The transformed gamma distribution given by cemation e2 has bern used in storhasid hydrology by kritskii and Menkel (32:.

Other mathematical equations have been propesed for the representation of the form of the unit hedrograph, but now of them have bere tested as widely as the wamma distribution. Decoursey (b) has proposed the use of the gamma distribution as far as the ponat of eontratexure on the falling leg of the unit hydrugraph and then the use of an exponential recession from that point on. Brakensisk (6) has reecontly proposed the use of a unit hydrograph of the form:

$$
\begin{equation*}
q_{n}^{q_{n \times}}=\binom{i}{t_{p}}^{-n} \operatorname{cxp}\left[-2 n\left(\sqrt{l_{p}}-1\right)\right] \tag{23n}
\end{equation*}
$$

which cat also be expressed as:

$$
\begin{equation*}
h(t)=\frac{1}{2 k} \operatorname{sxp}[-\sqrt{K}] \tag{23b}
\end{equation*}
$$

and can be shown to be equivalent to a Pearion Type V empirical distribution with a sumere root transfomation of the time seale. It has two parameters; hence, the problems of fitting and correlation would be essentialy the same as for the gamma distribution.

Conceptual Models of the Unit Hydrograph

In the preeding sections, we have traced the devolupment of synthetic unit hydrographs along two different lines. We have seen, as outlined on figure 8-1, that the line of development based on the time-area diagram led to the conceptual model of routing an isosedes triangle through a linear reservoir and that the line of development based on purely empirical relationships fed to the ase of the gamma distribution, which Nash (48) showed to be equivalent to the conceptual model of a cascade of coual linear reservoirs. Withia recont vears, attention has been conentrated on the simulation of the direct response of eaterments by coneeptual models.

For a conceptual model to be an adequate tool for synthesizing unit hydrographs, it must provide a convenient method for predicting the shape of the unit hydrograph, and a relationship must also be established between the basic parameter of the eoneeptual model and the catehment characteristies. For any coneeptual model, we can relate such unit hydrograph parameters as the lay $\left(t_{L}\right)$, the time to peak $\left(t_{n}\right)$, or the peak discharge ($q_{\text {was }}$) with the basic parameters of the model. Hene, it shoutd be possible to combine a coneeptual model with any of the empirieal relationships between unit hydrograph paraneters and catchment characteristics (some of which were reviewed in an marlier seetion), which have bem derived independently of any conceptual mosled. Because we are dealing with synthetic unit hydrographs in this lecture, we will coneentate ou comeeptual models of linearized systems but will indieate, where appropriste, the way in which the approach can be extended to cover the simulation of aonlinear systems.

The use of conceptual models is quite explicit in a paper by Sugawara and Alaruyama (60) published in 1956. Starting with the case of a river where the wit hydrograph eould be approximately represented by a negative exponential function, the authors developed a emerptual realization of the system operation in the form of an oper vessel filled with water. The water discharges through a capilary tabe at the bottom, thus giving a linear relationship between ouffow and slorage in the vessel. They then attempted to model the behavior of certain rivers by means of the sum of several exponential components, that is, by using several different vessels with different storage eonstants arranged in parallel and taking different proportions of the inflow. By placing the capilhary at a level higher than the bottom of the vessel, the threshold effect of initial storage satisfaction could be simulated. (Further) conerptuat elements ued were vessels tapped by capillaries at a number of points, whieh produced a segmented limear storage-discharge relation that could approximate a noninear relationship and, henee, simulate a nonlincar system.
Shortly afterwards, Nash (40) published his work suggesting the gamma distribution as the appropriate equation for the IUH. He derived this equation by considering the effect of routing a deita function through a cascade of
cqual lincar reservoirs. For n such reservoirs in series, the impulse response of the caseade t that is, the discharge from the last reserveir for an δ-function input to the first) takes the form of equation 20 , where K is the storage delay time in rach reservoir and n is the number of renervoirs. Nash suggested that this "guation rould be gencralized and n allowed to take momintegral values.

Aash also gave heuristic arguments lor bolieving that for a caseade of unEqual linear reservois, the shape would not differ greatly from that given by equation 20. His arguments suggested that for a given value of the dimensionlews serond moment (my), the dimensionless third moment (m_{5}) for a casende of unceuad linear rewervoirs would lie between the value for a enseade of equal limen reservoirs, that is, $2\left(m_{2}\right)^{2}$, and the value for the combination of a linear whand and a lineme reservir in series, that is, $2\left(m_{2}\right)^{2} \because$ For $m_{2}=0$ or 1 , the values of m_{3} are seen to erimede, and it cen be readily verified that for values of m_{2} bel wern 0 and 1 the lines forresponding to the two limiting cases condose a comparatively narrow region of the $m_{3}-m_{2}$ phane.
 the unit hyedrograph. The argument was made that sine the unit hydrogeaph only existed for a linear system or a linearized sustem, a general model of the unit hydrograph could contain only linear dements. As mentioned previously; when we wish to simulate we must first make up our mind about the eype of simblation and then ahout the components of our model. In this cass, it was deedided to use as compenonts of the model only linear distortionkess chamels and linear storage elements. In an actual waterslede, the inflow at any point travels through the system to the outlet and in cioing so is subject to both translation effects and sterage or attemation effects.
The assumption made in Douge's conceptunl model ($/ \gamma$) was that these two effects could be completely separated from one another. The effects of translatim in difierent parts of the catchment were considered to be lumped together and represented by lincur channds, whereas the storage affects in the various parks of the eatedment were lumped together and reperesented by linear reservoirs. Bibee the model is a linear ane, we have the full advantage of superposition and the operations may be earried out in any order. Sinee linear chamels merely delay an infow without distorting it, any number of linear channels can be comereded together to form one linear chamel. Similarly, the areder of the linear reservois in a caseade can be altered without affecting the response of the system. Chandels and reservoirs rate also be interehanged without afferting the response of the system.

The most general model developed was one in which the storage in different marts of the watershed was enomentated so that the flow from any part of the watershed could be simulated by a lincar chanoel whose length corresponded to the time of translation (or time of coneentration for that point) and a number of hinear reservoirs whose storage time need not be equal. If the assumption is now made that for every point along an isochrone (that is, for
equal translation time to the outlet) the cascade of reservoirs to be passed through in reaching the outlet are the same, the equation of the unit hydrograph can be written as:

$$
\begin{equation*}
h_{0}(t)=\frac{1}{T} \int_{0}^{t \cdot \tau} u\binom{\tau}{T} \cdot \frac{\delta(t-\tau)}{\coprod_{i(r i+1}^{1+1}\left(1+K_{i} D\right)}\left[d\left(\frac{v}{T}\right)\right] \tag{24}
\end{equation*}
$$

where $h_{0}(1)$ is the ordinate of the ICH, \bar{F} is the volume of inflow, T is the time of renerntration of the wher watershed, $w i \tau$ ' T) is the time-area-e ene tration curve, but is an impulse function, K_{i} is a typien reservoir storage delay time, D) is the differential operator, and II represents suecessive multiplication.

If the assumpion is now made that the cascade of unequal linear reservoirs apprepriato to a given isoehrome can be rephaced by a cascade of equal linear reservoiss, thon the unit hadrograph can be writtem as the convolution of the timearemonerotration carve and a gamma distribution, as follows:

$$
\begin{equation*}
h_{0} \cdot T=u^{\prime}\binom{\tau}{T} * \frac{\left.(\cdot x)[-(!K)]!t^{\prime} K\right)^{n-1}}{K(n-1)!} \tag{25}
\end{equation*}
$$

where n is uot a fixed value but varies with the value of t. 'the general model represented by equation 2. is still extremely flexible. If $n=1$ for all points on the catelment. then the model reduees to the Zoch-Clark model of routing the time-aren diagram through a livear reservoir. If n is greater than 1 but the same for all paints in the catchment, then the model represents routing the time-aren diagram through a number of reservoirs all situated at the outhet. If the time-aren-conerntration curve is itself a gamma distribution with the time seale K, then the moklel given be equation 20 reduees to the Nash model of a daseade of oflual linenr reservoirs with inflow of the upstream end.

A number of conceptual models have been developed by graduate students working under Professor Ven Te Chow (8) at the C"niversity of Illinois. The model parameders in these cases were eorelated not only with the catelument charateristies but also with the intensity of rainfall. The analysis was consequenty one of a linerized system rather than a hinear system. Such an approwh fakes aceount of the nomlinear effeets due to varying levels of input. The model used by Singh ${ }^{5}$ consisted of translation to the outiet and then suceresive routing through two linear reservoirs of different storage coeffcients. The response function for this model would be:

$$
\begin{equation*}
\left.h_{0}(t)=u^{\left(\frac{t}{T}\right.}\right) * \frac{c^{-t K_{z}}-c^{-t \cdot K_{1}}}{K_{2}-K_{1}} \tag{26}
\end{equation*}
$$

[^16]Diskin ${ }^{6}$ used two easeades of linen reservoirs in parallel, the number of reservoirs and the storage eoefficients being different in the two cases. The response function for this model is:
$h\left(h=\frac{a}{K_{1}\left(h_{1}-1\right)!}\binom{t}{K_{1}}^{n 1-1} \exp \left(-\begin{array}{c}t \\ K_{1}\end{array}\right)+\frac{1-a}{K_{1}\left(n_{2}-1\right)!}\left(\frac{t}{K_{2}}\right)^{n_{2}-1} \exp \left(-\frac{t}{K_{1}}\right)\right.$
cascade, n_{1} and n are the number of equal reservoits in extel caseade and K_{1} and K_{2} are the respertive storage delay times.

Kulandaiswamy ${ }^{7}$ used a medel which enn be described as a genernlized Muskingum model. ds showa in lecture 2, pages 43-57, the essential assumpfion of the Nuskingum mothod of flood routing is that the storage is a linear function of the inflow and the ontflow: When the expression for the storage is inserted in the continuity equation, an equation for the system is obtained linking inflow and outfor and their lirst derivatives. If the Muskingum assumption is extended to make the storage a function not only of the inflow and the outfow but also of their derivatives, then we have what might be malled a generalized Muskingum model. If the roeffieients of the terms in the general relationstip demend on cither the inflow, or the outfow, or both, then we have a gencradized nonlinear Muskingum model.

Kidandaiswamy restrieted his detated analysis to the case of a linearized sastem in which the dorivatives of the outflow higher than the third and the derivatives of the inflow higher than the second were ignored, thus giving as a general equation:

$$
\begin{equation*}
Q+a_{1} \frac{d Q}{d l}+a_{2} \frac{d^{2} Q}{d t^{2}}+a_{3} \frac{d^{3} Q}{d t^{3}}=I-b_{1} \frac{d I}{d t}-b_{2} \frac{d^{2} I}{d l^{2}} \tag{28}
\end{equation*}
$$

where I is the inflow to the system and Q the outflow, and $a_{1}, a_{2}, a_{3}, b_{1}$ and b_{2} are constants, which are parameters of the system. For a heravily damped systrm, all the roots of the polymomial on the loft-hand side of equation 13 will be real and negative. If the sustem enn be represented by a number of caseades in paraliel (without reverse flow), then the values of b_{1} and b_{2}, in the form given by Fulandaiswamy in cquation 28 , will be negative. If b_{1} and b_{2} are both equal to zero, thet the sustem reduces to a caseade of thre linear reservoirs whose delay times nre given by roots of the polynomial on the left-hand side of the equation. If the coefficient b_{1} in equation 28 is negative and the coefficient b_{2} is zero, then the model will in general consist of two eascades in parallel, each

[^17]made up from linenr remervirs whose delay times are given by the polyomial on the ioft-fand side of equation 28. If both b_{1} and b_{2} are negative, then the equation will represent a system of three easeades in parallel.

In chassial tydrology, use is made of routing through a nonlinem reservoir in which the storage is proportional to some power of the outfiow. If the outfow is eonerolled by a weir, the exponent in the storage equation would be threehatves; whereas for an outfow controlled by a deep sluce, the power wouk be onemali. Prasad (61) introdued a conceptual moded in which the storage was expressed as the sum of two terms, the first of which is related to some powe of the outflow (as for the nombinear reservoir) and the seeond of which involves the rate of change of outflow.

As with all typers of moxels, it is mecessary to find the optimal values of the parnmeters of a conesptual model. This ext be dome by the method of least sounces, by miniman error, by matehing of moments, or by a direct seareh trehnique on a digital computer. To use the method of least squares , it would be necessary to differentiate the equations for the IUH with respeet to ench of the parameters in tum and solve the resulting simultanoous equations. This may involve us in some romplex mathematies. It is eusy enough to differcotiate the gamma distribution with respeet to time to find its peak, but to differentinto it with resperet to n or $K^{\prime \prime}$ soon lads us into an undergrowth of unfamiliar mathematical functions. Where coneeptual models have been used, the eriterion of fit has been that the model should mateh the two coordimates of the peak of the empirienlly derived hydrograph. In effect, such a eriterion monns matehing the model to the prototype at two points only the origin and the peak) and igmoring the information available in the remainder of the hydrograph.
[a praction, it has bern found relatively easy to compute the moments of most ronerptual models. This suggests that matehing by moments be used as the criterion for determining the optimal values of the parameters. The getneral formula for the $R^{\text {th }}$ moment of the impulse response of a linear reservoir about the origin is given by:

$$
\begin{equation*}
C_{R}^{\prime}=(R)!K^{R} \tag{29}
\end{equation*}
$$

and the genemi experssion for its cumulant is:

$$
\begin{equation*}
k_{R}=(R-1)!K^{R} \tag{30}
\end{equation*}
$$

If linemr storge elements are combined in series, then the cumulants of the resulting eascade are obtained by adding together the corresponding cumulants of the individual reservoirs. If linear reservoirs are combined in parallel, the moments of the resulting system about the origin can be obtained by adding the individual moments about the origin. The moments and the cumulants haye the advantage that they take into account the complete unit hydrograph, but for the higher moments there is the disadvantage that the
recession limb of the hydrograph makes a dominmat eontribution to the value of the moment and errore in the reeession may distort this value.

Where a time-areaconematration rurve is represented by a geometrical figure and routed through a linear reservair, then the cumblants of the resulting eomerptual moded are obtained by adding the exmulants of the geo-
 cumulants of itwe linemrerervoir. Thus, for the case of the routed isosedes triangle, if the inse of the triangle is given by T and the storage difhe time of the linear resernie by K, the cumulants of the resulting moded are as follows:

$$
\begin{align*}
& k_{1}=C_{1}^{\prime}=\begin{array}{l}
T \\
2
\end{array}+K \\
& \mu_{2}=C_{2}=\frac{T}{2}-\frac{-k}{}+K^{2} \tag{3!b}\\
& k_{3}=l_{3}=2 K^{3} \tag{316}\\
& \left.K_{4}=\mathscr{H}_{4}-3 C_{0}\right)^{2}=6 K^{4}-\begin{array}{l}
740 \\
900
\end{array} \tag{31d}
\end{align*}
$$

If the resperefive muments cor enmulants) of the conceptual model are "uated to the derived moments (or cumulants) of an cmpirical hydrograph, thes the values of the parameters that are sptimal in the sense of moment matching ean be reabuated.

As mentiened at the begiming of the section, a eonecptual model ean only be used to sunthesize ato areal unit hydrographe if some rule is available for predieffing the values of the parameters of the conereptaal model on the basis of
 the rometation of the model paramefers with catchment chancteristies for unit hatrographe derived from ratedments where records are available. If the matanoters of the conerptual models elosen for conceptual models are not yery stable, or if the optimal values of the parameters camot be starply identified from the past revords of input and output, then the eorrelations on which is hased the synt hesis of the unit hydrograph for a ungaged eatehment will be unreliable.
There is a great deal to rerommend the proposal by Nash (47) that the moments be used as the basis of this correlation because the lower order moments are more stable than such parameters as time-to-peok and peak discharge. On the basis of 90 storms on 30 British catehments (whose area varied from 4.8 to 809 square miles $)$, Mash (48) derived the relationship:

$$
\begin{equation*}
C_{1}^{\prime}=t_{L}=27.6\left(\frac{A}{S}\right)^{0.3} \tag{32}
\end{equation*}
$$

Where $C_{1}{ }^{\prime}$ is the first moment or lag, A is the area in square miles, and s is the overland shope ia parts per ton theasand. Before adopting this relationship, Fash had tried the regression of the first moment on various eombinations of
 for the redationship, given in equation 82 was 0.90 . When the dimensionless second momont was correfated agabsi the eatehment characteristes, the best result mbtained was:

$$
\begin{equation*}
m_{2}=l_{2}\left(C_{1}^{\prime}\right)^{2}=\frac{0.41}{L^{4,1}} \tag{33}
\end{equation*}
$$

Where m_{2} is the dimensiondess serond monent and L is the longth of the longest stream to the butchment buundary in miles. In this seoond regression, the exeffiont at maltiphe corrolation (h) was $0.4 \overline{0}$.

Onee the moments of the wnit hydrograph have been determined and matimated, the equations relating the moments of the eonecptual model chosen for syathesis to the basie model parameters can be solved for the values of these parameters. In gamma distributions, the paramoters can be determined direetly from the moments sinee we have:

$$
\begin{align*}
& K=\frac{m_{2}}{m_{1}} \tag{34}\\
& n=\frac{m_{1}^{2}}{m_{2}} \tag{35}
\end{align*}
$$

The parameter values derived in this way ean then be used to generate the partioular gamma distribution whieh is used as a representation of the IUH for the ratehment being studied.

Wu for has reported on a syothetio mothod derived from the reeords for 21 watersheds in Indinued rarying from 7 to 100 scuare miles. He correlated the timmonopak with eatehment characteristies and found:

$$
\begin{equation*}
t_{\mu}=\frac{31.42(A)^{1,035}}{(L)^{1.233}(S)^{0.663}} \tag{36}
\end{equation*}
$$

where l_{p} is the time to peak in hours, A is the area in squere miles, L is the fength of the main strem in miles, and A is the slope of the main strenm in purts pre ten thousame. The other parameter which was correlated by Wu was the recession constant K, for which he proposed:

$$
\begin{equation*}
K=\frac{780(A)^{0.937}}{(L)^{1.474}(S)^{1.471}} \tag{37}
\end{equation*}
$$

where K is the storage constant in hours, and the catchment characteristics
are as defined for equation 30. Because the time-teperak for the gamma distribution is related to the parameters n and K by:

$$
\begin{equation*}
t_{p}=(n-1) K \tag{38}
\end{equation*}
$$

there is no dififeulty in deriving the value of n from equations 36 and 37 and so generating the syathetic unit hydrograph.

Comparison of Methods

In this becture, wo have outlined a number of methods whech ean be used in attempting to solve the problem of syothetie unit hydrographs, that is, the problom of pedicting the unit hydrograph for a watershed in which wo records of inflow and outlow are avalable. A harge number of methods have bern proposed, some bolonging to the eategery of time-area methods, some to the eategory of empirial methods, some to the entegory of eonerptual models. The hydrologist faed with an immediate problem, but anxious to use as objective a methad as pasible might woll ask, "How shall I chooss between these methods?" To mawer this gurstion, it is neessary to compare the methods bolonging to each caterory and ako to compare the different categories.

In time-area methods, we must derede whether to use the actual time-arenementration eure or a geometrical figure and whether to route through one or mors linear reservoiss. It would appear that the extreme tedium of deriving a timearoneoncentration curve is not justified by any appereciable increase in necuraey in representing actual unit hydrographs and that the judicious replacement of the time-area-conemtration curve by a geometrical figure is uoobjectiomble. C'are must be taken, however, that a eatehment of untypical shape is not forectlinto the straight jaeket of being represented by a geometrieal figure whose shape is bused on the general shape of other catchments in the region. owee it has been deeided to route a geometrical figure rather than a derived area-conentration curve, the problem realy reduces to one of a conceptual model. The question of what figure to use and how many reserwoirs to route through can be determined by the methods given below for conceptual models.

The empirical eurves used to represent the unit hydrograph (nearly all of which are one-paramoter models) can be compared by dimensionless plotting. It is important to remember that for one-parameter curves only one parameter is available to act as a scale factor. Thus, a comparison by plotting the ratio of discharge to peak discharge against time over time-to-peak may not be valid as the velume under the hydrograph may not be normalized to unit volume.
Both theoretical considerations and practical results in the field indicate that the lag (the time interval between the center of precipitation excess and the center of direet storm runoff) is the most stable time parameter and the
one most highly eorrelated with the catchment characteristics usually used. It is suggested, therefore, that any comparison of dimensionless unit hydrographs should be made by plotting:

$$
\begin{equation*}
\frac{q \cdot t_{L}}{V}=\phi\left(\frac{t}{l_{L}}, \frac{D}{l_{L}}\right) \tag{32}
\end{equation*}
$$

where g is the ordinate of the unit hydrogeaph, L_{L} is the lag as defined above, r is the volume of rainfall exeess, and D is the duration of rainfall execss. Simidaty my dimensiondess s-curve should be plotted as:

$$
\begin{equation*}
S(t)=\phi\left(\frac{t}{l_{L}}\right) \tag{33}
\end{equation*}
$$

In each case, ϕ is an undefined function representing the standard shape adopted.

A complete comparison of diflerent methods of syathetic unit lydrograph generation based on ompirical eurves must take into atecount the empirieal relationships with eatchment eharacteristies used to determine the basic unit hydrograph parameter or parameters. A number of eomparisons have been made but none of them were comprehensive. Jooges compared, in a crude fashion, the shape obtained by routing an isoseeles trinugle through a liwear reserwir with the shape of the dimensionkes unit hydrographs proposed by Commons (12), Williams (69), and the Soil Conservation Scrvice (68). The romparison was made by plotting the ratio of the diselarge ordinate to maximum discharge ($q^{\prime} q_{\text {max }}$) against the ratio of the time to the time-of-peak, $\left(t / /_{p}\right)$. Berate all the curves were constrained to go through common points at the origin and the penk, no great difierenees were revealed.
Coultor (13) in a study of rural eateloments in Now South Wales, compared the synthetir unit hydrographs generated for nime catchments by the methods of Taylor and Schwarta (63), Chark and Jolmstone (9, 29), Eaton (19), ()'Kelly (49), and 3 Iorgan and Fullinghorst. ${ }^{2}$ For a few of the catchmonts, the peak flows predicted by the various methods were quite close to one anotior, but other catchments showed a threc- or fourfold variation.

Dooge (footnote 1) put forward the ider of eomparing methods of synthetie unit haydrograph generation on the basis of their precietions of the unit hydrograpi for one or more standard catehments. A standard eatchment is taken as being one in geomorphological equilibrium. Though all eatchments are not in equilibrium, it may be assumed that eatehnents out of equilibrium are tending to equilibrium and tend so more rapidy the more they are out of equilibrium. Once the size of the standard catchment was fixed at 100 square miles, the remaining topographical characteristics were fixed on the basis of

[^18]geomorphological principles and published relationships. In this case, the chamel slope was taken as 100 feet per mile and the ground slope as 400 feet per mile. Other characteristics were a drainage density of 1.25 and a length of overland flow of 2,200 fert.

Morgan and Johnson (42) compared the relative accuracy and reliability. of the syuthetie unit hydrograpla methods proposed by Sinyder (49), the soil Conservation Serviee (68), Commons (12), and Xitehell (4t). They applied the methods to 12 drainage areas in Illinois ranging in size from j0 to 101 sopure miles. Again wids variations between the syothertic unit graphe and between them and the actual unit graph were found. No mothod consistently over- or underestimated the actual peak discharge. The highest methods of prak diseharge raked in the following order: SCS. Commons, Mitehell, and Styder. There was little difterene betwere the estimates be the SCS mothod and the commons method. Whern an observed lag was used instead of a lag estimated on the basis of cetthment eharacteristies, the syatbetic methods gave much better results. Studies by Coulter (1B) and by Morgan and Johnson (6, 2) are of interest becouse they test the general applicability of the empirical relatienships between unit hyedrugraph parameters and eatchment rharacteristies origitally derived from regions which are widdy separated from one another.

The following talbulation shows the ability of a number of methods to predict the lag of a standard catemment. When MCCarthy's method (see

Author Location Lag in hours

McCarthy (103S)	Commecticut	16.2
Suyder (1938).	Appalachians	10.5
Mitehell (19-48).	Illinois	15.4
O'Kelly (19as).	Ireland	1t.0
Nash (19\%0)...	Britain	15.9

ferotnote 2), which was based on a very fow streams in Connecticut, was applied to the standard eatchment of 100 scuare miles, a lag of 16.2 hours was obtained; Snyder's method based on work in the Appalachians gave a lag of 10.5 hours: Aitehell's method based on watersheds in Illinois gave a lag of 15.t hours: Otelle's mothod based on a number of catchments in Ireland, gave 14.0 hours; and Nash's method based on eatchments in Britain a lag of 15.9 hours. With the exeeption of the result by ('INelly's method, these are all remarkably close varying only from 15.4 to 16.5 hours, a difference of only 7 peremt. In addition to this remarkable concordance, there is a reason why the catchments studied by O'Lelly would be expected to have shorter lag times for standard dimensions. O'Welly was concerned with the problem of designing arterial drainag, sehemes (main river improvement sehemes) it Ireland. Aceurdingly, his metlood was based on the characteristies of rivers for which such sehemes had been carried out. Under post-drainage conditions,
catchments are expected to show shorter lag times than the average. It would appear that, while the dimensionless unit hydrographs, which were used in the past is a purely empirical fashion, will be replaced by mathematical equations or by conceptual models, the eoredations of hydrograph parameters (particularly lag) with catehment characteristics developed in the classical synthetic methods may still be useful.

There remains the problem of deciding how emplex the mathematical equation or conceptual model must be and how to choose between difierent models (or cenations) of erpul complexity: Nash tif, f8) proposed a gereral synthetie seheme along the fines shown in figure 8-3. As has been repeatedly emphasized, the rehationships on which the synthesis are based must be derived from the analysis of a number of watersheds for which monarements ate available and whel serve as a sample for the region. Nash suggested that the moments of the l'H be derived from a set of sample cat haments and these moments corredated with one another and with the eatchment characteristies to determine the mamber of degrees of freedom inherent in the response of a catehment when operating on precipitation excess to produre flood rumoff. This would pable us to detemr ne the number of parameters needed in the simulation sustem. He suggested that the dimensiondos moments of the actual

responses land the dimensionless moments of a number of conceptund model systems with the required momber of parameters) be plotted against one another. (n such a plot of $m_{\text {: }}$ tuganst m_{2} or m_{4} against m_{2} a one-parameter model would plot as a single point; a f wo-parameter moklol, as a single curve; and a the er-parameter model, as a family of curves. By comparing the curves for the model system with the plot of points for actual eatchments, the best model could be chusen.

Onee the erorelations of ICFI moments with eatehment chatacteristies have heen determined and the model chosen, it is possible to syathesize the unt hydrograply for a watershed for wheh me records ate available. Firstly, the moments of the Il'H are detemmed by the regression expations using the values af the catchonent characteristies of the partienar catehment. These predirted maments dan be equated to the axpressions for the arresponding moments of the moded ehosen, and the optimal values of the model parameters for the partiedar catchment thas detemined. Once the moded and the uptimal values of the parameters are known, the eomplete IUGI for the particular watershed can be gemeraled.

Nash 1 fer tuphed his mothod to the data for 90 stoms on 30 eatehments in Cregt Britain. Regrosion analysis gavo a robationship between the first mornobs : m_{1} ' amd the entehment chatacteristies of area and overatad slope With a cofficient of multiphe correlation of 0.90 . A further regression of the serond moment m_{2}, with m_{1} and the overland slope gave a coofficient with a multiphe correlation of 0.51 . Though the latter result is statistieally significant, it doos not give a good detemination of the second moment and, henee, the ability of the seheme to predict an unknown unit hydrograph is impaired.

When \times ash phetted the moments of his aetual responses against one another, as shown on figure 8-4, they covered a region rather than fell along a single lime. In diseussing Nash's paper, Dooge pointed out that the data and the rurve are not strietly comparable. The data were derived on the assumption that the base of the unit hydrograph was three times its lag; whereas, the base of the gamma distribution is infinite. A reude correction can be made and the two made more comparable by truncating the gamma distribution uerording to the mothod of base flow separation given by Nash so that the base of the trumeated gamma distribution is three times its lag. When this is done. the truncated gamma distribution plots as a line lying below the data points shown on figure $8-4$ and, thus, appears to approximate a limiting form rather than an average form for the IVH's derived by Nash. Figure $\mathfrak{R} 4$ also shows the comparison of the data with three models: (1) a channel and reservoir in series (urve A); (2) a eascade of equal linear reservoirs with an upstream inflow, that is, the gamma distribution (curve B); (3) and the cascade of equal linetar reservoirs with lateral inflow (curve C).

The gemeral synthetie seheme proposed by Nash eould, with adivantage, be modified to the seheme ontlined on figure $8-\overline{5}$. It is sugrested that, instead of
correlating the moments with the catchments characteristies, the moments be correlated among themselves to determine the number of degrees of freedom. Thus, in a two-parameter system, the third moment will be completely determined onee the first and second moments are known; whereas in a threeparampter system, the fourth moment will be known once the first, second, and third moments are known. If the moments are made dimensiontess by using the first moment as a scafing factor, then the criterion for a two-paremeter model is that the third dimensionless moment is completely determined by the second dimensionless moment (or cumulant) ; the criterion for a three-parameter system is that the fourth dimensionless moment (or cumulant) is completely determined by the second and the third dimensionless moments.

In his discussion of Nash's paper, Dooge (18) calculated the coefficient of multiple correlation of m_{3} with m_{2} for Nash's data as 0.717 . This indicated that the variation in the third dimensionless moment (m_{3}) was only 00 percent accounted for by variations in the dimensionless second moment (m_{o}) and, hence, that the two-parameter model would not be highly efficient as n basis for simulation. However, the coefficient of multiple correlation between the

Figure S-4.- Shape factor diagram for Nash's data.

Ferve S-5... Monfined synthetic scheme.
dimensiondess fouth moment (m_{4}) and the two lower dimensioniess moments (m_{3} and m_{2}) was found to be 0.03 , indicating that the variance in m_{4} was accounted for by the variane in the lower moments to the extent of almost 90 peremt. Considering the basir nature of Nash's date (which were normal river observations rather than researef readings), this was a very high correlation and indieated that a threc-parameter model would probably give as satisfactory a simalation as the data warranted. The remainder of the modified greveral syuthetie sheme shown on figure $8-5$ is the same as for Nash's original proposal shown on figure 8-3, exeept that the parameters of the IUH are correlated direetly with catchment parameters.

It must be stressed that what is required in the correlation for unit hydrograph syuthesis is not neessarily a correlation with individual eatehment characteristies. To determine the three independent IUH parameters that would be required for a three-parameter model, it is necessary to have three independent catehment parameters which between them would account for 90 perenat or more of the variation in the shape of the IUH. Each of these parameters might be made up from a number of catchment characteristics (such as area, slope, drainage density, and shape) in the same way as the Froude number and the Reynolds' number are made up from a number of hydraulic characteristics.

The determination of the signifieant grouping of catchment characteristies
into catchment parameters remains one of the great unsolved problems of surface water hydrology. Factor analysis may help in the preliminary trial grouping of catehment characteristics, but it is likely that the final significant forms of the groupings will only emerge through a better understanding of geomorphological processes.

The shape factor diagram in which dimensionless moments or cumulants are plotted against one another is a most useful deviee for comparing alternative renceptual models of the same number of parameters and of comparing conceptual models with actual data. Thus, figure $8-6$ shows a comparison

A Routed rectangle
B Routed triangle

C Cascode of reservoirs

Fiours S-6.-Shape fiactor for models.
between there (wo-parameter conceptual models: (1) a muted rectangle, (2) a routed tringle, and (3) a cuscade of equal hear reservois. It can be wen that each of these two-parameter conceptual models defines a line in the $s_{3}-s_{4}$ phane, where s_{3} is the dimensionless third cumulant (or moment) and is is the dimemsionless second cumulant tor moment). These lines plot relatively elosely together on the diagram, thus explaining why all of these models have been sugested as a basis for simulating the same type of prototype sustem.

Figure 8 i shows a comparison of a Parson Typo llidistribution (gamma distribution: with a Penson Type V distribution and a Pearson Type 1 distribution, This dagmem could be used to deride wheh learson distribution to foono kor thling unit hedrographs of other response curves by taking the slistribution whin lay closest on the shape factor diagram to the ploted paints correxponding to the unit hydrographs bor a number of sample catehments.

Figure $\delta 8$ shows a eomparison between the timetransformed gamma distribution and the ordinary gamma distribution. The ease plotted is for a culue of $m=1,2$ and curmenads to the typo of model used by TVA. If curves were drawn for other valuss of m, it would be possible to see if the ploted prints from sample catchmonts all fell alone one line. This woutd emable us to use a two-patmoter model based on the walue of m corresponding to that line of else fer indicate whether the family of curves swopt out the region of ploted paints, thas allowing us to ase cquation 2 gas a three-parametor simulation of the prototypersatem.

Problems on Synthetic Lnit Hydrographs

t. ('mpare the vatues of the lag, time-lo-poak, and poak diseharge given by four ditherent synthete mat hydregraph methods for the 100 square mile fatchment whose characteristios are listed mo Appendix table 6.
2. (mmpare the values of the lag. time-to-ponk, and peak discharge given by four differmt synthotic unit hydrograph methods (two empirical and two time areal for the eatchment whose characteristies are given on Appendix table T .
3. Compare a number of standard unit hydrograph shapes by plotting dimensionless ordinates aganst dimensionless time.
4. Compare a number of standard S-curves by plotting dimensionless ordinates aminst dimensionless time.
5. Compare a number of standard unit hydrograph shapes on a plot of dimensionless third moment versus dimensiontess second moment.
(i. Deseribe the various steps of one particular method for synthetie unit hydrographs, and comment on the strong and weak points in the method.

TYPE I $f=k\left(1+\frac{x}{a_{1}}\right)^{m_{1}}\left(1-\frac{x}{a_{2}}\right)^{2 m_{1}+1}$

TYPE III $f=k\left(1+\frac{x}{0}\right)^{p} \exp \left(-\frac{p x}{a}\right)$

TYPE $\mathbb{F} f=\frac{y^{p-1} x^{-p} e^{-r / x}}{r(p-1)}$
Figure 8- \vec{i}.--Shape factor for Pearson's empirical distributions.

$h(t)=\frac{m}{k} \frac{\exp \left[-(t / K)^{m}\right](t / K)^{n-1}}{(n / m-1)!}$
$k_{1}=k \frac{\left(\frac{n+1}{m}-1\right)!}{\left(\frac{n}{m}-1\right)!}$
$k_{2}=K^{2}\left[\frac{\left(\frac{n+2}{m}-1\right)!\left(\frac{n}{m}-1\right)!-\left(\frac{n+1}{m}-1\right)!^{2}}{\left(\frac{n}{m}-1\right)!^{2}}\right]$
Fiopre S-8.-Shape factors for time-transormed gamma distribution.
7. Describe the rehationsip betwen the generatized Muskingum formulation of linear matehment response with the genomal linear equation with comstant ewefiegents. Thastrate by simple example.
8. Deserbe the relationship between the genema linear equation with constant coefteremts and the representation of the linerar centrhment response in torms of fount limer stomer dements. Ilfustrate with a simple axample.
9. Deseribe the redatonhip betwoen the general linear feqution with constant rooffiements and the reprosentation of the eatehment be a smatl
 example'.
 after of truncating this respmes rurve to mak the base finite and work out the corrections to be made to the momots of the response tarve.
11. ('ompars a mumber of two-partmeter models hy ploting dimensiondess

12. ('monate a number of twormametor models by phting in terms of dimensomless shape hactors.
 ont a flow diagram for the rompuntions involved. Apply this fow dituram to a sot of reliable data.

Literature Cited

10: Bumses. 13.5

(3) Resper, D. L.. and Robmesos. J. A.

 7.
(a) Beanabor. M. M.
 Trans 100: 3 4. $\overline{2}$.

(G) Brakrassiek, 1). L.
 , $17:-3-32$.
(7) ('ifamer, (i.
 Engin. Iroc. 134: 313.
(i) Chow Vas T\&
 Hytrology. New sark.
(9) Clatik, C. O.
 1.46.
(10) Clatik, Johs 1.

LDili. morbiomerive prom maps. 40 pp. Ia Dury, G. H., ed., Essays in Geomerphology, London.
(11) Colemas. (e. Be, and Johshon, A.
1931. mandata newors. Inst. Munic. County Engin. Jour. 5S: 1403.
(12) Comsons. ('. (:

(13) Conmain, C. ©
 thut. 10. Caiversity of New Soutio Whes, Sydney.

 41-116, 23 pp .
(15) Boote J. (. l .
1965. Disenssion of the emplopment of nuit-hutrouraphs to determine the fores of Irsh arteral dramage channels. be J. J. OKelly, Inst. Civ. Etigin. (Irelandi, l'roc. ©. 4, ple It.
 311-35.4. Landan.

1961. Discussion of a unit hydrograph study with particular reference to Brilish catchments, by J. E. Nosh. Gust. Civ. Eugin. ([reland) Proc., v. 20: +67470.
(19) E.лтеп. 'T. D.
 becoms ahe inabequate. Hydrologic statlies and investigations. Inst. Engin. Austrul. Jumr, 26: 230-243.
(20) Ebson, C. G.
1901. Phrametehs fok belating tint hydrogmaphs to watershed characterssrics. Atmer Geophess Conion Trums. 32(4): 591-59ti.
(2) 1 Escume L. P.
1030. strface waper shwerage. 200 pp ., illus. London.
(29) (Bax, 1), M.

1961, shatietie untr myboghaph for smali. Watersheds. Amer. Soc. Civ. Engith, Jour. Hydranlies liv. S7(HY4): 33-04.
(23) -
1062. dembation of hrohografus for small Watbasheds from meastrable burstcal chabactermstics. Lowa State Univ., Agr. and Home Econ. Expt. Sta. Kes. Bul. 506: 514-570.
(2-1) Halte, C. A.
1932. Discussion of rainfoll-rimoff calculations, by M. T. M. Ormsby. Inst. Munic. County Engin. Jour. 59: 98s.
(25) Hawrea, W. H. and Ross, C. N.

192l. tife calemation of flood mischabges iny use of a time-contouh plan. Tust. Eugil. Austral. Jour. 2: 85-92.
(26) Hexmensow, 1•M.

(27) Homos, R. E.
 K11.320.
(2s) Jevs, N. W.
 Aner Koc. Civ, Lugin. Trmas. 113: $28 \bar{a}-809$.
(29) domstose, D., and (hoss, W. P.

(30) Jumen, C. C.
 6t: s 胡.
(31) Kıtmen Z, I^{2}.
 Fuein. Ithe: 35'.

(33) Kıqnass, L. S.

 (entral Forecastang luit Trans. (fslP), 113: 23. Moscow. NLLST

(35) Lasombas. N. 1),
 Trans. 21: $\mathrm{t} 20-62 \mathrm{~F}$,
(3i) Liffin, N. R., Rencu, T. La, and Minotte, J. \&

(37) Latmenson, E. M.

1032 .
(3 S) -
 Vnivesity of Sew Snath Wades, Sychey.

(40) Lemidi)avies, D. E.
toof. the blmination of atobm wateli from shabbage statbas. Inst. Civ. Engin. Proe 104: 41-67. Lontion.
(41) Mrtctith. W. D.

(42) Mongas, P. E., and Johsson, S. M.
1962. Analysts of arwhetic vit-chamb methons. Amer. Soc. Civ. Engin., Jour. Hydrabics Div, 8e(HY5): 100-220.
\{43\} Mremaner. T, J.
 Engin, (Ireland) Trans. 4(2): 1-8. Dublin.
（H4）Munho，（．H．
 Jour． s ： 301.
（45）Nasu，d．E．
 10：103－1．4．
 of Toronto．Lnternath，Assuc，siei．Hydrol．（Genthrugge）Pub）de，Compt． Renci．3：11．4－118．
 （ieuphys．Res．© 6 （1）： $111 \times 11 \mathrm{~s}$ ．

4．49（0）krim．J．J．

 ＋133：3159－412．

（i2）R R：m，doms．
 Jour．53： 967.
4．3．3）Ruter，D．W．
 Munie．Comaty Eugin．Jour． js ：i－hsu．
（ish）Ross．C．N．
 Hows．Lnst．Eugin，Austral，Trans ：3：S5．
（可）Ronsertw．J．A．
1027．hanfatimenofy analosit in stoma－sewer design．Engin．News－Rec． 95： 2711.
fobi sato．s，mal Mแкawa，H．
 Technical Conference on Water Resources Development in Asia and the Far East．［＇ぶ，Flood Control Ser．9：152－150．
（iii）suerman L．K．
 Rec．10：：501－505．
（in）
1932．the relation of hydrographs of renoff to size and chatacter of blehinage basins．Amer．Geophys．C＂nion Trans．13：332－339．
（69）surder，F．F．
103S．stathetic intu graphs．Amer．Geophys．U＇hion Trans，19（1）：447－454．
(bo) Smbumer, A. N.
1064, quantrampe geomonphology of branage bashas and chandel network. See. 4-II: 38 pp, /u Chos, Ven Te, ed, Handbook of Applied Hydrolugy. New York.
(0i) Suctawakn, M.
 Jip. Jour. Geophys. 2(4): 1-76.
(6is) - ... - and Mabyama, F .
 monet. Symposin Daver, haternath Assoe. Sei. Hydrol. Pub) 42, 3: 71-76. bijon.
(63) Taytom, A. B., and Somwatz, F. E.
 wors. Amer. Geophys, (nion Trats, 33(2): 230-246.
(6.) Tewnesser Vaday Memormy.
 (ohamarmos. Off. Tributary Area bevipht. Res. Paper 4. Knowille.
(i, i) Trusen, H. M., and Bemoms, A. J.

(6i) Cos. Bubay of Rechamarion.
 v. f. l's. Rur. Rechum. Manul. (Revised. 1951.)
(6i) C". Coners of Engnaters.
 Bugiaeer Office, Batimore.

1!64. Hydrowoct, sectuon w. SCS Nati. Bugin. Handbook Washington D.C. [This is a revigion for use in watershed phaming.]
(t9) Weldams, K. M.
 Hathaway, Amer. Suc. Civ. Bugin. Trams. 110: 820-826.
(70) We, \}-Par.
1903. desgan hymociraphe for smah. watmasheds in indana. Amer. Soc. Giv.

(Ti) Koct, R. T.
1034, 1936, 1937. on the relation berween banfala and sphamflow. In IS. Department of Commeree, Monthy Weather Review. Part I, v. 62 : $310-329$; part II, v. 64: 105-121; purt III, v. 65: 135-147.

LECTURE 9: MATHEMATICAL SIMULATION OF SURFACE FLOW

As a result of the development of conceptual models in unit hydrograph theory, there has been a tendeney since the mid-1960's to propose the use of conceptual models to represent specifie elements of the hydrolagie eycle other than the overall direct response of a catchment. The principles of mathematical physies can be applied to the investigation of various parts of the hyirologic eycle, and the individual proessses can be represented by a set of equations and boundary conditions. To solve these equations, it is neressary to make further simplifying assumptions, which aecentunte the simulation nature of the mathematical solutions obtained. The replacement of these simplified mathematieal expressions by eonecptual models is in aceordance with the general systems approach, which considers cach system in terms of a certain number of interomaected demonts and judges a system by its overall operation rather than the precise uature of the elements themselves. Conceptual models are formulated on the basis of a simple armagement of a rehatively small number of elements, cach of which is itself simple in operation. The most widely used eonceptual dements are linear reservoirs and linear chamels. Though conceptual models were originally introduced as highly simplified versions of the actual physical operations involved, they ean also be looked upon as mathematical abstractions whose only function is to simulate the behavior of the physical systems being studied.

In the two fimal lectures, we diseuss four segments of the hydrologic eycle that to some extent lend themselves to mathematical simulation and to the synthesis of conceptual models. The four segments involved are overland flow, open chamel flow, ansaturated fow in soils, and ground water flow.

Overland Flow

Overland fow is an interesting example of the application of mathematical simulation and the possibility of applying conceptual models to the solution of a hydrologic problem. Overland flow has been studied amalytically, in the laboratory, and in the field. It occurs carly in the runoff eycle, and the inherent nonlincarity of the process is not dampened in any way. Hence, the methods of linear analysis and synthesis are inadequate in this case, and the general approach used in developing linear methods must be extended.
A physical picture of overland fow is shown in figure 9-1. The essential problem to be solved is to determine the flow off the plane at the downstream end for given physical conditions and a given pattern of lateral inflow along the plane. The equation of contimuity for the two-dimensional lateral inflow

Figure 9-1.-Overland flow (two-dimensional).
problem can be written as:

$$
\begin{equation*}
\frac{\partial q}{\partial x}+\frac{\partial y}{\partial t}=r(x, t) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& q=q(x, t)=\text { rate of overland flow per unit width } \\
& y=y(x, t)=\text { ciepth of overland flow }
\end{aligned}
$$

and

$$
r=r(x, t)=\text { rate of lateral inflow per unit area. }
$$

The dynamic equation for two-dimensional overtand flow can be written as:

$$
\begin{equation*}
\frac{\mathrm{l}}{\mathrm{~g}} \frac{\partial u}{\partial l}+\frac{\partial y}{\partial x}+\frac{u}{\mathrm{~g}} \frac{\partial u}{\partial x}=S_{0}-S_{f}-\frac{q}{g y^{2}} \cdot r(x, t) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
u & =u(x, t)=\text { velocity of overland flow } \\
S_{0} & =\text { slope of plane } \\
S_{f} & =\text { friction slope }
\end{aligned}
$$

Though the continuity equation is linear in q and y, the dynamic equation is highly nonlinear. It is possible by means of a high-speed digital computer to obtain a numerical solution of equations 1 and 2 for any given set of boundary conditions. This approach will be considered briefly later in this section. For the present, however, we are concerned with the simpler approaches to the particular problem, that is, with the attempt to find a simple mathematical simulation or a simple conceptual model.

The ctassiea! problem of arotand fow is to solve the particular ease where tho lateme inflow is uniform along the phane and takes the form of a unit siop funetion:

$$
\begin{equation*}
r(x, l)=\langle(i) \tag{3}
\end{equation*}
$$

There are several parts to the complete shation of the problem. firstly, there is the sterdy-state problem of delermining the expilibrium profite when the outflem at the downstram and of the phane is equal to the inflow ower the surines of the plane. Seomdly, there in the prohben of determintug the rising hydrographofotflow herore equilibrium for the spectal indow case represented by equation 3 above. If the problem were a hincer one the solution of this seend problem that is. the detembination of the sepefunction response) would he sulterimt bo chameterize the response of the system, and the outhow hydrograph ber any ohber infow patiorn eoud be derived from it. However,
 be apmbed, and cach chas af infow must be treated on its morits. The third hase problem is that of determining the recession from the equibibum rondition after the exsation of long equtimed intlow. The mature of the recossion when the inflow eases before equibibrium is reached that is, before the outflow buiks up lo a value ceral to the inflow must be investigated, and this eronstitutes a fourth bisid probken. The mext step is to investigato the rffeet of an infow formed by the super essition of two or more step functions. Thus, the fifth basie problem invelves considecation of the case where there is a sudeden inereas from one uniform rate of inflow to a second higher rate of uniform intho. The sixth case considered is that when a uniform rate of inflow is suddenly changed to a second uniform rate of inflow which is smatler then the first.

A few of the elassieal experimental results by Izzard (2S) are shown on figure 3 .2. The top figure shows a rising hydrograph, a recession, a seond rising hydrograph, mod a final resession. The second figure shows the effect of changing the infow mate Trom 4.83 to $3.5 \overline{5}$ in. per hr. $\langle 4.65$ and 0.02 em. per hr., respectively and the lower diagram shows the effeet of ehanging the inflow rate from 3.0 to 4.84 in. per hr. 19.27 and 4.67 cm. per hr., respectivelys. Also, shown in the hgure is a logarithmic plot of the detention storage on the surface of the phane against the discharge at the tiownstream end.

The first approach to the solution of the overland flow problem in classical hydrohege to be eonsidered is that hased on the rephecement of the dynamic equation 2 by an assumed rehationship betwen outflow and storage. Because this method was first proposed by Horton (22) for overland fow on natural catchments and subsequenty used by Izzard $(2 S)$ for paved surfaces, it may he reforred to as the Forton-Izzard approach. Fydrologists noted that when the equilibrium runoth (that is, the equilibrium discharge at the downstream and) of a mumber of exprimental phots was ploted agninst the average surface tetention for total surface detention) at equilibrium on log-log paper, the

Frgere 9-2.--Hydrograph of overland fows.
exprimental points fell approximately along a straight lime. An cxact linens relationship on logarithmie paper would indicate that the equilibrium outhow at the downstream end and the equilibrium storage were compected as follows:

$$
\begin{equation*}
q\left(L, i_{e}\right)=q_{c}=a S_{r}^{e} \tag{4}
\end{equation*}
$$

where g_{g} was the discharge at the downstream end of the plane under equilizrium conditions, S_{e} was the total surface storage at equilibrium conditions, and a and of were parameters.

In the Forton-lzard appratel to the overland flow problem, the assumption is made that such a power relationship holds not only at "quilibrium, but also at any time during the rising hydrograph or during the reenesion. Csiug this assumption we can write:

$$
\begin{equation*}
q(L, t)=q_{L}=u S^{\prime} c \tag{5}
\end{equation*}
$$

Where q_{0} is the diselange at the downstrem end at any time and S is the corresponding total storage on the surface of the phane of avertand fows The equatien of contimuity, equation 2, can be written in the hydrolegieal form as:

$$
\begin{equation*}
r \cdot L-q u=\frac{d S}{d t} \tag{6}
\end{equation*}
$$

Which for our assumptions can be written as:

$$
\begin{equation*}
q_{t}-a S^{c}=\frac{d S}{d l} \tag{7a}
\end{equation*}
$$

or

$$
\begin{equation*}
a d t=\frac{d S}{S_{c}-S^{c}} \tag{7b}
\end{equation*}
$$

The solution of ecquation 7 is:

$$
\begin{align*}
& t=\frac{1}{a S_{e}^{e}-1} \int \frac{d\left(S^{\prime} S_{e}\right)}{1-\left(S_{S} / S_{e}\right)^{c}} \\
& t=\frac{1}{(a)^{1 / c}\left(q_{e}\right)^{(c-1) \cdot c}} \int \frac{d\left(q / q_{e}\right)^{1 / c}}{1-\left(q / q_{e}\right)} \tag{8b}
\end{align*}
$$

Equation 8 ean be solved analytically for valuns of $c=1$ (linear), $c=2, c=3$, or $r=4$, and also for ratios of these values, that is, for $c=3.2$ or x_{3}.

Horton (22) solved the equation of the rising hydrograph due to a step function input for the case of $c=2$, which he described as "mixed flow" since the value c is intermediate between the value of 5.5 for turbulent flow and the
value of 3 for laminar flow. Horton's solution may be written as:

$$
\begin{equation*}
\frac{q^{2}}{q_{e}}=\tanh ^{2}\left(\frac{t}{K_{e}}\right) \tag{9n}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{e}=\frac{S_{e}}{q_{e}} \tag{9b}
\end{equation*}
$$

Sine the system is nominear, the time parameter K, will depend on the intensity of inflow, Horton gave an empirical expression for the equilibrium storage per unit width and his ectuation for the rising hydrograph has been used in the design of airport dramage siner that time. Izzard (27) presented the solution for the case of $c=3$ (that is, for hamar flow) in the form of a dimensimhers rising hydrograph. Izzard used as his time parameter a time to virtual equilibrum, which is exactly wier the time parameter used in equation Ob above. It in of interest that the intergen in equation 8 is of the same form as the Bakhmeteff variod flow function and, henee, tabuated values of the varicd flow furction may be used to tabulate or draw the rising hydrograph for any value of c for which it is tabalated. Typieal rising hydrographs are shown on figure 9-3.

For recession from equilibrium, the recharge in equation 6 becomes zero, and the insertion of the value for a from equation $\overline{5}$ leads to the solution:

$$
\begin{equation*}
\binom{q_{e}}{q}^{i c-1\} ; c}=1+(c-1) \frac{l}{K_{e}} \tag{10}
\end{equation*}
$$

where q is the ordinate of the recession curve and t is the time elapsed sinee the cessation of inflow, that is, the time sine the start of recession. Typical reession curves as predieded by the Herton-1zzard model are shown in figure 9-3. The special rase of equation 10 for the value of $c=3$ was given by izzard.

If the duration of inffow (D) is less than the time required to reach virtual equilibrium, we get a partial reecssion from the value of the outfow (q_{D}) which has been reached at the end of the infow. It can be easily shown that this curve is the same shape as for recession from cquilibrium except that the reeession flow enters the rurve defined by equation 10 at the appropriate value of qe qo.

If there is a change to a new rate of miform infow during the rising hydrograph, two cases can occur. If the new rate of infow is higher than the rate of outfow when the change oceurs, the same dimensionless rising hydrograph can still be used, but suace 9 is equal to the infow at equilibrium, the value of q q e will change as aom as the rate of inflow ehanges. If the new rate of inflow is less than the ortfow when the change occurs, the hydrograph will correspond to the falliag curve of the varied flow function. The latter function can be used ter determine the shape of such a falling hydrograph, whieh will be of the type shown in the bottom of figure $9-2$.

Figupa 9-3. - Shatpes of rising and recession hydrograpis.

Looked at as a conceptual model, the Horton-Izzard solution elearly assumes that the whole system can be lumped together and treated as a single nonlincar reservoir whose outflow-storage relationship is given by equation 5. Even though this conceptual model is extremely simple in form, the fact that it is nonlinear makes it less easy to handle than some of the apparently complex conceptual models used to simulate linear or linearized systems. Thus, the impulse response for such a system no longer characterizes the system because the output will also depend on the form and intensity of the input. The cumulants of the impulse can no longer be added to the cumulants of the input to obtain the cumulants of the output. The solution for a step function input camot be used to obtain the output for a complex pattern of input.

The second simple solution propered for the overland flow problem is the kinematio wave solution. It also involves a power retationship between discharge and depth but, in this case, not a lumped relationship covering the whole system, but a relationship between the diseharge and the depth at each point and, therefore, a distributed retationshig. The basie assumption for the kisematic wave solution is that all the terms of dyamic equation 2 are megligible rompared with the slope term and the friction term, so that we have:

$$
\begin{equation*}
s_{0}-S_{f}=0 \tag{111}
\end{equation*}
$$

which can also be written as:

$$
\begin{equation*}
q(x, J)=q=b y^{c} \tag{11b}
\end{equation*}
$$

 wheres, if it is taken areoring to the Maming formala, the value of c will be as. For zem initial eonditions and an cquilibrium discharge ge lequal to the produr of the constant suphly rate r and the length of owerind fow L), we have the following selution for the rising laydrograph:

$$
\begin{array}{ll}
1 \leq l_{i}: & \frac{q}{q_{0}}=\binom{l}{l_{k}}^{c} \\
1 \geq l_{k}: & \frac{q}{q_{c}}=1 \tag{12b}
\end{array}
$$

where

$$
\begin{equation*}
t_{k}=\frac{L}{b^{1 / c_{q}} q_{e}^{(r-1)^{\prime \cdot c}}}=\frac{q_{e}^{1 / c}}{b^{i, c \cdot \gamma}}=\frac{\eta_{e}}{r} \tag{12c}
\end{equation*}
$$

In ecpation !?, t_{x} is the kinematio time parameter and y_{e} is the depth of flow altaiterd when the equilibrium diseharger q_{e} is substituted in equation 11b. The kinemate time paraneter t_{k} should be distauguished from the time paraneter for the Hortom-Lzzard model $K_{\text {e defled be equation } 9 b \text { above and }}$ from the time to equilibrium $t_{\text {a }}$ ased be lazard. The rising hydrograph for the kinematie wave solution is shesw on the upper part of figure 9-4.

The wecesion from full equilibrium for the kinmatie solution can be shewn to be:

$$
\begin{equation*}
\left(\frac{q_{c}}{q}-1\right)\left(\frac{q}{q}\right)^{1 / c}=c \cdot \frac{1}{t_{k}} \tag{13}
\end{equation*}
$$

which is ako shown on the upper part of figure 9-4. Where the duration of inflew (I) is hese than the time of kinematie rise (f_{k}), the kinematie wave sobution gives a flat toperd hyctrograph, in which the flow is constant until it meets the full meression rurve as shown in the lower diagram on figure 9-4.

The kinematie wave solution has been applied to overhand flow by Henderson

Fiauna 9-4.--Kinmatic wave solution.
and Wooding (21), and Wooding ($60,61,62$) and used to construct a model of catehment response. They analyzed the problem and developed equations for the rising hydrograph and falling hydrograph by arguments based on the method of characteristics.

The numerical solution of the overland flow problem has been tackied by Woolhiser and Liggett (63). They reduced the equations of continuity and momentum to dimensionkess forms by expressing the variables in terms of the
normal depth and volocity at the downstream and of the plane for the maximum diseharge. When this is done (see reference bis for details), equations 1 and 2 become:

$$
\begin{gather*}
\frac{\partial q}{\partial x}+\frac{\partial y}{\partial t}=1 \tag{14}\\
\frac{\partial u}{\partial t}+\frac{1}{F^{2}} \frac{\partial y}{\partial \mathrm{r}}+\frac{u \partial u}{\partial \mathrm{r}}=K\left(1-\frac{u^{2}}{y}\right)-\frac{u}{y} \tag{15n}
\end{gather*}
$$

where

$$
\begin{equation*}
K=\frac{S_{0} L}{F_{0}^{2} y_{0}} \tag{15b}
\end{equation*}
$$

in which the supetseripts denoting that the variables are dimensionless variables have been omited tor convonience. There are only two parameters in these benations, the Froude number for nomal flow at maximum discharge (F) and the parmener K defined by equation lob. which reflects the length atd slope of the phane for chanmely as wed as the normal flow variables. Diquations $1+4$ and his were expressed in characteristie form and solved by a Ginite differener terhaigue, For high values of K, the slope and frietion (lominated the flow and, as might be expeeted in these ronditions, the solution appoximated the kinematie wave sohation. For values of the parameter K. smaller than 10 , the kinematic wave solution was found to be a poor approximation.

A tapical rising hydrograph found by Woothiser and Liggett (00) is shown on firure 9 . . It would appere that in the early stages of the rising hydrograph, the shape of the hydrograph approximates to the kinematic solution, whereas it the lator stagos it approximatos more to the Forton-Izzard solution. This is not unespected berentse in the marly stages of the flow $d q$ id x would be redatively small, thas approximating the kinematic solution for whech $d q / d x$ is aro downstrexm of the characteristic which starts from the upstream end of the plame at the start of inflow. In the later stages of the rising hydrograph, the value of de $d x$ would approach the rate of lateral inflow and the FortonLezard solution, based on an empirical relationship which is a good approximation at equilibrium, might be expeeted to give better predietions than the kinematic noxlel.

In simulating overtand flow, either as a hydrologic system or as a subsystem uf a watershed, consideration should be given to the type of flow involved. The Stanford model incorporntes a rising hydrograph for overland fow developed by Morgali and Linsley $\left\{\begin{array}{l}\text { g } 9 \text {). Their hyedrograph is for a high value of }\end{array}\right.$ K and heneo apmoximates wry closely to the kinematic solution. For lower values of K, this rising hedrograph wouk not meessarily be a good representation of overiand flow.

riante 9-5.-Comparison of rising hydrogritph.

Dooge (9,10) reeently proposed as a conceptual model for problens with lateral inflow a cascade of squal reservoirs, either linear or nonlinear, with intermediato inflow. For overland flow, these reservoirs would be nonlinear. This conceptual model is what the author has referred to as uniform nonlinearity. In sueh cases it ean be shown that the outflow hydrograph for uniform inflow can be represented in dimensionless form by:

$$
\begin{equation*}
\frac{q}{q_{s}}=\phi\left(\frac{l}{t_{0}}, \frac{D}{t_{0}}\right) \tag{16n}
\end{equation*}
$$

where q is the outflow, q_{e} the equilibrium outflow, t the time, t_{0} a characteristic time wheh depends on the intensity of iuflow, and D the duration of uniform inflow. For a step funetion input, there is no duration to affect the issue and the equation of the rising hydrograph can be written as:

$$
\begin{equation*}
\frac{q}{q_{c}}=\phi\left(\frac{l}{l_{0}}\right) \tag{16b}
\end{equation*}
$$

It can be slown that the outflow from a cascade of equal nonlinear reservoirs is of the form indieated by equation 16b. Dooge (10) has shown that the cumulative outfows measured by Amoracho and Orlob (2) for pulse inputs to a laboratory catchment (whel was nonlinear in behavior) can be plotted as a single line when a characteristic time based on the intensity of inflow is used
for dimensionless plotting. In the same paper, Dooge showed that the wide variations in the unit hydrographs derived by Minshall (fir) can be enormously recluced by the sume tepe of pleting.
A comparison of equations 8 and 9 with equation 16 b indicates that the Forton-Lzard model belongs tes the class of uniformb nonlinear models with $K_{\text {e }}$ as the characteristic time. Similarly, a comparison of equations 12 and 13 with equation 10 indicates that the kinematic model also brlongs to this class with the t_{k} as the characeristic time. As already pointed out, the Hortonlzand solution represents the special ease of one nomlinear reservoir. The hamatie wave solution for the linear ease, cem be approximated by a cascade ni linar reserveniss in which the product of the number of reservoirs and the individual storage dolay time remains finite as the number of reservoirs tends to intinity. From these considerations, it is plausible to suggest that it might be possible to simulate satisfacturily the hydrographs generated by Woolhiser and Ligerett - which are intermediate botwem the kinematie solution and the Ihorton-Lzard sohution by a raseade eonsisting of a finite number of equal nominear sarage elements.

Unsteady Llow in Open Channels

The probleon of predicting the discharge hydrograph at a downstream point on the hasis of the hedrauie properties of the chandel and a known discharge nt an upstremm puint is a elassimal problem in hydrology. The various methods proposed for tis solution can be reviewed in the recent bibliography by Yevjevich this . The equation of continuity for unsteady flow in open channels without lateral inflow is given be:

$$
\begin{equation*}
\frac{\partial Q}{\partial x}+\frac{\partial \cdot 1}{\partial t}=0 \tag{17a}
\end{equation*}
$$

where Q is the diselarge and A the area of flow. The above is the form in whin the matmuity equation at a section is written in open channel hydraulies. Hydrohugists more frequently write the continuity equation in the lumper form obtainel by integrating equation 17 a over a chamel reach, thus obtaining the hydrologie ecpuation:

$$
\begin{equation*}
I-O=\frac{d \Sigma}{d t} \tag{17~b}
\end{equation*}
$$

wher I is the infow to the reach; O, the outflow from the reach; and S, the storage in the rench at a given time. In open chamel hydraulies, the dynamic mpuntion is writtemas:

$$
\frac{\partial y}{\partial x}+\frac{u}{} \frac{\partial u}{\partial x}+\frac{1}{\mathrm{~g}} \frac{\partial u}{\partial t}=S_{0}-S_{j}
$$

Thu corresponding cequation in hydrokgy is the equation for the looped
rating eurve:

$$
\begin{equation*}
Q=\left(\lambda \sqrt{R}\left(S_{0}-\frac{\partial y}{\partial x}-\frac{u \partial u}{g \partial x}-\frac{1}{f} \frac{\partial u}{\partial t}\right)\right. \tag{18b}
\end{equation*}
$$

where k is the hydraulic menn radius and (" is the Chezy frietion factor, which may be evaluated from a friction fomman such as the Manning comation.
 stendy flow in an open channd, while exuations 1 bb and 18 B reflect the haydrologid approach to the same problem. Thewe two separate appronehes have developed indepondently of one mother. A systementio approueh to the problem, however, emables us to reconeile the (wo.

Various mothods have beon used for the solution of the hardraulic lurmutation of the problem of routing a flood down an opeo chamol. Mathematical methods cun be used to find solutions for simplified versions of equations Toa mad 18 a.

If we wish to go beyond these idealized mathematical formulations, it is neessary to use numerimal mothods. The reensting of the equations in terms of eharneteristie variables facilibats such numeriod solution. Wven hefore the advent of high-spered digital computers, numerical solutions wore obtaned in this way. Tho advent of the computer, bowoere, has greatly facilitated the mumerieal solution of the problem. The mothod of characteristies is still used in some numerion apponethes to the problem; in others, dither an explicit of an implieil finits difforenee sobeme using a rectangular metwork is used. In explicit schemes, sorious probloms of stability may arise, wherens in implicit sehemes the storage mpacity required to solve the resulting simultaneous "guations is a limiting factor.

In the hydrologie approath to the solution of the routing problem, the eontimuity reguation 17 b is retained and the dymamic equation 18b replated by some simplifying relation. The methods most commenty used in applied hydrology for floog routing aro the Muskingum method of XeCarther, the lag and route mothod of Meyer (h), the diffusion analogy of Faymi (18), and the suecessive routing mothed al Kahnin and λ Lilyukov (80). These are atl limer methexs, and thes, it practiee, the chamel reach is assumed to be limear with eonstant parameter values or chse is linencized and a rehtionship found betweon the parameter values and the level of cither inflow or outflow.

Siner wo are interested in at solution at one particular downstrenm bocation, we do not noed to know conditions at all intermediate points. A systoms approach would therefore seem to be more appropriate than a complete

[^19]numerical solution, which generates unwanted solutions at internedinte points. However, our present systems techniques in hydrology are such that if we wish to use a systems approach we must confine ourselves to the linearized version of the problem. Recent studies have been made involving the complete. linearized solution to the equations of continuity and momentum for twodimensional flow in a uniform chamel, (11,16). This approach, in fact, applies to the flood routing problem the wime assumptions that are made in unit hydrograph theory for the more complex problem of eatchment response. It is remarkable that in the past 25 years, during which the unit hydrograph approach has been widely used, no corresponding attempt has beco made to trent a channed as a linear system.
If we coufine ourselves to the case of a semi-infinite uniform wide rectangular chound, without hateral inflow, for whel the friction effect can be represented by the Chezy formula, we can write equations 17 a and 18 a as:
\[

$$
\begin{gather*}
\frac{\partial q}{\partial x}+\frac{\partial y}{\partial t}=0 \tag{19}\\
\frac{\partial y}{\partial x}+\frac{u}{\operatorname{tr}} \frac{\partial u}{\partial x}+\frac{1}{\mathrm{~g}} \frac{\partial u}{\partial t}=S_{0}-\frac{q^{2}}{C^{2} y^{3}} \tag{20}
\end{gather*}
$$
\]

The boundary conditions to be satisfied are the initial conditions determined by an initiat uniform flow throughout the length of the ehanol and an upstream boundary rondition determined by the infow hydrograph at the upstream end. Though the equation of eontinuity (equation 19) is linear in q and y, the dymamic equation (equation 20) is highly nonlincer.
If we cousider a small perturbation nbout the steady discharge g_{0}, then we can write the following equation for the perturbation of discharge (q) from this reference value fo:

$$
\begin{equation*}
\left(g y_{0}-u_{0}^{2}\right) \frac{\partial^{2} q}{\partial x^{2}}-\frac{e^{2} u_{0}}{\partial x \partial t}-\frac{\partial^{2} q}{\partial t^{2}}=3 g S_{0} \frac{\partial q}{\partial x}+2 g S_{0} \frac{\partial q}{\partial t} \tag{21}
\end{equation*}
$$

in which the coeficients have been frozen at the values corresponding to the referme discharge (q_{0}). The above linearization was proposed by Deymie (r) whe also derived the solution given in equation 29 . The work of Deymie and of Alasse (40) published in 1938 was not followed up, and the linearization given in equation 21 and the solution given in equation 29 were developed inclependently by Dooge ${ }^{2}$ in 1965.
Strictly speaking, equation 21 is only valid for perturbations small enough that the variation cocfficients in the nonlinear equation is not sufficient to

[^20]affect the result. If we follow the unit hydrugraph approach and ignowe the fact that large perturbations give rise to nonlinear behavior, we can apply equation 21 to large perturbations and accept the solution of this linearized equation as an approximation to the solution of the original nonlinear problem. How good an approximation it will be can onty be determined for a given case by comparing this complete linear solution with the romplete nonlinear solution. The fact that linear routing methods have been used in applied hydrology woud indicate that the effect of linearization camot be so catastrophe as to make haear methods worthless. The complete solution of the linerized hydenalic requation 21 has the advantage that it can be used as a standard against which to measure the simple linear models used in applied hydrologr: Indeed, the latter can be eonsidered as attempts to simulate the complete linear solution.

Since cquation 21 is linem, it is anty aceessary to determine the solution for a delta function input. For any other inflow; it is only neessary to convolute the impulse response with the actual inflow. For convenience, the impulse response of a chanol obtained from equation 21 will be referred to as the linetr chamel response (ICD).

If the original independent variables (x, t) are replaed by the characteristic direetions (m and n) and the depondent variable (q) is replaced by a new transformed dependent variable (z), the equation can be writen in the more compact form:

$$
\begin{equation*}
\frac{\partial \eta z}{\partial m \partial n}-h^{n} z=0 \tag{22n}
\end{equation*}
$$

where

$$
\begin{align*}
& q=z \cdot \operatorname{cxp}(-r t+s x) \tag{22b}\\
& m=t-\frac{x}{c_{2}} \tag{22c}\\
& n=t-\frac{x}{c_{2}} \tag{22d}
\end{align*}
$$

where c_{2} and c_{2} are the characteristic wave velocities and r and s are parameters defined in terns of the chamel parameters (11). Though equation 22a is more compact in form than equation 21 , it is no casier to solve since the simpler form of the equation is counterbalaneed by the fact that the boundary conditions are not as convenient when expressed in terms of m and n as they are when exprassed in terms of x and t.
Any of the standard mathematical techniques can be used for the solution of either form of the equation, but it is probably more convement in each case to use Laplape transform meihods. When this is done in terms of x and t,
the Laplace transform of the impulise response or LCR is found to be as follows:

$$
\begin{equation*}
H(s)=e x p\left[-x \sqrt{a s^{2}+b s+c}+e x s+f x\right] \tag{23}
\end{equation*}
$$

where a, b, c, e, and f are parameters depending on the hydraulic characteristics of the chamel.

Sine the Laplace transform of the LCR is of expenential form, the cumulants cat be delermined iy repeated dilimentiation of the quantity inside the square brackets in equation 23 and craluated at $s=0$. 'This process is compliated bs the continual oceuremere of indeterminate forms which have to be avaluated by L'Ehpital's Rule. When this is done and the values of the parameters a, b, c, c, and f ane substituted, it is possible to write the cumbunts as follows:

$$
\begin{align*}
& k_{1}=\left[\sigma^{\prime}=\frac{x}{1.2} H_{0}\right. \tag{2+ia}
\end{align*}
$$

$$
\begin{align*}
& k_{4}=\Gamma_{4}-3_{1}\left(C_{0}\right)=\frac{f_{0}}{0}\left(1-\frac{F^{2}}{4}\right)\left(1+\frac{11}{20} F^{20}+\frac{1}{4} F^{4}\right)\left(\frac{y_{0}}{S_{0 x}}\right)^{3}\left(\frac{x}{1.5 \psi_{0}}\right)^{1} \tag{2+d1}
\end{align*}
$$

The rewalt for the lag given by enuation 242 indicaten that for the linenrized solution, the averuge rate of propagation of the flood wave is 1.5 times the velocity corresponding to the reference discharge. This corresponds to the value indiented by the Kleitz-Seddon Law ($32, \overline{50}$) for the celerity of a flood wave in at wide reetangular channel with Cheay friction:

$$
\begin{equation*}
c=\frac{\partial Q}{\partial A}=\frac{\partial q}{\partial y}=3 . a y^{1 / 2}=1.5 u \tag{25}
\end{equation*}
$$

The higher cumutants can be made dimensionless by dividiug by the appropriate power of the lag.

It can be readily seen from equation 24 that the resulting dimensionless cumblants or shape fartors are functions of the Froude Number and the

[^21]dimensionless length parimeter ($\mathrm{S}_{0} x \cdot y /$ of the following form:
where
\[

$$
\begin{equation*}
S_{\mathrm{R}}=\phi_{H}(F)(D)^{1-R} \text { for } R=2,3 \ldots \tag{96n}
\end{equation*}
$$

\]

$$
\begin{equation*}
D=\frac{S_{a x}}{U_{0}} \tag{26b}
\end{equation*}
$$

Consequently, even if we were unable ta invert the transformed function given by exuation 23, it would still be possible to determine the remmants of the solution and to plot the solution for any wiven value of F on a shape factor dingram.

The inversion of fatation 23 gives a solution in the original (x, t) coordinates ronsisting of two terma:

$$
\begin{equation*}
q(x, \eta)=q_{1}+q_{2} \tag{27}
\end{equation*}
$$

where of repersents the hat of the wave and 92 , the body of the wave. The term representing the head of the wave is of the following form:
where

$$
\begin{equation*}
p=\frac{2-F}{F+r^{2}} \cdot \frac{s_{0}}{2 m_{0}} \tag{28b}
\end{equation*}
$$

It can be seen that the head of the wave moves downstream at the deramic wave sperd c_{1} in the form of a delta function of exponentially declining volume. The body of the wave has the form:

$$
\begin{equation*}
q_{2}=h\left(\frac{x}{c_{1}}-\frac{2}{c_{3}}\right) \exp (-n+s x) \frac{I_{1}[2 h a]}{a}\left(t-\frac{x}{c_{1}}\right) \tag{29a}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{1}[2 h a]=\text { modified Bessel function } \tag{29b}
\end{equation*}
$$

nad

$$
\begin{equation*}
\left.a=\sqrt{\left(t-\frac{x}{c_{1}}\right.}\right)\left(t-\frac{x}{c_{2}}\right) \tag{29c}
\end{equation*}
$$

$$
\begin{equation*}
C[t]=\text { unit step function } \tag{29~d}
\end{equation*}
$$

c_{1} and c_{2} are the dymamic wave velocities, and r, s, and h are parameters depending on the hydraulic properties of the channel (1t).

The shape of the body of the wave for $F=0.5$ and various values of the dimensionless length factor D are shown on figure $9-6$. For short lengths, the impulse response declines momotonically; for intermediate lengths, the impulse response is a unimodal curve with an nppreciable initial ordinate. For long dhanels, the umimodal shape of response rises from an initial ordinate which
is practically zero and decines again to zero. For other values of the Froude number (F), the same three shapes are obtained, though the values of the dimensionless length parameters at which a change in shape oceurs increases with the Froude number.
Figure $9-6$ is plotted in dimensionless terms- $q t_{0} / V$ versus $t / t_{0}-$ and tence, gives the crroneous impression that the peak is increasing as the flood wave moves downstrean. This is duc to the fact that the time of travel in a reach $\left(t_{0}\right)$ increases with distance. The variation of the downstream diseharge with length of channel is shown in real terms on figure 9-7. This shows the result of

Fioune 9-6. -Shape of impuise response.
computations for a channel with the steady state rating curve:

$$
\begin{equation*}
q_{0}=50 y_{0}{ }^{3 / 2} \tag{30}
\end{equation*}
$$

and for an inflow given by:

$$
\begin{equation*}
I(t)=125-75 \cos \left(\frac{\pi t}{48}\right) \quad 0<t<96 \tag{31}
\end{equation*}
$$

which corresponds to the inflow used by Thomas ($\bar{o} 7$) in his chassical paper on unsterdy flow in open chamels. The figure shows the modification of the flood wave for distances up to 500 miles (805 km .).
For any hinearization of the routing problem, it is necessary to choose a value of the reference discharge (ξ_{0}) about which the discharge is perturbed. Siner this value of q_{0} is used to evaluate y_{0} from equation 30 and hence u_{0} and the coefficients in equation 21, it will naturally affect the result. The effect of the ehoice of referener discharge on the outflow at 50 miles (80.5 km .) for an inflow given by equation 31 is shown on figure 9-8.

The inflow varies from 50 cubic feet per second per foot ($4.65 \mathrm{~m}^{3} / \mathrm{sec} . / \mathrm{ml}$.) width to $200 \mathrm{c} . \mathrm{I} . \mathrm{s}$. per foot ($18.6 \mathrm{~m}^{3} \mathrm{sec}, \mathrm{m}$.) width and the reference discharge is taken at values of $50\left(4.65 \mathrm{~m}^{3}\right), 100\left(9.3 \mathrm{~m}^{3}\right), 150\left(13.9 \mathrm{~m}^{3}\right)$ and $200\left(18.6 \mathrm{~m}^{3}\right.$) c.f.s. per foot width. It can be seen from figure $9-8$ that for the smaller values of the reference dischurge, the flood wave is displaced in time and oceurs later as would be experted from equation 24 a . It is interesting

Figure 9-7.-Variation of outflow with distance.

Figote 9-8.-Effect of reference discharge.
to note, however, that the shape of the flood wave for the various reference discharges is very similar
For a channel whose rating curve is given by equation 30 , that is, one with Chezy friction, the Froude number is independent of the depth of flow and hener, the value of the second cumulaut given by equation 24 b is independent of the referenee discharge. Since the second cumulant of the outfiow is equal to the second rumulant of the inflow plus the second cumulant of the LCR, the second cumulant of the outfow will, for a case of Chezy friction, be independent of the reference discharge chosen. The reference discharge will affect the third and fourth cumulants, but these may be smail compared to the third and fourth cumulants of the inflow. In any case, the third and fourth cumulants do not have as marked an effect on the shape as the first and second cumulants.

Having obtained the complete linear solution of the hydraulic equations, it is now possible to compare the various speciai linear hydrologic solutions with it and determine the accu acy with which they can simulate the complete solution and the range within which they apply. This was done by the method of moment matching, which is most convenient in this connection. The
rexults were cherked by the method of loast squares. Xine linear models were studied and may be grouped as shown below:

> One-parameter models: dynamie wave equation kinematic wave equation Two-parameter models; diffusion antilogy Muskingum methexi lar and route method Kibinin-Milyukov methut Three-parameter models: diffusion phus lag muttiple Muskiugum method thret-parameler gamma disitribution.

Of most interest are the (wo-paranforer models which have beren used as praction chamed ronting mothods in applied hydrolagy:
The pomplete linear solution is th three-parameter system. If expressed in dimensiuntres form, the dimensiontess diseharge ean be formulated as a function of a dimensiondres time parameter, a dimensionless length parameter, and the Froude number. It may appear pointess to attempt to simulate the thres-parameler complet linear solution hy arother thre-parameter system whith, at hest, will be an apporimation to it. Howerer, the complete linear solution is momplex in form and rehavely difineult to compute; if it can be approximated with a sufficiont degree of acruracy by another three-parameter swatem which is exaier to eomprehend and easier to compute, then the simulation may be more convenient than the use of the original mathematical solution.

A onc-parameter simulation will plot as single point on a shape factor diagram, Fener, it can bardy be expected to simulate a three-parameter sestem which plots as a family of lines. Xevertheless, its ability to simulate flood routing may bo tested by comparing the first moment of the one-parameter model with the first moment of the complete linear solution given by equation 2-4n. If the two terms on the right-hand side of equation 20 are neglected. that is, the difference bet ween beed slope and frietion slope is assumed to be negligible compared to the other terms, then we obtain the classical linear wave solution. For a delta lunction input at the upstream end, thes solution is a delta function traveling down the chamel at a velocity equal to the dynamic wave speed $\left(r_{1}=u_{n}+v\left(g y_{0}\right)\right.$. The problem is only properly posed for Froude numbers less than onc. For such eases, the dymamic wave speed is greater than $1.5 u_{0}$, which is the average speed of tramslation as given by equation 2 da.
Alternativels, if all the terms on the left-hand side of equation 20 -or, what is the same thing, the terms on the left-hand side of equation 21-are neglected, then we get the linear kinematie wave solution. This is equivalent io assuming that the dymamie equation may be used in the simplified form
appropriate to strady uniform flow, that is, that the effects due to changing depthand velority are acpligible compared to the effects of shope and frietion. In this case, the solution is aloo a translation without distortion, but this time at the spered $1.5 u_{0}$ so that the linear kine matie wave solution is a one-parameter model which has exactly the same lay as the emplete solution.

Dlost of the flood routing methods used in applied hydrology are twoparameter models. If the seeond and third terms on the left-hand side of buation 21 are expressed in terms of the serond derivative with respeet to distance on the basis of the lintur kinematic waye solution (whieh is a first approximation to the solution, then the equation beromes:

Which is a parabolier equation in comtrast to the origimal cepuation 21 which was a hyperbolie equation.

The parabolio solution bor diftusion malugy, or convectiver-difitusion solution ubtained frome equation 32 may be shawn to be identical ta the complete solution for the sperial case of the Froude number "epal to zero and may also be shown to have the same first and seconel moments as the eomplete sohution for any value of F. While it is preferable to think of this solution as a parabolie appoximation to the emplete solution, equation 32 maty be considerod as a convertivediffusion "quation in which the "convective velocity" is givell by:

$$
\begin{equation*}
a=1 . \bar{\delta} u_{a} \tag{33a}
\end{equation*}
$$

and the "hydraulie diffusivity" is given by:

$$
\begin{equation*}
1)=q_{20}^{q_{0}}-\left(1-\frac{F^{2}}{4}\right) \tag{33b}
\end{equation*}
$$

Hyedraulie diffusivity musi not be taken to mean that the physieal process involved is one of diffusion. For the parabolic solution (or diftusion analogy), the himer chamed respouse is given by:

$$
\begin{equation*}
h H=\frac{x}{\sqrt{4 \pi D} b^{1}} \cdot \operatorname{cxp}\left[-\frac{|x-a t|^{2}}{t D t}\right] \tag{3t}
\end{equation*}
$$

The cumbants fin this response cati be determined from the general equation for the $R^{\text {th }}$ cumulatat which is:

$$
\begin{equation*}
\left.k_{R}=\{+1)(3) 1.31 \ldots(2 R-3)\right\}\left(\frac{2 D}{a x}\right)^{R-1}\binom{x}{a}^{n} \tag{35}
\end{equation*}
$$

Sulastitution of the value a from repation 33 a and the value of D from equation 33b in equation 3as gives expressions for the cumulants in terms comparable to those used in equation 24 on page 373 . When this is done, it is seen
that the emonants given by argution 3 are the wame as those adiented by xquation $2 \cdot$ lar the specind case of $F=0$.

Tho othor speesal modeds used in applied hydrology ean also be compared fo the sumphete lingere solution. The X[uskingum mothed of flood ronting is based on the assumption that in a rench:

$$
\begin{equation*}
N=K[N+1-N(0)] \tag{!36a}
\end{equation*}
$$

which can be eombined with the comtimuty ergation to give:

$$
1+K i-X, \frac{d l}{d l}=I-K x^{\prime} \frac{d I}{d}
$$

The linest sustom repronented hy the abore equation ran he shown to have the impulse responso:

The delta function term in equation 37 indientes the possibility of the berurmore of negative ardinates in the autfow undes the inflow is sueh as to analob the contributian of the first term tu the ennvaluded ontlow to counterart the athert of the seoond term. The cumahants of the Xuskingum solution (an be shamato be:

$$
\begin{align*}
& k_{1}=\Gamma_{1}^{\prime}=K^{\prime} \tag{38n}
\end{align*}
$$

$$
\begin{align*}
& h_{3}=r_{3}{ }^{2}=2,1-3 X^{2}+3 X^{2} \cdot R^{3} \tag{38c}\\
& k_{1}=\left({ }_{1}-31(2)^{2}=6\left(1-4 X^{2}+\left(0 X^{2}-4 X^{7}\right) K^{4}\right.\right.
\end{align*}
$$

The partaneters of the Ahskingum molel can be optimized by equating the first and seeond cumulants given above to the firsit and second cumulants of the compiete linear sohution. This results in the values:

$$
\begin{equation*}
K=\frac{x}{1.5 u t_{0}} \tag{39a}
\end{equation*}
$$

and

$$
\begin{equation*}
X=\frac{1}{2}-\frac{1}{3}\left(1-\frac{F^{\prime 2}}{4}\right)\left(\frac{y_{0}}{S_{0} r}\right) \tag{39b}
\end{equation*}
$$

In a wniform \cdot hannel, wo can determine the optimum values of the parameters for the λ [uskingum method by using equation 39 provided we know the optimum reforene diseharge and the properties of the channel. For nonuniform chanmels, the first and second moments of the impulse response can
be got by subtracting the moments of the infow from the eorresponding moments of the outflow: the vafur of K is equal to the first moment and X can be oblained trom cenation 38b onee k is known. This wouk seem to be a more objective procedure than the attempt to transorm a looped storage curve to a straghe lins by taking trial values of X. It will be noted froms "qution 30 b that for cortain short distanes the value of X will be negative. From the point of view of thassion hydrology which views x as a mensure of Whe amount of wedge storage present, this appears physitally unveasomable. From the point of viow of mathematien matehing, the negative value of X is the corred value to use
'liae lag and route mothod bifo assumes that the storage at my time may be taken as propertional of the onflow which oceurs after the elapse of a time lag to so that we cun write:

$$
\begin{equation*}
\stackrel{N}{ }(l)=K \cdot((t+\tau) \tag{40a}
\end{equation*}
$$

Which ean be combined with the eontinuty equation to give:

$$
\begin{equation*}
\left(O_{n}\right)+K \cdot{ }_{d l}^{d} O_{1}(+\tau)=I u \tag{40b}
\end{equation*}
$$

This model has the system responst:

$$
\begin{array}{ll}
t<\tau: & h(t)=0 \\
t>\tau: & h i t=\frac{1}{K} \exp \left[-\left(\frac{l-\tau}{\bar{K}}\right)\right] \tag{41b}
\end{array}
$$

The cumulans of the lag and route model nay be readily derived either from its latphete transtom or by taking mements about the origin and using thom to find the emmuats. The values are:

$$
\begin{array}{ll}
R=1: & k_{1}=K+\tau \\
R>1: & k_{n}=(R-1)!K^{R} \tag{42b}
\end{array}
$$

The values of k and τ which are optimal in the monent matehing sease can be obtained by equating the first wo moments of the response to the first two mompats for the complete linear solution. This results in the vanes:

$$
\begin{align*}
K & =\cdot \frac{x}{1.5 u_{0}}\left[\frac{2}{3}\left(1-\frac{l^{2}}{4}\right)\left(\frac{y_{0}}{S_{0} x}\right)\right] \tag{43a}\\
\tau & =\frac{x}{1.5 u_{0}}\left[1-\frac{2}{3}\left(1-\frac{F^{2}}{4}\right)\left(\frac{y_{0}}{S_{0} x}\right)\right] \tag{43b}
\end{align*}
$$

As in the Xuskingum model, one of the parameters may take on "unrealistic" values. This may happen since the value τ given by equation 43 b may be atgative for short lougths of channel. Again it must be emphasized that this
unrealistic purameter valur gives the best fit according to the chosen criteria and should be used if closeness of predietion is required. The element of unreality lies in the ehoice of this particular model for short ehanell lengeths and the assumption that the crude hydrologic reasoming on whieh it is based will result in the optimum parameters performing the same funetion as they dis in the crude madel.

The use of surecssive routing through a charateristio rach was proposed by Kaliain and Milyuker 1301 in 1957 . This is the same model as the caseade moded used to represent the unit hydrograph. It was proposed for chanocl rouning by kalinia and Mibuko on the basis of a linentigation of the tursteady flow equation. The impulse response funrtion of the model is given by the gamman distribution:

$$
h(t)=\begin{align*}
& l k)^{n-1} \tag{44}\\
& k \cdot \Gamma(n)
\end{align*} \exp \left(-\begin{array}{c}
1 \\
k
\end{array}\right)
$$

whase cumulants are given by:

$$
\begin{equation*}
K_{R}=m R-U K^{n} \tag{45}
\end{equation*}
$$

As has berol printed out in dealing with conceptual models of the unit hydrugraph, though the enomeptual model is based on the iden of a caseade in which the value n would $1 x$. integrah, monintegral values of n may be used to fit the model to prototype data. The Kalinin- Xilyukor model, like the other models diserusied in this section. ean be used as a linearized model. The parmumers though takem as emstant for a given flood event, or part of a given flood wernt, can be waried with the intensity of inflow to allow for monlineme effects.

13y matching the first and serond moments given by equation 45 to the first and seromel momeuts of the pomplete hiver solution, the following optimal values for the parameters K and n are obtained.

$$
\begin{align*}
& K=4\left(1-\frac{F^{2}}{4}\right)\left(\frac{y_{0}}{y_{0} H_{0}}\right) \tag{46n}\\
& n=\left(\frac{6}{a-F^{2}}\right)\left(\frac{S_{0 x}}{y_{0}}\right) \tag{46b}
\end{align*}
$$

The parameter K is the time-eonstant for a single linear reservoir of the (rasencle. If the average rate of travel of the flood wave (which is $1.5 t_{0}$) is used to envert this charaeteristic time to a characteristic length we obtain:

$$
\begin{equation*}
L=\frac{2}{3}\left(1-\frac{F^{2}}{4}\right)\binom{y_{0}}{x_{0}}=\left(1-\frac{F^{2}}{4}\right) \frac{q_{0}}{S_{0} \cdot\left(\partial q_{0}^{\prime} \partial y_{0}\right)} \tag{46c}
\end{equation*}
$$

which is identieal with the formula for the characteristic length proposed by Kalinin and Dilyukov (30) exepept for the factor ($1-\mathrm{F}^{2} / 4$).

The shape lactor diagram sa'sa for the complete linear solution and the classical flood ronting methods is shown on figure 9-9. The romplete solution phots as a family of parabohas, and the diffusion analogy concides with the curve for $F=0$. From equation 26, it ean be sela that the higher the dimensionInss length (D), the lower will be the value of sa and the other shape factors and vier versa. Thus, we can deduee from figure 9 g that for short lengths (high sin, the varions two-parameter models other than the diffusion analugy would appear to be uxout equal in their ability to simulate the complete linear salution. For kong lengths (small sn), however, the Muskingum method is seen to have a value of a apprearhing $0 . \bar{a}$, whereas the eomplete lincar solution (for all Froude numbers) and the other models all have values of s_{3} appronething zoro. We would deduer from this divergence that for bong lerigths of chanuel, the XLuskingun arethod would not simulate the outfow hydrograph as well as the other methods. That this is so is shown by figure 0) 10, wherh giws the predieded outfow for the complete solution (for $q_{0}=1 \mathrm{a} 0$ (.C.s. or $4.2 .5 \mathrm{~m}^{3}$. per see.) and the diferent models for the Thomas input defined by fopation 31 and a chanal length of 500 miles (805 km .).

The parabolie method and the Fialinitu-XLilyukov (30) method prediet discharges which are praphically indistinguishable from the complete linear solutim, The lag and route method prediets the travel time to a fair degree of aceurary, but duklerestimates the degree of attemuation. The Muskingum mothond is seren to prediet nugative ordinates for the first 60 hours and a peak discharge which is abwut 20 perrent too high and whose time-to-peak is about .0) percent tow small. It can be verified that for the short chamel lengths the Auskingua method performs as satisfactority as the other methocls. The complite fuilure of the λ luskingum method for the case shown on figure 9-10 is due to the fart that the time-to-ponk of the resulting hydrograph is greater than the time of infow, whereas the XLuskingum outfow must decline as sonn as inflow stops. As a rule of thumb, this suggests that the $\$ Luskingum method will fail if the har of the chamel reach is greater than about half the duration of inflew:

The ubility of the thres-parameter models to simulate the complete linear solution ean be similariy analyed. As might be expected, the three-parameter models are better able to simulate the three-parameter romplete solution. Figure $6-11$ shows a ploting on a $s_{4}-s_{2}$ shape factor diagran of the complete linan solution for a Froude number of 0.5 and the lines for each of the threeparameter models for the same Froude number. The closeness of the lines on

[^22]the shape factor diagram suggests that the aedual hydrographs would be very similar. In fact, it is not possible to distinguish the solutions when plotted in hydrograph form at an ordinary seale.

The manner of variation of the three parameters in each of the modelswhich result from the matching of the first three moments to the first three

Ftaune 9-9.-Shape factor diagram.

Fioure 9-10.-Simulation by two-parameter models.
moments of the complete linear solution-shows some interesting features. In the case of the diffusion phus lag model, a change in the leugth of channel considered does not result in any change in the value of the convective velocity (a) or the "hydraulie diffusivity" (D), but the third parameter, the lag (τ), varies in order to maintain the optimum solution and is directly proportional to the leagth of chanel. In the case of the three-parameter gamma model, the reservoir lag time K remains constant as in the two-parameter KalininMilyukov model, but both the number of raches (n) and the lag of the linear chaned (T) vary directly with the length to maintain similarity with the complete linear solution. In the case of the multiple Muskingum model, the values of K and X are independent of the reach length and the complete linear solution is matched by using a number of Muskingum reaches which is proportional to the length. The conclusions given above are developed on the basis of loug reaches of channel and might not hold for short reaches.

The general approach described above can also be applied to a channel with lateral inflow.s Treatment of this case is outside the scope of these lectures. It may be said, however, that the derivation of the complete linear solution in lateral inflow is more complex than the one given above. It should be noted that the linear response obtained is in fact the IUH for a uniform channel.

[^23]It is interesting to note that one of the models which is most successful in simulating the complete solution, particularly for Froude numbers approaching 1, is the model consisting of a rectangle routed through a linear storage element. In fact, this model is the Zoch-Clark model of routing the time-areaconcentration eurve through a linear reservoir.

Figure 9-11.-Shape factor diagram for three-parameter model ($F=0.5$).

Problems on Surface Flow

1. Calculate the steady state profile for overland flow from a plane 80 feet long at a slope of 1 in a $t, 000$ with Chezy coefficient of $100 \mathrm{ft} .^{1 / 2} / \mathrm{sec}$. and 4 lateral infow of 0.001 leet per second. Draw both the profile and the velocity distribution along the length of the plane. How would the result be affected by the neglect of tin various terms in the basie dynamic equation?
2. Compare the Forton-Yzzard solution and the kinematic wave solution. What is the relationship between the time to equilibrium in the two methods?
3. Compare the various methods proposed for the numerical solution of the equation for unsteady overland flow. Based on the different methods, what difficulties in computation would you expect?
4. Determine the rising hydrograph and the falling hydrograph by the Forton-Izzard method for the data given in Appendix table 12.
5. Determine the rising hydrograph and the reeession hydrograph lor the kinematic wave solution for data in Appendix table 12.
6. Detemian the rising hydrograph and the recession hydrograph by a method of numerieal computation for the data in Appendix table 12.
7. Tit a Horton-Izzard type solution to the data for the data in Appendix table 13 .
8. Fit a kinmatie wave solution to the data in Appendix table 13.
9. A wide rectangular channel has a bottom slope, S_{0}, of 3 feet per mile (0.57 m . per km), a leugth of 200 miles (322 km .) , and Chezy friction with a (' of 50 . Find the discharge hydrograph at the downstream end, using the method of charaeteristies if the infow per unit width is given by function 5 of Appendix table 1.
10. Use a finite difierence scheme, either implicit or explieit, to solve problem 1 .
11. Diseuss the question of the stability of the solutions obtained by finite difference methods for unstendy flow in open chanmels.
12. Find the linear chamel response of the given channel for this particular flood event from the given inflow and from the outflow computed in either problem 1 or problem 2.
13. Find the linear channel response for the data of inflow and outflow given in Appendix table 10.
14. Derive the form of the linear chamel response for the following classical methods of flood routing: lag and route, X[uskingum method, KalininMilyukov method.
15. What basic physical assumptions are made for the three classical methods of flood routing mentioned in problem 6.
16. For the inflow and outflow hydrographs given in Appendix table 10, find the best value of the lag and the routing coefficient to handle this flood rvent by the lag and route method. Draw the linear channel response for these parameter values.
17. For the inflow and outfow hydrographes given by Appendix table 10, find the values of K and X for handing this flood event by the Muskingum method. Draw the linear chamel response for these particular values.
18. For the infiow and sutfow hydrotraph given in Appendix table 10 , find the value of n and k to handle this flood svent by the Kalmin- Milyukov method. Draw the linear chanal response for these parameter values.
19. Derive the expressions for the cumulants of the eomplete linene solution given in equation 24 : page 000 .
20. It has been suggested that apart from the effeet on lag, a change in the reference diseharge produces only a very small change in the shape of the outfow hydrograph. Would you expect this change in shape to be greater where the inflow is a gamma distribution or where the inflow is a eosine curve?
21. What other models, besides those mentioned in the lecture, might be used to simulate the Linear ehamel response". Indieate a one-parameter model, a two-parameter model, and a theeparameter model which might have been used. (Aleuhto the cumulants of these models.
22. In this lecture, the moments and cumalants have been used as a eriterion of matehing. Diseuss the significance of this eriterion, and indieate what other criteria might have been used and what difference this would have made to the computations.
23. Using funetion $)^{\text {on }}$ on Appendix table 1 as the infow, eompute the outfow hydrograph in a wide retatagular channel for different values of S_{0}, C, and L.
24. For the corresponding inflos and chamel ch. acteristies used in problem 23, rompute the parameters of a two-parameter simulation model and generate the simulated hydrograph.
25. For the inflow pattern in the channel of problem 23, compute the parameters of a three-parameter simulation model and compute the simulated hytrograph.
26. From a sorics of risults of problems 23, 24, and 25 , draw up rough working rules for the eireumstances under which each of the models are valid.

Literature Cited

(1) Anвотя, M. B.
1906. An inthodection to the method of charactenistics. 243 pp . London.
(2) Amoromo, d. and Onlob, G. T.
1062. Nonlinean analisis of hybrologre systems. Water Resources Center Contrib. 40, 147 pp, illus. Cniversity of California, Berkeley.
(3) Beulte, C. E.
1957. the mechanics of ovemand flow. Ph.D. Thesis. Stanford University, Calif.
(4) Branensien, D. L.

196e. hydrodinamics of overland flow and nonphismatic channels. Amer. Soc. Agr. Engin. Trans. 9(1): 119-129.
(5) Chemeamino, E. P.

 cabeblumons. Meteorologiga i Gidrologiya Zhazarnal. Lenimgrad.
(6) Grow. Ven Te.

(7) Davme, P.
 antion of an bonchated intumescancel. Proc. ith Internath. Cong. Aph. Mech., pp. $\mathbf{6} 37-544$. New Vork.
(8) DOOGE, 3. ©. !.
 h. Neatr sponaob. Commission on Suhterrantan Waters, General Assembly of Helsinki, Internatl. Assoc. Sei. Hydrol. Pub. 52: 2so-300.
(9)
 Commission on Suriace Waters, (ieneral Assembly of IBerne. Intermath. Assuc. Seci. Hydrol, Puh, 76: 100-413.
(10)
 Flooks. Their Predition and the Defence of the Soil. Acendemat Nazionale di Lincie. Rome. (In press.)
(11) - - - and Imbley, 13. M.
 posium. V. 1: 57-633, Compt. Read. Fort Collins, Colo.
(12) Dronkris. J. J.
tob-4. thal combetations in hevels and coastal waters. 5 is pp, Amsterdam.
(13) Escormina, E. F.

10G5. hoveno flood wayes on the aidencutoha mivit. Internatl. Assoc. Hydratic Res. Xlth Internath. Cong. Paper 3.38. Leningrad.
(14) Fonsethe, (:, E., and Wanow, W. R.
 phe New Yock.
(15) Gilcuestr B. A.
 Itydrauliss New York.
(16) Harlet, B. M., and Doone J. C. S.
fots. prohems in smelating and braleativg vamous methods of hinbar Fiood hotring using a smali digital comivthu. Tueson Interantional Symposium on the use of andog and digital computers in hydrology. Intermatl. Assoc. Sci. Hydrol. Pub. SL: 417-420.
(ia) Harmanay, (i. A.
1045. mhitaity abriblds; a smpostum-destgi of mhanage fachitmes. Amer. Soc. Civ. Engin. Trans. 110: 607-738.
(N) LLatimb. S .
1951. on tha promadmon of floob wayes. Disaster Prevention Res. Inst. Buk. 1: 1-16. Kyoto (aiversity. Japan.
(19) Fendmasos, F. M.
1963. Flood waves in pusmatic chanmpas. Amer. Soc. Civ. Engin. Trans, Jour. Hydranlies Div. $\left.\mathrm{SO}(\mathrm{HI})^{-}-\mathrm{f}\right)$: 39-67.

（3）Hokros，R．E．

 3： $3 \cdot 10-3.30$ ，

（2．6）Fimans，1．F．and Monkz，E．J．

 Iaftuette．Ind．

（？（i）IwataskI，Y＇
 1353）：13！

 25（6）：959－9
（2S）……
 （Washington，D．（．）『roc．26： $129-146$.
（90）K．
 omalia，Berkeley Aymposiam of Surface Whters．Internati．Assoc．Sci． Eyilool．Pui）．（33；77－89．
（3） 3 ）

 Meteorologiva i Gidrolugivat／huzurnal 10：10－18．Leningrad．

 1Fnion Trans．25（6）：050－968．
（32）KLstrz，「．
 A la phopagation des chues des hiviehes ion the theony of unsteadr FLOW OF LIGUIDS AND ON TTS APPLICATHON TO TItE PROPAGATION OF RLVER Floodsi．Punt et Chansees Anmies（France），sem．2，No．48：133－196．
（33）Krombent．L．心．
19G．I．GHOHSHCHENNATA FORMOOLA DLIA RASCHETA GIDHOGRAFA STOKA［A GENER－
 Central Forecasting t＇nit Trams．（TsIP）133：23．Moscow．Translation NELAT RTS 3355，Boston Spa，Yorkshire，Sept． 1966.

 tral Foreosating（＇nit Trans．（Ts［P）1＋1．Moscou．
(35) Kulandaswhay, V. C.
1960. A note on meskingem mbthod of flood hotering. Jour. Hydrol. 4(3): 973-276.
(3i) Laubenson, E. M.
10j0. storage antaysis and flood hotiting in long myer meaches. Jour. Geophys. Res. 6.t: 2423-2431.
(37) $\cdots \cdots \cdots$
1062. hrdhograpin stathesis ar hunory houting. Water Res. Lab. Rpt. 66. Thiversity of New South Wales, Sydury.
(3S) Lugetro. J. A.
1050. unsteady oren mannel flow wth lateral inflow. Dept. Civ. Engin. 'Tech. Rpt, 2. Stanford ["niversity, Culif.
(39) $-\cdots$
 Jour. Hydraulies Div. $\left.87(H)^{\circ} \mathrm{B}\right)$: B 9.
(40) - ... and Wonbinsen, D. A.
1967. meference soldtion of the shalow water eocatons. Amer. Soc. Civ. Eugin. Jour. Eugin. Mech. Div. 93(Ent-2): 39-71.
(.11) Ligumalis, M. J.. and Whitham, G. B.
1905. on kingmatie wayeas baley i-flodod movement in long bevills. Roy, Soe (Londun) Proc, Ser, A 229(117N): 281-316.
(+2) Lis, Pin-Nam.
 Amer. Geophys. Vnion 33(2): 296-234.
(13) MeComl, D. K., Gwinn, W, R, and Ree, W. O.

196ib. smphaly vambd steady flow in a vegetated minnel. Amer. Soe. Agr. Engin, Trans. 9(3): 440-14.4.
(+1) Masgac, J.
 partinhles fugport on the graplic integhation of the equations of partha dehivatives!. Annules de lassociation des Tugenieurs Sortis des Eeoles Speciales de Giand, 23: 95-214. Transhated hy H. J. Putaam, Rocky Mountain Hydraulies Lah., Allenspark, Colo.
(-h) Masss, P.
1939. hechmiches aer ha theome des eadi codiantes [uesearches on the fheon of water curbents. Proc. 5th Tutermatl. Cong. Appl. Mech., pp. $\mathrm{F} F \mathrm{~F}-\mathrm{by}$? New York.
(46) Mever, O. H.

19:11. simplified flood rotting. Civ. Engin. l1(6): 30G-307.
(47) Mishalla N. E.
tgot pledicting storm henoff from small expermental watetisheds. Amer, Soc. Civ, Engin., Jour. Flydraulies Div. S6(HY-S).
(4S) Mohgat, J. R.
1963. hydrathe bebaylour of gmall dranige basing. Tech. Rpt. 30, 115 pp . Dept. Civ. Engin., Stanford T\#niversity, Calif.
(49) -... -... and Linstex, R. K.

19bi. compcter analysts of overland flow. Amer. Soc. Civ. Engin., Jour. Hydraulics 1)iv, 91(Hy-3): \$1-100.
(50) Naste, J. E.
19.89. a vote on tine miskingum flood rocting methoos. Jour. Geophys. Res. $14(\mathrm{~S})$: 1053.
(51) Paynter, H. M.
1052. hermods and hesults fhom alt studles in insteadi flow. Boston Soc. Civ. Eugin. Jour. 39(2): 120-165.
(\mathbf{D}^{2}) Ragax, R. M.
1966. habobatome evaltation of a nlimerical mlood roteting tecinigue for mannels shbibect to matehal inflows. Water Resources Res. 2(1): $111 \cdots 121$.
(53) Ricurmzen, R. I.
 (54) Smonfeld, J. C.

195L. phorigation of tides and smmar waves. Rijkswaterstat. The Hague.
(55) Sendos. A. J.
1900. biver hymatules. Amer. Sor. Civ. Engin. Trams. 43: 179-243.
(50) stokent, J. J.

100̈́s. Watell waves: the math theory weth abplications. v. w, bethe and Abram math. 5 bit pp. New york.
(5i) Thosas, H. A., Sib.
1934. Tue hidhatlics of flood movements in myers. Carnegic linst. Teeh. (Pittsburgh) Engith. Bul., pp. 1-70.
(5s) Vasmer. O. F. and others.
190.4. a mpmbical method for calcelating rine propagation of lineaz waves in open channmls. Nhad. Fauk. Leningrad, Dok. S(7).
(\%9) Woo, D. C. and Brater, E. F.
1962. spathally vaied flow from controlled mainfall. Amer. Soc. Giv. Engin., Jour. Hydraulies Div. S8(HY*-6): part 1, 31--50.
(60) Wooning, R. A.

1965a, a hybrafle model for the catchment-stream problem. labt i: kinematic waye theory. Jour. Hydrol. 3: 254-267.
(6i) --w.
1903b. a hyobadlic model for the catchment-stibeam problem. part it: nemeateal solittoons. Jour. Hydrol. 3: 268-2S2.
(62)
1963. a hymbalic model, for the catchment-stream problem. part ill: comparison with mevoer observations. Jour. Fydrol. 4: 21-37.
(63) Woolhissm, 1). A., and Ligomer, J, A.
1967. tinsteady, one-dmensional flow oyer a plane-the ristag hydrograph. Water Resources Res. 3(3): 753-771.
(6-) Yevospmich, V . M.
 flow an channels. ['S. Geol. Survey Water-Supply Paper 1690, 235 pa .
(65) Yr. X. S., and MeNown, J. S.
1964. newoff from mpraviots surpaces. Jour. Hydraulies Res. 2(1): 3.

LECTURE 10: CONCEPTUAL MODELS OF SUBSURFACE FLOW

Lecture 0 denalt with mathematien simulation and eonecptual models for flow proereses that constitute part of the direct eatehment response to inflow. It was eoncerned, therefore, with the simulation of processes contributing to the formation of the unit hydrograph, whieh is required either as the direet storm response or as part of the simulation of the total catchment response. The remaining two subsystems shown on figure t-6 are the soil-water response system and the ground water response system.

The treatment of these two phases of subsurface fow is similar to that for overimed fow and chanmel flow in the last lecture. In each case, the basie equations derived from the physies of unsaturated and saturated flow in porous media will be given, together with an aecount of the more important solutions based on simplified versions of the fundamental equations. A bricf deseription will then be given of how conceptual models may be used to simulate these portions of the hydrologie eycle. It has been mentioned previously that the soil phase is the subsystem of the hydrologie eycle in which the lenst systems work has been done. Ouly in recent years has any work of this type beru done in regard to ground water flow. Consequently, the present lecture will be largely concerned with a review of the theoretical and empirical relationships which have been proposed and which are necessary as a background to the tackling of the problem from an systems viewpoint.

Movement of Soil Moisture

In considering the soil phase of the hydrologic eyele, we are concerned with the rate aud amount of infiltration into the soil through surface entry, the rate and amount of downward percolation from the surface to the water table, the amount of soil moisture hold in storage, and the rate and amount of depletion of soil moisture storage cither by evaporation at the surface of the soil or by transpiration through plants. Infiltration is probably the most important of these processes sinee it controls the extent to which total precipitation beeomes effective as an input to the system representing the rapid response of the catchment. Physical information on infiltration is available from laboratory experiments, feld results in infiltrometers, analysis of recorded hydrographs, aucl the computation of watershed indicators of equivalent rates of infiltration.

Any theory of infiltration must be grounded on the principles of soil physics $(1,5)$. The water in unsaturated soil is held against gravity mainly by the action of soil suction. The curve showing the relationship between soil suction and soil water content is refered to as the moisture characteristic curve for that particular soil. The soil moisture characteristic curve extibits a hysteresis
offect for my given history of altermative wetting and drying. The moisture chararteristie curves in such cases cau span the area betweren two limititu curves, one for drying and the other for wetting.

If we ignore the effect of temperature and osmotie pressure, the movement of water will take place under the artion of a potential difierence in aceordane with a generalization of Darey's Law:

$$
\begin{equation*}
\zeta=-K \operatorname{grad} \phi \tag{l}
\end{equation*}
$$

where If is the rate of flow per unit area, K is the hedraulic eonductivity of the suil (which is dependent on muisture content), and ϕ is the hyedrablie. head or potentina. The potential is made up of pressure head and ele vation:

$$
\begin{align*}
\phi & ={ }_{\gamma}^{p}+z \tag{2a}\\
& =-\Sigma+z \tag{2b}
\end{align*}
$$

where

$$
\begin{equation*}
s=-{ }_{\gamma}^{p} \text { is the soil suction } \tag{2c}
\end{equation*}
$$

and z is the devation abowe a fived datum.
In cunsidering intill ration, pereolation, and apaporation, we are largely concerned with flow in a vertieal dirertion. For vertical flow, couation 1 beromes:

$$
\begin{equation*}
\mathcal{I}=-K \cdot \frac{\partial}{\partial z}(S+z) \tag{3a}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma=K \frac{\partial S}{\partial z}-K \tag{3b}
\end{equation*}
$$

If the soil suction (s) is assumed to be a single-valued function of the moisture content (e), then we can define the hydraulie diflusivity of the soil as:

$$
\begin{equation*}
D=-K \frac{\partial S}{\partial c} \tag{4a}
\end{equation*}
$$

and write equation 3 as:

$$
\begin{equation*}
I^{-}=-D \frac{\partial c}{\partial z} K \tag{4b}
\end{equation*}
$$

which is the one-dimensional diffusion form of Darcy's Law. Over a given range of moisture content, the variation in D will be less than the variation in K.

For unsteady fow in an unsaturated soil in a vertical direction, we have the
equation of contimuty:

$$
\begin{equation*}
\frac{\partial \mathrm{J}}{\partial z}+\frac{\partial c}{\partial l}=0 \tag{0}
\end{equation*}
$$

Where 1 is the rate of fow per unit area and c is the moisture content expressed as a proportion of total volume. Combination of equations 1 and 5 gives us:

$$
\begin{equation*}
\frac{\partial}{\partial z}\left(K \frac{\partial \phi}{\partial z}\right)=\frac{\partial C}{\partial t} \tag{6a}
\end{equation*}
$$

or using equation 2 b wr get:

$$
\begin{equation*}
-\frac{\partial}{\partial z}\left(K \frac{\partial K}{\partial z}\right)+\frac{\partial K}{\partial z}=\frac{\partial c}{\partial l} \tag{6b}
\end{equation*}
$$

and with equation th we get:

$$
\begin{equation*}
\frac{\partial}{\partial z}\left(D \frac{\partial c}{\partial z}\right)+\frac{\partial K}{\partial z}=\frac{\partial c}{\partial t} \tag{6c}
\end{equation*}
$$

For iafiltration into a very dre soil (or upward movement from the ground water to a dey soil surface), the gradient of the soil suction will be very much larger than the difterener in elevation. Consequently, the last term (K) on the right-hand side of equations $3 b$ and $4 b$ can be neglected compared with the other two terms; similarly, the second terms on the left-hand side of equations $6 b$ and $6 e$ can be neglected. Omission of these terms corresponds to the assumption that the effect of gravity on water movement is negligible compared to the effect of the gradient of soil moisture suetion.

Equation 6 is a nonlinear parabolic equation since hydraulie conductivity (K) and the hydraulic difusivity (D) are functions of the moisture content (c). Equation $6{ }^{(}$has the same mathematical form as the concentrationdependent diffusion equation in mathematical physics and is the most convenient form for theoretien analysis.

A number of authors have suggested empirical relationships between the unaturated permeability (K) or the hydraulie diffusivity (D) on the one hand, and the moisture content (c) or the soil suction (S) on the other. These can be used in the place of purely empirical moisture characteristic curves to predict water profiles and water movement; they could also be used as the basis for conceptual models of the movement of moisture in the unsaturated zone. Bear, Zaslavsky, and Irmay (1) suggested that unsaturated permeability can be related to saturated permeability by the equation:

$$
\begin{equation*}
\frac{K^{r}}{K_{3 s t}}=\left(\frac{c-n_{0}}{n-n_{0}}\right)^{3} \tag{7}
\end{equation*}
$$

wheres is the moisture content, n is the total porosity, and n_{0} is the ineffective
or irreducible porosity. Cardner tho bugrosted expressing unsaturated promahility as a function of wil maisture surtion by an begution of the form:

$$
\begin{equation*}
K=\stackrel{a}{b+\mathrm{S}^{m}} \tag{8a}
\end{equation*}
$$

Which cma be writtea as:

$$
\begin{equation*}
\frac{K}{K_{\text {sat }}}=\frac{b}{b+S_{m}^{m}} \tag{8~b}
\end{equation*}
$$

Where K is the unsaturated promerbility. S is the soil moisture suefion, m is a parameler whinh has to vabe of appoximately 2 far heave soils and approximately + for sands, and a and bare empiripal paranoters. (fardner abso used ath ixpmontial redationship betwen unsaturated permeabitity and soil suction:

$$
\begin{equation*}
\stackrel{K}{K_{\text {vat }}}=\{x p+-a \dot{s} \tag{8c}
\end{equation*}
$$

some sporial base uf the relationship given in equation Sa had been sug-
 Marhugh t^{\prime} ' have sugerstad thr fullowing rehationship for the hydraulic diffusivit.

$$
\begin{equation*}
\frac{D}{D_{i}}=e x p\left[{ }_{l}(a i c-b i]\right. \tag{9}
\end{equation*}
$$

"hares $D_{"}$ is the value of the hydraulie diffusivity for the moisture content $c=b$ and t and b are $\operatorname{rxperimental}$ paramoters.

Inder stendy state manditions with no loss or gain of moisture to the atmensplerer. the soil menisture profile will be in equilibrium. The moisture in the ansaturaded zome is hedd abowe the water table against the pull of gravity by the suld surtien; the curvature of the interface between soil air and soil water allows the soil water to be at a pressure less than atmospheric.

Ja a strady preolation rate iaj from the surface to the water table, we have:

$$
\begin{equation*}
q=K\left[1-\frac{\partial S}{\partial z}\right] \tag{10a}
\end{equation*}
$$

or in terms of the hydraulie diffusivity:

$$
\begin{equation*}
q=K+D \frac{\partial c}{\partial z} \tag{10}
\end{equation*}
$$

The level above the water table at which a particular moisture content occurs
can be determined from:

$$
\begin{align*}
& z=\int_{S=0}^{S} \frac{K}{K-q} d S \tag{11n}\\
& z=\int_{r_{z a t}}^{c} \frac{D}{q-K} \cdot d c=\int_{c}^{c_{x+1}} \frac{D}{K-q} \cdot d c \tag{11b}
\end{align*}
$$

In a multilayered soil, the integration can be carried out separmedy in each layer:

$$
\begin{align*}
& \left.z=\sum_{i} \int_{s_{i-1}}^{s_{i}} \frac{K_{1}}{K_{1}-q} d i\right\rangle \tag{12a}\\
& z=\sum_{i} \int_{c_{i-1}}^{c_{i}} \frac{D_{2}}{q-K_{1}} d c \tag{12b}
\end{align*}
$$

Siner it is the soil surtion that in continuous across the boundary between lavers, there will be diseontimuties at the boundaries if the computation is dene in terms of moisture content.

The steady upward movement of water from below the water table to provide a stendy rate of evaporation (e), gives rise to a similar formula, except that in this case we have:

$$
\begin{align*}
& e=K\left(\frac{\partial S}{\partial z}-1\right) \tag{13a}\\
& \varepsilon=-D \frac{\partial c}{\partial z}-K \tag{13b}
\end{align*}
$$

and the solution is given by:

$$
\begin{align*}
& z=\int_{x-o}^{S=c} \frac{K}{K=c} \cdot d \mathrm{~S} \tag{14a}\\
& z=\int_{c}^{c_{\mu t}} \frac{D}{K+e} \cdot d c \tag{14b}
\end{align*}
$$

If the water table se were close to the surface, there will only be a small drying of the surface, and craporation can occur at the potential rate. In the ease of a defp water table, however, the gradient necessary to move water up from bedow the water table results in a high soil suetion at the surface and, consectuently, a lower moisture eontont and a lower unsaturated permeability. By using an empirical relationship between K and s, it is possible to integrate (quation tha and so predict the soil profile for capillary rise (36,87). A similar mateulation could be used to cstimate transpiration by using a constant suction at a given aleration to simulater root action.

For the couditions of deep water table and high evaporation rate, it ean be shown that there is a limiting rate of evaporation which depends on the depth of the ground water and the soil properties (13). Under some conditions, this concept of a limiting rate of evapozation, depending not on elimatological data but on soil properties and conditions, may be of importance for the modeling of the soil phase of the total catchment response.

Gardier has shown that if the unsaturated permeability can be wostrized to have the redationship with soil suction given by squation sa, then for ang given value of m, the limiting rate of evaporation would be givas b_{y} :

$$
\begin{equation*}
\frac{f_{1 i m s}}{K_{\text {att }}}=\frac{\text { constant }}{\left\{z_{0}\right\}^{m}} \tag{15}
\end{equation*}
$$

where z_{0} is the depth of the water table below the surface. Evermertion may tuke phace at grenter than this limiting rate, but if it coos tho ester being supplied from soil moisture storage rather than ground water storngr and the soil moistare distribution is not that of a steady state. Senfeusemer mad Corey (39) have reperted experimental results indionting the existener of a maximum rather than a limiting rate of evaporation from the soil surfaer and suggest that this phenomenon can be explained by the effect of hysteresis.

Ensteady Movement of Soil Moisture

In practice, the soil moisture rarely attains an equilibrium profile. Rather than haviug a constant rainfall rato or a constant evaporation mate at the surfaes for a kong pariod, we have altermating precipitation and evaporation resulting in continual changes in the moisture profic and the unstendy movement of water either upwards or downwards in the soil. As hydrologises, we are largely comerraed with conditions which occur when a dry soil is wetted by precipitation at a higher rate than the average or when a wet soil is depleted of its moisture content by an craporation rate higher than average. As in the rase of steady downward perolation, or steady upward eapillary rise, the probems of upward and downard movoment are essentially similar, and techmiques which work for one wil be appropriate for the other. Due to limitations of space, only the infiltration problem will be dealt with in the present discussion.
It is important to distinguish between the infiltration capacity of the soil at any partioular time and the actunl infiltration oceuring at that time. Infiteratim capmeity is the maximum rate at which the soil in a given condition can absorb water at the surface. If the rate of rainfall or the rate of snowmelt is less than the infitration capacity, then the actual infiltration will be less than the infiltration eqpacity sinee the amount of moisture entering the soil camot exeed the amomen available. A number of empirical formulas for infiltration eaparity have been proposed in the literature. Those by Kostiakov (23), Horton (19), Holtan (1\%), and Overton (29) are discussed below. The theo-
retical formulas which are diseussed are: the solution of the basic equation on a constant diffusivity (4), the solution based for a constant profile (30), and Philip's general solution for the ponded infiltration case (81).

The following notation will be used for both empirical and theoretical formulas:
$f=$ rate of infiltration capacity
$f_{0}=$ initial rate of infiltration eapacity
$f_{f}=$ ultimate rate of infiltration capacity
$f_{c}=$ rate of excess infiltration $\left(f-f_{c}\right)$
$F=$ volume of infiltration
$F_{c}=$ ultimate volume of infiltration
$F_{p}=$ volume of potential infiltration $\left(F_{c}-F\right)$
$F_{c}=$ volume of excess infiltration $\left(F-f_{c}\right)$
$F_{c o}=$ f fiual volume of excess infiltration $\left(F_{c}-f_{c}-I\right)$
$F_{r e}=$ volume of potential (xcess infiltration $\left(F_{s e}-F_{c}\right)$.

In the ceste of formulas for infiltration volume, the corresponding formula for infiltration rate can be gotem by difierentiation. In the case of formulas for infiltration rate, the formula for infiltration volume ean be gotten by integration. All of the above definitions refer to infiltration capacity. If it is necessary to distinguish it, the actual infiltration rate can be designated by f_{A} and the actual volume of infiltration by F_{A}.
As mentioned above, attention will be confined to the more important ampirical equations found in the literature. In 1932, hostiakov (23) proposed the following formula for the initial high rate of infiltration:

$$
\begin{equation*}
f=\frac{a}{l^{L}} \tag{16}
\end{equation*}
$$

Where f is the rate of infiltration up to the time when the infiltration rate would be equal to the snturated permeability of the soil. Horton (19) suggested the [ollewing formula for the rate of infiltration capacity:

$$
\begin{align*}
f-f_{c} & =\left(f_{0}-f_{c}\right) \exp (-k t) \tag{17a}\\
f_{\mathrm{r}} & =f_{o e} \exp (-k t) \tag{17b}
\end{align*}
$$

Holtan $1 / \pi^{\prime}$ sugrested that the rate of exeess infiltration in the carly part of a storns cosuld be rolated to the volume of potential infiltration (F_{p}) by an cquation of the form:

$$
\begin{equation*}
\int-f_{\mathrm{c}}=a\left(F_{p}\right)^{n} \tag{18a}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{\mathrm{c}}=a\left(F_{\mathrm{p}}\right)^{n} \tag{18b}
\end{equation*}
$$

()werten wa showed that for a value of $n=2$ in equation i8, the rate of
infiltration could be expressed as a function of time in the following form:

$$
\begin{equation*}
f=f_{c} \cdot \sec ^{2}\left[\sqrt{a f_{c}}\left(l_{\mathrm{c}}-t\right)\right] \tag{10a}
\end{equation*}
$$

where t_{c} is given by:

$$
\begin{equation*}
t_{c}=\sqrt{\frac{1}{a f_{\mathrm{c}}}} \cdot \tan ^{-1}\left(F_{\mathrm{c}} \sqrt{\frac{a}{f_{c}}}\right) \tag{19b}
\end{equation*}
$$

and is the time taken for the infiltration capacity rate to fall to its final value f_{c}.
We turn now from empirical formulas based on the analysis of field observations to theoretical formulas based on the principles of soil physics. For a soil whose moisture characteristics and unsaturated permeability (or hydraulic diffusivity) are known, equation 6 for the unsteady vertical movement of moisture in a soil cam be solved by numerical methods (22, 3i, 38). We are, however, more concerned with simplifed mathematical formulations of this particular problem.
One of the simplest models of infiltration into a soil (and the subsequent downward pereolation of the wetting front) is that obtained if the hydraulic diffusivity is taken as constant (4) and, in addition, cither the hydraulic condurtivity taken as a constant or the offect of gravit, neglected. In this case, we have:

$$
\begin{equation*}
D \frac{\partial c c}{\partial z^{2}}=\frac{\partial c}{\partial t} \tag{20a}
\end{equation*}
$$

Instead of taking clevation (z) vertically upwards from a datum, we express our equation in terms of the depth of percolation downward from the surface (r) so that we have:

$$
\begin{equation*}
D \frac{\partial^{n} c}{\partial x^{n}}=\frac{\partial c}{\partial t} \tag{20b}
\end{equation*}
$$

For the problem of ponded infiltration into an infinitely deep soil, we have the boundary conditions:

$$
\begin{array}{lll}
c=c_{0}, & \text { for } & t=0, x>0 \\
c=c_{s}, & \text { for } & l \geq 0, x=0 \tag{20d}
\end{array}
$$

where c_{a} is the initial moisture content of the dry soil and c_{s} is the constant moisture content at the surface (usually; but nut necessarily, $c_{9 a t}$). Equation 2 Cb is a linear parabolic equation of the ciffusion type and has a solution of the general form:

$$
\begin{equation*}
c=\phi_{1}\left(\frac{x^{2}}{l}\right) \tag{21a}
\end{equation*}
$$

which gives the moisture content (c) for a given depth of penetration (x) at a
given time (61 . The depth of penctration for a given moisture content can be written as:

$$
\begin{equation*}
x=t^{1 / 4} \cdot \phi_{2}(c) \tag{21b}
\end{equation*}
$$

The total amount of infiltration up to a given time t is given by:

$$
\begin{equation*}
k^{\prime}=\int_{c_{0}}^{c_{1}} x \cdot d c+K_{0} \cdot l \tag{22a}
\end{equation*}
$$

where k_{n} is the unsaturated permeability corresponding to the initial moisture content c_{0}. Substituting equation 21 b into equation 2 en we obtain:

$$
\begin{equation*}
P=\int_{c_{a}}^{c_{s}} l \cdot a_{Q_{2}}(c) \cdot d c+K_{0} l \tag{22b}
\end{equation*}
$$

This is thearly seen to give:

$$
\begin{equation*}
F=t^{l: 2} \cdot \int_{c_{0}}^{c_{4}} \phi_{2}(c) d c+K_{0} t \tag{22c}
\end{equation*}
$$

which ollows us to express the infiltration volume (F) as a function of time, and of the initial and saturated moisture contents and the initial permeability:

$$
\begin{equation*}
F=\phi_{3}\left(c_{0}, c_{s}\right) t^{1 / 2}+K_{0} t \tag{23in}
\end{equation*}
$$

It can be shown that ϕ_{3} takes the form:

$$
\begin{equation*}
\phi_{3}=\sqrt{\frac{4 D}{\pi}}\left(c_{\mathrm{sat}}-c_{0}\right) \tag{23b}
\end{equation*}
$$

Equation 23 is the infiltration capacity equation for the simple model of constant ditusivity and constant pernembility. On the basis of the definition of hydraulic diffusivity in equation 4 , this is cquivalent to assuming that soil suction is related to moisture content by:

$$
\begin{equation*}
S=\frac{D}{K}\left(c_{s x t}-c\right) \tag{24}
\end{equation*}
$$

that is, that the soil suction is a linear function of the moisture content. It should be noted that the two parameters in equation 23a both vary with initial moisture content.
As an altermative to assuming constant diffusivity and constant permenbility, we can make the assumption that the diffusivity is constant but that the permeability is a linear function of the moisture content, that is, that,

$$
\begin{equation*}
\frac{K}{K_{\mathrm{sat}}}=\frac{c}{c_{\mathrm{sat}}} \tag{25a}
\end{equation*}
$$

By inserting the rolationship given by equation 20.a in equation 4, we obtain
a logarithmic relationship between scil suction and moisture content given by:

$$
\begin{equation*}
S=\frac{D}{k} \cdot \log _{e}\left(\frac{c_{\mathrm{stt}}}{c}\right) \tag{25b}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{K_{\mathrm{a} \mathrm{t}}}{c_{\mathrm{sat}}} \tag{25c}
\end{equation*}
$$

For the model of constant diffusivity and linear permeability, equation 6 c can be written as:

$$
\begin{equation*}
D \frac{d^{2} C}{d z^{2}}+k: \frac{d c}{d z}=\frac{d c}{d t} \tag{26n}
\end{equation*}
$$

which is the sume as equation 20 except for the addition of the "convective" term. It is still a linear equation and is similar in form to both the parabolic (that is, dififusion analogy) form of the lincarized equation for unsteady flow in an open channel, discussed in lecture 9 , and to the lincarized equation for unsteady ground water movement to be discussed later in this lecture. For the same boundary conditions as given in equations 20 a and 20 d , equation 26 a has the solution:

$$
\begin{equation*}
\left(\frac{c-c_{0}}{c_{3 \Omega}-c_{0}}\right)=1,2 \operatorname{erfc}\left(\frac{x-k t}{2 \sqrt{D} t}\right)+1 / 2 \exp \left(\frac{k x}{D}\right) \operatorname{erfc}\left(\frac{x+k t}{2 \sqrt{D t}}\right) \tag{26b}
\end{equation*}
$$

When converted from the form of equation 26 b , which is appropriate to the moisture profile, this solution gives for the rate of infiltration capacity:

$$
\begin{equation*}
f=\frac{K_{\mathrm{st}}-K_{0}}{2}\left[\frac{\exp \left[-\left(k^{2} t / 4 D\right)\right]}{\sqrt{\pi k^{2} t / 4 D}}-\operatorname{erfc}\left(\sqrt{\frac{k^{2} t}{4 D}}\right)\right]+K_{\mathrm{sat}} \tag{26c}
\end{equation*}
$$

Solutions to the problem of ponded infiltration have also been obtained by assuming the hydraulic diffusivity to be a linear or an exponential function of the moisture content (40).

In 1911, Green and Ampt (15) proposed a formula for infiltration into the soil based on a model of uniform parallel capillary tubes. In fact, their approximate treatment is not dependent on this specific model but merely on the assumption that the advancing moisture profile consists of two parts-an upper zone of higher moisture content (c_{2}) separated from the original dry soil ($c=c_{1}$) by a sharp discontinuity (5,30).

The rate of fiow through the upper part of the soil may be written as:

$$
\begin{equation*}
V=K_{2} \cdot \frac{\left(\phi_{2}-\phi_{1}\right)}{x} \tag{27a}
\end{equation*}
$$

where ϕ_{2} is the totel houd at the top of the column and is given by:

$$
\begin{equation*}
\phi_{2}=x+H \tag{27b}
\end{equation*}
$$

where x is the depth of penetration of the higher moisture content and H is the depth of ponding on the surface. ϕ_{s} is the total head immediately below the discontimous wetting front and is mumericolly equal to the suction (S_{a}) at which air cuters the soil medium. Consequentis, equation $27 a$ can now be written as:

$$
\begin{equation*}
Y=K_{2}\left[\frac{\left(x+H+S_{a}\right)}{x}\right] \tag{27c}
\end{equation*}
$$

Sinee the upper part of the soil is assumed to have a constant mean moisture content (c_{2}), we can also write:

$$
\begin{equation*}
\mathrm{Y}=\left(c_{2}-c_{2}\right) \frac{d x}{d l} \tag{27d}
\end{equation*}
$$

Combining equations 27 e and 27 d we have:

$$
\begin{equation*}
\frac{d x}{d l}=\left(\frac{K_{2}}{c_{2}-c_{1}}\right)\left(1+\frac{H+S_{a}}{x}\right) \tag{28a}
\end{equation*}
$$

which integrated will give:

$$
\begin{equation*}
\left(\frac{K_{2}}{c_{1}-\mathcal{c}_{1}}\right) l=x-\left(H+S_{a}\right)\left[\log \left(1+\frac{x}{H+S_{a}}\right)\right] \tag{28b}
\end{equation*}
$$

This equation has the disadvantage that it relates the depth of penctration (x) to the time (t) in implicit form. Fowever, it can be seen from equation 26 c that the rate of infiltration is extremely high for small values of x and appronehes the value K_{2} for large vatues of x.
A more complete theory of infiltration allowing for concentration-dependent diffusivity and for the gravity term has been developed by Philip (81). Philip showed that the equation for the depth of penetration of given moisture content can be represented by the series:

$$
\begin{equation*}
x=a_{1}(c) \cdot t^{1 / 2}+a_{2}(c) t+a_{3}(c)^{3^{2 / 2}}+\ldots . a_{m}(c) t^{m / 2}+\ldots \ldots \tag{29}
\end{equation*}
$$

and states that, for the range of t and of values of D and K of interest to soil seientists, the above series converges so rapidly that only a few terms are required for an accurate solution. Equation $21 b$ developed above for constant diffusivity and constant permeability is seen to correspond to the first term of equation 29.

As for the simpler model, the volume of infiltration can be obtained by integrating the depth of penctration over the range of change in moisture
content. For the present model this gives:

$$
\begin{align*}
& f=\int_{c_{0}}^{c_{s a t}} x \cdot d c+K_{0} t \tag{30n}\\
& F=\int_{c_{0}}^{c_{s a t}}\left[a_{1}(c) t^{1 / 2}+a_{2}(c) t+a_{J}(c) t^{3 / 2}+\ldots \ldots\right] d c+K_{0} t \tag{30b}
\end{align*}
$$

which converges exeept for very large values of t. Philip suggested that for most practical purposes only the first two terns aro recuired so that we can write:

$$
\begin{equation*}
F=S \cdot t^{12}+A \cdot t \tag{3la}
\end{equation*}
$$

where δ is called the sorptivity and is given by:

$$
\begin{equation*}
S=\int_{c_{0}}^{c_{1} \text { at }} a_{1}(c) d c \tag{31b}
\end{equation*}
$$

and the second parameter A is given by:

$$
\begin{equation*}
A=K_{v}+\int_{c_{0}}^{c_{\mathrm{sat}}} a_{2}(c) d c \tag{31c}
\end{equation*}
$$

In a series of papers, Philip $(31,32)$ discussed the implications of the solution given by equation 30 , the nature of the surface profile, the effect of surface ponding, and other faetors.

It must be emphasized that the solutions given above are all for one particular formulation of the infiltration problem. In cvery case, the analysis is made on the basis of an infinitely deep soil profile with a uniform initial moisture content, into which infiltration takes place as a result of the saturafion of the surface. Such a stylized case would have to be modified in several respects before it would correspond closely to conditions in actual eatchments. In praetiee, the theoretieal solution would be modified by the presence of a water table nt some finite depth, by the actual moisture distribution in the profile at the instant that the surface is first saturated (which would depend on the previous history of moisture distribution and movement in the profile), by distinet layers in the soil profle which might give rise to interflow, on the possibility of shrinkage and swelling in the soil, and so on. Nevertheless, us in so many other instances in hydrology, a simple model can be adopted to get a feel of the phemomena under study and then be used as the basis of a more complex model.

Comparison of Infiltration Formulas

It is interesting to compare with one another the mathematical equations for ponded infiltration based on various simplifying assumptions and to relate them to the empirical equations which have been suggested. This is done in the present section for the theoretical and empirical equations mentioned
earlier. Fimally, an attempt is made to relate the mathematical simulation of infiltration to possible conceptual models of infiltration to explore the possibility of using eoneceptual models in the soil moisture phase of the hydrologic cycle.

The first comparison made is for initial infiltration rates, that is, for the form of the mathematieal equations at small values of t. For the model based on constant hydraulic difiusivity and constant saturated permeability, the infiltration rate-which ean be obtained by differentiating equation 23-is given by:

$$
\begin{equation*}
f=\left(c_{\Delta \times t}-c_{0}\right) \sqrt{\frac{D}{\pi t}}+K \tag{32n}
\end{equation*}
$$

The infiltration rate is seen to vary inversely with the square root of the time elapsed and to vary direetly with the difference between saturated and actual moisture content (that is, with the volume of pore space availabie).

The infiltration rate for the model based on constant hydraulic diffusivity and a linear variation in unsaturated permeability with moisture content is given in equation 26 e. For small values of t, this equation can be expressed (SA) in the following form:

$$
\begin{equation*}
f=\frac{K_{\mathrm{san}}-K_{0}}{2 \sqrt{\pi}}\left[\frac{4 D}{k^{2} t}-\sqrt{\pi}+\sqrt{\frac{k^{2} t}{4 D}}-\ldots .\right]+K_{\mathrm{snt}} \tag{32b}
\end{equation*}
$$

If only the first two ternis are used, this becomes:

$$
\begin{equation*}
f=\left(c_{\mathrm{sat}}-c_{0}\right) \sqrt{\frac{D}{\pi}}+\frac{K_{0}+K_{3 . t}}{2} \tag{32c}
\end{equation*}
$$

It can be seen by comparing equations 32 a and 32 c that if the constant unsiturated permeability in the first model is taken as the mean value of the initial and the saturated permeability, the infiltration rates will be identical for those small values of the time in which the series within square brackets in equation $32 b$ can be adequately represented by the first two terms.
For the Green and Ampt model, the infiltration for small values of t and, hence, small values of x can be obtained by neglecting 1 in the last term within the brackets in equation 28a and then integrating to obtain:

$$
\begin{equation*}
x=\sqrt{\frac{K_{2}}{c_{2}-c_{1}} \cdot\left(H+S_{0}\right) \cdot 2 t} \tag{32d}
\end{equation*}
$$

By differentiating the latter equation and substituting the value in equation 27 d , we obtain for the infiltration rate:

$$
\begin{equation*}
f=\sqrt{\frac{\left(C_{2}-C_{0}\right)\left(K_{2}\right)\left(S_{0}+H\right)}{2 t}} \tag{32e}
\end{equation*}
$$

An interesting comparison between the Green and Ampt model and the
model based on tonstant hydraulic diffasivity and constant unsaturated permerbility can be made as follows. It the roncentration differenee in efoution 32 n is taken under the square root sign, it will appear as squared. The model of ronstant elifusivity nud permonbility in equation 2.4 implies a specife rehationship between soil suction and moisture content indieated by that equations. Aerordingly, one of the two edual factors of $\left(c_{a n t}-c_{0}\right)$ under the stumes root sign eat be replaed by $K . S_{0}, D$ wo that we have for the infiltration rate:

$$
\begin{equation*}
J=\sqrt{\left(c_{2}-c_{0}\right)(N)\left(S_{0}\right)} \pi{ }_{\pi l} \tag{32f}
\end{equation*}
$$

thes indieating at rese similaty botwere the two models,
Fimally, the behavior for small values of t of lhilipes enenemal solution for
 purperses only the first two terms of equation 30 need be retaned and that the equation can be writen in the form of equation 31a. The infiltration rate corresponding to this expution is given by:

$$
\begin{equation*}
f=\frac{s}{2}+A \tag{32g}
\end{equation*}
$$

in which the parameter s is temed "the sorptivity."
All four models are thas seen to give chosely similar solutions tor the initial period of infilt ration and to borrespond to the empirical equation propused by Kostiakov in cquation 16, with the sperial value of $b=12$. From a systems vewpoint, it would appear that the high infiltation rates at the start of a stom could be reprowered be equation 32 g with the sorptivity (S) and the ultimate infiltration rate (A) as paramoters to be determined.

A comparison can also be made between the behavior of the different models at very large values of l. For the constant diffusivity and constant permenbility moklel, the ultimate infiltration rate is given by the constant value of the permeability K. For the model based on constant diffusivity and linear variation of unsaturated permeability, the general solution given in equation -6e has the following form for large values of $t(83)$:

$$
\begin{equation*}
f=\left(c_{9 \times 2}-c_{0}\right)\left(\frac{D}{\pi t}\right)^{3 / 2} \cdot \exp \left(-\frac{L^{2} t}{4 D}\right)+K_{3 \mathrm{at}} \tag{33}
\end{equation*}
$$

For very large values of t the exponential term will render the first term on the right-hand side of equation 33 negligible, and give as the ultimate value of the infiltration rate the saturated permeability $K_{\text {sat }}$.

It is elear from the above discussion that all of the models are compatible with the equation proposed for practical use by Philip a id given in equation 32 g . However, in linear models the indication is that the first term will be
proportional to the differene between the saturated moisture content and the initial noisture content. Aceordingly, it is suggested that a couvenient formuia for use in the simulation of infiltration might be:

$$
\begin{equation*}
f=\frac{a\left(c_{\mathrm{auz}}-c_{0}\right)}{l^{1 / 2}}+f_{c} \tag{34}
\end{equation*}
$$

Using the form of equation 34 rather than equation 32 g would conable us to allow for the effert of varying initial moistare pontents in the syathesis of a matchment response. For any storm svent, the initial moisture content would be available from the soil moistare areountiag.
Owerten 09 has shown that a number of infiltation equations can be derived he postubating a relationship between the rate of infltation (or excess infiltration) and the volume of either actual or potential infiltration (or excess intaltation). Thas, we can write each of the nodels for infiltration in tems of the varinbles listed. Thus, if we write:

$$
\begin{equation*}
f=\frac{a}{F} \tag{35}
\end{equation*}
$$

we are using the assumption that the rate of infiltration is inversely proportional to volume of infitration up tos that time. Equation 35 can be readily integrated to give:

$$
\begin{equation*}
F=\sqrt{2 a l} \tag{36a}
\end{equation*}
$$

or

$$
\begin{equation*}
f=\sqrt{\frac{2}{a}} \cdot t^{-1 \times 2} \tag{36b}
\end{equation*}
$$

which is the kestiakov formula for $b=3$. Similarly if we write:

$$
\begin{equation*}
f_{e}=\frac{a}{F} \tag{37a}
\end{equation*}
$$

that is

$$
\begin{equation*}
f-f_{c}=\frac{a}{F} \tag{37b}
\end{equation*}
$$

the solution ean be shown to be:

$$
\begin{equation*}
t=\frac{1}{f_{c}}\left[F-\frac{a}{f_{c}} \log _{c}\left(1+\frac{F}{a / f_{c}}\right)\right] \tag{37c}
\end{equation*}
$$

whet is of the same form as the Green-Ampt solution.
If the rate of exeess infiltration is taken as inversely proportional to the volume of exerss infilfration, as follows:

$$
\begin{equation*}
f_{t}=\frac{a}{F_{d}} \tag{38a}
\end{equation*}
$$

or

$$
\begin{equation*}
f-f_{\mathrm{c}}=\frac{a}{F-f_{c} l} \tag{38~b}
\end{equation*}
$$

then the solution is:

$$
\begin{equation*}
h^{\prime}=\sqrt{2} \overrightarrow{a t}+f_{\mathrm{r}} t \tag{38e}
\end{equation*}
$$

whioh is Philip's couation 3ta with:

$$
\begin{align*}
& S=V g \tag{38d}\\
& A=f \tag{38c}
\end{align*}
$$

It would be interesting to see if a rate-volume equation could be found that would give additional terms in lhilip's general solution.

If we redate the rate of infiltration to potential infiltration volume, the simplest equation is:

$$
\begin{equation*}
f=a K_{p} \tag{39a}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.f=\pi F_{s}-F\right) \tag{39b}
\end{equation*}
$$

or

$$
\begin{equation*}
f=f_{0}-a F \tag{39c}
\end{equation*}
$$

which has the soldition:

$$
\begin{equation*}
F=\frac{f_{0}}{a}[1-\operatorname{cosp}(-a t)] \tag{39~d}
\end{equation*}
$$

and

$$
\begin{equation*}
f=i_{0} \cdot \operatorname{cxp}(-a t) \tag{39c}
\end{equation*}
$$

Assuming the relationship:

$$
\begin{equation*}
f_{c}=a F_{p}^{\prime} \tag{40a}
\end{equation*}
$$

is equivalent to equation 39 sime it redues to:

$$
\begin{equation*}
f=f_{0}-a F \tag{405}
\end{equation*}
$$

and, hence, it also has the solution:

$$
\begin{equation*}
f=f_{0} \cdot \exp (-a t) \tag{40c}
\end{equation*}
$$

The more general relationshep:
or

$$
\begin{equation*}
\rho_{n}=a F_{p e} \tag{41a}
\end{equation*}
$$

$$
\begin{equation*}
\int-f_{c}=a\left(F_{\mathrm{se}}-F_{e}\right) \tag{41b}
\end{equation*}
$$

or

$$
\begin{equation*}
f-f_{c}=f_{0}-f_{c}-a\left(F-f_{c} i\right) \tag{41c}
\end{equation*}
$$

has the solution:

$$
\begin{equation*}
f-f_{\mathrm{c}}=\left(f_{0}-f_{\mathrm{c}}\right) \operatorname{rxp}(-a l) \tag{41d}
\end{equation*}
$$

which is the Horton equation. Finally the relationship:

$$
\begin{equation*}
f_{t}=a r_{p}^{+} \tag{42a}
\end{equation*}
$$

is the relationship proposed by Overton himself which gives:

$$
\begin{equation*}
f=\int_{c} \cdot \sec ^{2}\left[\sqrt{a f_{c}}\left(t_{c}-l\right)\right] \tag{42b}
\end{equation*}
$$

as given enrlier in this section.
Apart from its intrinsic interest, the formulation of the infltartion as a redationship betwern a rate of infiltration and a volume of actuad or patential intiltration would appear to have many advantages in the formulation and computation of conecptual models of the soil moisture phase and the simulation of catchment response.

We are familiar with the concept of a linear reservoir as an element in which the outfiow is directly proportional to the storage in the reservoir. Equation 39 n represents an eloment in which the inflow is proportional to the storage (leficit and, hence, might be considered as a special conceptual element to be known as a linear absorber. The relationship indieated by equation $41 a$ could be considered as consisting of a linear absorber preceded by a constant rate of ovorflow, whieh diverts moisture at the rate f_{e} around the absorber and feeds into the ground water reservoir even when the field moisture defeit is not satisfied. By analogy, equation 35 might be considered as being represented be a second type of coneeptual element in which the inflow into it is inversely proportonal to the amount of inflow which has taken place. For want of a better name. this might be refered to as a linear inverse absorber. Nuch work remains to be done in this area, but there are indications of the track to be followed.

Basic Equations of Ground Water Flow

Fven though linear solutions have been widely used in ground water hydraulics, until reently there has not beea a deliberate treatment of ground water response as a linear system. An assumption frequently made in applied hydrology hes been that the ground water reservoir acts as a single linear storage alment. This assumption is implicit in the fitting of exponential recession curves to hydrographs and the plotting of falling hydrographs on semilog paper. Such a model is an extremely simple one, and we certainly have available the teehniques to go beyond it. If we wish to tackle the ground water phase in the same way in which we tackle the surface runoff phase, then we should make the assumption that the ground water system is a linear system
and oot that it is just a particular highly simplified, single-eloment, linear system. If we do so, we have available all the techniques of linear natysis and synthesis. We ean derive a "ground water unit hydregraph" provided we kow the around water recharge and the gromed water outfow.

From the point of view of synthesis, we can learn from what has beea done in the simulation of the surface runoff phase of the hydrelogic cyele, but we should beware of following t ox slavishly the approaches and the models developed in that particular field. If we are to simulate suecessfully, we must understand the physical hydrology of ground water foow and make use of existing knowledge in this field so that our models can be as "realistic" as possible. This section gives a very brief review of the basic equations of ground water flow, and then discusses a lincarized solution of a special ense of ground water flow and the possibility of simulating this solution by conceptual models.
The basie equations of ground water fow are well-established and can be studied in standard works such as Muskat (28), Polubarinowa-kochina (30), Luthin (2fi), Harr (16), delWiest (10), and Bear, Zaslavsky, and Irmay (1). Just as in open chamel fluw, we avoid the difficulties inherent in the analysis of two-dimensional flow by reducing our problem to one based on the assumption of onc-dimensional flow. With this assumption, the equation of eontinuity for horizontal flow through soil in a saturated condition is:

$$
\begin{equation*}
\frac{\partial g}{\partial x}+\int \frac{\partial h}{\partial t}=r(x, l) \tag{43}
\end{equation*}
$$

where y is the horizontal fow per unit width, h is the height of the water table, f is the dramable pore space (which is assumed to be constant), and $r(x, t)$ is the rate of recharge at the water table.

The assumption that the stream lines are all horizontal and the velocity unifom with depth is known in ground water hydralies as the DupuitForcheimer assumption. For these conditions, Darey's equation:

$$
\begin{equation*}
\dagger=-K \operatorname{grad} \phi \tag{44a}
\end{equation*}
$$

reduces to

$$
\begin{equation*}
Y=-K \frac{\partial h}{\partial x} \tag{44~b}
\end{equation*}
$$

where K^{-1} is the hydraulic conductivity (usually assumed to be constant) and gives us the following relationship between fow and height of water table:

$$
\begin{equation*}
q=-K h \frac{\partial h}{\partial x} \tag{45}
\end{equation*}
$$

Substitution from equation 45 into equation 43 gives us the differential
equation:

$$
\begin{equation*}
\kappa \frac{\partial}{\partial x}\left(h \frac{\partial h}{\partial x}\right)+r(x, l)=\int \frac{\partial h}{\partial l} \tag{46}
\end{equation*}
$$

For a se of paralled dains or parallel trenches, which are a distance S apart and whel are subject to a constant rate of recharge at the water tables, the equilibrium situation is given by:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(K h \frac{\partial h}{\partial x}\right)+r=0 \tag{47a}
\end{equation*}
$$

with the boundery ronditions given by:

$$
\begin{equation*}
x=0 \quad \text { or } \quad \mathrm{S}, \quad h=d \tag{47~b}
\end{equation*}
$$

Where d is the depth of water over the paralled drains or the depth of water in the parathel trenehes, whehever is appropriate. This nondinear equation has the solution:

$$
\begin{equation*}
K h^{2}+r\left(x-\frac{S}{2}\right)^{2}=K d^{2}+\frac{r S^{2}}{4} \tag{48}
\end{equation*}
$$

which is known as the ellipse equation.
It must be remembered that equation 47 is based on the Dupuit-Forrheimer assumptions and is only eorrect if the fow can be validy approximated by a purely horizontal flow; if the drains or the trenches do not penetrate to the impervious layer, of if the depth (d) is small, the assumption ceases to be reasonable. The various solutions proposed for dealing with the problem as a two-dimetsiomal flow may be reviewod in Luthin (26) or in a review paper by Girkham (2l). In our disetassion of both steady and unsteady fow, we will be rontent to take the lapuit-Forehemer assumptions and the solutions derived from them as the basis of our diseussion.

The problem of the recession of the water table after cessation of recharge is an important one in dramage onginering and has been widely studied. A mecont review of work in this feld has been given by van Schilfgaard (43). As in other fields, the first attempt is to seek a linear solution. There are two ways in wheh equation 46 can be linearized. In the first and more common linearization, the watey table height inside the bracket in the first term of equation 46 is frozen at some parmmetric value (\bar{h}) and then removed outside the second differentiation with respect to x, thus giving:

$$
\begin{equation*}
K h \frac{\partial^{2} h}{\partial x^{2}}+r(x, t)=f \frac{\partial h}{\partial t} \tag{49}
\end{equation*}
$$

In the second form of limearization, h^{2} is used as the dependent variable instead of h and an equivalent parametric value of h is used to adjust the term
on the right-hand side of equation 46:

$$
\begin{equation*}
\frac{K}{2} \partial^{2}\left(h^{2}\right)+r(x, l)=\frac{f}{\partial x^{2}} \frac{\partial\left(h^{2}\right)}{\partial t} \tag{50}
\end{equation*}
$$

Though the first linearization given by requation 49 is the more common form, the seeond one given by equation 20 has the advantage that for the sterady state it gives the ellipse equation of cquation 48, wheh is the eorrect nonlinear solution, whereas equation 49 gives a parabolic shape to the water table for the stendy state condition. Both cquations 49 and 50 are parabolic in form and can charly be solved by the techaiques which have proved sueecssful in the zualysis of problems in hert flow and of "diflusion-type" problems (2, 2).
Equation 49 for the aitial condition of a level water table $h=h_{a}$ was solved by (Hlover' (Also, see reference 12 by Dumm) who obtained:

$$
\begin{equation*}
h-d=\frac{4\left(h_{0}-d\right)}{\pi} \sum_{n=1,3,6}^{\infty} \frac{\sin \left(n \pi x^{2} S\right)}{n} \exp \left(-\frac{\left.n^{2} \pi^{2} K \bar{h}\right)}{f S^{2}}\right) \tag{51a}
\end{equation*}
$$

where

$$
\begin{aligned}
h & =\text { devation of water table above impervious layer } \\
d & =\text { elevation above the impervious layer of water surface } \\
& \text { in trench (or nbove drain) } \\
h_{0} & =\text { maximum elevatien of water table } \\
x & =\text { horizontal distance from trench or drain } \\
\delta & =\text { spacing of trenches or crains } \\
\kappa & =\text { saturated permenbility of soil } \\
t & =\text { time lapsed since start of recession } \\
f & =\text { dramable pore space }
\end{aligned}
$$

Kraijenhoff (24) has pointed out that the soil and drainage characteristics in cquation $51 a$ may be grouped together into one parameter, which he defined as the reservoir confficient j :

$$
\begin{equation*}
j=\frac{1}{\pi^{2}} \frac{f S^{2}}{K \vec{h}} \tag{51b}
\end{equation*}
$$

so that Glover's solution can be written as:

$$
\begin{equation*}
h-d=\frac{4\left(h_{0}-d\right)}{\pi} \sum_{n=1, \ldots, \ldots}^{\infty} \frac{\sin (n \pi x / S)}{n} \exp \left(-n^{2} \frac{l}{j}\right) \tag{51c}
\end{equation*}
$$

Kraijenhoff also pointed out that Glover's solution was the solution for a

[^24]tinite volume of recharge in an infinitesimal time and consequentiy equation 51 represents the impulse response of the ground water system.
If we adopt the second linearization instead of the first, a similar equation can be obtained, except that it will be in terms of h^{2} rather than h. The diffculty about conflicting predictions of the shape of the water table profile does not affect us in our study of the recession of outfow. The outflow to a drain or a trench is given by:
\[

$$
\begin{equation*}
Q=2[q]_{x=0} \tag{52a}
\end{equation*}
$$

\]

In the firs linearization, q is given by:

$$
\begin{equation*}
q=-K h \frac{\partial h}{\partial x}=-K \bar{h} \frac{\partial h}{\partial x} \tag{52~b}
\end{equation*}
$$

and in the second equation, q is given by:

$$
\begin{equation*}
q=-K h \frac{\partial h}{\partial x}=\frac{-K}{2} \frac{\partial}{\partial x}\left(h^{2}\right) \tag{52c}
\end{equation*}
$$

so that in either equation we obtain for the discharge:

$$
\begin{equation*}
q=\frac{8 K h\left(h_{0}-d\right)}{S} \sum_{n=1,3, \ldots . .}^{\infty} \exp \left(-n^{2} \frac{l}{j}\right) \tag{033a}
\end{equation*}
$$

If the initial leight of instantancous recharge ($h_{\mathrm{g}}-d$) is expressed in terms of the volume of recharge, the drain spacing, and the drainable porosity of the soil, we have:

$$
\begin{equation*}
q=\frac{S K h y}{S N J_{0}} \sum_{n=1,3 \ldots \ldots}^{\infty} \exp \left(-n^{2} \frac{t}{j}\right) \tag{53b}
\end{equation*}
$$

so that for an instantancous input of unit volume we have as the impulse response:

$$
\begin{equation*}
h(t)=\frac{8}{\pi^{2}} \cdot \frac{1}{j} \sum_{n=1,3, \ldots . .}^{\infty} \exp \left(-n^{2} \frac{t}{j}\right) \tag{54}
\end{equation*}
$$

Obviousiy as t becomes large, the first term in the infinite series will dominate, and the outflow will approximate that from a single linear reservoir. For small values of t, however, the other contributions cannot be neglected, and for a value of l equal to zero, they are all equal and add up to an infnite initial value of $h(t)$.

The response function given in equation 54 has been normalized to have unit volume, and its moments can be shown to be:

$$
\begin{equation*}
U_{1}^{\prime}=k_{1}=\frac{\pi^{2}}{12} \cdot j \tag{55a}
\end{equation*}
$$

reaymux

$$
\begin{align*}
& U_{2}=k_{2}=\frac{7 \pi^{4}}{720} \cdot j^{2} \tag{55b}\\
& U_{3}=k_{3}=\frac{31 \pi^{6}}{15,120} \cdot j^{3} \tag{55c}
\end{align*}
$$

The shape factors for the Glover solution as given by equation 54 calculated frome equations 55 a to 55 c as:

$$
\begin{align*}
& s_{2}=\frac{7}{5}=1.40 \tag{55d}\\
& s_{3}=\frac{124}{35}=3.54 \tag{55e}
\end{align*}
$$

If moment matchiug were taken as a criterion, then simulation of the Glover solution by a caseade of linear reservoirs (that is, by the gamma distribution) would require a value of $n=0.7$ and a value of $K=1.15$.

Note that if cquation 54 were plotted on semilog paper, the first term would plot as a straight line and the other terms would only make contributions at small values of t. Following the lines of classical hydrology, we might be inclined to interpret such a result as indicating that the first term was the true baseflow and that the contributions due to the other terms represented residual interfow or surface runoff. If we took the straight line on the semilog plot as the basefow, we would in fact truncate the infinite series of equation 54 and use only its first term in forning our implicit model. Such a procedure would have the further defect that we would take the lag of the system as equal to the rescrvoir coefficient j rather than the value given by equation 55a. The work which Fraijenhoff has initiated in applying the systems approach to the ground water phase is most important in so far as it indicates the likelihood of considcrable progress if the thehniques of parametric hydrology developed for the surface water part of the cycle are applied to the ground water.
Even if we wish to persist with the model of a single linear reservoir (that is, the first term only of the Glover-Kraijenhoff equation), then we can extract more use from this assumption than is normally done. If we assume that the recession for the ground water phase of our watershed is given by:

$$
\begin{equation*}
Q=Q_{0} \cdot \exp \left(-\frac{\imath}{K}\right) \tag{56a}
\end{equation*}
$$

then we are in fact assuming that the ground water rescrvoir acts as a single linear reservoir whare we have:

$$
\begin{equation*}
S=K \cdot Q \tag{56b}
\end{equation*}
$$

If such a system is subjected to recharge at a uniform rate (R), then the
ground water outflow during recharge will be given by:

$$
\begin{equation*}
Q=R_{k}\left[1-\exp \left(-\frac{t}{K}\right)\right]+Q_{0} \cdot \exp \left(-\frac{t}{K}\right) \tag{56c}
\end{equation*}
$$

where the time origin is taken at the start of recharge. If the recharge ends after a time D, then the ground water outfow at this time will be:

$$
\begin{equation*}
Q=R\left[1-\exp \left(-\frac{Q}{K}\right)\right]+Q_{0} \cdot \exp \left(-\frac{D}{K}\right) \tag{5Ed}
\end{equation*}
$$

Both before and after the recharge, the ground water outfiow will follow the master recession curve. The outfow given by equation 56 is the same as would have been ge en if there had been an instantaneous increase in discharge at a time $t=0$ of an amount:

$$
\begin{equation*}
Q=R\left[\exp \left(\frac{D}{K}\right)-1\right] \tag{56e}
\end{equation*}
$$

which would then recede along with the initial ontfow. Assuming for the moment that there were no thresholds in the systen and that recharge were taking place directly to ground water, equation 56 c could be used together with a plot of ground water outfow and a knowledge of the volume of recharge to determine the rate and duration of recharge. Quite apart from this aspect of analysis, equation 56 c indicates that the separation between ground water and direct storm sunof should be taken as a curve which is concave downwards rather than as a straight line.
The diseussion given above for the recessun of the water table deals with horizontal fow overlying a horizontal impervious layer. The analysis can be adapted to fow over an inclined impervious layer, but still retaining the Dupuit-Forcheimer assumptions and the linearization of the equation. If the slope of the impervious layer is taken as α, then equation 45 must be modified to give:

$$
\begin{equation*}
q=-K h\left(\frac{\partial h}{\partial x}-\alpha\right) \tag{57a}
\end{equation*}
$$

where h is still the elevation of the water table above the impermeable layer, which has a downward inclination of α to the horizontal. Similarly, equation 49 must be modified to give:

$$
\begin{equation*}
K \bar{h} \frac{\partial^{2} h}{\partial x^{2}}-K \alpha \frac{\partial h}{\partial x}+r\left(x_{1}, t\right)=f \frac{\partial h}{\partial l} \tag{57b}
\end{equation*}
$$

This is still a parabolic linear differential equation and resembles in form the convective diffusion equation, which has already been cncountered as a model of unsteady flow in an open channel. Thus we see that the same model can be
used to simulate unsteady flow in an open channel, unsteady flow in the unsaturated zone, and unsteady flow in the saturated zone.

Other simple models can be devised for the recession of ground water fiow. Thus we could estimate uutflow on the basis of a succession of steady states in each of which the ellipse equation was assumed. The relationship between discharge and the water table for the ellipse equation is given by:

$$
\begin{equation*}
Q=\frac{4 K}{S}\left(h_{\max }^{2}-d^{2}\right) \tag{58}
\end{equation*}
$$

while the storage above the water level in the drains or trenches is given by:

$$
\begin{equation*}
\mathrm{V}=f \cdot \frac{S}{4}\left(h_{\max }-d\right) \tag{59}
\end{equation*}
$$

Two successive values of $h_{\text {max }}$ could be taken and the difference in storage computed from equntion 59. The average rate of outfow could then be approximated from cquation 38 for a value of $h_{\text {max }}$ half way between the two assumed. Division of the change of storage by this mean rate of outflow would give an estimate of the time taken for the level to fall by the amount assumed. For the combination of a very deep trench and a shallow rise of water table, as follows:

$$
\begin{equation*}
\frac{h_{\max }}{d} \ll 1 \tag{60a}
\end{equation*}
$$

equation 58 could be written as:

$$
\begin{equation*}
Q=\frac{8 K}{S} h_{0}\left(h_{\text {max }}-d\right) \tag{60~b}
\end{equation*}
$$

Comparison of equation 60 b with equation 59 indicates that storage is proportional to outflow so that we would in fact get an exponential recession with the recession constant given by:

$$
\begin{equation*}
K=\frac{V}{Q}=\frac{f S^{2}}{K} \frac{\pi}{32}=\frac{\pi^{3}}{32} \cdot j \tag{60c}
\end{equation*}
$$

For a steep rise in water table in a shallow trench, that is, for:

$$
\begin{equation*}
\frac{h_{\max }}{d} \gg 1 \tag{61a}
\end{equation*}
$$

equation 58 becomes:

$$
\begin{equation*}
Q=\frac{4 K}{S} \cdot h_{\max }^{2} \tag{61b}
\end{equation*}
$$

and equation 59 becomus:

$$
\begin{equation*}
V=\frac{f \pi S}{4} \cdot h_{\mathrm{max}} \tag{61c}
\end{equation*}
$$

so that the outflow is proportional to the storage squared:

$$
\begin{equation*}
Q=\frac{64}{\pi^{3}} \cdot \frac{V^{2}}{j h_{\max }} \tag{61d}
\end{equation*}
$$

For intermediate conditions, it shoula be possible to simulate the recession with fair aceuracy by treating the ground water system as a nonlinear reservoir with the outflow proportional to some power of the storage:

$$
\begin{equation*}
Q=a(V)^{c} \tag{62}
\end{equation*}
$$

where c hes a value between 1 and 2 .
The above discussion was not only based on a simplified analysis of ground water storage and fow, but it has also disregarded the linkage between ground water flow and thr other phases of the hydrologic eycle. Space precludes a diseussion of the work that has been done in this regard. However, the approach which has been outlined above can also be applied to such problems as the recharge of bank storage due to an increase in channel flow and the subsequent recession after the channel fow has diminished (8,42), and the interaction of ground water with the unsaturated zone and with the atmosphere $(3,11)$.

Problems on Subsurface Flow

1. Look up in the literature empirical results for the values of the soil suetion and the unsaturated permeability for a number of soils of different types. In cach case, derive the hydraulic diffusivity from the data. Compare the absolute values, the range of values, and the variability of each of these soil moisture parameters according to the different types of soils.
2. Fit the cmpirical equations mentioned in the text to the data of the last problem. Compare the ability of the different formulas to represent the data.
3. For the soils for which you have obtained or derived data, tabulate or graph the equilibrium moisture distribution for various depths of ground water. Calculate the effect on this distribution of differing rates of percolation to the ground water or evaporation from the ground water, assuming steady state conditions.
4. Show that equation 15 for the linating rate of evaporation from ground water can be derived from the assumption of the relationship between con-
duetivity and soil suction in the form given by equation 8 a. Derive the value of the uumerical constant in equation for n equal to 2,3 , and 4 .
5. For the data used in problem 1 , calculate the rate of evaporation for different values of soil suetion at the surface for three assumed depths of ground water.
6. The text stated that for the assumption of constant diffusivity and constant permeability, the moisture content during unsteady infiltration can be represented as a function of x^{2} / h. Find the form of this function. Use your answer to find the value of the coefficient of the first term in the infiltration equation for eonstant diffusivity for a number of different values of the mbisture content.
7. Derive an infiltration equation from a relationship between rate of infiltration (or excess infiltration) and either actual or potential infiltration (ot exeess infiltration) other than these mentioned in the text. Compare the derived equation to the standard equations.
S. Compare a number of infiltration formulas. What are the assumptions underlying the different formulas? How would you fit each of the formulas to the data given in Appendix table 9?
8. Compare the solutions given in the literature for the steady outflow of ground water in equilibrium with a constant rate of rainfall or infiltration. Compare the solutions for a given set of conditions, and discuss eritically which solutions you consider would be the mosta aceurate.
9. Compare the solutions given in the literature for the recession of the maximum water table level. Compare the assumptions made and the effect of the assumptions on the solution. Which solution would you consider to be the most aecurate?
10. Using cither a steady state solution or a water table recession solution other than those treated in the text, derive an expression for the recession of ground water outflow. Compare this solation with the solutions already derived.
11. Compare the various solutions for the recession of ground water outfow. Contrast the assumptions made and the effects of these assumptions on the form of the solution and on its accuracy.
12. Express the one-dimensional unsteady equation for ground water outfiow in the appropriate finite difference form for setting up the problem for solution by direct analog. Show that this formulation is equivalent to a series of linear storage elements, cach one causing backwater on the one before.
13. Show that the system of backwater storage elements derived in the last problem can be represented by an equivalent simulation system of linear storage elements without backwater.
14. Represent one of the unsteady state solutions by a model consisting of linear storage elements.
15. List the various methods for the separation of base flow from the total hydrograph which have been proposed in the literature. Indicate the physical justification, i^{5} any, for these various methods. Rani a few of the methods which you think are most accurate in order of their probable accuracy.

Literature Cited

(1) Bear, J., Zaslavsky, D., and Irmay, S.
imbs. phystcal pminciles of water percolation and sempage. UNESCO Arid Zone Res. AXIX. 465 pp., illus.
(2) Cabsiany, II. S., and Jaeger, J. C.
1947. Conduction of heat in solids. 386 pp. New York.
(3) Cuabman T. G.
1066. hefects of groundwater storage and flow in the wathr balance. Symposium on Water Resources ['se and Management. Pp. 290-301. Melbourne.
(4) Cmlds, E. C.
1936. the transpoat of water thmough heayy clay sons. Jour. Agr. Sci. 26: 114-141, 527-545.
(5) -
1907. sols monsune theory. I n Chow, Ven $\mathrm{Te}_{\text {, ed. }}$, Advances in Hydroscience. V. 4, m. 73-117. New York.
(6)
1969. an introdection to the physical rasis of soff phater phenomena. 403 pp., illus. New York.
(7) Colobado State Twivensity.
1963. symposium on thansient groundwater hydhaulics. Colorado State Cniversity, Fort Collins.
(8) Coorbr, H. H., Jr., and Romabugr, M. I.
1963. gronndwater movement and bank storage due to flood stages in serface sthbams. LES. Geol. Survey Water-Supply Paper $1536-\mathrm{J}, 366 \mathrm{pp}$.
(9) Crank, J.
1950. the mathematics of diffusion. 347 pp . London.
(10) DeWinst, J. M. R.
1905. Geonmbroloar. 366 pp., thus. New York.
(II) Dooge, J. C.T.
1060. tue routhg of ghoundmater recharge throjoh typical, elements of linear storage. Commission on Subterranean Waters, General Assembly of Helsinki, Internatl. Assoc. Sci. Hydrol. Pub. 52: 286-300.
(I2) Demm, L. 1\%.
1954. drank-spacing formela. Agr. Engin. 35: 726-730.
(13) Gardnen, W. R.

195S. some steady state solutions of the unsatubated moistore flow eqgation with apflications to evapobation from a water table. Soil Sci. 85(4): 228-232.
(14) ——— and Mavecor, M. S.
1958. solutions and tests of the diffusion equation for the movement of water in soid. Soil Sci. Soc. Amer. Proc. 22(3): 197-201.
(15) Green, W. H., and Ampr, G. A.
1911. studies on soil physics: i-Flow of air and water through soils. Jour. Agr. Res. 4: 1-24.
(16) HARK, M. E.
1962. ghoundwatel and sebpage. 315 pp., illus. New York.
(17) Holtan, M. N.

1961, a concept for infilthation fistimates in watershed magineering. U.S. Jept. Agr. Agr. Res. Serv. ARS 41-51, 25 pp .
(1S) Forton, R. E.
1938. The interpretation and appheation of runoff plot experiments with befehence to soll erosion pronlems. Soil Sci. Soc. Amer. Proc. 3: 340-349.
(19)
1040. an alproach towaibd a pithsical interpretation of infiltation capacity. Soil Sci. Soc. Amer. Proc. 5: 390-417.
(20) Irmay, S.
1950. entension of dabcy law to ensaturated flow through porous meda. Symposia Darcy, Internatl. Assoc. Sci. Hydrol. Pub. 41: 57-66.
(21) Kıкнam, Don,
1966. steady-state theories for drainage. Amet. Soc. Civ. Engin., Jour. Irrig. and Drain. Div. 92(IR-1): 19-30.
(22) Kıute, A.
1952. some theoretical astects of the flow of water in ungaturated solls. Soil Sci. Soc. Amer. Proc. 16(2): 144-150.
(23) Kostlakov, A. N.
1932. on the dynamiss of the coefficients of water fercolation in soils. Sixth Commission, Internatl. Soc. Soil Sei., part A, pp. 15-21. Groningen and Moscow.
(24) Kilaijenhoff van de Lefur, D. A.
1958. a spudy of nonsteady ground water flow with speclal reference to a heservoir cuefficient. Ingeniem 70(19): 87-94.
(25)
1966. runoff models with linear elements. part in, mecent tabeds in hydhograph synthesis. TNO Proc. and Inform. Note 13. The Hague.
(26) Luthin, J. N., ed.
1957. Drainage of agricultural Lands. Agronomy 7, 620 pp. Madison, Wis.
(27) Musgrave. G. W., and Holtan, H. N.
1964. infiltration. Sec. 12, 30 pp . In Chow, Ven Te, ed., Handbook of Applied Hydrology. New York.
(28) Muskat, M.
1937. FLOW OF homogeneous flyids throdoh porous media. 763 pp . New York.
(29) Overton, D. E.
1964. mathematical refinement of an infilmation eqdation for watershed engineering. U.S. Dept. Agr. Agr. Res. Serv. ARS 41-99, 11 pp.
(30) Philip, J. R.
1954. an infilfrtmion eqcation with physical significance. Soil Sci. Soc. Amer. Proc. 77(2): 153-157.
(31)
1957. theory of infimtration, ch. 1 , the infiltation equation and its souttron. Soil Sci. 83(5): 345-0.̄7.
(32)
1957. theole of inflethation. rh. 4, sorptivity and aloembaic inflifration equations. Soil Sci. S4(3): 257-264.
(33) -- --.

198S. A binabisation technique for the study of infletration. Symgosium on Water in the Fasaturated Zrac, Wageningen. Bul. Interanth. Assoc. Sei. Eydrol. Pub. S2, v. 1: 471-47s.
(3.4)
1969. Thsony of nylltanton. In Chow, Ven Te, ed., Advances in Hydroscietce. V. 5: 216-295. New York.
(35) Polebabinova-Kochnse, Y. Y.
1952. Teoriva dyizanniya hochyennol yod [thbory of ground water movemens]. English translation by J. M. R. deWiest. 613 pp. New Jersey.
(36) Remson, Y, and Fox, G. S.
1055. Capllhazy losses from groendwater. Amer. Geophys. Union Trans. 36(2): 304-310.
(37) Richatids, L. A.
1931. Carhlahy conductivity liquids throcgh porous mfdiums. Physics 1: 313-318.
(38) Revin, J.
1908. nememtcal analosis of ponded rainfall mfletramion water in the onsathated zone. Symposium on Water in the Unsaturated Zone, Wageningen. Bul. Internatl. Assoc. Sci. Hydrol. Pub, S2, y. 1: 440-451.
(39) Schlevsener, R. A., and Corey, A. T.
1959. fin role of hysteresis in redecing evaporation from soils in convact mith a water table. Jour. Geophys. Res. 64: 469-47j.
(40) Scotr, E. J., adad Hanks, R. J.
1962. soluthon of the cene-dimensional diffuston equations for tue exponemtidl and binear diffusintty functions by foner series applied to monsture flen in soms. Soil Sci. 4(5): 314-321.
(41) Smith, W. O.
1964. Nflltration in sands and its relation to grodndwater recharge. Water Resources Res. 3(2): 539-555.
(42) Todo. D. K.
1955. groundwater flow in relation to a floodi, d stream. Proc. Amer. Soc. Civ. Engin. 81: 628.
(43) van Schlfgatrde, J.
1065. transient design of dranage systems. Amer. Soc. Civ. Engin., Jour. Irrig. and Drain. Div. 91(IR-3): 9-22.
(44) Werner
(45) Wind, G. P.
1955. the fibld experment concerning caplllary rise of moisture in a heavy clay soll. Netherlands Jour. Agr. Sci. 3: 60-69.

LIST OF SYMBOLS

The following list of symbols should be used as a guide to assist the reader in recognizing commonly cited variables, rather than as an cxhanstive listing of all symbols used. In some cases, the number of the lecture in which a symbol is used in a particular sense is indieated in parentheses. This list does not include symbols used onee or twice in a particular sense and defined where so used. Neither does it include symbols used to denote systems parameters or parameters in formulas execpt where such parameters are the subject of discussion.

$[H] \ldots$. . convolution matrix of system response.
H, available energy (2,7).
H........depth of ponding (10).
$H(s) \ldots .$. system function, that is, Laplace transform of $h(l)$.
$H(\omega) \ldots$. Fourier transform of impulse response.
l.rate of inflow to chamel reach.
I......... 24 -hour minfall (7).
$I_{1}[] \ldots$. modified Bassel function (9).
K. storage delay time.
$K \ldots \ldots$. hydraulic conductivity (2, 10).
$K_{n}(f) \ldots R^{\text {th }}$ cumulant of $f(0)$.
L......... . length of channel.
$L_{\text {cr }} \ldots . .$. length to center of area (8).
Lo. ingth of overland flow.
$L_{n}(l) \ldots$ Laguerre polynominl.
M........duration of continuous input (1,5).
$M_{n}(s) \ldots$. Meixner polymmial $(3,6)$.
N.........memory length of system.
P...........precipitation.
P.........duration of output (1, $\overline{\text { a }}$).
P_{d}. unit pulse of duration $D(1)$.
$P_{0} \ldots \ldots$. . precipitation exerss.
Q.......... runoff, flow, outflow:
Q..........energy (2).

Qu. basc fiow.
Q \quad........ground water flow.
Q..........interflow.

Qmax peak discharge.
Qo........overiand fiow:
$Q_{\text {t }} \ldots . .$. direct storm response (surface flow).
R...........echarge to ground water.
R......... resistance in analog circuit.
R......... hydraulic radius (9).
$R^{2} \ldots \ldots$. . . multiple correlation cocficient (7).
RO........ runoff.
S........ . storage in reach, storage.
S..... slope.
S......... . soil suction (10).
$S_{f} \ldots \ldots$. . friction slope (9).
$S_{0} . \ldots .$. . . . ground slope.
S_{0}. . . channel slope.
$S(t)$. S-eurve, S-hydrograph.
T.......... transpiration (2, 7).
T........ . length of time series $(5,6)$.
T......... period of repented function (5,6).
2......... .time of virtual inflow (8).

T,,$\ldots . .$. mean temperature $(1,7)$.
['(t) unit step function.
$U_{H}^{\prime}(f) \ldots R^{\text {th }}$ moment of $f(l)$ about enter.
$l^{\prime} n^{1}(f) \ldots R^{\text {th }}$ moment of $f(t)$ about origin.
['H....... unit hydrograph.

IF. velocity.
F........ volume of runoff.
$\left[X^{\top}\right]$. matrix of input values.
$X_{1} \ldots \ldots$. volume of input in unit periox.
$\left[X^{r}\right]^{T} \ldots$. transpose of X.
$X(s) \ldots$. . Laplace transform of $x(l)$.
$X(w)$. . . . Fourier transform of $x(t)$.
a* Fourier coeflicient of input.
$b_{k} \ldots \ldots$. . Fouricr coefficient of input.
cx........ .eoefficient in expansion of input.
e........ vipor pressure.
$f . . .$. . . . rate of infiltration capacity.
f. specific yield, that is, drainable pore space (2,10).
$f_{4} . \ldots$. . . actual rate of infiltration.
$f(t) \ldots \ldots$. arbitrary function of time $(3,5)$.
$f_{n}(t) \ldots \ldots n^{\text {th }}$ order Laguere function $(3,6)$.
$f_{n}(s) \ldots . . n^{\text {th }}$ order Meimer function.
$g_{n}(t) \ldots$. function orthogonal under integration.
$g_{n}(s) \ldots$. function orthogonal under summation.
$h(t)$. impulse response function.
$\{h\} \ldots .$. vector if impulse response ordinates.
$h_{D}(t)$. . . . puise response.
h_{i}, \ldots. . ordinate of unit hydrograph.
$h_{\text {ont }}$. optimum linear response.
$h_{0}(l) . .$. insiantaneous unit hydrograph (IUH).
i. precipitation intensity.
$i(x, t)$. . . rate of distributed infow (2).
$m . . .$. . time at start of final period of rainfall execss ($m=M-D$).
$m_{R} \ldots$. . . dimensionless moment.
n.
Iength of finite-period wit hydrograph ($n=N+D$).
p. \qquad length of output for discrete-time $(p=P)$.
$q(x, t) \ldots$. discharge per unit width.
qe......... equilibrium discharge.
qo.......... referener discharge (9).
$r(x, t) \ldots$. . rate of lateral inflow.
$r(t) \ldots .$. . . residual error (5).
$\{r\} \ldots .$. vector of residual errors (6).
s.
disercte time variable.
complex argument of Laplace transform.
s_{R}. . shape factor, that is, dimensionless cumulant.
i. eontinuous time variable.
$t_{c}, \ldots .$. . . time of concentration.
te......... . time to equilibrium.
$t_{L}, \ldots .$. lagy time.

to.......... time to peak.
$u(x, 0), \ldots$ velocity of flow (9).
x......... distance along chamel (9).
$x \ldots . . .$. depth below surface (10).
$x_{1}, \ldots \ldots$. ordinate of input.
$x(t) \ldots$. . . 0 ontinuous input function.
$\{x\} \ldots .$. vector of discrete inputs.
$x(s D) \ldots$ discrete input function.
$y(l) \ldots$. . continuous output function.
$y_{i} . \ldots .$. . ordinate of output.
$\{y\} \ldots . .$. . vector of diserete outputs.
$y(s D) \ldots$. . diserete output function.
$y(x, 0) \ldots$. depth of fow in open chamel.
$\alpha_{k} \ldots \ldots$. . Fourier eonfferent of system response.
$\beta_{k} \ldots .$. . Fouricr eonfficient of system response.
$\delta_{m n} \ldots . .$. . Kronecker delta.
ϕ.
$\phi_{x x}(k) \ldots$. discrete autocorredation function.
$\phi_{x s}(\tau) \ldots$. . continuous autocorrelation function.
$\phi_{x y}(k) \ldots$. discrete cross-correlation function.
$\phi_{x v}(\tau) \ldots$. continuous cross-correlation function.
$\gamma_{k} \ldots \ldots$. . . 0 efficient in expansion of system response.
$\mu_{R} \ldots \ldots . R^{\text {th }}$ moment.
$\sigma_{D} \ldots . .$. . discrete time variable.
r.continuous time variable.
$\omega \ldots . .$. argument of Fourier transform.

APPENDIX TABLES

Table 1.-Continuous functions

Table 1.-Continuous functions-Con.

Table 2.-Discrete functions

No. Function	Range
1........ (2, 1)	
2........ (6, 4)	
$3 \ldots \ldots . . .(2,6,1)$	
$4 \ldots \ldots . .(0,4,14, S, 1,0)$	
$5 . \ldots \ldots . .(0,4,11,8,1,0)$	
$6 \ldots(1,5,2,2)$	
7........ (0, 2, 4, 2, 0)	
S........ (0, 3, 6, 4, 2, 0)	
$9 \ldots \ldots . .(0,2,4,3,2,1,0)$	
10....... (0, 1, 3, 3.5, 2, 0.5, 0)	
11........ (6, 22, 33, 26, 11, 2)	
$12 \ldots \ldots .120 .75 \cos \left(\frac{\pi s}{48}\right)$	$-\infty<s<\infty$
$13 . \ldots \ldots .125-75 \cos \left(\frac{\pi s}{48}\right)$	$0<s<96$
$14 . \ldots \ldots . I_{\text {miu }}+\left(I_{\max }-I_{\min }\right) \sin \left(\frac{2 \pi s}{T}\right)$	$0<s<T$
15 $\ldots \ldots \ldots \frac{(s / k)^{n-1} \exp (-s / k)}{(n-1)!k}$	$0<s<\infty$
	$0<s<\infty$
17....... (a) (! $\left.{ }_{3}\right)^{\text {ri }}$	$0<s<\infty$
	$0<s<\infty$
	$0<s<\infty$

Table 3.-Daily rainfall and average daily flow, Bity Muddy River, Plumfield, Ill. (area 758 sel. mi.), April $192 \mathbf{r}^{2}$

Day	Rain	Runoff	Effective rain	Unit graph	Runoff
	Inches	Percent	Inches	Cusecs	Cusees
1	0.45	15	0.06 S	1,950	(132)
$\underline{2}$				2,500	(170)
3	3,370	(229)
I				3,870	(263)
5	. 25	15	. 034	3,540	(312)
0				2,470	(264)
7	. 16	17	. 027	1,310	(167)
s	. 38	27	. 102	610	(553)
9	. 23	320	. 080	350	(066)
10	. 35	520	. 440	160	(1,015)
11	. 15	55	. 083	s0	2,116
12	1.22	72	. 880	0	4,201
13	. 87	79	. 690		6,188
14	1.01	S1	. S20	\$,580
15	. 51	\$3	. 423		10,229
16	. 58	S0	.500		11,481
17	,			10,924
18	. 05	S0	. 040	9,375
19	. 16	St	. 130	7,355
20	. 04	Sl	. 033	5,196
21	. 09	\$2	. 074		3,500
22	. 03	S2	. 025		2,377

t Shemman, L. K. Stugam flon flom linineall by the wint-grabh method. Engin. News-Rce. 10S: 501-505. 1032.

Table 4.-Data for Ashbrook Catchment

> Date and time Effective rain Storm runoff (hours)

	Cusecs	Cusecs
March 26 : 15.		0
	1,820	
18.		30
	3,530	
		34
	8,330	
2.4. . .		980
March 27:		
3.....	1,320
6.	1,290
9.	1,280
19.	1,160
15.		1,040
18...		910
21...	...	790
2.4...		680
March 2s:		
3....	580
(i....		480
9.		300
12.		320
15.		280
18.	-	240
21.		210
24.....		tSo
March 29:		
3....	...	155
6.		135
9.		115
12.		100
15.		85
15.		70
21.		65
24....	60

Table 4.-Data for A shbrook Calchment-Con.

Date and time Effective rain Storm runoff (hours)

Murch 30:
3........................ 55
(3......................... 50
9........................ 45
12.
$15 . \ldots$. 35
18......................... 30
21......................... 25
24......................... 15

March 31:
3......................... 5
t......................... 0

Table 5.-Data on linear channel response
[$\mu_{0}=1$ st moment; $F_{0}=$ Froude number; $S_{0}=$ slope (ft. per mi.); $L=$ length (miles); $K_{\pi}=h_{h^{\text {ht }}}$ cumulant $]$

Case	μ_{o}	F_{0}	S_{0}	L	K_{1}	K_{2}	K_{3}	K.
1	2.7058	0.125	1	50	12.3192	63.7364	985.3879	26015.398
2	2.7058	. 125	1	200	49.2769	254.9457	3941.5516	104061.60
3	2.7058	. 125	1	500	123.1922	637.3643	9853.5788	200153.98
4	2,7058	. 125	5	5	1.2319	1.2747	3.9416	20.8123
5	2.7058	. 125	5	50	12.3192	12.7473	39.4155	208.1232
6	2.7058	. 125	5	200	49.2769	50.9801	157.6621	832.4928
7	2.7058	. 125	25	5	1.2319	. 25.49	. 1577	$\bigcirc .1665$
8	2.7058	. 125	25	50	12.3192	2.5494	1.5766	1.6650
9	2.7058	. 125	25	200	49.2769	$10.197 \mathrm{~s}^{2}$	0.3065	6.660
10	6.9268	. 512	15	5	$\bigcirc .4812$	$\therefore .02533$. 003719	. 001399
11	6.9268	. 512	15	50	4.8122	. 25.53	. 03718	. 013996
12	6.9268	. 512	15	200	19.2489	1.0131	. 1487	. 0560
13	6.9268	. 612	100	5	. 4812	. 00380	. 00008367	. 000004724
14	6.9268	. 512	100	25	2.4061	. 01900	.00041 .83	. 00002362
15	6.9268	. 512	100	100	9.6245	. 0760	. 001673	. 00009447
16	6.9268	. 512	400	1	. 0962	.0001900	. 000001040	. 00000001476
17	6.9268	. 512	400	5	.4812	. 0009498	. 000000529	. 0000000738
18	6.9268	. 512	400	10	. 0624	. 001900	.00001046	.0000001476
19	8.7668	. 729	35	5	. 3802	. 00535	. 0001915	. 0000289
20	8.7668	. 729	35	10	. 7604	. 01071	. 000383	. 00005773
21	8.7668	. 729	35	25	1.3011	. 026677	. 0009576	. 0001443
22	8.7668	. 729	200	1	. 0760	. 0001874	. 000001173	. 000000003094
23	8.7668	. 729	200	2	. 1521	. 00003748	. 000002346	. 00000000188
24	8.7668	. 729	200	5	. 3802	. 0009370	. 000005865	. 0000001547
25	8.7668	. 729	900	1	. 0760	. 00004164	. 00000005793	. 0000000003395
26	8.7668	. 729	900	2	. 1521	. 0000833	. 0000001159	. 0000000006790
27.	8.7668	.729	900	5	. 3802	. 0002082	. 0000002897	. 00000000170

Table 6.-Characteristics of a standard 100-square-mile basin ${ }^{2}$

Item	A^{2}	B	C^{2}
Area (square miles).	10	100	1,000
Channel slope (feet per mile).		100	
Ground slope...............		400	
Tributary angle.		75°	
Dranage density (miles per square mile)		1.2.1	
Lenith of overland flow (feet).		2, 200	
Stream order.		4-i	
Bifurcution ratio.		3	
Length ratio..		2.15	
Length to center of area (Lea) (miles).		11	
Length of channel (L) (miles). .		22	
Width of hasin (W) (miles). .		9	

- Dooge, J. C. l. statietic unit modoghabris mased on minanchat flow. M.s. Thesis. fowa State Cuiv. June 1956.
a These columns are to be filled in by the user or stuklent in working problems.

Table 7.-Geomorphic parameters of a simulated basin ${ }^{1}$
Characteristies of drainage pattern:

Designation	No.	Area	Length ${ }^{2}$
		Square miles	Miles
[rit watershed.	385	0.05	0.33
Sut-subwatershed.	49	. 35	. 87
Subwatershed.	7	2.75	2.87
Total watershed.	1	21.35	8.09

Channel sizes:

$$
\begin{array}{ll}
b=6.79 A^{000} & u=0.04 \\
z=1.92 A^{0.06} & S=0.003155 .4^{-020}
\end{array}
$$

Surfnce characteristics for computing averland fow: ${ }^{\text {s }}$
S00 leet by 1,750 feet $=0.05 \mathrm{sq} . \mathrm{mi}$.
Overland slope. $=10.2$ percent
$L \ldots \ldots \ldots$.
".................... $=0.2$
Rising hydrograph by Morgali. Recession linear.

Assumed conditions for channel routing:
(a) In first-order channels, translation of overland flow to outlet of sulb-subwatershed at equilibrium velocity.
(b) Initial flow, 4.9 cusecs/sq. mi. Channel uniform between junction. Numerical routing (rectangular grid).

[^25]Table 8.-Data on evaporation ${ }^{1}$

No.	Month	Solar racliation	Averuge temperature	Average vapor pressure	Average wiad	Roughuess
		$L y$.	${ }^{\circ} \mathrm{C}$.	$m b$.	M./sec.	6 m .
1...	April	73.4	15	4	2.1	0.001
2...	April	748	24	4	1.8	. 02
3...	March	532	17	S	1.6	1.0
4...	June	761	24	6	1.8	. 7
5...	August	625	31	22	1.3	3.0

1 van lavel, C. II. M. botential Evapolatlon: phe comblation concert and its

Table 9.-Data on infiltration'

Time (minutes)	Precipitation	$P-P_{0}^{25}$
	Inches	Inches
0	0	0
10	.33	.33
20	.67	.63
30	1.00	.59
40	1.33	1.07
50	1.67	1.20
00	2.00	1.30
70	2.33	1.36
50	2.67	1.43
90	3.00	1.50
100	3.33	1.56
110	3.67	1.63
120	4.00	1.70

i Mughaye, G. W., and Holtan, H. N. infum thation. In Chow, Ven Te, ed., Handbook of Applied Hydrology. New York. 1964.
${ }^{2} P-P_{n}=$ precipitation minus precipitated excess.
${ }^{3}$ Average depth ($\left.D_{\mathrm{E}}\right)=0.52$.

Day	Inflow	Outfiow
	Cubic feet per second	Cubic feet per second
1	93	85
2	137	102
3	20 S	14.1
4	320	205
5	442	290
6	546	380
7	630	470
S	678	539
9	691	591
10	692	627
11	6.8 .4	648
12	67.	660
13	657	66.4
1.4	638	660
15	609	650
16	577	635
17	53.4	610
18	454	580
19	420	540
20	366	488
21	298	430
22	235	305
23	153	300
21	137	233
25	103	178
23	SI	132
27	75	100

${ }^{1}$ Lanleir, E. A. hyduotogy of flow control. In Chow, Ven Te, ed., Handbook of Applied Hydrology. New York. 1904.

Table 11.-Data from experimental watershed ${ }^{1}$

Outflow volume Q (e.c.)	Time (seconds)	Outfow volume Q (e.c.)	Time (seconds)	Outflow volume Q (c.c.)	$\begin{gathered} \text { Time } \\ \text { (seconds) } \end{gathered}$
$\lambda=1.75 \mathrm{cc} . / \mathrm{sec}$.					
10	46.0	150	193.0	290	277.9
20	es. 4	160	199.6	300	283.9
30	82.7	170	206.2	310	289.7
40	93.9	180	212.7	320	295.2
50	105.5	190	218.4	$3 \mathrm{3l}$	301.5
6	116.8	200	224.2	340	307.4
70	127.3	210	231.1	360	317.9
S0	137.0	220	237.1	380	329.2
90	146.2	230	242.7	400	341.0
100	154.6	2.40	245.3	420	353.3
110	162.5	250	254.3	440	364.5
120	170.8	260	261.0	460	376.3
130	178.8	270	267.0	480	387.9
140	185.8	280	279.0	500	399.5
$X=2.58 \mathrm{cc} / \mathrm{sec}$.					
10	3 3. 6	110	130.8	210	179.4
20	\$3.5	120	135.8	220	184.2
30	60.5	130	141.6	230	188.8
40	77.1	140	147.3	240	193.2
50	86.9	150	150.7	250	197.5
60	95.3	160	150.2	260	202.3
30	104.?	170	161.3	270	206.3
so	111.4	180	166.5	280	210.3
90	117.8	190	170.5	290	214.3
100	124.3	200	174.6	300	218.3

See footnote at end of table.

Table 11-Data jrom crperimental walershed'-Con.

 Water Resources ('enter, Cuntrith, $40,130 \mathrm{pp}$. Criaiv. Calif., Berkeley. 19 tit .

Table 12.-Data for overland foue

No.	Length	Slope	Surface	Rain
	Feet	Feet per foot		Inches per hour
1..	12	0.0001	asphait	3.65
2.	72	. 005	erushek slate	3.67
3.	72	. 04do.	3.66
4.	72	. 02	turt	1.89
5.	72	. 04do.	3.60
6.......	72	. 04	. . . do......	1.89

${ }^{5}$ lazabl, C. F. hrohaches of henoff from develored suraces. Highway Res. B4. (Washington, D.C.) Proc. 26: 129-146. 194f.

Table 13.-Erperimental data for overland flow

Time	Runof	Time	Rumoff
Minutes	Inches per hour	Minutes	Iaches per hour
0	0	0	0
.5	. 015	1	. 022
1.0	. 095	2	. 071
1.5	. 32	3	. 139
2.0	. 61	4	. 224
2.3	1.13	5	. 320
3.0	2.04	6	. 441
3.5	2.80	7	. 570
4.0	3.27	8	. 712
4.5	3.52	9	. 866
5.0	3.67	10	1.029
7.0	3.78	II	1.198
		12	1.367
		13	1.529
		14	1.674
		15	1.793
		16	1.880
		17	1.934
		18	1.957

Table 14.-Runoff data for Coshocton watershed 151 (1903)

1832	. 50	1811	. 0904	1930	. 0281	March 20	
1837	. 17	1813	. 1995	2015	. 0241	0400	. 00387
		1815	. 3570	2100	. 0123	1030	. 00277
		1821	. 2806	2200	. 0104	2100	. 00170
		1823	. 3367	2400	. 00639		
		1829	. 2136	March 20		March 21	
		1833	. 1341	0300	. 00349	0600	. 00109
		1841	. 0733	0600	. 00245	2400	. 000669
		1857	. 0312	1500	. 00161		
		1921.	. 0125	2400	. 000982		
		1941	. 0062	March 21		March 22	
		2005	. 0031	1200	. 000553	1000	. 000380
		2045	. 0016	2400	. 000533	1300	. 000380
		2125	(1)	March 22		1600	. 000507
		2305	0	1200	. 000351	1900	. 000507
				2400.	. 000351	2400	. 000380
				March 29		March 23	
				0400	. 000312	1200	. 000284
				1200 ,	. 000234	1600	. 000380
				1800.	. 000312	2400	. 000380
				2400	. 000312	March 24	
				March 24		0600	. 000284
				1500	. 000195	1500	. 000249
				2400	. 000195	2100	. 000284
						2400	. 000284

${ }^{1}$ Trace.

AUTHOR INDEX ${ }^{1}$

Abbott, M, B., 262
Abramowitz, M., 58, 73
Ackerman, W. C., 12, 40
Ackoft, IR. IL, 3, 40
American Soeicty of Civil lingineers, 07, 98, 196, 227
Amoroclio, J. 17, 40,96, 9S, 150, 185, 242, 262
Anpt, (F. A., 276, 279, 294
Atulerssen, A., 121, 120
Anderson, F. A., 162, 185
Aseltine, J. A., 12, 40, 64, 73, 125
Ashley, J. R., 177, 155
Bagley; J. M., 179, 188
Bakhmeteff, 13: A., 52,54
Barmes, B. S., 94, 98, 29\%
Barmes, J. L., 20, 41, 108, 126, $29 y^{\prime}$
Bayazit, M, $95,122,195,146$
Bear, J., 48, 54, 170, 182, 185, 267, 269, 284, 203
Becker, A., 156-159, 155
Beer, S., 40
Behlke, C. E., 869
Beightler, C. S., 185
Bellmam, R. F., $10,105,112,12 \overline{0}$
Bender, D. L., 206, 29\%
Benson, M. A., 151, 153,185
Bernard, Mi M., 86, 98, 204, 22r
Betson, R. P., ger
Bickley, W. (5., 70, 73
Bittinger, M. W., 286
Bhackwell, W. A., 3, 41
Blaney, H. F., 46, 54
Blank, D., 113, 125
Bodly, D. N., 33, 35, 40, 94, 98, 143, 146
Boersmi, L., 189
Boughton, W. C., 169, 185
Bowwer, H., 179, 185
Bowen, I. S., 54
Bowers, S. A., 187
Brakensiek, D. L., 208, 297, 262
Brater, E. F., 97, 101, 266
Burdoin, A. J., 191, 231
Carlslaw, H. S., 286, 298
Germak, J. E., 186
Chadwich, D. G., 188
Chamier, G., 98, 193, \$27
Chapman, T. G., 291, 298
${ }^{1}$ This index cites all references to authors. An italic page number indicates that details of the reference are to be found on that page.

Chemerenko, E. P., 156,263
Chery, 1). I., 183,156
Childs, 1:. C., 54, 267, 273, 274, 276, 29S
Chorafas, D. N., 35, 40, 14S, 156
Chow, V. T., $-13, \bar{b}, 95,186,211,227,263$
Clark, C. O, 191, 192, 197, 203, 217, 208
Clark, J. I., ees
Close, C. M. 41
Culeman, (. $4 ., 81,98,193,298$
Collins, W, T., 30, 40, 93, 99
Colman, F. A., 40,101
Colorado Sitate Uniwersity, $\overline{5} 4,179,183,186,293$
Cormmittee for Hydrological Reserch, T'NO, 5 ,
Commons, C. (i., 191, 204, 217, 22S
Cooper, H. FI, 291, 293
Corbett, 1). M1. 43, 54
Corey, A. T., 272, 295
Coulter, C. (i., 217, 218, 228
Crank, J., 286, 293
Crawford, N. H., $10,162,166,180,155,186,18$ i
Cridelle, W. 1)., 46, 54
Cross, W'. P., 85, 97, 99, 187, 929
Dalton, I., $\overline{5} 4$
Dawdy, 1). 12., 38, 41, 168, 174, 156
DeCoursey, i). (1., 208, 22S
Delleur, J. W., 113, 125
J. Cl usso, P. M., 12, 41

Desoer, C. A., 12, 42
DeWiest, J. M. R., 48, 54, 284, 293
Deymie, P., 245, 263
Diskin, M. H., 32, 112, 125, 1S2, 156, 212
Doctselin, E. O., 3, 41
Doctsch, (土., 64, 3
Dooge, J. C. I., 17, 32, 41, 43, 54, 31, 96, 97, $09,105,11^{\prime}, 126,186,190,193,199,210$, $217,221,28 S, 242,245,246,247,248,263,291,233$
Dorn, W. S., 70, 74
Draper, C. S., 3, 41
Drenick, R. F, 3, 41
Dronkers, J. J., 263
Dumm, L. D., 286, 203
Eagleson, P. S., 35, 41, 43, 44, 45, 54, 122, 126, 138, 140, 144, 146, 186
Eaton, T. 1., 108, 217, 22S
Edson, C. B., 206, 207, 22S
Ellis, D. O., 3, 41
Erdelyi, A., 65, 73
Escoffier, F, F., 268
Escritt, L. B., 81, 83, 99, 194-196, 228
Espildora, B., 160,185
Ezekiel, M., 153, 186
Furrell, D. 192
Fiering, M., 149, 186
Fodior, G., is 4
Forsythe, Gr. E., 268

Fosketi, L. W., IST
Fuster, E. E., 97, 99
Fox, (r. S, 270, 271, 295
Fox, J., 67, 74
Fox, K. A., 151, 186,
〔arduer, M. F., 20, 41, 108, 126
(hardner, W. R., 270 299)
(Garstka, W. U., 4:, 54
(Giblss, A. E., 187, 183
(illerest, 13. R., 868
(iilman, C'. S., 44, 54
(ilover, R. E, 286,288
(irace, R. A., 183, 186
(iray, 1). M., 53, 54, 207, 2mS
(irem, R. F., ge:
(irech, W. H., 276, 279, 280, 20.4
(ivillemin, E. A. 5S, 59, 62, 70, 74, 200
Gupta s. C., 19, 41
Gwim, W. R., 26s
Hanming, R, W., b2, 70, i4
Hanks, R. J., 179, IS̃, 276, 295
Harbeck, (i. E. . 45,65
Harder, J. A. 179, 15 ;
Harding, s. T ., 05
Harley, B. M., 245, 246, 248, 255, 263
Harman, H. H., 155, 15 :
Hart, M. £., 284, 294
Harris, B., 187 , 185
Hart, W. E., 17, 40, 150
Harte, C. A., $81,99,193$, 29S
Hathaway, (!. A., 263
Hawken, W. H., 81, 99, 19-1, 22S
Haysmi, S., 52, 55, 24, 263
Hedke, C. R., 46
Henderson, F. M., 50, $52,55,193,223,239,263,264^{\prime}$
Hildebrand, F B., 62, 70, 34
Holtan, H. N., 48, $5.5,56,272,273,294$
Holzman, B., 45, 56
Horton, R. E., 47, 51, 55, 197, 229, 234, 236, 243, 264, 272, 273, 294
Hoyt, W. G., 75-78, 99
Huggins, L. F., 157, 264
Hullinghorst, D. W., S04, 21 r
International Association of Scientific Hydrology; 0 ós
Irmny, B., 48, 54, 185, 267, 269, 284, 295, 294
Iseri, K. T., 45, 50
Issucson, E. J., 264
Iwagaki, Y., 26ś
Izzard, C. F., 51, 55, 234, 237, 243, 264
Jacger, J. C., 286, 293
Jens, B. W', 99, 193, 299
Johnson, A., 81, 98, 193, 194, 928
Johnson, S. M., 218, 229

Johnstone，1）．，85，97，99，137，198，217，229
Judson，C．（．，St，99，193，209
Jury，E．I．，64，74， 146
そalabn，R．K．， 125
Kalinin，（․ P．， $52,53,55,180,187$, 244， $256,257,264$
Kartrelishrili，N，A．， $149,179,150$
Kaufman，H，65， 74
Kendall，M．A．，115， 128
Keulegan，（．H．，264
Kirkham，1．，285，294
Kirpisch，Z．P．， 200
Kiwata，H．， 187

K＂uter，A．，2tf，29A
K゙oenig，H．E．，3， 41
Kohler，M，A． $43,56,78,94,97,99,155,157,158,187$ ，229
Kolosens，HI．J．， 156
Forif，Cs．A．，58，it
Korn，T．M．，3S，it
Kostiakov，A．N．，47，55，280，281，294，
Kraijenhof van de Letr，1）．A．，17， $41,286,288$ ，294
Kritskii，S．N．，20S，200
Kuchment，1．S．，96，90，229，264， 265
Kuthling，1：．， $79,99,193,929$
Kuhnduiswany，V．C，14，146，212， 260
Lambe，C．（i， $67, i 4$
Lathezos，C． 62,74
Langbein，3V．B． $45,50,200,959$
Larriev，J．，96， 99
Laten，N．R．， 920
Laturenson，L．M1．，299， 206
bee，P．，13S， $1 / 6$
Lee，․ W゙，3，41，121，126， 146
lées，s．， 4
Levi，E．，32，41，113，126
Levin，A．（f．，isi
Liguett，I．A．，240，241，243，2650，266
Light，P．，44，$\overline{5} \overline{0}$
Lighthill，M．J． 260
Lia，Pin－Nam， 865
Linsley，R．K．，40，43， $56,78,94,97,99,155,166,180,186,187,205,229,241,266$
Little，W．（．， 150
Lloyd－1）avies，1）．E．，50，100，193，229
Locketi，J．， 185
Ludwig，F．J．，3，${ }_{4}^{1} 1$
Luthin，J．N．．48，56，284，255， 294
Lyuch，W．A．，3，49
Manss，A．A．， $149,18 \%$
MeCarthy，（3．T．，204，24／4
AcCool，1）．K．， 355
Mc（racken，1）．1）．，70，\％～4
MacFariane，A．（i，J．，3， 4

Mekay, W. H_{1}
McNown, J. S., 268
Mamisio, J. P., 183
March, F., $41,190,146$
Martyama, F., 192, 207, 200, 231
Massm, J., 265
Masse, P., 245, 285
Matalas, N. C. $.155,18$;
Mayhugh, M. B., 270, 293
Meitazer, O. B., 97, 100
Mejiarr, 12., 41, 120, 1.62
Meake, M. F., 208, 229
Meyer, O. K., 56, 24.4, 265
Mikawn, H., 192, 207, 230
Milyukor, P. 1., 244, 256, 257, 23.4
Minotte, J. S., ze9
Minshall, N. E., 243, 26π
Mitchell, W. 1., 205, 218, 299
Monke, E. J., 182 , 204
Morgali, J. R., 2:11, 265, 266
Morgan, P. E., 215, e2n
Morgan, R., 20.f, 217, 218
Mulvary, 7, J., S0, 100, 103, 229
Munro, (. $\mathrm{H} ., 81,100,190,194,195,230$
Musgrave, C. N. 56,204
Musknt, M1, 28s, 20.4
Nash, J. E, 17, 31, 42, 52, 56, $22,83,92,00,100,105,113,115,116,126,190,192,202$, $207,208,209,214,219,220,230,266$
Neger, M., 166, $15 i$
Newton, 1, W., 143,146
()'Dombell, T., 32, 38, 41, 42, 103, 101, 108, 126, 133, 143, 146, 168, 186

Ogrosky, H. O., 40
()'Kelly, d.J., 192, 199, 217, 230

OMeara, $\mathrm{W}_{2}, 250$
Orlob, (:. T., $40,96,28,242,269$
Ormshy, M. T. M., S1, 100, 193, 230
Otabn, K., 169, 1s:
(Overton, 1). E., $56,272,273,281,29$?
Owen, H. J., IS', $18 s$
Paporlis, A., 64, 74, 104, 108, 126
Paulhus, J. L. H., $43,56,78,94,97,99,155,157,929$
Paynter, H. M1, 3, 17, 31, $42,112,196,157,266$
Pemman, H. $1 ., 46,56,162$, iSS
Pettersscu, S., 4. 56
Plilip, J. R., 48, $56,273,274,276,277,278,280,994,295$
Polubarinova-Kochima, P. Y., 284, 295
Prasud, 12., 213, 230
Ragan, R. M., 266
Rainville, E. D., 62, 54
Rainville, E. D., 62, i's
Ralston, A., 71, i4
Raven, F. H., 58, 70, i4

Ree, W. O., $26 \overrightarrow{0}$
Reich, B. M., $53,56,50{ }^{2}$
leid, J., $81,100,104,250$
Reiher, B. J., $18{ }^{7}$
Reilly, T'. L, 280
そemson, I, 270, 271, 290
Restrepo, J, C. O., 196,146
Richards, Ls. A., 271, 290
richards, M., 158,185
Kiehtmyer, IR. I)., 966
Riley, 1. 1V., $81,100,194,230$
Riley, J. P., 178,158
Robersoa, J. A., 206, 20%
Roberts, (s. k., 65, $71,108,126$
Rocle, M., $96,100,142$
Rorabuygh, M, I, 291, 293
Rosembrock, H. H. 173,185
Ross, C. N., S1, $00,100,190,193,194,225,930$
Rousculp, J. A., St, 100, 193, 280
Roy, R, I. 41
Rubin, J., 274, 295
Sato, S., 192, 207, 230
Lehleusener, 1R. A., 272, 895
Sehoniek, J. C., 266
Schulze, F. W., 158, ISS
Schwartz, H. E., 205, 217, 231
Schwarz, す., fSo
sicott, E. J., 276, 295
Seddon, A. J., 247, 266
Seliers, W. $^{\circ}$. 1). 45,26
Shary, A. L., 357, 1ST, 153
Hhen, $3,35,42,179,1 S S$
Sherman, 1.K., 25, 42, 81, 33, 100, 203, 230
shipatani, K., 18 :
S.ebert, W. M., 19, 21, $4 \mathcal{L}$

Singh, K. B., 1 tr, 211
Skibitzke, H. F, 179, 1SS
Slatyer, IR. ()., 45, 56
Smith, $14.0 ., 905$
Sneddon, I. A., 67, 74
sinyder, I. A., 67, 24
Snyder, F. F., 204, 205, 218, 230
Nuyder, H^{*}. M. $33,35,42,94,101,147,151,155,158$
Stall, J. B., 15̄5, 158
Stark L, 3, 42
Stegun, I. A., $5 S_{4}$ is
Stoker, J. J., 264, 266
Stone, L. Ň., 189
Strahl, J. A., $15 S$
Strahler, A. N., 203, 23I
Stuart, A., 126
Sugawara, M., 168, 169, 1S9, 192, 207, 209, 231

Taylor, A. 13., 203., 217, 23:
Thomas, H. A., 250, 266
Thompson, T. H., 174, JS6
Thompson, W. A., 70, is
Thornthwaite, C. W., 45, 46, 56
TNO:
Todel, 1). K., 48, 56, 291, 295
Tranter, C. J., 67, it $^{\prime}$
Troesch, B. A., 264
Trumal, J. (r., 3, 42
Ture, L., 47, $\boldsymbol{5}^{7}$
Tumer, H. M., 191, 231
Tustit, A., 3, 4,
Temessee Vatley Authority, 160, 158,231
('.S. Burenu of Reclamation, 206, 281
['. S. Corp of Eugineres, 5r, 205, 23)
('.s. Depart nent of Agriculture, ar
ts. Department of Agriculture, Soll Conservation Service, 191, 206, 217, 218, 23:
lonversity of Wageniugen, si
Valdes, $\mathrm{R}, 32$, 41, 113, 126
van Bavel, C. H. M., $5{ }^{\circ}$
van Sehilfguarde, J., 48, 57, 285, 290
Vasher, O. $\mathrm{F} ., 266$

Vinyard, J. W., 143,146
Wade, T. L., 70, ~'.
Wasow, W. 12., 263
Whitua, (द. B., 265
Wilde, 1). J., 173, 18s
Wiff, H.s., 71, is
Williams, E. J., 151, $15 S$
Williams, (i. R., tot
Wilhams, H. M., 191, 206, 217, 231
Wind, (i. P., 270, 295
Wisiler, ('. O., 97, 101
Wong, S. T., 150
Woo, 1), C., 189,266
Woodug, IR. A., 210, 264, 266
Woolhiser, D. A, 240, 241, 243, 265, 266
World Meteorolggical Organization, 5%
Wu, I-Pai, 207, 20S, 215, 2.31
Wymore, A. W., 12, $\{2$
Yevjevich, V. M., 50, 5r, 151, $150,243,266$
Yu, Y. S., 266
Zadeh, L. A., 12, 1 , 9
Zasiarsky, D., 4S, 54, 155, 267, 262, 284, 293
Zoch, R.T., 191, 196, 197, 231

[^26]
SUBJECT INDEX

Analog, direct, 178-182
Anaiog, indirect, 176-178
Analog models, $150,175-183,184$
Aualysis, $10-11$
Autocorrehtion function, 3.4, 121, 139, 145
Backward substitution, 131
Bank storage, 291
Bames method of unit hydrograph derivation, 94-95, 98
13. ** fow, 16, 19

Base flow separation, 89-93, 98, 289, 292
Catchment as a system, 16-17, 165
Gatchment characteristies, 190, 201, 208-204, 209, 214, 222
(atchacent model, 37, 165-169
(stchment parameters, 222-223
Catehment response, $165-169,185,227$
Causal system, 10, 23, 20, 103
Coaxial correlation, 155-160
('ohins' method of unit hydrograph derivation, 30, 93, 98
Component, S, 149
Componeats of hydrograph, 78
Compatational mothoris $1+1-144$
Continous convolution, 20-25
Conceptual mode\}, 36-37, 102-193, 209-215. 232, 267, 283
Continuous input for output), 8
Contimuous system, 8
Convolution, contimuous, 20-25, 82, 95-96, 102, 195
Convolution, discrete, $25-29,128$
Correlation methods of identifiention, 33-35
(ross-eorrelation coofticient, 3 -1, 121, 139, $1+5$
Cumblants, 115-117, 124, 214, 238, 247
Cumbinats, dimensioness, 116
Curvilacar regression, $154-1$ 155
Dares's Law, f8, 267
Dawdy-0'Donnell model, 38, 168
Detection of signal, 11
Deterministic hydrology, 1
Deterministic systems, 1,9
Delta function, 20-21
Differential equations, ordinary, 19, 65-67, 72
Diffusion analogy (flood routing), 52, 253
Difusion equation (unsaturated flow), 269
Digital simulation, 3\$, 160-168
Direct analog, $178-182$
Direet storm runoff, $15,165,190$
Discrute convolntion, $2 \overline{5}-29$
Discrete input (or ontput), 9, $2 \overline{0}$
Discrete system, 9
1 istributed parameters, 9
1)istribution graph, 26, 85, 128

1) upuit-Forcheimer assumption, 48, 284, 285, 289
D) yumaic ìydrology, 1
bifective precipitation, 15,91
Ehipse equation, 285
Error-smsitivity, 98, 14-4-145
Evaporation, $15,-15-46,184$
Factor malysis, 20., 223
Fuedbapk, 9, 17
Flood routing, 7
Forward substitulion, 33, 94, 130-131, 142, 14.4
Fourner roefficients, 60, 7!, 104, 105, 107, 124, 133
Fourier methats, $20,60,62,104-105$
Fourier series, 59-60, 106-107
Fourur transform, 32, 63, 71, 10-1, 109-112, 124
Ftequency malysis, 2.4
(intuma dist ribution, 52, 120, 192-193, 206-208, 210, 215
(icomorphalogy, 20.1, 217, 223-29.1
Gibbs oscillations, 127
Glover solution, 286
(frumular model, 152
(ireev-Ampt infiltration formula, $276 \cdot 277$
Gruen's fun'ion, 22
Ground water flow, $48-40,284-290,292$
(iround water lydrology, 1
Gromed water reservoir coeflicient, 286
(iround water response, $17,01,185,283-290$
Hatmonic namysis, 32, 71, 133-134, 143, 145, 146
Helc-shaw apparatus, 18 !
Histogram input, 25
Horton-Tzzard solution, $51-52,234-238,261$
Hydraulie diffusivily, 26S, 270, 291
Hydrologic eycle, $12-14,53,184$
Identifieation by trial and error. 29-30
Identification of system, 10, 22, 29-35, 10, 102-146
Ithpulse function, 21-22
loupube response, 21-22, 102, 12-4
Imitirest analos, 176-178
Lufittration, $15,47-48,89,272-2 \mathrm{~S} 2$
Infiltration capacity, 272
Infiltration formulas, 272, 292
Iuflumere function, 22
Input, 4, 9-10
Input, disercte, 20:
tuput, distributed, 22
Input, isolated, 24, 26, 102
Inputs, multipie, 22
Inpui, periodie, 2.4-25, 10.4
Input, çuantized, $2 \overline{5}-26$
Input, sampled, 27
Instantancous unit hydrograph (IUH), 22, 40, 81-82, 87, 95, 195-196
Inversion, 11
lnversion of transform, 103, 110, 112, 115
Isochrones, $81,96,195$

Joint regression, 155
Kidinin-Milyukov method, $52,256-257,261$
Kernel function, 22
Kinemutie wave solution, 239, 201
Kleitz-הedkon 1an, 247
lironecker delta, 50,60
Lag and ronte method, 52, 255-256, 261
Lug time, 202, 22.4
Inguerre amalysis, 32, 43, 71, 117-121, 136
Laguerre coeficionts, 118,124
Laguerre fanctions, 61, 71, 105, 116
Laphace transform, 20, 63-6.t, 66-67, 71, 246-247
Laphace tranform mothod of identheation, 31, 104-105, 111-113, 124, 135
Least squares and time series andysis, $122,140-141$
Lenst squares methot of identifeation, 33, 73, 9.4, 131-133, 1.4.5
Least spurnes optinization of paraneters, 170
bimiting rate of exaporation, 272, 291
Linment channel wesponse, 246-248, 261
Linert programing, 143
Linear theory, $1,5,16-18,40,19,85,283$
hinearizecl system, 24, 245, 285-286
linkage equation, 103
hakage equation (Fourier and Laphee transforms), 109, 111, 135
hakkage equation (Fourier series analysis), 107, 134-135
hinkage equation (Laguerre amiysis), 119, 120
Linkage equation (moments and cunulnats), 11.7-115, 116
Lamped paraturetes, 9,19
Lumped syotem, $9,15,19$
Matrices, 67-70
Matrix form of convolution, 28-29, 128-129
Matrix methods, $72-73$, 98
Meimer functions, 62, $71,137,443,145-146$
Memory, $5,23,26,106$
Model, 14S, 1.49
Model, conceptha, 1-4S
Monents, 62, 70, 71, 105, 113-115, 124
Moments as entchmeat characteristics, 31, 203
Moments, dimensionless, 116, 210, 220-221, 22.4
Moneuts, matching, 170-171, 213, 287
Morphology of catchments, 204
Multiple inputs, 22
Multipic linear regression, 151-153
Mutimariable amalysis, 155
Muskingum method, $40,52,254,257,261$
Muskinguan model (generalized), 212-213, 227
Nonlinear system, 17, 35, 85, 232
Nondinear theory, $1,5,50-51$
Numerical methods, $70,73,241,244,260-261$
Open chanmel flow, 243-260
Optimization, 38, 169-174
Optimum linear response, 122
Ordinary differental equat tens, 19, 65-67
Orthogoral functions, $19,58-64,71$

Output, 9-10
Overtand flow, 50-52, 232-242
Parnmeter optimization, $83,149,150,166,169-174$
Parameters, significunce of, 172
Parametric hydrology, 1, 83
Partial differemtial equations, 67, 72
Prarson type I slistribution, 22.4
Pearson type [1], distribution, 19], 224,
Pentson type $5,205,224$
Percolation, steaty, 271
Pholp's infilitration theory, 277-278
Phesicen scate monlels, 153
Polynomial regression, 154-155
Preciputation, $15,14 \cdot 45$
Prempitation expess, 15, 89, 190
Predietton, 1t, 2t, 39, 95
Probuthlistu kystems, 9
Pulee, 25
Pular resporise, 25, $73,127,1.42,145$
Quatuized inpul (or output), 9,25
Ratomal methosl, 79 84, 95,190
Realizable systrm, 10
Recossion, 75, 89-92, 237, 239, 201, 292
Reforence dowharge, 250-251
Regression models, 151-159, 1st
Rewervoir, lincar, $72,176,192,207,210,215 \cdot 231$
Reservoir, tumlinent, 213-238
Response time, 15
Rising hydrograph, 236, 239, 201
Routing a flood, $7,52-53,244$
Run-off hydregraph, 75-78
Saturatecl zone, 17
stale models, IS2
Shape factors, 116, 223, 227
Shydrograph, 39, is
Sigund detection, 11
Situulation, 7, 20-38, 43, 148-189
simulation, analog, 39
Simulation, digital, 38
Simulfancons equations, 93-94
Snyder's synthetic method, 205-200
Sinowmelt situulation, 160-162, 185
Soil moisture eharacteristic curve, 268
Soil phase of cyede, 267-282
Soil storage, 17
stable system, 10
Staniard calehment, 217-218
Stanford model, 37-38, 160-167
stitate of a system, S, 13-14
Stochastic systems, 149, 208
Storage elements, linear, 72, 165
Subsystem, S

Superposition, 7, S, 17-19, 82, 34, 102
Superposition, integral, 23
Surface water hydrology, I
Synthesis, $\bar{i}, 12,22,1 \cdot 18$
Synthetic seheme (yeneral), 210, 220-22!
Synthetie unit hydrograph, 82, 149, 190-231
System, defnition of, 3-1
System identification, 10-11, 22, 20-35, 39
System operation, 4-7, 10
Systems approach, 2-7, 17, 39, 43, 77,96
Systems tirminoloss, 8, 40
Terminology, systems, \&, 10
Threshold in system, $15,17,158,165,175$
T'me-arop-concentration curve, $81-82,192,195,197,214$
T'ime-aren-dingram, so st
Time-area methods, s0-82, 95, 97, 190, 193-190
Time-mvarisuce, s- $9,19,40,85,102$
'Time-in rariant system, 3-9, is
Time of concentration, so
Time scale in Laguerre amblysis, 120
Time series analysis, $3335,120,138 \cdot 141,1 \cdot 43 \cdot 144$
Tine transFormation, 20S, 223
Trangorm methods of system identification, 30-33, 102-120, 133-13S, 143
Transpirathon, 15, 16-47, 162-16.1, 184
Truncatoon of unit hydrograph, 220, 227
Lriform nonlinearty, 242-243
Cnit lyderugraph, $67,10,15,16,39,184$
l'uit hadrograph concepts, Si-SS
That hydrograph derivation (classigul), 29-30
['nit hydrograph, fimitr period, 25-26, 27, 73, 87, 95, 97, 127, 135
l'nit hytrograph, instantaneous, 39, $83,57,93,95,97,135$
l'ait hydrograph parameters, 202-203
L'neralistic ortimates, 143,145
['usaturated permeability, 269-270
Insaturated zone, 1
Verifiention of model, 1.69
Virmal thatmel mflow, 197
Wave equation, linear, 72, 73
Wiencr-Hope rquation, 12.4 . $140,144,145-146$
Z-transforta, 6.4, 31, 125, 145-146

[^0]: ${ }^{1}$ Formerly, Professor and Head, Department of Civil Engineering, University College, Cork, Ireland (1958-70); since then, Professor and Head, Department of Civil Engineering, University College, Dublin.

[^1]: ${ }^{2}$ Italic numbers in parentheses refer to Literature Cited at the end of each lecture.

[^2]: ${ }^{1}$ Kulandalswamy, V. C. a gasic stody of the rainfall excess-surface runoff relatrongmir in a dasin system. Ph.D. thesis, Univ. of Illinois. 1964 [Available as Publieation No. 64-12535.) from University Microflme, Inc. P.O. Box 1346, Ann Arbor, Mich. 48106

[^3]: - Disexin, M. a gasic stedy of the linearity of the ratnfall-runoff process in wateasheds. Ph.D. Thesis, C'niv. Ill. Etbana. 1964. [Xerox copy available by purchase from University Microfilms, Inc., P.O. Box 1346, Ann Arbor, Mich. 48106 as Publication No. 64-S375.]

[^4]: ${ }^{3}$ Bayazit, M. instantaneous unit hydrograph derivation by spectral analysis and its nemerical application. CENTO Symposium on Hydrology and Water Resource Devlpint. Ankara. 1906.

[^5]: "TNO stands for "Organisatie Toegepast Natuurwetenschappelijk Onderzoek" (Netherlands Organization for Applied Scientific Researchl. The abbreviation TNO is invariably used, and the full title does not nppear even on publications of the organization.

[^6]: Fsache 4-10.-Hydrograph response to different types of storm events: A, Surface water response; B, base flow response; C, combined response.

[^7]: ${ }^{3}$ Diskin, M. H. a basic stody of the linearity of the rainfallardnoff process in watersheds. Ph.D. thesis Univ. Il. 1964. 【University Microfilms Publ. No. 64-8375.)

[^8]: : Dooge, J. C. I. hnear theory of opbn channel flom, hil: moments and cumuLarrs. Dept. Civ. Engin., University College, Cork, Ireland. 1967. (Unpublished report.)

[^9]: Lusts. Dept. Civ: Engin. (Vniversity College, Cork. Ireland. I96t. [TOMpublished report.]

[^10]:

[^11]: ${ }^{1}$ Lecture 2. pp. 44 and tis.

[^12]:

[^13]: M.s. Thesis, lowa State luiv., Ames. 195t,

[^14]: ${ }^{2}$ MrCarmy: G. T. the unit himpograph and flood routing. U.S. Corps of Engineers Office, Providence, R.I. 1939.
 ${ }^{3}$ Mongan, R., and Hullinghorst, D. W. untt hydrooraphs for gadged and dagauged watersheds. [V.S. Corps of Engineers Office, Binghampton, N.Y. 1939. (Unpublished manuscript.)

[^15]: Civil Guph, Ser. Colto, State f niv., it ppo. illus. 190.

[^16]: Ph. D, thesis, III. l"niv. 19G2.

[^17]: - Diskin, M. H. a baste stode of the lineairity of rainfadididnoff process in watensheds. Ph.l. thesis, Ill. T'niv. 106t.
 RELATLONSHAD in A basin systrm. Ph, D. thesis, Itl. Cniv. Urbaba. 1964.

[^18]: ${ }^{5}$ See footnote 1, p. 199.
 ${ }^{*}$ See footnote 3, p. 204.

[^19]: presented at the Conference of Sorth Athantir Div., T..S. Curps of Engineers, Providence, R.I. 1938 .

[^20]: = DOOOE, J. C. T. haneat analysis of Flow in oben channels. Conpublished memomoduti, ľniv. Col., Gork, lrelmod. 1965.

[^21]:

[^22]: ["Biv. Ireland. 1017.

[^23]: sodmedra, W. hanear routing of lateral inflow in untrorm open channels. M. Engin. Sci. Thesis, Dept. Civ. Engin, Triv. Coll., Cork, Ireland. 1968.

[^24]: ${ }^{1}$ Glover, R. E., and Butinger, M. W. source matehials fora cource in mansient aroundmater hyoraulics. Colo. State Univ. 1959. [Mimeographed.]

[^25]: ${ }^{1}$ Machmeier, R. E., and Lahson, C. L. the effect of renoff subily rate and doration on hydrograthe for a mathematical watershed model. Jour. Hydraulics Div., Amer. Soc. Agr. Engin. 1966.
 ${ }^{2} L \sim A^{0.5 s s}$; tributary angle $=45^{\circ}$.
 *Morgali, J. R. hidradlic behayior of small drainage basins. T'ech. Rept. 30, Dept. Civ. Engin., Stanford [viv. Calif. 1963.

[^26]: : TNO stands for "Organisatie Toegepaft Natuarwetenschappelijk Onderzoek" (Netherlands Organization for Applied Scientific Research]. The abbreviation TNO is invarinbly used, and the full title does not rppear even on publications of the organization.

