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PREFACE

This publication is a shortened version of lectures given by Professor J.C. L
Dooge, Department of Civil Engineering, University College, Dublin, Ireland,
in August 1967 at the Departwent of Agricultural Engineering, University of
Maryland, under the sponsorship of the Agricultural Research Bervice, U8
Department of Agriculture. Professor Dooge is a world authority on hydro-
logic systems, which are basic to computations for successfully planning the
best use of soil and water resources in agricultural watersheds.

The original course consisted of 18 lectures supplemented by problem
sessions and seminars; however, this publication is confined to the first 10
lectures, which dealt with the general principles of the linear theory of de-
terministic hydrologic systems. Some important material, originally dealt
with in Iater lectures, has been included in exmmary form in lectures 7, 8, 9,
and 10 of this publication,




Trade names are used in this publication solely for
the purpese of providing specific information. Men-
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LINEAR THEORY
OF HYDROLOGIC SYSTEMS

By James C. 1. Dooge!

INTRODUCTION

These lectures were designed to introduce participants to the theory of
deterministic hydrologic systems. In recent years, this theory has been named
“parametric hydrology,” but is also known as “dynamic hydrology” or
“deterministic hydrology.” One object of the course was to make the partici-
pents aware of certain theories and techriques rather than to give them g
perfect kuowledge of the theory or a complete mastery of the techniques.
Attention was directed to the essential unity underlying the mary methods
that have appeared in the hydrologic literature as seamingly unrelated to
one another. Another aim of the course was to reformulave established con-
cepts and techniques in terms of a general systems approach and thus te
extend their usefulness.

This publication follows the organization of the original «urse and is di-
vided into lectures. Lecture 1, which is far longer than any other, consists of
a preview of the subject matter of the whele course. This is followed by two
review lectures, one on physical hydrology and the other on the mathematics
required for the study of deterministic hydrologic systems. Lectures 4, 5, and
6 deal essentially with the problem of the identification of deterministic
hydrologie systems and, thus, with the analysis of the behavior of a given
system. The next fou- lectures—7 through 10—deal with synthesis rather
than analysis. In them, the question of simulating the behavior of natural
hydrologic systems is discussed.

The original lectures were built around more than 100 figures, which were
included with the handout material for the course, and also projected during
the lectures. In this publication, many of these figures have been incorporated
into the text. The handout material also contained a number of probiems
and a large number of references for each lecture. These were not confined
to what would have been directly necessary for a short, 2-week course, Rather

! Formerly, Professor and Head, Department of Civil Engineering, University College,
Cork, Ireland (1958-70); since then, Professor and Head, Department of Civil Engineering,
University College, ublin.
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they were chosen so that the participants could, after the completion of the
course, go more deeply into any part of the subject which was of particular
interest to them. These problems and references are inciuded in this publi-
cation and aprear at the end of each lecture. So as to facilitate further study
of individua! aspects of the subject, some important references have been
repeated in the various lectures rather than cross-referenced from one lecture
to ancther.




LECTURE 1:
HYDROLOGIC SYSTEMS

The Systems Approach

What is a system?

Before starting to discuss hydrologic systems, it s well to be clear about
what we mean in this context by a system. There are, of course, almost as
many definitions of a system as there are books on the subject of systems
analysis and systems synthesis. It is worthwhile to review a few of these
definitions before arriving at a working definition which will serve nur purpose,

The frst definition by Stafford Beer (6)7, an expert on management and
cybernetics, merely defines a system as “Anything that consists of parts
connected together.” This includes the essence of what a system is. It is some-
thing that consists of parts; there are scparate parts in it, and they are con-
nected together in some way. Of eourse, this does not bring us very far because
philosophers will tell us that everything which is created, everything which
changes, consists of parts. While it is true to say that everything is a system,
this does not help us very nweh to build up a consistent theory of hydrologic
systems.

A sccond definition is that given by AacFarlane (30) in his book on
“Engineering Systems Analysis” in which he defines a system as ““An ordered
arrangement of physical or abstract objects.” Here, the notion of some sort
of order enters the picture; th- system is put together in accordance with
some sort of plan. Also we have the idea that there are two types of systems—n
physical or real systemn and an abstract one.

A third definition by Ackoff {2}, who was a pioneer in operations research,
states that a system is, “Auy entity, conceptual or physical, which consists
of interdependent parts.” Again we get the idea that the system can be con-
ceptunl or physical and that the system consists of interdependent parts.

The fourth definition, by Drenick (18}, stresses the manner of operation of
a system rather than its structure: “A device whieh accepts one or more inputs
and generates from them one or moere outputs.” This concept of 2 system, as
that which links inputs and outputs, is common in the literature. Further
definitions and descriptions of the systems approach in other disciplines are
found in works by Bellman (7}, Doebelin (14), Draper and others {18),
Ellis and Ludwig {27), Koenig and Blackwell (24), Lee (27}, Lynch and
Truxal {£9), Paynter (37), Stark (43) and Tustin (44).

Having considercd 2 large number of definitions of a system, I decided to

t Tialic numburs in parentheses refer to Liternture Cited at the end of each lecture.
3
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aceept as adequate for the present purpose, the definition that, A system is
any structure, device, scheme, or procedure, real or abstract, that interrelates
in n given time reference, an input, cause, or stimulus, of matter, energy, or
information, and an output, effect, or response, of information, energy, or
matter.” This definition includes the concepts contained in the definitions
given sbove, The emphasis is on the funetion of the system—that it inter-
relates, in some time reference, an input and an output. In mechanics, we
tend to talk about inputs and outputs; physicists and philosophers often speak
of causes and effects; workers in the biological sciences talk of stimuli and
responses, These are merely alternative words for the same two concepis.
Reference to an input does not restrict the concept to a single input. The
input could consist ¢f a whole group of inputs so that we would have an input
vector rather than s input variable. In some cases, the input could be com-
pletely distributed in space and thus represented by a function of both space
and time.

The definition refers to inputs (and outputs) as consisting of matter, energy,
or information. In some systems, both the input and cutput would consist of
material of some sort; in others, attention would be concentrated on the
input and ocutput of energy; while in other systems, the eoncern would be with
the input and ocutput of information, There is no need, however, for the input
and the output to be alike. It is perfectly possible to have a system in which an
fupui of matter will produce an output of information or vice versa. That
there is no necessity for the natures of the input and putput to be the same
has been emphasized in the definition by using the reverse order to describe
the natures of the input and the output. The essence of a system—which can
be real or abstract—is that it interrelates two things,

Concept of system operation

In dealing with problems in applied scienee, our concern is to predict the
output from the system we are interested in. Figure 1-1 shows the three
clements that together determine what this output will be. In the classical
approach, ¢ertain assumptions are made about the nature of the system and
the physical laws governing its behavior; these are then combined with the
input to predict the output. To apply this classical procedure, it is necessary
1o know the physical laws or to be able to make reasonable assumptions about
them. It is also necessary to be able to describe the structure of the system
and to specify the input. A distinetion is made here batween the nature of the
system itself and the physical laws of its operation, The nature of the system
refers only to its inherent structure, that is, to the nature of the components
of the system and the way in which these components are connected.

In hydrology, as in many other aress, the classical approach tends to
breskdown either because, on the one hand, the physical laws are impossible
to determine or too complex to apply, or, on the other hand, the geometry of
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DESCRIPTION
OF SYSTEM ouTPUT

PHYSICAL
LAWS

Fiaure 1-1.—Factors affecting output.

the system is too complex or the lack of homogeneity too grest to ensable us to
apply classical methods to the prediction of the behavior of the system. In
the systems approach, an attempt is made to evade the problems raised by the
complexity of the physies, the complexity of the structure of the system, and
the complexity of the input.

Figure 1-2 shows the essential nature of the systems approach to the
problem. In figure 1-2, the elements of figure 1-1 are rearranged, and the
concept of system operations is introduced. In the systems approach, the
complexities arising from the physical laws involved and from the structure
of the system being studied are combined into the single concept of the system
operation of this particular system. If either the nature of the system or the
physical iaws sre changed, then the systems operation will be changed. These
effects are shown in the vertical relationships in figure 1-2. In dealing with
one particular system, however, we can use this combined concept of system
operation &s being the element which accepts the input and converts it into
an output.

Thus, in the systems approach, attention is concentrated on the borizontal
relationship in figure 1-2. In systems analysis, we are concerned only with the
way in which the system converts input to output. If we can describe this
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INPUT OUTPUT

Froeare 1-2—The concept of system operation.

system operation, we are not concerned in any way with the nature of the
system—with the components of that system, their connection with ope
another, or with the physieal laws which are involved. The systems approach
is nn overal! one and does not concern itself with details which may or may
not be important and which, in any ease, may not be known.

The concern of the systems approach with overall behavior rather than
details can be exemplified by the unit bhydrograph approach to predicting
storm runoff. In this approach, precipitation excess is taken as the input and
the direct storm runoff as the output. The operation of the whole watershed
system iu converting precipitation excess {o direct storm runoff is summarized
in the form of the unit hydrograph. We are not concerned with arguments
about whether there is, or is not, such a thing as interfiow, nor with arguments
as to whether overland flow actually oceurs; and if it does, what the friction
factor is. We may overlook our ignorance of the physical laws actually deter-
mining the processes in various parts of the hydrologic cycle. We may ignore
the problem of trying to describe the complex watershed with which we are
dealing; we do not have to survey the whole watershed by taking eross sections
on every stream as we would have to do if we wanted to solve the problems
by classical hydraulics. Instead we assume that all the complex geometry in
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the watershed and all the complex physics in the hydrologic cyele is described
for that particular watershed (but of course for that one only) by the unit
hydrograph. The systems approach is basically & generalization of this standard
technique that has been used in applied hydrology for many years. The
essential feature is that in dealing with the analysis of a particular system,
attention is concentrated on the three horizontal elements in figure 1-2.

This does not mean that the structure of the system or the physical laws
can be completely ignored. If our problem is one of synthesis or simulation,
rather than analysis, it is necessary to consider the vertical elements in figure
1-2. Again we have an anulogy with the unit hydrograph technique in applied
hydrology. If we have no records of input and output (that is, of precipitation
excess and of storm runoff) for a watershed, it is necessary to use synthetic
unit hydrograph procedures. This is done in applied hydrology by correlating
the parameters of the unit hydrograph with the catchment characteristics.
In this way, the effect of the structure on the system operation is taken into
account. Because the physics does not change from watershed to watershed,
1t might be thought that no assumptions are made about the physics of the
problem in synthetie unit hydrograph procedures. This is not so. The whole
unit hydrograph process of superimposing unit hydrographs and blocks of
precipitation excess depends on the superposition principle, which will only
apply, as we shall see later, if the system we are dealing with is linear. There-
fore, unit hydrograph procedures make the fundamental assumption that
the physical laws governing direct surface runoff can be represented as
operating in some linear fashion.

In the above example, the details of the operation of a system were ignored
because they were too complex to be understood. In other cases, the details
are ignored because they are not important. Again we can take an example
from classical hydrology. The problem of routing a flow through an open
channel can be solved by writing down the equation of continuity and the
dynamic equation and proceeding to solve the problem for the given data by
the methods of open channel hydraulics. Even with large, high-speed com-
puters, the solution for the case of a nonuniform channel is extremely difficult.
‘The solution proceeds step-by-step down the reach and marches out step-
by-step in time. In practice, the detailed results for the discharge and depth at
every point along the ehannel are not required since all we usually wish to
know is the hydrograph at the downstream end. Whether we use the method
of characteristics, an explicit finite difference scheme, or an implicit finite
difference scheme, difficulties of one sort or another arise in the numerical
solution of this problem. Most of the information which we have gained with
such lahor is of littl. interest to us as applied hydrologists. More than 30 years
ago, hydrologists dodged these difficulties by introducing the idea of hydrolo-
gic routing, that is, the idea of treating the whole reach as & unit, trying to
link up the relationship between the upstream discharge and the downstream
discharge without bothering with what went on in between.
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Systems terminology

As in every other discipling, a terminology has grown up in systems analysis
and systems engineering. The meaning of the more important concepts and
terms must be clear before we can understand what is written in the hiterature
concerning the systems approach.

A complex system may be divided into subsystems, each of which can be
identified as hoving a distinet input-output linkage, A system or a subsystem
may also be divided into components, each of which is an lnput-output ele-
ment, which is not further subdivided for the purpose of the study in hand.
Thus, a system is composed of subsystems, and the subsystems themselves
conaist of components.

Reference is frequently made to the state of 8 system. This is a very general
concept. Any change in any variables of the system produces a change of
state. If all of the state variables are completely known, then the state of the
system is known. Perhaps it is easiest to look at this in hydrologic terms. If
we knew exactly where all the water in 8 watershed was—how much of it was
on the surface, how much of it in each seil harizon, and how much of it in each
channel—we wouid know the hydrologic state of the watershed. The state
of a system may be determined in various ways, In some systems, it is deter-
mined historically, that is, the previous history of the system determines its
present condition. In other cases, the state of the system is determined by
some external factor which has not been included in the system under examina~-
tion. In still other cases, the state of the system is stochastically determined
or else assumed to he stochastically determined, that is, determined by a
random factor.

A system is said to have a zero memory, a finite memary, or an infinite
memory. The memory is the length of time in the past over which the input
affects the present state. If a system has a zero memory, then its state and its
output depend only on the present input. If it has ar infinite memory, the
state and the output will depend on the whole past history of the system. In
8 system with a finite memory, its behavior, its state, and its output depend
only on the history of the system for a previous length of time equal to the
memory,

The distinction between linear and nonlinear is of vital importance in
systems theory as it is in classical mechanics. The analysis and synthesis of
linear systems can draw on the immense storehouse of linear mathematics
for techniques. The special properties of linear systems will be dealt with in
detail later. For the moment, it will suffice to say that a linear system is one
that has the property of superposition and a nonlinear system is one that
dor~ not have this property.

Another important distiretion is between time-variant and time-invariant
systems. A time-invariant system is one whose input-output relationship does
not depend on the time at which the input is applied. Most hydrologic systems
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are actually time-variant; there are seasonal variations throughout the year
and s variation of solar activity throughout the day. Nevertheless, the advan-
tages of assuming the systems to be time-invariant is such thet these real
variations are usually neglected in practice.

It is necessary to distinguish between continuous and discrete systems, and
also smong continuous, discrete, and quantized systems. Whereas hydrologic
systems are continuous, the inputs and outputs may be available in either
continuous, discrete, or quantized form. A system is said to be continuous
when the operation of the system takes place continuously. A system is said
to be discrete when it changes its state at diserete intervals of fime. An input
or an output of a system is said to be continucus when the values of it are
sither known continuously or can be sampled so frequently es to provide &
virtually continuous record. An input or an output is said to be discrete if the
value is only known or can only be sampled at finite time intervals. An input
or sn output is said to be quantized when the value only changes at certain
discrete intervals of time and holds a constant value between these intervals.
Many records of rainfall, which are only known in terms of the volume during
cortain intervals of fime, are in effect quantized records.

We can talk of the input a~d output varisbles and the parameters of the
system as being either lumped or distributed. A lumped variable or parameter
is one whose variation in space is either nonexistent or has been ignored. Thus,
the average rainfall over a watershed, which is used as the input in many
hydrologic studies, is & lumped input. Where the variation In one or more
space dimensions is taken into account, the parameter is 2 distributed one.
Either the parameters of 2 system itself or the inputs or outputs can be lumped.
The behavier of lumped systems is governed by ordinary differential equations
with time as the independent variable. The behavior of distributed systems is
governed by partial differential equations.

A distinetion is also made between deterministic and probabilistic systems.
In a deterministic system, the same input will always produce the same
output. The input to 2 deterministic system may be either itself deterministic
or stochastic. A probabilistic system is one which contains one or more ele-
ments in which the relationship between input and output is statistical rather
than deterministic. The present lectures are mainly concerned with deter-
ministic systems.

The distinction is sometimes made between natural systems and devised
systems. The essential feature of natural systems is that though the inputs
and outputs and other state variables are measurable, they are not controliable.
In a devised system, for example, an electronic system, the input may be both
controliable and measurable.

Other descriptions of systems are that they are either simple or complex.
Complex in this context usually means systems with feedback built into them.
Some systems have negative feedbacks built into them to produce stability
and others are designed for ultrastability, that is, to be stable even against
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unanticipated changes in the external environment. Beyond feedback we have
adaptive systems which learn from their past history and improve their
performance,

A causal system is one in which an output cannot cecur carlier than the
corresponding input. In other words, the effects cannot precede the cause.
In electrical engineering, the Hmitation to causs! systems is sometimes
abandoned to achieve certain results. All of the systems dealt with in hy-
drology are causal systems. Simulation systems are also referred to as being
realizable. This has much the same menning as causal insofar as it means that
the system is wonanticipative in its operation.

A further important property of systems is their stability, A stable system
is one in which if the input is bounded, then the output is similarly bounded.
In hydrology, virtually all our systems are stable and oxtremely stable. In
most cases, when the inp ¢ to & hydrologic system is buunded, the bound on
the output is considerably fess than that on the jnput.

Basic problems involving systems

We have already seen that a system is essentially something which inter-
relates an input and an output. Thus, from an oversll viewpoint there are
three elements to be considercd—the input, the system operation, and the
output. This general relationship can be represented either by a rectangular
box, in which the svstem H converts the input z(!) into the output y(1).
Alternatively, it may be represented by the general mathematical relationship:

¥ (1) =h{O¥=(0) (1)

where 2{t) is 2 mathematical function characterizing the system operation
and ¥ is a symbol denoting that the function A(¢) and the input function z(2)
are combined in some way to produce the output function y(). If the opera-
tion of the system ean be deseribed in any way, then we are concerned with
the interrelation of three functions—the input function, the system operation
function, and the output function.

If we have derived 2 mathematical representation of the operation of the
system and we know the input, then the problem of finding the output is a
problem of prediction. In terms of the unit hydrograph approach, the problem
is to determine the storm runoff knowing the unit hydrograph and the given
or assumed effective rainfall.

If, however, we do not know the unit hydrograph, it is necessary to derive
it from the past records. This is the problem of finding a function describing
the system operation knowing the input and output; it may be described as
the problem of system identification. The preblem of system identification is
much more difficult than the problem of output prediction, It is important to
realize what we mean by system identification. We cannot identify the system
uniquely in the same way as we might identify someone from their fingerprints.
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Rather can we identify the behavior of the system much the same way as a
criminal might be identified by his modus operandi. All that system identifiea-
tion tells us is the overall nature of the systems operation and not any details
of the nature of the system itself.

The various problems that can arise are sbown on figure 1-3. If we have
p given svstem, then the problem is one of analvsis, 8s in the case of the
structural engineer who is faced with the apalysis of a given design. There are
three elements in the system relationship; hence there are three types of
problems in analysis with which we must concern ourselves In each of these
situations, the problem is to find one of the elements when given the other twa.

The third problem of analysis is detection. This occurs when, knowing how
our system operates and knowing the output, we wish to know what is the
input. This is the problem of signal detection and the problem inherent in all
instrumentation. In hydrology, as in many other fields of engineering, this
particular problem has been widely ignored. The engineer has been too content
to sssume that his instruments are perfect, that is to assume that the input
to an instrument is correctly given by the output recorded by the instrument.
It is only in recent years that there has been any study of hydrologic instru-
ments from a systems viewpeint, The problem of signal detection, or signal
identification, is mathematically the same as the problem of system identifica-
tion and, therefore, also substantially more difficult than the problem of
output prediction.

The problem of prediction is that of working out the interrelationship of the
two functions k{#) and x({) shown on the right-hand side in equation 1. The

PROBLEMS ARISING WITH SYSTEMS

Prediction
Analysis < ldentification

identification

Synthesis {Simulation)

Fravgrg 1-3.—Clussification of systems problems.




12 TECHNICAL BULLETIN NO. 1468, U.8. DEPT. OF AGRICULTURE

problem of system identification or signal detection is that of unscrambling
one of the eomponents on the right-hand side of the equation, This involves a
problem of inversion, which is inherently difficult.

Besides the problems of analysis, we have also the problems of synthesis.
This corresponds to the problem of the structural engineer who has to design
& structure as well ns know how to analyze it. In hydrelogy, we do not design
watersheds, except possibly in urban hydrology, but even here we do not design
them from a hydrologic viewpoint. We do, however, attempt to simulate
complex hydrologic systems by simpler models, and this is essentially a
problem of synthesis. The problem of synthesis is to devise & system which
will convert & known input to a known output within certain limits of aceu-
racy. It involves the selection of a model and the testing of the operation of
this model by ansalysis. This is even more difficult than the problem of iden-
tifieation, and henece the double question mark in figure 1- 3.

A scientific approach to the analysis and synthesis of systems must rest on
& firm mathematical foundation. In the following lectures, the mathematieal
techniques used at present in parametric bydrology are introduced and their
application deseribed. Those interested in studying more deeply the mathe-
matics of system behavior can do so in books by Aseltine (5), Zadeh and
deSoer {46}, DeRusso and others (78), Gupta (83}, and Wymore (45).

Hydrologic systems

Although we have already referred to certain isolated problems in hy-
drology, it is well to consider the hydrologic cycle as 2 whole before considering
the various hydrologic subsystems. Figure 1-4 shows a diagram of the hy-
drologic eycle by Ackerman and others {1).

Similar dizgrams can be found in any standard textbook. These diagrams
can be compared for such qualities as artistic merit and draftsmanship, but
what do they mean from a systems point of view? Those who use the systems
approach are known to have an aversion to such diagrams and to insist on
drawing everything in terms of neat rectangles. These austere rectangular
boxes do not even have the color of modern abstract art to save them from
criticism. From their appearance one wouid deduce that they show much less
information than the figures such as that shown in figure 1-4. Actually, this
is not so. Figure 1-5 is a systems representation or block diagram of the
kydrologie cycle and is based on figure 14. Actually there are less assump-
tions in the block diagram of fgure 1-5 than in the representation in figure 14,

The whele hydrologic cycle is a closed system in the sense thet the water
eirculating in the system always remains within the system. The whole system
is driven by the excess of incoming radiation over outgoing radiation, and the
movement of water through the hydrologic cycle is only possible because of
this source of energy. In figure 1-5, the system represented by the hydrologic
cyele has been divided into subsystems. Thus we have the atmospheric sub-
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system, the subsystem represented by the surface of the ground, the sub-
suriace subsystern or unsaturated phase, the ground water subsystem or
saturated phase, the channel network subsystem, and the ocean subsystem.
Each of these subsystems will contain individual componeats, but for the
purpose of an overall analysis and overall discussion, these compenents have
all been lumped into one subsystem. The hydrologic cycle shown in figure 1-5
is a system in which the inputs and outputs are material. Water in one of its

i

APITA;

L

f

Surface
runoff

Deep
percolotion

Fia. 1-4—Representation of the hydrolagic cycle.
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Figrne 1-5.—Block diagram of the hydrolegic cycle.

phases either moves through the cyele or is stored in some part of the cycle at
all times. Figure 1-6 shows a representation of the hydrologic cyele develeped
by Kulandaiswamy.® The latter figure is similar to the systems representation
used by electrical engineers.

Neither classical hydrology nor systems hydrology denls with the bydrologie
eyele s & whole. Hydrology leaves the atmosphere to the meteorologists, the -
lithosphere to the geologists, and the seas to the oceanographer. The resulting
subsystem is shown in figure 1-7. In outlining this subsystem we have cut
across certain lines of water transport and, consequently, the system is no
longer a elosed one. These lines of water transport—precipitation, evapora-
tion, transpiratior, and runoff—are now either inputs or gutputs to our new

*Kovanpatswasy, V. C. A BASIC S5TUDY OF THE RAINFALL EXCESS-SURFACE RUNOFF
RELATIONSHIP IN A DASIN sysTEM. Ph.D. thesis, Univ. of Illinois, 1964 [Aveilable as Publi-
cation No. 64-12535.] from Univergity Mierofitme, Ine, P.O. Box 1346, Ann Arbor, Mich.
48106
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system. Whereas precipitation is clearly ar input and runoff an cutput, it is
not always casy to decide whether evaporation and transpiration are inputs
or outputs. One reasouable standpoint is to consider potential evaporation as
an input and actual evaporation as an output.

The system shown in figure 1-7 is clearly a lumped system. But this does
not involve sny more assumptions than are made by classical hydrologists
when they consider the individual basin, whether it be a patking lot, an
experimental plot, or & natural watershed. These are all basins—they are all
systems, which convert a certain hydrologic input into a hydrologic cutput.
It is possible to divide up the system and subsystems shown in figure 1-7
into components. Thus, we could divide the soil into various layers, or divide
the ground water into two grouud water components, one of which is shallow
and subject to transpiration, and the other of which is so deep that no ground
water loss can occur through transpiration.

Phe distinction shown in figure 1-7 between overland flow, interflow, and
ground water flow is not generally made in applied hydrology because it is
virtually impossible to separate the three types. Instead, applied hydrologists
distinguish between surface flow and base flow and use a mode] of the hy-
drologic eycle something like that shown in figure 1-8. The precipitation is
divided inte (1) precipitation excess and (2) infiltration and other losses.
The precipitation excess produces direct storm runoff. The infiltration re-
plenishes soil storage which is drawn down upon by transpiration. Any excess
infiltration after soil moisture storage is satisfied forms recharge to ground
water, which eventually emerges as base flow. The presence of the threshold
in the soil storage phase of the system matkes it impossible to treat the whole
system as linear, even where the evaporation and transpiration are completely
known. The development of the unit hydrograph theory as a linear relation-
ship between precipitation exces: and storm runoff svoided this difficulty by

Subsurfoce inflow
1G1 to ch 1

R :} Intittratign

Graund watar
Qg Inflow to

-
choanel bln{jg! to D Runoft
4 channet to basin

Intarception

Raintoil{R)

Raintatl Surfoce in
AXCAIS to chanpel

Fravre 1-8.—Kulandaiswamy's block disgram.
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the stimination of the base flow and the infiliration. It is the existence of this
threshold—rather than the difference in response time between the surface
response and the ground water response—that necessitates the separation.

In applied hydrology, the full model shown in figure 1-8 is not used. In
practice, the base flow is separated from the total hydrograph in some arbi-
trary fashion, and the precipitation excess is then taken so as to be equal in
value to the storm runoff. On the other hand, in soil moisture accounting the
threshold effect inherent in soil moisture storage is taken into account. It is
only recently that studies have taken both phases into account. Also, it is only
recently that the systems techniques developed for surface water have been
applied to the problems of ground water response, notably by Kraijenhoff
van de Leur (23).

If we wish to consider the whole system shown in either figure 1-7 or figure
1-8, then we are of necessity dealing with a nonlinear system. This brings in
all the difficulties of nonlinear mathematics. It is not surprising, therefore,
that the concentration has been on the individual elements shown in fipure
1-8. Over the past 35 years, unit hydrograph techniques have been developed
for dealing with the direet response in runoff and these techniques are all
based on the assumption of linesr behavior. Similarly, drainage engineers
dealing with the saturated zone have used linearized equations, though it was
not unti! very recently that it was realized this would ensble systems methods
to be used without further loss of generality (£5). The unsaturated phase
involving soil moisture storage remains the most difficult part of the hy-
drologic exele to handle. Not only does a threshold exist, but there is a feed-
back mechanism because the state of the soil moisture determines the amount
of infiltration. It is in the unsaturated phase that the greatest difficulties will
be cncountered and that the greatest amount of work needs to be done,

The systems approach has been fruitful in many other disciplines. Such
work 2s has been doue on parts of the hydrologie cyele has been encouraging,
There is every reason to believe that the application of the systems approach
to the whole hyvdrologic eyele will produce & coherent theory of hydrologic
systems, which ean form the basis for an applied hydrology with a scleriific
basis. The development over the past 15 years can be followed in the references
cited at the end of this lecture. General surveys of the problem from varying
points of view have been given by Paynter (36}, Amorocho and Hart (3),
Kraijenhoff van de Leur (26}, Nash (33), and Dooge (17).

Linear Time-Invariant Systems

The essence of linearity is the principle of superposition, which may be
deseribid as follows (an arrow signifies that a particular input to the system
results in s particular output) :

If wy () — () and (L) —ya(t),
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then the system is said to be linear if:
21 {8} 2 (- (0) +32(8)

This principle includes the principle ¢f homogeneity in the special ease in
which z; = .

The principle of superposition, of course, is not confined to the addition of
only two inputs. Any number of inputs can be added together as long as the
principle holds; the output will be the sum of the individual eorresponding
outputs. Since infegration is a limiting form of summation, if the input {o the
system can be expressed as the integral of any funetion f(2), then the corre-
sponding output ean be obtained by intograting the output due to an input
HAR

The system linearity defined by the principle of superposition must be dis-
tinguished from the existence of & general linear {that is, a straight line)
functional refationship between input and output. It can easily be vorified that
if the input to o system is x and the output is y = exr +b, the system is not linear.

A system is said to be time-invariant when s parameters do not change
with time. For such a system, the form of the output depends only on the form
of the input and not on the time at which the input is applied. Thus, if

(1) —y{f}
then for & time-invariant system:
F{tr) oy (ttn)

where 7 is & time shift which may be either positive or negative.

In hydrology, the assumptions of linearity and time-invariance are not
valid, but nevertheless have been used for a long time in applied hydrology
because of the simplification they introduce. The ability to predict the output
from a hydrologic system is based on past records of input and output. By the
assumption of time-invariance, it is possible te predict an cutput for & given
input if that partieular input has already occurred at some time during the
period of record. Without the assumption of time-invariznce this would not
be possible, The further assumption of linearity allows the prediction to be
made even though the shape of input in whieh we are interested has not
pceurred In the past. This is done by (1) breaking down the past input and
the input being considered into basic elements of standard shape but varying
volume, {2) decomposing the past output so as to obtain the output due to a
characteristic input element of standard velume, (8) using the latter result to
predict the cuiput due to the individual characteristic elements of the input
being considered, and (4} superimposing the outputs from these individual
characteristic elements to obtain the total output. This is the basis of the
unit hydrograph procedure, which deals witk the sterm runof for a unit
period.
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The problems of systems analysis and synthesis are also greatly simplified
if the input and ouiput of & system are assumed to be lumped. In s lumped
system with o single input and a single output, the behavior of the system
would be governed by an ordinary differential equetion. For the system with
several inputs and several outputs, the behavior of the system would be
described by a set of differential equations. If the inputs snd outputs are not
lumped, then the system behavior must be described by partial differential
equations, Since partint differential equations are much more difficult to
handle than ordinary differential equations, there are distinet advantages in
using lumped inputs and outputs in the first attempt to formulate a theory
of system behavior.

The assumptions of linearity and time-invariance are slso reflected in the
type of differential equations which would deseribe the behavior of the system.
Thus & lumped linear system would correspond to an ordinary linear differ-
ential cquation. If the system were also Hime-invariant, then the differential
equation would be an ordinary differential equation with constant coefficients.
The fact that ordinary differential equations with constant coefficients are
far easier to handle than any other type indicates the advantages of making
the assumptions of lumping linearity and time-invarignce in the handling
of system operations.

The assumption of linearity helps us greatly with the problem of pre-
direction. If a complex input can be described in terms of 2 set of simple

characteristic functions and the output corresponding to each of these char-
acteristic functions is known, then the output due to the complex input ean be
obtained by superposition. This question has been well diseussed by Sievert
(40). It is, of course, possible to expand an arbitrary function in a great
variety of ways. Thus, we could expand the function in terms of & power
series:

2{l) = catert 4ol + (2
or in terms of an exponential series:

(i) =gt e+ {3)

The trouble with such series is that in the case of a function which is given
rumerically, it is difficult to determine the values of the ceefficients in the
expansion with good accuracy. If, however, we expand z(f) in terms of a set
of functions f.(f}:

(&} =co ot +aH{t) e foll) + (4)

where the functions f;(t) are orthogonal (see “Orthogonal Polynomials and
Funetions,” lecture 3} then the property of orthogonality can be used to find
the coefficients ¢, relatively easily and with good aceuracy.

In choosing between the orthogonal functions available it is, of course,
convenient if the orthogensal series used to fit & given z(f) is as short as
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possible. Consequently, one set of orthogonal functions may be preferable
to another set because of the nature of the input. If the input is expanded in
terms of u set of orthogonal functions fi(¢) in accordance with equation 4 and
the output corresponding to each of these orthogonal functions is given by:

Ji{ty—g:(8) (53
then the outpuf from the system due to the input x{t) is given by:
Y1) = cogo(t) +an() +og(B)+. .. .. (6)

where the values of the respective coeffcients in equations 4 and 6 are equal’
It is also convenient if the output vorresponding to the typical orthogonal
function is simple in form. Thus, the choice of & convenient set of orthogonal
funetions for representing the input, output, and response function depends
both on the nuture of the input and the nature of the system.

Electrical engineers deal with lightly damped systems in which the inputs
are usually sinusoidal. Consequently, Fourier methods of analysis are of great
utility in electrical engineering, since the sine and cosine functions are or-
thogonal to one another and are of the same genersl form as the inputs and
outputs. Consequently, the Fourier methods were the first to be developed in
systems analysis. The various developments of Fourier methods—the Fourier
tnlegral for dealing with transients and the Laplace transform for dealing with
unstable systems—are natural developments. These well-established tech-
riques can be found in standard texts such as Gardner and Barnes (22).

In hydrology, however, the systems are not lightly damped and the re-
sponses are not oscillatory in nature. Instead, we have systems that are very
heavily damped. It would, therefore, be foolish o take over from the electrical
engineer the techniques he has developed for his particular problems without
close examination of their relevance to hydrologic systems.

Continuous forms of the convolution equation

The derivation of the fundamental equation for system operation of a linear
system depends on the use of the concepts of an impuiss function and the
impulse response. The impulse function—or Dirac delts function—is really
& pseudofunction or distribution which is ususlly defined as having the
properties:

§(1—1) =0, when tl (7)
f” §(1—to) di=1 8)

The delta function is usually visualized as the limiting form of & pulse of some
particular shape as the duration of the pulse goes to zero. The more correct
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mathematica' definition of the delta function:

s)= [ at—r)a(r) dr (9)
is actually more directly useful for our purpose here. Siebert (40) has pointed
out that equation 9 is a special limiting form of equation 4, in which £;(f) is
replaced by the orthogonal delta function §(¢—+;) and the orthogonal coeffi-
clents ¢; are given by z(r;).

The impulse response of a system, &(2), is defined as the output from the
system when the input takes the form of an impulse or delta function, that is,
if z(2) =5(t), then y (2} =h(?). If the system is linear, the impulse response
gives as complete a description of the system behavior as is needed. In surface
water hydrology, the IUH is the impulse response of the eatchment.

The two concepts givon above can be used to derive a convenient mathe-
matical formulation of system operation for a lumped linear time-invariant
system. If the impulse response of the system is 2{¢), then we have:

§{8)—hit)
For a time-invariant system
S(t—1)—h(i—1)
For a linear system
() {I—r)—z(rYh{l—1)

Any arbitrary input z(f) can be coonsidered as being made up from an
infinite number of delta functions as indicated by equation 9 above. Since the
operation of integration is linear, the output from such an input z(t) will be
given by integrating the weighted output z(+}A{t—7) corresponding to the
individual delta functions §(¢—r):

5(t)— [_“ h{t—r)sl) dr (10)

Thus for an input x(t) and an output ¥(f), we have the relationship:

y() = f:’ h(t—)z(s) dr (112)

The right-hand side of this equation represents the well-known mathematical
operation of convolution, which is often represented by an asterisk so that
we can write:

y(8) =h{5)*= (1) (11b)

Thus, the completely general relationship indicated in equation 1 has been
replaced by the definite convolution relationship represented by equation 11
for a lumped linear time-invariant system. As long as we confine our attention
to sueh systems, we will be concerned with the solution of equation 1%, The
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problem of prediction now becomes the solution of equation 11 for known
values of z(¢) and 2{¢) and, hence, represents only the operations of multi-
plication and summation which are inherent in convolution.

The twin problems of system identification—the determination of A{1)—
and of signal identification—the determination of z(f)—are now seen fo
involve the solution of an integral equation which is, of necessity, a much more
difficult mathematical problem than that of convoluting two known funetions,
The problem of synthesls is now seen to be that of devising s simulation
system wheose impulse response will, to a sufficient degree of approximation,
represent the function A({) which is required. The impulse response in equation
11is the IUH used in hydrelogy. In other disciplines, it is vartously referred 4o as
an impulse response or a characteristic response or a weighting funstion; in
methematics it is referred to as a kernel funclion, a Green’s funclion, or an
tnfluence function.

Though we are largely concerned with lumped linear time-invariant systems,
it is instructive to consider briefly the more general forms of the mathematical
relationship between nput and output wken these assumptions are relaxed.
If instead of a single input, we had & number of lumped inputs, then the
relationship would be as follows:

(=2 [ wtohidi—r) dr (12)
vl ¥
Ar equation of the above type would apply to the case where the rainfall was
measured at several points in the catehment and the values of z,{¢) represented
the individual rainfall records. In such & case, h;{¢) would represent the
contribution from the portion of the catchment area corresponding to the
ith rain gage to the flow not at the outlet from that subcatchment but at the
outlet from the whole eatechment. The solution of the identification problem
in this case would invelve the solution of a set of simultanecus integral equa-
tions. If the rainfsll were taken as completely distribuied over the catchment

ares, then the equation for the outflow at the end of the area would be given
by:

y(l) = f f“ e} h{t—r,a—a)dr da (18)

In a system which has & lumped input and is linear but time varying, then
the impulse respounse k(i) is a function of both the elapsed time ¢ and the
time 7 &t which the impulse of input is applied to the system. Thus we have
the relationships:

(&) —h(4,0)
s{i—r)—h{t,r)
2{r)§(i—r)—oa(rYR{L7)
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Using the property of linearity, we would have for an input z{!), the cutput
given by: '

:r(t)—rfm S hlLe) dr (14)

so that the system operation is defined by:

yO={ 2(h(r) dr (15)
Sinee equations 11, 12, 13, and 15 are superposition iniegrals, they apply
only to linear systems. There is no corresponding general formulas {or the case
where the system is nonlinear, but special formulas can be developed when the
systemn i assumed fo belong to a particular class of nonlinear systems.

If we make the assumptions of lumped inputs and cutputs, linearity, and
time-invariance, we have the geueral superposition integral given by equation
1ia. Sinee in this equation, r is a dummy variable of integration, we can
replace it by i—r in which case the superposition integral becomes:

y(t) = fw h(ryz{t—1) dr (11¢)

Equations 1la and 1le are equally valid formulations of the relationship
among the input, the system opevation, and the output.

The kmits of the superposition integral can be modified if we make the
further assumption that the systems being considered arc eausal, that is, that
the output cannot cceur before the input. Since the impulse response A{t} is
the response to & delta function at time t=0, the impulse response function
will be zero for a negative argument. Thus for causal systems, equation 11a
ean be written as:

(6 = f o) (i—1) dr (16a)

—_—

and equation 11c can be written as:

L) = j'm K= ali—r) dr (16b)

1]

If the system has a finite memory, or if the input has existed for only a
finite time, then the limits will be further modified. If the length of the memory
is n, then the impulse respouse will be zerc for arguments grester than » and
equation 16a may be modified to read:

() = f 2(+)h{l—7) dr (178)

=N
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and equation 18b will be modified to read:
v(t) = f h(Pzll—7) dr (17b)
]

The equations given above will hold for the case where the input has oe-
curred for an infinite time in the past. For an isolated input, it is convenient
to take the time zero at the start of input. In this case, the value of the input
z{¢) will be zero for negative argument. For an isolated input to a system with
infintte memory, equation 16a will be maodified to:

y(:.)=f (P h{t—1) dr (18a)
o
and equation 16b to:
4
W= [ hnzit—r) dr (18b)
]

For an isolated input to s system with finite memory the limits of integration
in equation 17 will also be modified so that the range of integration will not
exceed £, but in practice, i is more convenient in this case to refain the limits
and record the zero values, Equation 18 is the normal form of the convolution
equation which is dealt with in parametric hydrology. Except in speecial
circumstances, which will be noted, it is the form used in the present lectures.

Classical systems analvsis as developed by electrical engineers has grown
up sround frequency analysts, which is essentially the snalysis of periodie
phenomena. Care must be taken if these techniques are to be used in the anal-
vsis of hydrelogic systems. Such techniques can only be used if the system
under review has a finite memory. In such & case, if the input is of length A
and the memory of length &, then the length of the cutput will be P where:

P=M+N

In hydrologic terms, A/ is the duration of rainfall excess; N is the base length
of the IUH, and P is the duration of surface runoff. Since, in the case of a
single storm event, everything that we are interested in is contained between
zero time and P, we could assume the whole phenomens as periodic with 2
period 7, provided that T is equal to or greater than P. This would mean
that both the input and the output would be assumed to be repeated at the
chosen interval 7' Since these would be repeated inputs and not isclated
inputs, we would not be entitled to set the limits of the convolution integral
at zerc and { as in equation 18. If the memory were finite and equal to N,
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the convolution equation would then become:

y(l£ET) = [‘ {rEkTYA{l—1) dr {19a)

=N

N
y{lhT) = f 2(l—+FETYR(5) dr (19b)
1
where
s({£kTy=0 for M<i<T {19¢)
and
T>P=M4N (19d)

Discrete forms of convolution equution

The form of the convolulion equation given above as equation 18 is for the
case where both the input and the output are continuously defined. If either
the input or the output is given in quantized or discrete form rather than
continucus form, the convolution equation must be modified accordingly.

In the classical unit hydrograph procedures, the rainfall is frequently given
45 n histogram, that is, in quantized form. In such a case, we deal not with an
IUH, but with the finite period unit bydrograph introduced in 1932 by
Sherman (393, A histogram input with an interval D can be defined either in
tecms of the histogram ordinates z{!), where £ s the actual time elepsed, or
in terms of the histogram areas X (¢D), where ¢ is the number of intervals
elapsed before the bepinning of the interval in question. The latter is more
convenient and is used below. The histogram of input can be expressed in
terms of the volumes of input X () in successive standard periods as follows:

() = Z (e Pp{t—oD) {20)

-]

where

Ppu—w)=15 for oD<i<(s+1)D (21a)

and
Pp{t—eD)=0 for other values of ¢ {21b)

Equation 21 is in effect the equation for a rectangular pulse of duration D and
unit volume. Note that the volume of such a pulse is D and not unity.

Having replaced the delta function by the square pulse, we now replace
the impulse response k({) by the pulse response Ap(l) which is defined as
being the output from the system when the input is given by the rectangular
pulse defined in equation 21, Thus, we have:

Pp{t)—hp(l)
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For g time-invariant system:
Pplt—aDY—hp(l—eD)
For a linear system:

X (D) -hp(t—eD)—X (D) -hp{t—eD)

Since summation is a linear process, we can write the output due to the input
defined by equation 21 as:

X 3 X(eDholt—oD) 22)

o —

so that the relationship between input and output for the system is given:

y{”= Z ;Y(o’D)ftp(E.—c'D} (233)

g

which corresponds to equation 1la for continuous input. As in equafion lieg,
this eguation can be written in the alternative form:

y= 3 X(t—eD)ho{sD) (23b)

o —

As in the eondinuous case, the limits of summation will be affected by the
further assumptions of eausslity, finite memory, or zero input for zero time.
In particular, for & causal system with an infinite memory, we have for
iso'ated input:

D=t
y{&)= 2, X(eD)hp(l—aD) (240)

o Doy

aglimt
yty= 3 X(t—eD)ip(oD) (24b)

climG

Equation 24 is the convolution equation for a finite peried unit hydrograph.
Both the umit hydrograph and the output are defined continuously even
though the input is defined in quantized form being constant over each interval
of length D.

In some of the early unit hydrograph work, both the input of rainfall excess
and the output of storm runcff were represented by volumes over a fixed
interval, The convolution equation for this case would be:

Sy

Y{sDy= 2 X(eD)dp(sD—oD) (25)

rualy
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where beoth s and o are discrete variables and dp is the distribution graph for
the interval length D for the particular catchment. The distribution graph
dp represents the proportion of the inflow during a standard interval which
runs off in successive standard intervals,

In some cases, the input and cutput are only sampled and, thus, are only
available in the form of functions known at discrete moments of time. In this
case, the eonvolution equation would take the form:

y{sDy= 2, X{eD)hp(sD—eD) (260)

o — 3

which ean be written without ambiguity as:

o

y(s¥= 2 X(o)ho(s—0o) (26b)

o ———

Here again both ¢ and « are diserete variables and Ap is the finite period unit
ydrograph. For a causal system with an isclated input this, of course, can
be written as:

ey

yeD) = 2 X(eD)hp{sD—oD) (272)

=i}

T

y(s)= Z;Y(a')hp(s—a) (27b)

r]

where y{s), X)), and Pp{s—o) represent the ordinates of the output, the
input, and the fAnite pe.iod unit hydrograph, respectively, at standard in-
tervals D,

Fouation 27 can also be written in the alternative form:

Jemi

= Z :ZJ‘.IL.'._.,‘ (288')
S=0

jmi

Wi = Z IJ.'_J'k; (28b)
Py

In the above equaticn, z has been used to represent the volumes of input which
appear as X in equation 27. This is done in the interest of simplifying matrix
equations which are developed later.

When written out in full, equation 28b has the familiar form given in text-
books on elassical hydrology which is given below for an input lasting for five
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units of time and & system memory length ot three units of time:

Yo=hoo (29s)
h=hZo+hea (29b)
Yo = haxot-Puzy+ o (29¢)
#y = haZo+ Ao+ huZe 4 hots (29d}
Yo =hay Fhoze Ryt hons {29e)
Y5 = hate-thats-t By {290
Yo=hoza+hozs (29g)
yr=hty {29h)

The rbove sct of simultaneous equations can be written in the matrix form:

{9 o= [X Jptrinsidblngrn (30)

Where the matrix of inputs which has p+1 rows and n-1 columns is given
helow:

o 0 0 g
Zy % O
L
G zpm Twor - mTe
(31)
0
Iy
Z;
LD 0 z.]) p41,nt1

An alternative matrix formulation of the discrete case is:

{¥lrma=[H b mn{zlama (32}

where the H matrix is m. de up from the & veetor in the same way as matrix
31 and has p+1 rows and m-+1 golumns,

Equations 27, 28, 29, and 30 are merely alternative ways of formulating the
relationship between the volume of input and the rate of cutput. Where the
input is defined strictly as a discrete function, it is necessary to adjust the
equations. Thus equation 27b for the relation between input volume and
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output rate would be replaced by:

el

y(8)= 2. z{a)hp(s—e)D (33)
el
Note that as D approaches zero, equation 33 approaches the form of the
continuous convolution equation 1la.

Identification and Simulation

Classical unit hydrograph methods

The problem of identification is the characterization of the system response
from a giveu record of input and output. In kydrologic terms, the problem is
to derive the unit hydrograph from a given record of precipitation excess and
storm runoff. The classical method of solving this problem was by trial and
error, ‘Though it has nothing of the systems approach about if, this method
has been itlustratad in o systems fashion in figure 1-9. In the classical approach,
some form of the unit hydrograph, that is, the impulse response, or pulse
response, is assumed and applied to the given rainfall excess. The prediction
of the output for this assumed unit hydrograph is merely 2 matter of simple
multiplication and addition. The output based on the assumed unit hydrograph
is then rompared with the actual output and & decision made as to whether
the fit is close enough.

1f the fit is judged to be sufficiently close, then the assumed unit hydrograph
is nccepted. Otherwise, the assumed uuit hydrograph is maodified and the
procedure repeated until an exception fit is found.

While the sbove procedure may be acceptable as an ad hoc method of
gotting e specific answer to one particular problem, it cannot be accepted as
deserving of the name of scientific hydrology uniless both the criterion of
accoptable fit and the rule for modifying the trial umt hydrograph are objec-
tively defined. The technique of optimization by eye has been widely used,

modify h'

QI

accept h'

Fiorre 1-9.—Identification by trial and error.
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not only in unit hydrograph studies but alse in many other branches of
hydrology. The supposedly learned journals on scientific hydrology abound
with papers in which two eurves are said to be a sufficientty accurate approxi-
mation of one another or in which a curve is said to represent some plotted
data to a reasonable degree of accuracy. In a ratignal science, it should be
nossible for a second worker to use another scientist's data and reach exactly
the same eonclusion, The systems approach in hydrology attempts to achiove
this latter objectivity instead of the subjectivity inberent in many of the
methods it use today,

Figure 1-10 is a systems representation of the GColling (10) method of de-
riving the unit hydregraph. This is an iterative method and one which is &
distinet improvement on the trial-and-crror approach. In Colling' method the
assumed unit hydrograph is not applied to the whole precipitation cxeess
record, but enly to all the rainfall volumes other than the maximum. The
resulting estimated runoff, therefore, represents the runoff due to rainfall in
all periods exeept the period of maximum rainfall. When this estimate is
subtracted from the actual runoff, the difference gives an estimate of the
runoft due to the rainfall in the unit peried of maximum preeipitation excess.
When divided by the sppropriate volume of precipitation excess in the period,
this runoff due to maximum rainfall gives a new estimate of the unit hy-
drograph, and the whole process is then repeated. Exeept for unusual condi-
tions, the iterative procedure is convergent. If the unit hydrograph is con-
strained to be causal, that is, to have zero ordinates for negative time, then
the effeet of the Colling” procedure is to concentrate any error in the matehing
of the runofl hydrograph into the portion of that hydrograph due to rainfall
belure the perlod of maximum rainfall,

Transform methods of system identification

Parametrie hydrology has concerned itself with the development of such
ubjeetive methods as the impulse response or the rectangular pulse response
for determining the unit hydrograph, These methods will be discussed in

Pmox— hi'l-l Qmax

P-P,
ax hi  —*{Q-Qmox Q

Fiorne 1-10.—Tdentification by iteration {Collins’ method).
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detail in later lectures, but a brief preview is in order at this point. The
methods used can be grouped into two general classes, one of which may be
referred to as transform methods and the second as correlation methods.

Figure 1-11 shows the general approach of the transform methods to the
problem, In these methods, the known input and the known output are trans-
formed in some fashion. These transformed inputs and transformed outputs
are then used to determine the transform of the impulse response or the
rectangular puise response. If the transformed response can be inverted, the
actual impulse response or pulse response will then be known in the original
time domain. A complete transform method of identification therefore, con-
tains three elements: (1) The transformation of the input and the output;
{2) the use of a lnkage equation, which defines the transform of the system
response in terms of the transform of the input and the output; and {3) an
inversion of the transformed system response to get the system response as a
function of time.

The most widely used transform method in systems analysis is the Laplace
transform. In this method, the Laplace transform of the input and the cuiput
are found. The Laplace transform of the impulse response—which is given
the special name of the system function—is then found by dividing the
Laplace transform of the output by the Laplace transform of the input. The
system operation is thus described in the transform plane, buf most hy-
drologic situations will be described numerically rather than functioneally. To
deteemine the impulse response as & function of time involves the difficult
problem of the numerical inversion of the Laplace transform.

In 1952, Pavnter (36) applied the method of systems analysis based on the
Laplace transform to various problems in hydraulic engineering. He was
fargely concerned with problems of water hammer and turbine governing,
but in part III of his paper, he deait with the problem of flood routing. Un-
fortunately, for the developmuent of systems hydrology, Paynter's ideas were
not follpwed up at the time,

In 1959, Nash (37), then working in the Hydraulic Rescarch Station in
(ireat Britain, atterapted to describe the IUH in terms of is statisticsal
moments, He showed that for & linear time-invariant system, the moment of
the input, the impulse response, and the output are connected by the
equation—

ke fi

Mely) = E (f) My(h) Mg (x) (33)

k=0

where Mxly) is the B™ moment of the function y(2). Moments may be taken
either about the time origin or about the respective centers of the individual
functions. This is essentially a transform approach since the moments of a
function are a transform of it, and Nash's theorem of moments, given above
as equation 33, is the linkage equation between the transformed input, the
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P o SYSTEM | _____ -Q

T(P) »T(H)= TQ)

Frorre 1-11,—Identification by transformation.

transiormed output, and the transformed systems response. The problem of
inversion {finding the forma of a function given its moments) is again an
extremely difficult one and can be shown to be equivalent to the problem of
numerically inverting a Laplace transform.

Next, O’Donnell {34) applied harmonic analysis to the problem discussed
by Nash. O’Donnell’s approach was to find the Fourier coefficients of the
system response. The method depends on the fact that the terms of a Fourier
series) are orthogonal. The response function is known (to a degree of accuracy
depending on the length of the series) once the Fourier coefficients for the
function are known. Thus, the harmonie analysis method used by O’Donnell
does not encounter any difficulty in the inversion procedure. Because Fourier
analysis is concerned with periodie functions, the method can, however, only
be applied to systems with finite memory.

In 1964, Levi and Valdes (28), working in Mexico, applied the Fourier
transform to the problem of systems identification in hydrology. In the same
year, Diskin® took up Paynter's work and applied the Laplace transform in
more detail te the study of unit hydrographs.

1n 1965, Dooge (16} suggested the use of Laguerre coefficients rather than
harmonic coefficients for the analysis of heavily damped systems, such as are
encountered in hydrology. This method was develeped because Dooge felt
the method of harmonic analysis, which depends on sine curves as its basic
elements, was not entirely suitable in hydrology where many functions wers
of a dead beat type rather than an oscillatory one. It was thought that if an
crthogonal method could be derived in which the elements of the series were
of much the same form as the gamma distribution {which had proved so useful

 Disgxiy, M. & RASIC STUDY OF THE LINEARITY OF THE RAINFALL-RUNOFF PROCESS
1¥ WATERSHEDS. Ph.D. Thesis, Univ, Ill. Urbana. 1964. [Xerox copy available by purchase
from University Microfilms, Inc., P.O. Box 1348, Ann Arbor, Mich. 48106 as Publication
No. 64-8375.]
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in applied hydrology), that the cumber of terms required to represent a given
response function would be less than in the harmonic method.

The above methods of systems identification will be discussed in greater
detsil in lecture 5. Meanwhile, it is only necessary to note that they are all
objective methods of system identification.

Correlation methods of system identification

The second group of chjective methods of system identification consists of
methods based on least squares eorrelation. The methad of least squares was
applied to the derivation of unit hydrographs by Snyder (41} i 1955 and also
developed independently in Australia by Body {8) in 195 Body published
in detail the matrix operntions involved and the adaption of the method for
digital computers. Snyder (42) published the matrix formulation of the
method in 1661,

The set of equations represented in equation 29 comprises {p+-1) equations
in {n4+1) unknown values of A and, consequently, is overdetermined. In
theory, any group of {n+4-1} equations could be selected from the (p+1}
equations available to solve the equations for the values of the unknown
ordinates (h,) of the unit hydrograph. In practice, of course, the data are not
exact, and, consequently, no unique mathematical solution exists which would
be valid for all inputs. If the first {r+1} equations are chosen and the equa-
tions solved by forward substitution, the ordinates of the unit hydrograph
may become unstable and unrealistic. The procedure introduced by Snyder
and Body is to use all the equations and the least squares criterion to produce
the optimum values of the unknown ordinates of the unit hydrograph. The
matrix form of the unit hydrograph equations is given by equation 30:

e =T Tprinn{r}ama (30)
The least squares formulation of the problem is given by:
X T art ol dpn =[X Mot A v nnr (s (34)

Sinee the product of the transposed matrix XT and the original matrix X is
necessarily square, this product can be inverted, and the vector of unknown
uait hydrograph ordinates can be written as,

{r}aera = {LXFIX - IXT {0 (35)

This procedure is shown diagrammadtically in figure 1-12. The record of input
is used to determine the input matrix, and this is then multiplied by its
transpose. The output vector is also muitiplied by the transpose of the input
matrix, and these two products are used to determine the optimum unit
hydrograph, which is then accepted as an estimate of the true unit hydrograph.

The method of time-series analysis, also shown in figure 1-12, can be classed
ns & correlation method. If the record is a continuous one, or a discrete record
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) [ —— SYS!IEM ———{a}
' '
I'[P] = {hopt } = [P]" {a}
$pp (K)—————= {hopt } = ¢ pa (K)

Ficrre 1-12,—Identification by correlation.

existing for infinite time, it is not possible to apply the least squares method,
since the matrices become extromely large and impossible to invert. In the
case of an inflow which is not isolated, it is also impossible to use the method of
Laplace transforms or Fourier transforms since the function may not behave
at infinity in accordance with the requirements of mathematical theory.
However, a long-time scries can be transformed and described in terms of its
autocorrelation functicn. The autocorrelation function of a time series is
defined as the limit:

Temp

buclk) = = T alidalith) (36)
Hu—x
where n=2p-+1 is the number of data points as p tends to infinity.

Where two time series are known (for example, an input and an output),
we can determine their cross-correlation coefficient which is defined as the
limit:

n

onlk)= * > s y(i+k) (37)

Ya—p

as p tends to infinity, If we have a causal, linear, time-invariant system, it
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can be shown thatb the optimum impulse response in the least squares sense
is given by:

Jma

GelkY = 20 Ropil Dbza{k—7}; when k>0 {38)
=0

which is @ disercte Wiener-Hopf equation. We started off with the ordinary
convolution equation {equation 26) and ended up with ancther convolution
equation. However, equation 38 connects the cross correlation of x and .

If the input is isolated, no advantage has been gained, and it can be shown
that equation 38 is cquivalent to the least squares procedure of Snyder and
Rody, though more complicated. If, on the other hand, we have an infinitely
long time serics which we are continuously sampling, then the problem has
been reduced to managenble form. The time series approach is currently being
developed at the Massachusetts Institute of Technology under Eagleson (20},
and work is also being done by Bayazit® of the University of Ankara.

Methods of simulation

Even if we could completely solve the problem of identification, this would
only enable us to predict the future outputs from an individual system. Com-
plete identification would not help us in any way to predict the output from a
system of the same class for which records of input and output were not
available, or to study the effect of variations in the parameters of similar
systems on their outputs. Furthermore, the identification of nonlinear systems
is extremely difficult, and, in such cases, it is natural to turn to simulation
rather than identification as the basis of a prediction. It is important to remem-
ber that we are still interested in the overall performance of the system rather
than the details. We are looking for a reliable predictor rather than a pho-
tographic reproduction when we seek a model to simulate our system. The
model system used to simulate an actual system may be either abstract or
real. According to Chorafas (9), “Simulation is simply a working analogy.
Analogy means similarity of properties or relations without identity.” A
model may be defined as being & system which can reproduce some, but not
all of the properties of the prototype.

Tigure 1~13 shows the division of methods of simulation into three broad
groups. It is intended as a basis for discussion rather than a strict classification.
In this tentetive classification, the problem of simulation is looked upon as

5 Bavazir, M. INSTANTANEOUS UNIT HYDHOGRAPH DERIVATION BY SPECTRAL ANALYSIS
AND I'TS NUMERICAL arenicaTion, CENTO Symposium on Hydrology and Water Resource
Devipmt. Ankara. 1966,
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PROBLEM
CONCEPTUAL
MODEL
DIRECT SEM|-DIRECT INDIRECT
SIMULATION SIMULATION SIMULATION

SCALE MODEL NETWORK ANALYZER DESK CALCULATOR
SPECIAL ANALODG HELE-SHAW DIGITAL COMPUTER

DIFFERENTIAL
ANALYZER

Fiogone 1-13.—Methods of simulation.

being » fwo-stage problem, First, we take the astusl field problem and abstract
from it & conceptual model of the problem. This conceptual model might be
very simple or it might be extremely complex. In other words, we might do &
lot of the work at this stage or very lttle. The next step is to attempt to derive
quantitative results from the coneeptual model. The method in which this is
doune often depends on the extent to which the conceptual model has been
developed. The two stages shown on the figure represent the two problems of
abstraction and of completion,

If the conceptual model has not b . developed to any great extent, it will
probably be necessary to use a direct method of simulation to get quantitative
answers. An example from hydraulic engineering may be used to illustrate
this.

In the design of & hydraulic structure, the conditions may be so complex
that all we can say of our coneeptual model is that we believe gravity forees to
be dominant in the problem. We could then decide to build a maodel which was
geometricaliy similar in some respeet to the prototype and which would be
designed according to model laws based on the Froude number. Such &
hydraulic model would be a direct simulation of the problem and would be &
cinse imitation of the prototype. 1t would be possible to recognize the different
1 a-la of the prototype in the model. On the other hand, s problem in the
i ov.adies of open channels might be solved by developing & much more
.- ite conceptual model. This model would be based on the geometry of
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the sttuation, the equation of continuity, and the dynamic equation of un-
steady open channel flow.

The finite difference equations incorporating physical assumptions and the
geometry of prototype would constitute an abstract model of the actual
problem. If it were completely specified, the actual computations could be
done on a general purpose computer of some type; thus, we might use a desk
calculator, a digital computer, or a differential analyzer. In this type of
indirect simulation, it would not be possible to identify visually any part of
the prototype in the model. The physical model can only solve one particular
ad hoe problem, but does not require a great deal of work at the conceptual
phase. On the other hand, the indirect simulation on a computer of some type
can selve a very wide variety of problems, but the amount of work done in
setting up the problem, i.e., constructing the conceptual model is often very
great. In between these two we have methods of semidirect simulation in which
we can construct & model which will solve particular types of problems.
Examples of these are network analyzers and Hele-Shaw modeis.

Simulation in hydrology

Tigure 1-14 shows the Stanford Watershed Model Mark 11 used to simulate
the land phase of the hydrologic cycle. Though the Mark II model is shown
here, the Stanford model has since been developed to the Mark IV (11) and
Mark V stage in which the performance »f the model has been improved at a

[EvaPoRaTION | [ PRECIPITATION | EUNOFF FROM IMPERVIOUS AREAS

UPPER ZONE STORAGE
INTERCEPTION AND
DEPRESSION STORAGE

b
DIRECT RUNOFF {SURFACE RUNOFE

3

DEPLETION [{ OWER ZONE .
IWER ZON [INTERFLOW]

7

_ DEPLETION [GROUND WATER TRANSLATION & TRANSLATION &
STORAGE ROUTING STORAGE| |ROUTING STORAGE

[

L
SUBSURFACE HOURLY OR
GROUF!NIL%’K(JATER DAILY STREAMFLOW

Fraure 1-14.—Stanford Watershed Model Mark IT.
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cost of extra complexity, Figure 1-14, however, shows the main fentures of
the Stanford model. The model as shown is essentially n coneeptual model and
represents the first, or conceptual phase, of the simulation proeess as deseribed
above. It is a flow diagram representing the main features of the simulation
model, and it must be supplemented by operational rules for determining the
amount of moisture movement from one component to another.

The computation, which is the sccond part of the simuiation process, is
carried out on a digital computer. The model shown in figure 1-14 could, of
course, be computed by any other means, but the digital computer is the most
convenient method. There have been many other instances of the simulation
of subsystems or components in the hydrologic eyele and the solution an a
digita! computer.

Dawdy and (YDonnell (72} pioneered the systematic study of objective
techniques for the optimization of parameters of simulation models, This key
guestion is discussed in Inter lectures,

Numerous attempts have been made to simulate the direct storm runoff
from a watershed by a conceptual model, which would be siraple iu form but
would have essentially the same operation as the watershed under study.
AMany of these conceptual models invelve some simple arrangement of linear
storage elements only, or else a simple arrangement of linear storage elements
and lincar channels (15). In most cases, the behavior of these conceptual
models is predicted by analytieal methods; however, any method fur final
computation may be used.

IMigure 1-15 shows the analog simulation of & lincar storage element ns given
by Shen (88). In this case, the analog element is not a direct analog of a
catchment element, but an analog simulntion of a conceptual element for use
where un areangement of conceptual elements has been synthesized to simulate
the activn of the watershed. Figure 1-16 shows the simulation of & linear
thannel zlso by Shen. A linear channel is purely a conceptual clement because
ne one has ever seen one and no one ever will. The analeg units shown in
figures [-15 and 1-16 are direct analog simulations of the conceptual elements,
but it is also possible to have indirect analog simulations in which the mathe-
matical equation for the conceptual element is written down and then an

E R E
o- AN\ _l_ > o2
C

L

Firounr 1-15.—Direct analog of lineat reservoir.
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Fiarnre 1-16.-~1irect analog of linesv channel.

anslog unit asserabled in which each of the mathematical operators is simu-
lated and appropristely connected.

This is the end of a review of the development of parametrie hydrology and
a preview of the material to be covered in the present course. The development
of the subject has been going in many scattered directions since 1832, but in
recent years it has gathered pace and is beginning to settie into a consistent
body of knowledge. No matter what our problem, no matter what types of
modcls we seek to use, we face essentislly the two diffieult problems of system
identification and system simulation. Our present knowledge is such that
identification can only be carried out with some degree of suceess if we make
the assumptions of linearity and time-invariance. We need not be restricted in
simulation because we can build in the nonlinearity and time-variance into
our model and predict the operation of the resulting nonlinear system in some
fashion. Nevertheless, if we wish to simulate objectively, or indeed efficiently,
it is desirable that the nonlinearities be reduced to & minimum and that if
possible the nonlinearity be confined to one part of the model, while the
remaining subsystems and their components are linear in action.

Problems on Hydrologic Systems

1. The following terms are commonty used in hydrolegy:

Uit hydrograph
S-hydrograph
Tustantaneous unit hydrograph {IUH)

In each case, write down the corresponding terms used in other disciplines to
denote the same concept.
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2. The Muskingum method is commonly used in flood routing. Desecribe
this method and distinguish between the separate problems of prediction,
identification, and simulation.

3. Describe a part of the hydrologic cycle with which you are familiar; use
the nomenclature of the systems approach. Show the relationship of this part
of the hydrologie cycle to the other parts of the cyele by means of a simple
sketch. By means of a second sketch indicate how this part of the eycle might
be considered as consisting of a number of subsystems.

4. For the part of the hydrologic cycle described in question 3, list one or
more classical methods used in applied hydrology. Do these methods make the
assumptions of linearity or time-invariance? Describe the methods using
systems nomenciature.

5. For some particular part of the hydrologic cycle, give examples of the
use of simulution in hydrologic forecasting,
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LECTURE 2:
REVIEW OF PHYSICAL HYDROLOGY

Lecture 2 is & review of physical hydrology. It might be wondered why we
bother with a review of physieal hydrology sinee it has already been stated
that the essence of the systems approach is to ignore the details of the physies
invoived, The systems spproach was deseribed as being an attempt to get
arcund the complex geometry and the complex physics of the hydrologic
system. If we were solely concerned with problems of identification, this atti-
tude of ignoring the details of fhe system would be & reasonabic one. We can
identify a system {that is, find an expression for its impulse response) without
any knowledge of physical hydrology at all. In 1965, Dooge (12) developed
a method of system identification based on the use of Laguerre functions,
which he thought might be apprepriate in hydrologic problems. However, the
first application of the new method was in the problem of determining resi-
dence times in ehiemical engineering. This was possible because the method
was merely o method of system 1dentification, and such methods are not by
any means tied to the hardware of the particular system heing analyzed,

If, on the other hand, we are going to simulale & hydrologic system, our
knowiedge of physieal hydrology will be of greater importanee, Sueh 8 knowl-
edge is useful in model building because the closer we simulate the physical
reality, the better our model will be. If we build a moedel that is in conflict
with the physieal realities, then we can hardly expect to get very good results
from such a model. The present review, therefore, will be & brief summary
of phystenl hydrology from the point of view of its possible use in the simula-
tion of hydrologic systems by models of various types.

Qur quantitative knowledge of physical hydrology is summarized in the
various formulas which src available in the litersture. These formulas are
themselves models of the physical process which they are taken to represent.
The factors that are included in a formuls and the relation between them all
involve simplifying assumptions concerning the relevant physical processes.
This lecture deals with the various parts of the hydrologic cycle in turn and
discusses some typical concepts and formulas. These are dealt with in more
detail in general reference works such as those by Linsley, Kohler, and Paulhus
(32); Che.s {6); Soil Conservation SBervice (50}; and Hagleson (13). The
problem of measuring the various hydrologic quantities is discussed in publi-
cations by the World Meteorclogical Organization (58), the Internationsal
Association of Scientific Hydrology (25), and by Corbett {9). Some important
boolks and papers containing further inlormation on physical hydrology are
included among those listed at the end of this lecture.

43
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Precipitation

In most of our work on hydrologie systems, precipitation is taken as an
input. Consequently, we are usuaily not worried about the processes of hydro-
meteorology {18, 15, 413, Our main preblems are those concerned with meas-
urement and with the sampling tha{ is inherent in any system of measure-
ment. However, the question of snowmaelt, which is on the borderline between
meteorology and the land phase of hydrelogy, is of interest to us. If we wish
to include snowmelt in o simulation model, then we must either know some-
thing or sssume something concerning the physical processes involved (14,
62). If some of the components of our simulation models seem somewhat
crude, we may take some eonsolation from the {nct that most of the physical
equations and fermulas used in applied hydrology are equally erude, Thus the
daily snowmelt in inches is frequently computed by & formula like the fol-
lowing:

M=0.06 (Tawan—24) {1)

where the daily snowmelt in inches (M) is relnted only to the mean daily
temperature in degrees Farenheit {7°). The additional effects of wind velocity
and pree_pitation can be allowed for by using & formula of the following type:

M= (0.020+0.0084 k3 40.007 P) {Tinean—32}-+0.00 (2)

In the first equation, the snowmelt is related only to the mean temperature,
which is a crude way of relating the energy required to melt the snow to the
energy available from radiation. In the second formula, radiation, convection,
and conduction have all been tsken into accouni. A more complen equation
proposed by Light {31} is derived from an eddy-conduetivity equation based
on the analysis of atmospheric turbulence, and expresses the rate of snowmelt
D as:

D= pk’ u
80 log,{a/z0) log.(b/z)

423] (3)

[c,,T+ (e—611) ?

where

D =gnowmeit in centimeters per second
p=density of air
ky=von Karman's coefficient (0.38)
a=glevation of anemometer in centimeters
zo=roughness parameter {0.25 ecm.)
b=elevation of hygrothermograph in centimeters
w="wind velocity at anemometer level in centimeters per second
¢, =specific heat of air (0.24)
T=air temperature, in degrees Centigrade, at hygrothermograph level
e=vgpor pressure of air in millibars
= stmospheric pressure in millibars
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When we recall the nonhomogeneous nature of & watershed and the variations
in the factors involved, we becorne somewhat doubtful of the advantage of
using very complex equations.

Evaporation and Transpiration

Total evaporation has been defined as including water lost by evaporation
from water surfaces, moist soil and snow, together with water lost by tran-
spiration from vegetation, in the building of plant tissue and through inter-
ception (80). The concepts involved and formulas used have been reviewed
elsewhere (I8, 17, 44, 48, 53, &7).

The classical formula for evaporation from open waiers was that given by
Dalton (10):

-El):C(em'“ea) (4-)

which related the rate of evaporation Ep from a water surface to the vapor
pressure deficit (e,—e.). Since then, many more complex formulas have been
derived. The Dalton formula is the simplest formula based on the mass trans-
port approach to evaporation. If allowance is made for the windspeed, ¥, we
get an empirical formula of the form:

Eo={a+bV) (en—ea)

If the variation of wind with height is taken into account, more ecomplex
formulas are obtained. Typical of these is the equation by Thornthwaite and
Holzman (46), which is based on the logarithmic wind law and is:
Eoz 133.3 (j’ = T 1) (el 8‘2) (6)
(T —459.4) log,{he/)?

Still more complex formulas have been derived, and these were evaluated
in the comprehensive Lake Hefner study (7). The study of the evaporation
of Lake Hefmer was ¢ comprehensive operation lasting several years, bub
after a detailed study of the various formulss and & most careful measurement
of conditions, it was concluded that the best equation for predicting evapora~
tion from Lake Hefner would be of the form:

Eoy=0.00177 V {e,—es) (D

which is of the same form as the empirical formulas used 50 years ago and
only one step better than Dalton’s original formula of 158 years ago.

An siternative approach to the subject of evaporstion is the use of the
energy budget. This can be summarized in the formula:

_E = Qs'i‘Qc_Qr'_Qb_Qm
¢ pL(1+R)

The numerator in equation 8 gives the amount of energy available for the

(8)
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transfer of both moisture and sensible heat from the water to the nir in contact
with it. It is given by the incoming shortwave radintion from the sun {Q.)
plus the energy advecied into the body of water (Q.) minus the total cnergy
tosses due to the combination of reflected shortwave radiation (@), longwave
back radistion ((h), and incrensed encrgy storage in the body of water (Q.).
To express the evaporation in terms of the amount of moisture transported,
1t is necessary to divide this net energy by the product of the density (o)
and the latent heat of vaporization (L) corrected by means of the Bowen's
{(4) ratio (R) to allow for the transier of sensible heat.

In 1948, Penman (39) combined the two idens of mass transport and energy
budget to produce & combination formula which enables us to estimate the
evaporation from readily available climatic datr. His basic formuls is:

Bt (a/v)H
=1 (a/v) ®

whore E, is & measure of the asrodynamic evaporation or the evaporation
from a mass trausport point of view and K is o measure of the nes energy
required for evaporation. Penman and others have refined this approach in
the past 20 years (54).

In the case of transpiration, we also have & wide variety of formulas of
different degrees of complexity. In many of them, a figure for cumulative
degree—days above & certain base temperature is used as a crude estimate of
the energy. Thus, we have the Hedke formula (18), which was developed for
use in irrigation work:

Er=3k (I'—=Ty) (10)

where the cumulative value of degree-days is used 2s & measure of the energy
required for total transpiration. Blaney aund Criddle (3) developed a number
of formulas of the same general type. In 1948, Thornthwaite (47) developed
the following empirieal formuls:

[

Er=186 (5?) (13)

which enables the monthly transpiration (Er) to be calculated from elimatic
data. In the formula, T is the monthly mean temperature and 7 is & tempera-
ture efficiency index which depends on the 12 monthly mean values of ter-
perature, The exponent g is & function of I, The result obtained must be cor-
rected for latitude and season to allow for the varistion in the hours of
sunshine, Penman (40) derived a formuia for transpiration similar to his
evaporation formuls; it is written as:

=—Ea+ (ﬁ/y)HT
1+{A/y)

In the above equation, the serodynamic evaporation E, is modified because

T

(12)
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of change in the roughness factor of vegetation compared with open water
and the energy term Hy s slightly changed because of the modification in the
heat exchange oceurring between the vegetation and the air. Peaman found
that in praetice an extremely good estimate could be obtained by applying
a coeflicient to the estimate for open water evaporation:

Ep={-E, (13)

The following formula by Ture (49) has been widely used in studics of water
balanee in Afrien by Freoneh hydrologists:

I A
9+ (P Ly J"

Er= (14)

where P is precipitation and L is & tempernture index.

We have, thus, & variety of formulas for evaporation and transpicatios, all
of which kave a physical foundsation to a lesser or greater extent. The fival
formulas are, however, all empirical and represent a simplification of the very
complex physies invelved. In incorporsting them inte a simulation of the
hydrologie evele or part of it, we are at liberty to choose the particutar formula
that suits our purpose best.

Infiltration and Percolation

The soil phase in the hydrologic eycle involves the phenomena of infiltra-
tion or the entry of waler through the surface of the soil, its downward perco-
fution through the unsaturated zone and its storage in that zone.

Information on infiliration may be obtained from the results of tests with
infiltrometers, from the snalysis of hydrographs from plot experiments and
from the derivation of basin indices for complete watersheds. As in the case
of other phenomena in the hydrologie eyvcle, & number of empirical formulas
for infiltration are available. Kostiakov (29) proposed as an empirical formula
for the amount of infiltration (F) during the period of high-rate infittration:

F=p {15a)
which is equivalent to an infiltration rate (f) of:

=2 (15b)

T opie

Horton {24} proposed an exponential formula for infittration which has
been widely used:

I=fet (fo—fo ™ (162)
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The corresponding formula for the amount of infiltration is:

kb

Philip (42} aunalyzed the problem of infiltration using the principles of soil
physies and developed a series solution which car be approximated by:

Fe= 80004 At (178)

or in terms of the infiliration rate:

F=f=-c+(4£"—l'ff) (1—e*) (16b)

S
f._

opn

+4 (17h)

The first term of Philip’s equation is scen to be ideatieal with the Xostiskov
equation derived empirieally 25 yvears earlior.
Holtan {21} used the relatiouship:

J—fe=a(S—F)n (18a)
For & value of n=2 the cquation for the infiltration rate can be written as:
f=Leesed [V afe(lc— )] (18b)

All of these formulas are empirical or have empiricat coefficients and thus
may be considered us atlempts to simulate the actual phenomena, Even if one
takes the full equation due to Philip, to which equation 17 is an approxima-
tion, it is still & simulalion of the nrocess taking part in nature, This is beesuse
Philip’s full equation is based on the assumption that there is a perfectiy
uniform soil, perfeetly graded with no roots or root holes and no worms living
in the soil. For such an ideslized case, Philip’s full equation is the most ac-
curate of all the formulas given (except for very long elapsed times), but the
question arises whether, in view of the uncertaiaties in the field, it is worth
ésing snything more than a simple cquation. We can never get away from
simulation, and it is quite fruitless to argue about one equation being approxi-
mate and another one accurate. They all involve various degrees of approxi-
mation, and our choiee is & {ree one. The balance is one between the need for
stmplicity on the one band and for sceurscy on the other,

Ground Water Flow

The physical assumplions underlying these formulss are given in such
refereuaces as (2, 7, 11, 83, 48, and 56). For one-dimensional flow in the satu-
rated zone (that is, for the Dupuit assumptions), Darcy’s Law tzkes the
form:

L)
g=—kh P (19}

s

where ¢ is the flow per unit area, & is the hydraulic conductivity, and 4 is
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the depth of saturated flow. The equation of continuity for the same condi-
tions takes the form:

84 B i (20)

where f is the specific yield and (x,t} is the rate of recharge at the watertable
surface. Combination of these two equations gives:

ah ah
i [ ]-l—f—_‘ia( t)

Equation 21 is noulinear, but in classienl ground water hydraulies the equation
is linearized in one of two ways. Either we write:

—kh v—~+fi}i=i(m,t) (22)

or else we write:

kath h?
T2 él(x'*) Qfﬁa( )_ =0 (23)

Ground water hydrologists have generally solved their problems on the
basis of such linear equations, which suggests that the application of linear
systems theory might be fruitful in this particular field. In view of the long
use of ilinear methods in hydrology, it is remarkable that a general linear ap-
proach has not been used in ground water hydraulies except rocently and theo
to a limited extent. Onee the original nonlinesr equations have been linearized,
all of linear mathematics and all of linear systems theory are available for the
solution of our problems.

Hydrologists frequently assume that the recession curve for hase flow is
given by

G=0 etp(~ A-t— (24)

This represents a more restrictive assumption than the simple one of linearity.
Equation 24 not only assumes that the ground water action is linear, but that
it nets as o singie linear reservoir. Haviog made this assumption with regard
to the recession, there is ne renson why the same assumption should not be
made in regard to the recharge of ground water and the whole ground water
system modeled by s single linear reservoir. In general, however, one ean
assume lineari{y without restricting oneself to a single linear reservoir. If the
system is assumed to be linear, it is perfectly possible to derive a ground water
unit hydrograph just as is done for direct storm runoff.
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Overland Flow and Channel Flow

In the case of overland flow and open channel flow, we can write down the
equation of continuity (including lateral inflow if necessary) and the dynamie
equation, By using the classical methods of open channel hydraulics, we can,
in theory at any rate, solve these equations for any particular case. Even
with high-speed digital computers, the solution of such eases, even for simple
geometry, is by no means an easy matter, Whether we use a characteristic
solution or some method of finite differences based on a rectangular networlk,
the computational problems are quite severe, In hydrology, the eomplexity of
these problems has been avoided by using approximate methods of solution,
most of which retain the continuity equation but replace the dynamic equa-
tion by some approximate relationship, This is to say that an applied hy-
drologist, when faced with the problem of overland flow or flood movement
in rivers, has replaced the field situation by a simplified model {20, 59).

The fundaments! problem of overland flow can be quite simply stated.
Rain falls vertically on the plane surface at the upstream end of which is
either a divide or a vertical boundary as shown in figure 2-1. If the supply
rate is constant, then for equilibrium conditions there will be a definite profile
of steady overland flow. Even this steady flow problem is not ar sasy one to
solve precisely. We do not know the friction laws operating in such a flow, or
the cffects of lateral inflow on the velocity distribution, or what the effect
would be if infiltration were oecurring simultaneously.

In tackling the hydrology of overland flow, we wish to know far more than
the profile of steady state flow. What is required is the hydrograph of non-
steady flow, which ceeurs due to any change in input conditions (for example,
the relatively simple ease of a stendy input of rain starting from initially dry
conditions) and also the nature of the recession from th steady state after the

Lateral inflow, r (x,t}
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cessation of input. If the process were linear, one of these results would be
sufficient to determine the hydrograph for any pattern of rainfall input. How-
ever, the phenomenon is nonlinear, and, thus, the principie of superposition
exnnot be used. Every shape of input becomes 2 separate case and must be
handied on its own. Our interest is concentrated on three cases; (1) the rising
hydrograph for a constant input and initially dry conditions, (2} the recession
from steady outflow conditions after the cessation of input, and (3} the transi-
tion from one siendy state to snother when there are two different constant
supply rates in successtve intervals of time,

One approximation to the overland flow problem assumes that there is, at
il times, s definite power relationship between the outflow at the downstream
endl and the averape detention on the surface. A large number of experiments
during the 1930's indicated that if the equilibrium runof were plotted against
the aversge equilibrium detention (that is, the storage at equilibrium divided
by the surface srea) for a given experimental plot, the relationship could be
approximated by & straight line on log-tog paper. This relationship applied to
the condition when steady flow had been attsined and storage was ne longer
changing, that is, to the steady state solution. Horton {23) assumed that this
power relationship would hold throughout the unsterdy flow phase and used
this assumption ss the basis of the solution for the particular case where the
discharge was proportional to the square of the average detention.

The general assumption of a power relationship between discharge per unit
area (g) and detention or storage per unit area may be written as:

g=as (25)
This equation i fagt replaces the full dynamic equation and is combined with
the continuity equation:
ds
ﬂ_ I — 26
g o (26)
to solve the problem. Equations 25 and 26 can be combined to give:

1 rd{rg Ve

=

T vt J 1—g/q,

(27)

The integral on the right-hand side of equation 27 can be solved explicitly
for c=1 fthe linear case} and also for ¢=2, 3, and 4. By suitable transforma-
tions, it can also be solved for e=3 and for c=4. Horton solved the equation
for c=2, obtaining the result:

2 —tan k2 (aif*g V%) (28)

q.

This equation has since been used for solving the overland flow problem and
designing airpart installations (51}, Izzard {26) carried out 2 series of notable
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experiments on overland flow and proposed the use of a dimensionless rising
hydrogeaph and dimensionless recession hydrograph, corresponding to the
solution of equation 27 for c=3. Because the integral in equation 27 is of
exactly the same form as the Bakhmeteff (1) varied flow function, tables of
the latter function can be used to solve equation 27 and hence the problem
of the overland flow hydregraph for any value of ¢ which is tabulated. The
above class of solutions may be referred to as the Horton-Izzard solution. It
is not the only solution to the problem of overland flow and is given here only
as an example. The kinematic wave method has also been applied to the prob-
lem of overland flow. Both approaches are diseussed in more detail in lecture 9.

Hydrologic flood routing represents an early application of the systems ap-
proach to a hydrologic problem. The full problem of flood movement in rivers
is cumplex, and in any case the details of the flow between the upstrearn and
downstream ends ol the reach under examination are not of great interest.
When conditions in the whole reach are lumped, the continuity equation
becumes:

r—g=%8
I-Q=— (29)

This equation is used in all flood routing methods and is combined with some
speeial equation, which replaces the dynamie equation,

Among the well-established flood routing methods is the lag and route
method which assumes:

s0-K-Q(i+}) (30)

that is, that the storage in the reach is proportional to the outfow taken at
sume fixed time later than the time at which the storage is measured, In
anether well-established routing method, the Muskingum method, the storage
1s taken as being proportional to weighted values of the inflow and the outflow:

SO =KxI ()4 (1—2)Q(8) ] (31)

Among other important flood routing methods is the use of the diffusion
analogy, which was introduced by Hayami about 1950 (19}, This approach
was dealt with by Henderson (20). More recently, we have had the Kalinin-
AMilyukov (28) method whieh is now widely used in Eastern Europe. This
latter methed is based on the division of the reach into a number of charac-
teristic lengths and the treatment of each of these lengths as a linear storage
element. Routing through the whole reach thus consists of routing through a
eascade of linear storage elements, and the impulse response funetion is the
gamma distribution. Though the gamma distribution was used by Nash (36},
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Gray {16), Reich (43}, and a number of others to represent the unit hydro-
graph, it was not applied to foed routing until this was preposed by Kalinin
and Milyukov,

It is of interest that the sbove methods of routing floods through an open
channe? are all linear methods, thus all are linear models of the actual process,
The whole subject of linear routing in open channels is discussed in lecture 8.

This brief review of physical hydrology 1s Intended to give examples of the
formulas which summarize our quantitative knowledge of physical hydrology
and which are used in practice. In our best efforts at physical hydrology, we
still make many assumptions that are, in truth, simulations. In many of these
cases, the assumption of lincarity has aiready beenn made. When such an as-
sumption has been made, the attitude in parametric hydrology is to make the
most of the assumption,

Problems on Physical Hydrology

1, List a oumber of alternative definitions given for the physical phe-
nomens involved in one particular part of the hydrologice cyele. Discuss these
definitions eritically, and then list them in what you would consider to be
their order of merit.

2, Briefly describe the methods used for measuring the physical phe-
nomena involved in some particular part of the hydrologic cycle. Discuss these
tochniques critieally, stating their adventages, disadvantages, and possible
improvements. How does the method of measurement used affect the defini-
tion of the physical phenomencn involved? What criteria could be used to
determine a suitable observation network for the particular phencmena
involved?

3. State what physienl principles are involyed in one particular part of
the hydrologic cycle. What physical formulas ean be written down describing
the physical plienomens of this part of the eyele? What physical phenomens
are ignored in the formulas ecited?

4, Mbat empirieal formulas are used in hydrology in connection with the
phenomena discussed in question 37 What is the relationship between these
empirieal formulas and any physical formulas available? What is the range of
validity of the empirieal formula? What is the accuracy of the empirizal
formulas?

5. What in your opinion are the most serious gaps in our knowledge of
physical hydrology? How important are these gaps from the point of view of
applied hydrelogy? Quiline a research program which you think might help
to bridge an important gap in our knowledge of this subject, and give a rough
estimate of the cost and manpower involved.




54 TECHNICAL BULLETIN NO. 1468, U.S. DEPT. OF AGRICULTURE

Literature Cited

{1) Bakumererr, B, A,
1932. HYDRAULICS OF OPEN CHANNELS., 329 pp., fllus. New York.
{2} Bear, J., Zasuavsey, I, and Inmar, 8.
1968. PHYSICAL PRINCIPLES OF WATER PERCOLATION AND SEEPAGE. UNESCO
Arid Zone Res. ANIX, Paris. 465 pp., illus.
(3) Braney, H. S, and CriporLg, W. 1),
1950. DETERMINING WATER REQUIHEMENTS IN IRRIGATED AREAS FROM CLIMATO-
LOGICAL AND IRRIGATIONAL pata. U.&. Depi. Agr. S8CS-TP-86, 48 pp.
Aupust.
{4) Bowen, 1. 8.
1926. THE RATIC OF HEAT LOSSES RY CONDUCTION AND BY EVAPORATION FROM
ANY wATER SunFack. Phys, Rev., Ser. 2, 27: 779-787.
{5) Cuwps, E. L.
1957, 'rwE rRYSIes OF LAND DRatNAGE. o J. N. Luthin, ed., Drainage of Agri-
culturnd Lands,  Agronomy 7; 1-78.
{6) Cuow, Vex T, ed.
1864. manNDLEOK OF ArtuiEp HYDROLOGY. @418 pp., iflus. New York.
{71 CoLonapo Srare UNIvERSITY.
1963, syMrosiuM ON TRANSIENT GROUNDPWATER wyprivinics. Civ, Engin. Seet.
Fort Cotlins,
(8) Comwrrrse ror Hypaovoaic Ressarcy, TNO.
1964, RYDRAULICS OF STEADY FLOW TO wELLS, TNO Proc. and Inform. Note 10.
The Hague.
(%) Counerr, 1. M., and Prics, €. H.
1943,  srheam-Gacaine rrocepure, N8, Geol. Survey Water-Supply Paper 888,
243 pp.  (Reprinted 1962}
{18} Davvoxn, Jous.
t802. EXPERIMENTAL ESSAYS ON THE CONSTITUTION OF MIXED GASES] ON THE
FORCE OF STREAM OR VAPOR FROM WaTen. Manchester {England} Lit. &
Phil. Soc. Mem., v. 5, pt. 2: 536-602.
(11y DeWiest, J. M. R,
19606, crouvvroLogy, 366 pp., ilius. New York.
{12 Dooar, J. C. L
1965, ANALVSIS OF LINEAR SYSTEMS DY MEANS OF LAGUEPRE FUNCTIONS. Soc.
Indus, and Appl. Math., Jour, Control 2(3): 306408,
{13) EaaqLeson, P. 5.
1969, bprxasc HyproLoey. 482 pp.  New York.
{14} GamsTrRa, W. [,
1864, swow anp snow sorveY. [r Ven Te Chow, ed.,, Handbook of Applied
Hydrology. Sec. 10, 57 pp., lus. New York.
{13) Giusman, C. 8.
1964. mainrann.  Jr Ven Te Chow, ed., Hundbook of Applled Hydrology, Sec.
8, 69 pp., illus, New York.
{16) Guray, D. M.
18962, DERIVATION OF HYDROGHAPHS FOR SMALL WATERSHEDS FROM MEASURABLE
PHYSICAL CHARACTERISTICS. lowa State Univ,, Agr. and Home Econ.
Expt. Sta. Res. Bul, 508, pp. 514-570. Ames,
(17} Hanrprer, G, E., Dexns, P. B, Keavow, F. W., snd others.
1954, WATER LOSS INVESTIGATIONS: LAKE HEFNER STUDIES. .8, (leol, Survey
Water Supply Paper 209. [Previously published as U.8. Geol. Survey
Cire. 229, 1952, as part of U.8. Novy Electron, Lab. Rpt. 237.]




LINEAR THEORY OF BYDROLOGIC SYSTEMS

Harmxg, S. [, chairman.

1030, CONSUMPTIVE USE OF WATER IN [RRIGATION: PROGHRESS LEPORT OF THE
DUEY OF WATER COMMITTEE OF 'THE IRRIGATION DIvisiox., Amer, Soe,
Civ. Bngin. Trans, B4: 1349-1389.

Havan, S,
§l. ON THE PROPAGATION OF FLOODL waives. Bul. 1: 1-16. Disaster Prev.
Res. Inst, Kyoto University, Japan.
Hexvenrson, 10 M.
1966, OoPSN CHANNBL FLOw. 322 pp., illus. New York,
Hourax, H, N.

l!)lil. A CONCEPr FOR INFILTHATION EZTIMATES [N WATERSHED ENCGINEERING.

178, Dept. Agr. Agr. Res. Serv. ARS 41-51, 25 pp.
Honrox, R, K,

1935, SURFACE RUNOFF PHENOMENAD PART I, ANALYSIS OF THE HYDROGRAPH.
Horton Hydrol, Lab, Pub, 101, 73 pp.  Ann Arbor, Mich,

].“33. TIE INTERPUETATION AND APPLICATION OF RUNOFF I'LOT EXTEHRIMENTS
WL REFERENCE T0 $01L EROSION ruousLeEms, Soil Sei. Soc. Amer. Proc.
3: 310-349,

1940, AN AUPKOACH TOWARD A PHYSICAL INTERPRETATION OF INFILTRATION CA-
vactry.  Soil Bel. Amer. Proe, 5t 390117

(251 InTBUNATIONAL ABSOCIATION OF SagxTiFie HyproLoGy.

1965, sYMPOSITM ON DRESIGN OF HYDHOLOGICAL NeETwonrks (Quense). Pubs, 67

und 68, Gentbrugge.
(263 Izzann, C. .

1846, HYDRAULICS OF RUNOFF PROM DEVELOPED sURFACES. Highway Res. Bd.

{Washington, 1).C.)  Proce. 26; 120-146.
(27— — -
1950, TENTATIVE RESULTS ON CAFACITY OF CURD OPENING INLETS. [Ta Surface

Drminage.  Highway Res. Bd Res. Rpt. 11-B, Washington, D.C.

Waviney, G, P, and Mhntvkoy, B 1L

1957, On HASUHETE NEUSTANOVIVSHEGOSYA DVIZHENIYA VAODY V OTKKYTYEH
USLAKH [on the computation of unstesdy flow in open channels)] Met.
i. Gidralogiva Zhuzurnal, 10: 10-18.  Leningrad,

Kosriakov, A, N,

1032, [on the dynamics of the coefficients of water perzolation in soils.] Bth
Comn., Inieruath Soc. for Soil Sci. Pt A, pp. 1§21 Groningen and
Moseow.

(30} Laxausiy, W, B, and Isen:, K. T,

1960, GENERAL INTRODUOTION AND HYDROLOGIC DEFINITIONS. MANUAL OF HY-
DROLOGY: PART |, GENERAL SURFACE WATER TeECHNIQUES, U5, Geol.
turvey Water-Supply Paper 1541-A, 29 pp.

Lagwr, P,

1941, ANALYSIS OF IHGH GATES OF SKOWMELTING, Amer. Geophys. Union Trans.,
pt. 1 195803,

Lizsuey, R, K., Konusn, M. A, and Patunes, I L H.

1949, ArpLiED HYDROLOGY. D88 pp., illus. New York.

Loy, 1. N, ed,

1057, DRAINAQE OF AGRICULTURAL LANDS. Agronomy 7

, G20 pp., illus, Mndison,
Wis,



http:Pro('.26

56 TECHNICAL BULLETIN NO. 1468, U.8. DEPT. OF AGRICULTURE

{34) Mever, O H.
1040. ANALYSIS OF RUNQFF CHARACTERISTICS. Amer. Soc. Civ. Engin. Trans.
105: 86.
(33) Mousorave, G, W,, and Houran, H, N,
1964, wrvrzaTioN. fn Ven Te Chow, ed., Handbook of applied hydrology.
Sec. 12: 30 pp., illus. New York
(36) Nasu, J, E,
1858, THE FORM OF THE INSTANTANEOUS UNIT RyDROGurArH. Cleneral Assembly
of Torvnto, Internnél. Pub 42, Compt Rend 3: 114-118. Gentbrugge,

(7)) —

1859, A NOTE ON THE MUSKINGUM FLOOD ROUTING METHODS. Jour. Geophys, - -

Res. 64(8): 1053.
(38) Ovurrox, 1. E,
1964, MATHEMATICAL REFINEMENT OF AN INFILTHATION EQUATION FOIt WATERSRED
pngiNesaiNg, U8, Dept. Agr. Agr. Res. Serv, ARS 41-90. 11 pp.
(39) Pexsmax, H. L,
LB, NATURAL EVAPORATION FROM OFEN WATER, BARE S0IL AND GRASS. Roy.
Sav, Loudon Proc., Ser. A 193{1032)}; 120-143.
{0y ——m-
1863  veceETATION AND HYDNOLOGY. Commonwenlth Bur, Soils Tech. Comm. 53,
124 pp. Commonwealth Agr. Bur,, Farnbam Royal, England.
{41} PETrengses, SvERUE,
1938,  wrrovuerion to METEOROLOGY. Ed. 2, 327 pp.  New York.
(12} Pmiuire, J. R,
1957, THE THEORY OF INFILTRATION: 1—THE INFILTRATION EQUATION AND ITS
sorerioN.  Soil Sci. 83(5): 345-357.
{(43) Rercs, B. M,
1GG2, pESION UYDROGRAFHS FOR VERY SMALL WATEHSHEDS FROM RAINFALL.
CERB2BMR41, Civ. Engin. Sec., Colo. State Univ,, 57 pp. Fort Collins.
(44) Serusns, W, D,
1032, puysical cuimarorogy, 272 pp.  Chicago.
(43 Suarver, R. O,
1967,  PLANT-WATER HELATIONSILIP. 366 pp., illus. New Yark.
(46 Trorxrnwarte, C. W, and Houzmax, B.
1939, THE DETERMINATION OF EVAPORATION FROM LAND AND WATER SURFACES.
Monthly Weather Rev, §7(1): 4-11.
7y —
1348, AN APPROACH TOWAHRD A HATIONAL CLASSIFICATION OF CLIMATE. Geog.
Rev. 38: 55-94.
{-i18 Topoo, 1}, K,
1964, orornowarEn. Jn Ven Te Chow, ed., Handbook of Applied Hydrology.
See. 13, 55 pp., ilius,
(49} Trre, L.
1954, LE HILAN D'EAU SOLS. HELATIONS ENTRE LES PRECIPITATIONS, I'EVAP ET
L'ECOULEMENT [THE DISTRIRUTION OF WATBR IN SOILS, REULATIONSHIPS
BETWEEN PRECIPITATIONS, EVAPORATION AND FLOW]. Ann. Agron. 5: 491-
506.
{501 U.B. DEPARTMENT OF AGRICULTURE,
1964, wyprovocy, Sec. IV, SCS Natl. Engin. Handbook. Washington, D.C.
(51} U8, DerarT™esT oF THE Aryy, Conpe oF ENGINBEUS,
1935, (A} SURFACE AND () SUHSURFACE DRAINAGE FACILITIES FOR AIRFIELDS.
Part 13, ch. § and 2. In Engineering Menual. Washington, D.C.




LINEAR THEORY OF HYDROLOGIC SYSTEMS 57

{8
1056, SNOW HYDHOLOGY! SUMMARY REFORT OF THE ENOW INVESTIGATIONS. 437
pp. iHus,  Portland, Oreg.
{53) Uszveustry or WAOQBNINGEN.
1050, INFORMAL MEETING ON PHYSICS AND AQRICULTURE. Netherlands Jour,
Agr, Sel. 4(1).
(54) vaw Baver, C. H. M.
TIHE THIREE-PHASE DOMAIN IN HYDROLOGY. Symposium on water in the
wnsuturated zone., Intersnutl 1Tuion Geod. and Geophys. Prae.  Wagenin-
pet,

PFOTENPIAL EVAPORATION: THE COMBINATION CONCEST AND ITS EXPERIMENTAL
venlricarior,  Waler Resources Res, 2(3): 4554067,
{H6) vayN BOWILFGAARDE, JAN
1063, TRANSIENT DESIGN OF DRAINAGE svsTEMS. Amer. Soe. Civ, Engin. Proc.,
Irrig, and Drain, Div, Jour, $1{IR3): 9-22,
{57) Yuumsyes, F. L
1054, EVAPOTRANSPIRATION. Ja Yen Te Chow, ed., Handbook of Applied Hy-
drology. Hec. 11, 38 pp., illus.  New York.
(58) WouLp METEOROLOGICAL ORGANIZATION,
105, (UIpE 70 MYDROMETEOROLOGICAL pRacTiCes. WMO-No. 168, TP 82.
See. of the World Met. Organ.  Geneva,
(59) Yevoievics, V. M.
1964,  BIMLIOGRAPHY AND DISCUSSION OF FLOOD NOTUTING METHODS AND UNSTEADY
FLOW 1N CHANNELS., 1".3, Geol. Burvey Water-Supply Puper 1690, 235 pp.




LECTURE 3:
REVIEW OF MATHEMATICS

If we are to develop wbjeetive methods for the identification and simulation
of hydrologic systems, sooner or later we find curselves involved in mathe-
maties and sometimes unfamiliar mathematics at that. The purpose of lecture
3 is to review some topies in mathematies that have been found useful in
parametric hydrology. The individual topies will appear again in subsequent
lectures when these mathematienl techniques are deawn on as required. There
18 no necessity {o attempt to master completely the mathematics reviewed
in the present leclure,

In parametric hydrology, as in all engineoring, the best strategy for the
applied seientist is to make himself generally aware of what mathematical
tools are available but not to attempt to master them until he needs particu-
lar picee of mathematies to solve a particular problem. Some of you may be
more interested than others in particular aspeets of the mathematieal founda-
tions of parametric hydrology or in its computational aspects. Those interested
i such topies might find it useful to go through the refercnces at the end of
this lecture in regard to the particular topic of interest and to work steadity
through the problems referring to that particular topic. Those who are not
interested I either analytical or eomputational mathematies need not worry
unduly sbout this aspeet of our subject, but ean accept the pragmatic view
that the techniques diseussed here are well-founded and praeticsble. Books
which the suthor has found useful in respect of more than one mathematical
topic of interest in systems analysis are those by Gullemin (8), Raven {20},
Korn and Korn (12), and Abramowitz and Stegun (7).

Orthogenal Polynomials and Functions

The following set of functions—

gol), gd), .. ... gnll), .. ... g (0, .. ...
1s seid to be orthegonal on the interval a <¢<b with respect to the positive
weighting function wt) if:

1]

f w{Dgn(DFn () db=0, m (1a)

B
f w()ga (DYFn(t) =va (1b)

where the standardization factor (v,) is & constant depending only on the
28
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vahue of 5, These two equations can be combined as follows:

b
f 'lL'U.}gm(”gn“)='Tn'|5mn (lC)

d
where 8,.. is the Kronecker delta, which is equal to 1 when m equals n, but
zero olherwise.

If a function is expanded in terms of a complete set of orthogonal functions
as defined above:

Fumag

S = 2 amp(d)

kil

then the property of orthogenality can be used to show that the coefficient
{ey) in the expunsion is uniquely determined by:

1 b
{'.t‘-_—_f II‘[“{?HU‘)I(!} dt (3)
Yk d g

If each of the functions gi(¢} is so written that the factor of standardization
i is incorporated into the funetion itself, the set of functions is said to be
normalized as well as orthogonal. In a similar fashion, the weighting function
wtd) can for convenience be incorporated into the function gi{¢).

At some time or other, most engineers come in contact with Fourier series,
which are the basic elassieal orthogonal functions in engineering mathematics.
The vast mejority of functions in engineering analysis and synthesis can be
represented by an expansion of the form:

koo

Jihv =3+ > (ax cos ki+by sin ki) (4)

k=l

It ean be shown (81 that siues and cosines are orthogonal over a range of
length 2x with respeet to the weighting function 1 and with & standardization
factor = as follows:

a+3r
f cosimt) cos(rdldi =1+ bma {5a)

a+3r
f sintm) sin(nl)dl==mw+na (5b)

a

a+2e
f cos(mt) sin(nd)dt=0 (5¢)

Because the terms of the Fourier series have this property of orthogonality,
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the coefficients w: and b in equation 4 ean be evaluated from:

m=£f' J(t) eos(kt) dt {6a)
T —r

1 b
by=- j (0 sin (k) di (6b)
T,

From a systems viewpoint, the significance of equation 4 is that the fune-
tion is decomposed info & number of clementary signals, each of which is
sinusvidal in form. For mathematicnl manipulation, it is frequently more
convenient to write the expansion given in equation 4 as a cemplex Fourier
series!

Siy= 37 Crexplikl) (7)
Jme oy
For this exponential form of the Fourier series, the property of orthogonality
is exproessed as:

J-2r
[ exp(i(m—u)t}s-di="2r.5,. (8)
where 6., is the Kronecker delta, that 1, is equal to 1 when wm=n, but zero
otherwise,
W e ean determine the complex coefficients in equation 7 as:

1 T
Ci= oo | exp{ kg0 dt {9
i
If the function being expanded is & real function, then the cocfficients a; and
by in equations 4 and 6 will be real, whereas the coefficient ¢ in equations 7

and § will be complex. The relationships between the coeficients are given by:
L= }'-}(m—-ibﬂ (108.)
= ";l_,é (ai—-i-'l.b;-) (IOb)

Though Fourier series are widely used in systems engineering, they are not
the only types of orthogonal funetions which are of use. There are three
classical cases of orthogonal polynomials. These are (1) the Legendre poly-
nomials, which are orthogonal on a finite interval with respect to & unit
weighling function; (2} the Loguerre polynomials, which are orthogonal on 2
semi-tufinite interval with respect to the weighting function exp(—t); and
(3) the Hermile polynomials, which are orthogonal on an interval infinite in
both directions with respeet to a weighting function exp(—£*). Of these, only
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the Laguerre functions have been used in parametric hydrology. Their defini-
tion can be written as:

fﬂ exp (=) L () La () dE=8mn (1la)

It can be shown that the polynomials satisfying the above relationship are
given by:

kmn JE

L= 3 (-05D) (12)

By incorporating the weighting factor in the Laguerre polynomial, we can
define a Laguerre function ¢, as:

onll) = exp(—g—‘)L,.m (13a)

k= —t2
=3 e Tt

o k!

(13b)

which will obey the simple relationship:

f " o (D) b () dL= B (1ib)

which is an alternaiive form of equation 11a.

It can be seen from equation 13b that a Laguerre function can be expressed
as & series of gamma distributions with integral exponents. Therefore, any
function can conveniently be expanded through the medium of Laguerre
functions in terms of a series of gamma distributions with integral exponents.
This is of interest because of the use of the gamma distribution (not neces-
sarily with an integral exponent) to simulate system responses in hydrology.

S0 far we have been talking about functions whose arguments are continu-
ous and which are orthogoenal under the operation of integration. In hydrology,
our data arc frequently defined only at certain discrete points or as averages
over certain intervals so that the dats are not available in continuous form.
Under these circumstances, it is necessary to use discrete rather than continu-
ous mathematics. Unfortunately, most ergineers are trained in continuous
mathematics and find some difficulty in going over to the discrete analogs of
the continuous formulas and methods. Instead of defining orthogonal func-
tions as in equation 1, we ¢an define discrete functions to be orthogonal if:

a=h

> w(8)gm (8 gn (8) = Eabemn (14)

£=a

where & 1s & diserete variable.
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The Fourier approach ean be applied to a discrete set of equally spaced
dats 8 well as to continuous data {see "Time Series Analysis of Diserefe
Dat,” loeture 6. The method of harmonie analysis or Lrigonometrieal inter-
polation s based en the orthogonality under summation of the sines and
cosines of (211 N ks). Apart from the special case of harmonic analysis, dis-
erete orthogoual functions are not diseussed to any great extent in the mathe-
matical literature,

H an attempt is made to apply Laguerre functions to disereie data, it is
found that the Laguerre funciions are not orthogonal under summation, It
whs [ouad that the diserete analog of the Laguerre funetion defined by cqua-
tion £3b was:

]

Jatsi= (Tgpwbneboz 570 qakomy (15)
ki)

The polynomiad in equation 15 is & speeial case of the Weirner polynomials,
Comparison of cquation 13 with (he corresponding equation 13 for (he con-
tinuous ease reveals 8 number of significant differences. The weighting fune-
tion expr—¢ 25 in equation 13 has been replaced by the weighting function
“lart 2 in equation 13, and the polynomial term & 4 in eguation 13 has been
riplaced by o 1 IF allowsnee is made for the difference in the operations in
the continuous and diserete cases, these torms fire seen to correspond. Thus,
expeds may be defined as the function which differentintes into itself; simi-
farly, the funetion 27 & a function which forward differences into itsolf, The
differentiation of & §pives & 1 (h— 11! while the forward differencing of (f)
gives 1,70,

Further information eoneerning Fourier series and orthogonal polynemials
can be found in the reforenees ot the ond of the lecture; notably in Guillemin
(7, Hamming 9+, Hildebrand (10, Lanczos (14), and Rainville (7).

Fourier and Laplace Transforms

Fourier and Laplace transforms have a number of applications in the linear
theory of hydrolugie systems, They are useful in the solution of Iinear aqua-
Hons in dealing with the operation of linear systems and perticularly in ana-
Iyzing the transicnt behavior of systems. In addition, when the moments of
functions are used to eharacterize the funetional relations between the input
and oulput of & system, Fourier and Laplace transforms can be used to deter-
mine the moments of given functions,

Transformation of the original funetion is made to simplify the mathemati-
cal procedure. On first atiempting to master the iechnigues of Fourier and
Lapliace transforms, the engineer may think that very Hitle simplification is
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achieved. However, once mastered, the technigues are extremely useful,
particularly since the Laplace transforms and, to a lesser extent, the Fourier
transforms are tabulated like logarithms or trigonometrical functions. By
using the Laplace transform, it is possible to transform an ordinary linear
differential equation with constant coefficients inte an salgebraic equation
which is far easicr to solve. It is also possible to convert a partial differential
equation into an ordinary differential equation, again achieving a tremendous
simplification in the type of problem to be sclved. Of course, these simplifica-
tions are made af the cost of having to understand Laplace transforms.

The Fourier transforma is particularly useful in the analysis of the transient
behavior of stable systems. From one point of view, the Fourier transform
may be looked onr as o limiting form of & Fourier series. The latter apply to
functions that are periodic outside the interval of integration and consist of
an infinite series in which each term refers Lo a definite discrete frequency. If
the interval of inlegration is increased indefinitely, the series will be replaced
by an integral as follows:

Ji =§T—r [w F i) exp{iwl) do (16)

which corresponds to equation 7 with F(w) corresponding to c, with integra-
tion replacing summation, and with the term arising from the standardization
constant (2T1) appearing in the equation of the series instead of appearing in
the equation for ealeulating the coefficients. Just as the coefficients ¢ in
equation 7 can be obisined from equation 9, so the function F{w) can be

obisined from;
Fley= f F0Y exp{—twt) di (17}

Tt would be equally permissible to introduce the standardization constant 2II
in equation 17 and omit it from equation 16, or even fo introduce the square
root of the {actor into each of the equations.

Instead of looking on equstion 17 as a limiting form of equation 9, it is
possible to consider it merely as the equation defining the transformation of
f{tY from the time domain to the frequency domain. Equations 16 and 17
have the advantage that, unlike equations 7, 8, and 8, they are not confined
to periodic phenomena. This advantage, however, is offset by the fact that
whereas equation 7 enables us to evaluate the function to & high degree of
accuracy by koowing the values of ¢, equation 16, which represents the in-
version of the Fourler transform, is not by any means as casy to handle.

If the svstem we are examining is not stable, or if the functions involved
do not fulfll certgin other conditions, then the Fourier transform not of f{i)
itself, but of fitve~<t, where ¢ is a rcal number, Making this change gives us
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the hilateral Laplace transform of the function:

Fp(s)y=M[f(1)] (180}
=FlLef(8)] (18b)
= fﬂ e~ (Lye—tut. di (18c)
= [ 1o a (184)

As ordinarily used, the Laplace transform is only defined between zero and
plus infinity, and virtually all tables are for this unilatersl Laplace trans-
form. In this form we have:;

F(s)=x[{{8)] (192)
= [ e (19b)

Lquetion 19b is the Laplace transform equivalent of equation 17 ahove,
The Laplace transform can be inverted to give the original function in the
same way 25 equation 16 by using the expression:

£+ fo
o [ F(s)e ds (20)
Tl c—itw

Again equation 20 is difficult to solve, but must be used unless the function
F(s) can be found in a set of Laplace transform tables. Numerical inversion
of the Laplace transform is quite difficult and involves the use of orthogonal
functions to represent the Laplace transform and the inversion of these func-
tions term by term.

For discrete functions, the Laplace transform must be replaced by the
Z-transform. This can be written as;

ZIfnI) J=Af(nTYs(t~nT)] (21a)
= nﬁ‘)"(:’if{‘)e‘""“’ (21b}
= T sz (21¢)

where
=7 (21d)

This discrete transform has properties similar to those of the Laplace trans-
form and has been tabulated.
Further information on transforms and their use in systems anslysis can be
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found in the following. Asecltine (2) Doetsch {4), Jury (11), and Papoulis
(16). Extensive tables of transforms are available in Erdelyi (5) and Roberts
and Ksufman (2{).

Differential Equations

Ordinary differential equativas are differential equations in a single vari-
able. If we are dealing with a lumped system, with lumped inputs and outputs,
then we will have only ordinary differential equations to handle in which the
single variable will be time. Ordinary differential equations are classified in
respect to their order and degree. The order of o differential equation is the
order of the highest derivative present in the equation. The degree of the
equation is the power to which the highest derivative is raised. A linear equa-
tion must of necessity be of the first degree because otherwise there would be
an essential nonlinearity and the principle of superposition would not apply.

In a lincar differential equation, all the derfvatives in the equation must be
to the first power and their coefficients must not be functions of the dependent
variable. Thus, if we have an ordinery differential equation—or system of
ordinery differential equations—which describes the dependent variable (y)
and its derivatives with respect to the independent variable (¢} as functions
of the independent variable (#), then there is no restriction on the order of the
derivatives but each derivative must appear only to the first power, and, in
addition, the coefficients of the derivatives eannot be functions of y but may
be functions of ¢, The general form of such an equation is:

o () %TJJF il an(Dy=2(2) (22)

If the cocficients are neither functions of ¥ nor of £ but are constants, then we
have an ordinary differential equation with constant coefficients given by:

@y (234)

FEquation 22 could represent the operation of a lumped linear system, but for
equation 23 to represent the operation of a system, the system would have to
be both linear and time-invariant,

Since our starting point in systems analysis is the study of lumped, linear,
time-invariant systems, we will first be concerned in our analyses with the
solution of linear ordinary differential equations with constant coefficients
such as equation 23a. An alternative form for the latter equation is:

Dry+a Dty any=x(t) (23b)
where I is the differential operator. This may also be written as:

p{D) =z(t} (23¢)



http:ordinr.ry
http:Ordim1.ry

66 TECHNICAL BULLETIN NQO. 1465, T.8. DEPT. OF AGRICULTURE

An equation such as 23 with a function of ¢ on the right-hand side is said
to be nonhomogeneous and is more difficult to solve than a homogencous
equation where the right-hand side is zero.

In aceordanee with the prineiple of solving simple problems first, the first
step is to look at the homogeneous equation:

p{(Dyy=0 (24)

and postpone svlution of the full nonhomogenecus equation until a solution
of the homogeneous cquation has been found. The classical method of solving
this equation is to assume that the solution is made up of terms of the form:

y=c-explst) (23a)
Any value of s which satisfies:
p(s)=0 (25b)

where p(s) Is the same polynormial as p(D} in equation 24, will give a solution
of equation 24. If the original equation is of the n* order, then there will be
n roots, real or eomplex, for equation 25a. Consequently, the general solution
of equation 24, which is known as the complementary function, is given by:

n
y= 2, cxexp{sd) (25¢)
L
Real values of s give rise to exponential terms and complex values of s to
sinusoidal terms, In hydrologic systems which are heavily damped, the roots
are usually negative and real so that the solution consists of & series of expo-
nentials with negative arguments. The » unknown constants ¢, are obtained
from the boundary conditions.
Having solved the homogeneous equation, we now move on to the problem
of solving the nonhomogencous equation. If o particular solution of the non-
homogencous equation can be found:

y=yp(” (26)

then the complete solution of the nonhomogeneous equation is given by:
y=y()+ 3 cx explsid) (27
k=1

in which the first term of a particular integral will satisfy the right-hand side
of the equation, aud the second term or complementary function will satisfy
the boundary conditions.

The solution of ordinary differential equations, such ds equation 23, can be
greatly facilitated by the use of the Laplace transform. By taking the Laplace
transform of the equation and using the rules for the Laplace trensform of a
derivative, we obtain an algebraic equation for the variable s in which the
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boeundary conditions are automatically incorporated. If the function on the
right-hand side of the equation is siraple, its Laplace transform may be in-
cluded. If not, it may be roplaced by a delta function and the solution for this
case obtained, The solution for the actual right-hand side is then obtained by
convoluting the function on the right-hand side of the original equation with
the solution obtained by using a delta function, If the system is a complex '
one, there may be derivatives on the right-hand side of the equation. and the
use of the delta Tunction may require some caution and a mastery of its
manipulation.

1f the system has distributed rather than lumped characteristics, then its
opertlion will he described by a partial differential equation, Most of the
partial differential equations encountered in enginecring analysis arc of the
seeond ordoer. For one spaee dimension, the general second order homogeneous
linear equation with constant coeflicients is given by:

Py 2y Fy_ oL 5
G T T~ G oY (28)

The first thing to determine about a partial differential equation is whether
it i hyperbulic, parabolie, or clliptic in form. This depends on whether the
diseriminale 5% —dac is rospectively greater than, cqual te, or less than zero.
Hynerbolie and parabolic partial differential eguations correspond to prob-
lems of propagation {in both directions respeetively), whereas eliiptic differ-
ential equations represent the way in which the condition around the boundary
effeets the interior of a space. The appropriate types of boundary conditions
are different [or the three different types of equations.

Further details on the subject of differential equations and their solution
enn be found in references by Lambe and Tranter (18), Fox (7), and Sneddon
(22).

Matrices

Aatrices are essentially mathematieal shorthand for representing arrays of
eloments. A matrix is an array or table of numbers. Thus, we define the matrix
A oas:

This matrix, which has m rows and n columns, is referred to as an m by n
MALTIX. '
Matrix algebra tells us what rules should be used to manipulate such arrays
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of numbers. If & matrix (' is composed of elements each of which is given by
adding the corresponding slements of matrix 4 and matrix B, that is:

¢ =ai+bi; (29a)
then matrix C is snid to be the sum of the two matrices A and B, and we write:
C=A+B=B+4 (29b}

Matrix multiplication is defined as the result of the operation:
C=4-RB {301)

where the elements of ¢ are defined as:

Cr= Z Crsbay (30b)

that is to say, the clement at the interseetion of the rtt row and the t* column
in the ¢ matris is obtained by multiplying, term by term, the »* row of the
A matrix by the (% column of the B matrix anc summing these products.
This definition implies that matrix A has the same number of columns as
matrix 8 has rows, It must be remembered that metrix muitiplication is in
general noncommutative, that is:

A B=B. 4 (30¢)

A certain amount of nomenelature must be learned in order to be sble to
use matrix algebra. A square matrix with the number 1 on all paints of the
principal diagonal (that is, the one from top left to bottom right) and zero
on all the off-diagonal points is known as the unit matrix. [t serves the same
function us the number 1 in ordinary algebra; it can be verified that multi-
plication of & matrix by the unit matrix gives the original matrix, A diagoanal
matrix is one in which the elements on the majn diagonal are nonzero, but all
the other elements are zero. An upper triangular matrix may have nonzero
elements on the principal diagonal and above, but only zero elements below
the main diagonal; similarly, a lower triangular matrix has nonzero elements
elements in the prineipal diagonal and below it, but only zeros shove the
diagonal. The transpose AT of a matrix A is the matrix which is obtained
from it by replacing each row by the corresponding column and vice versa.
The inverse of a matrix A~ is the matrix which when multiplied by the origi-
nal matrix A gives the unit matrix I, thatis:

A At=4"rAd=] (31)

A matrix will only possess an inverse if it is square and nonsingular, that s,
if its determinant is not equal to zero. The transpose of the inverse of 2 matrix
15 referred to as the reciprocal matrix. A matrix is said to be orthogonal if its
wwverse is equal to its transpose, that is:

AT=471 {32a)
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which is equivalent to:

C=A4A-AT=1
andl to:

Co= 2, Q= 5i; (82¢c)
k

The individua! rows and columns of & matrix may be considered 85 row
vectors. Thus, the row vector which consists of 2 single row is really a matrix
of size 1 by n, whereas the column veetor which consists of a single column is
2 matrix of size w by 1. Two compatible vectors can be combined to give
gither an inner product or an outer product. This is illustrated next for o
veetor and its transpose.

The transpose of a row vector will be a column vector and vice versa. Gon-
sider a vector ¢ which has » rows and one column; its transpose o7 will have
one row and 2 eolumns. If we premultiply a by o we obtsin:

4y

(o

afa=[a, as. - ... an] 1.- {330)

(33b)

= T (33¢)

su that the result of the multiplication is & one by one matrix, that is, a sealar.
This is known s the inner product. The outer product is obtained by post-
multiplyving o by T:

(34a)

Since this is the product of an #X1 matrix and & 1Xn matrix, the result is
an nXn matrix as follows:

Loy Eplla, .. .
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The comparison of equations 38 and 34 is & good itustration of the fact that
the multiplieation of veetors is not commutative.
A set of simultaneous equations is represented in matrix form by:

Az=>b (35)

where A s the matrix of coefficients,  is the vector of unknowns, and b is the
veetor of the right-hand sides of the simultancous equations. If it is required
to solve the problem for differeat sets of values on the right-hand side, the
most convenient method is to obtain the inverse of the cocfficient matrix aud
write the solution ws:

z=4A"1 (36)

A matrix only has an inverse il il is square and uonsingular; therelore,
equation 34 can only be written if the coefficient matrix is square. This is
nothing more than the old eriterion that the number of equations must be
equal to the aumber of unknowns in order to obtain o direet solution. If,
however, only one set of equations is being solved, there are more cfficient
computational routines. From (he point of view of actual compulation, a
matrix may be nonsingular but may still give rise to ditfieulty because the
cquations are ill-conditioned and the matrix is almost singular so that the
aumerical results may be unrelinble, Speeial computer programs are availabie
for the inversion of matrices and for the solution of simultancous cquations.

Further informetion on matrices and their use is to be found in publica-
tions by Guillemin ($), Raven (20V, Bickley and Thompson (3}, and Wade
(23).

Numerical Methods

Beeause we deal with duta and numbers rather than functions, the systems
hydrologist must have a firm grasp of numerical methods. Because of the
complexity of the systems with which he deals, most of his problems will re-
quire o solution on & digital computer. The various stages of the solution of
a problem using & computer may be grouped as follows:

i1} Problem identifieation
(23 Mathematical deseription
{3} Numerical analysis

t41  Computer program

t3)  Program checkout

{0y Production runs

{7} Interpretation

It is outside the scope of these lectures 1o discuss these various slages. Never-
theless, those interested will be able to follow up anyv particular iopie in the
references by Hamming (93, Hildebrand (201, MeCracken and Dorn (15},
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Ralston (18), and Ralston and Wilf (19). In addition, & number of the prob-
loms at the end of this lecture and at the end of other leetures in the series
will give practice in the solution of problems involving numerical methods.

Problems on Mathematics

Orthogonal polynomials and functions

1. Iind the Fourier cosine and Fourier sine cocfficients for the expansion
of & number of the functions of & continuous variable given in Appendix
table 1. Irom these determine the Fourier exponential.

2. Find the coefficients for the expansion of a number of the functions
shown in Appeadix table 1 in terms of Laguerre fuactions, Compare the re-
sulfs with those obtained in question ! and comment on the difference.

3. Iind the harmonic cocfficients for the expansion of & number of the
functions of & discrete variable shown in Appendix table 2. What is the differ-
ence between the expaosion of a function of & continuous veriable by means
of a truncated Fourier series and the expansion of the same function by the
harmenic analysis of the function of & discrete variable obtained by sampling
the function of a continuous variable at the same number of points?

4. Determine the harmonic coefficients for the discrete set of values ob-
tained by sampling one or more of the functions of a continuous variable
given in Appendis table 1. What is the effect of the frequency?

5. In the case of a funetion which is zero outside a certatn Iimited range,
what is the relationship between the Fourier exponential coefficient and the
moments of the function about the time origin?

Fourier and Laplace Transforms

6. Find the Fourler transform or Laplace transform of & number of the
functions given in Appendix in table 1,

7. Show that the explicit form given in either the Laguerre or Hermite
polynomials is identical to the Rodriguez form.

8. The impulse response of a given system may be represented by function
i1 in Appendix table 1 and the input to the system may be represented by
function 17 in Appendix table 1. Find the output from the system (1) by a
direet convolution and (2) by means of the Laplace transform.

9, If the < moment of a funetion about the origin is given by

{ntr—1it
(n—1Y!

Ui=K

and the funetie u is zero for negative time, find the function.
10. Use the “-transform to find the funciion obisined when a Meixner
polynemial of & ywree m is convoluted with & Meixner polynomial of degree n.
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Differential equations

11, A number of unequal linerr reservoirs are eascaded, that is, the cut-
flow from one is the inflow to the next. Write the differential cquation for the
outflow from the iast reservoir in terms of the inflow to the first reservoir
and the storage constants of the individual reservoirs, What is the form of
the solution {o this general equation? What is the form of the result i the
linear reservoirs are all equal?

12, The foliowing equation is the impulse response of a given linear
system.

MO = (CdFCo? 4 Cal3) rexp( — )

Draw two alicrnative arrangements of equal linear storage clements of unit
storage delay time which would have the same impulse response as the given
system. Then dorive the differential oquation for the response ¥{t) of the
given system Lo any given inflow £(4).

13, Find the solution of the following equation

dy /1
d£+(k ”)“" 0

Does the result hold for all values of #? What is the relationship between
this result and the rosult obtained in question 11 for n equal linear reservoirs?

i Sulve the linear wave equation for o semi-infinite channel for zero
initial conditions and a given condition ut the upstroam end. What would be
the solution if only the first-order terms on the right-hand side of the equation
were retained? What would be the solution if oaly the second-order terms on
the lefi-hand side of the equation were vetained? What type of flow is repre-
sented by these two solutions?

Ly I in the linear wave equation the value of & and ¢ are zero or of such
magnitude that the second and thicd terms can be negleeted, what form does
the equation take, and what is the solution for tae boundary conditions given
in problem 147 How does the lorm of this soluiion differ from the solutions
found in problem 147

Matrix methods

16. Write out the set of simultancous equations relating the ordinates of
the putfiow hydrograph to the ordinates of the input hydrograph and the unit
hydrograph, Express this set of cquations in matrix form in two alternative
ways. Give the matrix formulation of the direct sclution and the least squares
soluticn for the unit hydrograph ordinates.

17. It the volumes of effective raiafall are given by function 8 in Appendix
table 2 and the ordinates of the unit hydrograph by function § in Appendix
table 2, use the matrix formulation to write down the ordinates of the outfiow
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kydrograph. Rework the problem with the volume of the unit hydrograph
made equal Lo unity.

18. What maximum runoff would be predicted for the effective rain and
the unit hydrograph shown in Appendix table 3.

19. The input to a lincar system is given by function 3 on Appendix table
9 and the output from the system is given by function 4 in Appendix table 2.
Find the pulse response of the system by means of matrix inversion.

90, If the output of the system in problem 19 was taken as funclion 5 in
Appendix table 2, find the pulse response indicated by this output both by
the ordinary matrix method and by the least squares method.

Numerical methods

o1, List several mothods for numerical quadrature of a given function.
Draw o RBow diagram for the application of one of these methods to the quad-
rature of one of {he eontinuous functions on Appendix table 1, using either &
desk caleulntor or & digital computer. Give reasons for chosing the particular
quadrature method.

23, Develop a fiow chart for a general computer program for determining
the cocfficients in any orthogonal expansion of any given function. Write the
computer program for a section of the flow chart.

93, Write & ecomputer program for matrix inversion and apply it to the
solution of problem 19,

24, Dovelop a flow chart for the derivation of & unit hydrograph from
records of total rainfall and total runoff. Write one section of the computer
ProETam,

95, Discuss the methods available for the numerieal solution of the linear
wave cquation. Write out the fnite difference scheme for solving the equation
by one of these methods and discuss how the boundary conditions would be
handied. What problems would you expect to encounter in computing accord-
ing to the chosen mothod?
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LECTURE 4:
CLASSICAL METHODS OF RUNOFF PREDICTION

The Outflow Hydrograph

The purpose of lecture 4 is to review the classical methods of runoff predic-
tion #s used by applied hydrologists and to reformulate these methods in
systems terms. Most of the methods were derived during the golden age of
classical hydrology between 1930 and 1945, Wheu some of these methods are
looked at from & systematic point of view, the assumptions stand out more
clearly, and both the limitations and the full range of applicability of the
methods are reverled. 1n many eases, the scope of the methods is considerably
wider than would appesr from the elassical formulation of the method.

(lassical hydrology paid a great deal of attention to the runoff hydrograph
in an effort to determine how it could be predicted. Figure 4-1 is taken from
a contribution by Hoyt 128). He talks of five phases in the runoff cycle;
four of these wee illustrated in figures 4-1 to 4~4. The first phase relates to the
end of & dry poriod when the streamflow is relatively low, most of it being
supplied by base flow (@) [rom ground water storage. During this phase,
the soil moisture will have been reduced by evaporation (F) and transpira-
tion (T s0 that a substantial field moisture deficit will exist. If the dry period
has been very long, the rate of transpiration mey be severely reduced below
the potential rute due to the drying out of the soil and the lowering of the
water table. Phase 2 of Hoyt's runoff cyele relates to an initial period of rain
and is shown on figure 4-2, If the initial rain (P} is light, the amount in-
filirated (7 will not be sufficient to make up the field moisture deficit and
henee, no recharge to ground water (R) will oceur. During this second phase,
a portien of the rain will be intercepted by vegetation (V) or stored in de-
pression storage D).

FrovkE 4-1.-- Phase of low streamfiow.
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N A

Favee 4-2.- Phase of initinl raiofull.

The third phase, shown in figure 4-3, is associated with the continuation of
rain for some time, If this occurs, the storage in the surface depressions (D)
will be satistied and overland flow (0,) will oveur; similarly, if the infiltration
inte the soil is sufficient to fill the soil moisture storage (&), then recharge
(£ to the ground water will eecur. The streamflow will rige relatively rapidly
due to everland flow () and any return of interflow (Q) to the stream.
Subsequently, there will be a more gradual increase in streamfiow due to
outflow from the ground water reservoir (Q,), which is being recharged by
gravitational soil water {£1. When the general conditions are faverable to
rainfall, there is a high relative humidity and both evaporation and transpira-
tion tend to be reduced. In the analysis of conditions during prolenged rain-
full, evaporation and transpiration are frequently neglected. In this third

Fravne 4-3, ~ Phage of prolonged rainfall.

Sl e o g, e Lt o N R T e g o
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phase, the rapid rise of the level in the stream channels due to overland How
and interflow may result in increased bank storage, that is, a recharge of the
ground water close to the stream as a result of the increased streamfiow.,

Hoyt characterized the fourth phase as a period when rainfall has continued
sufficiently long and with sufficient intensity so that all available natural
stornge has been satisfied. This condition rarely oecurs in natural watersheds
of any appreciable size. In the case of small watersheds, both urban and rural,
the storage may be satisfied and the condition reached where the rate of runoff
is equal te the supply rate. This phase is not separately illustrated but is
similar to the third phase shown in figure 43,

The fifth phase deseribed by Hoyt is illustrated in figure 4—4, It is the coadi-
tion when the rain has ceased, but sufficient time has not clapsed for channel
storage and surface retention to be depleted to the level at which they were
during the first phase. During this fifth phase, evaporation (E) and tran-
spiration (7Y may be considerable because the plentiful supply of moisture
allows cvaporation to take place at almost the potential rate. Streamflow
will decline hut only gradually as surface storage, channel storage, and ground
water storage are deawn upon in turn. This Gfth phase is illustrated on the
jast line of figure 44,

We might argue about the details of this particular picture of the runoff
cyele, but not about its general nature. How does this picture compare with
the systems view of the same phenomena? Can Hoyt’s approach interpreted
from a systoems potut of view? Af first glance there seems little in common be-
tween the clagsical picture of figure 4-1 to 44 and the systems diagram shown
in figure 1-8 {p. 16). On closer examination, however, we realize that the two
can be related to one another. In figures 4-1 {o 4—4, the channel storage and
the storage in the soil above the waler table are shown pietorially; in figure
1-8 the same storages are represented by rectangular boxes. Hoyt's elassifica-
tion and illustration of the phases of the runoff cycle are based on iwo inputs,

Ficvre 4. Phase of declining streamflow.
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one of precipitation and the other of potential evaporation and transpiration;
these are also the essential mputs of Ggure 1-8.

Classical hydrology, as exemplified by Hoyt’s analysis of the runoff cyele,
makes the assumption that there is either rainfell and no transpiration, or
else transpiration and no rainfall. If this assumption is permitted in systems
hydrology, as in classical hydrology, then the task of the systems hydrologist
Iy grestly simplified. Instead of dealing with multiple inputs, it is possible to
deal with alternating inputs: thus we might consider the precipitation and
the potential evaporation for a given catchment as analogous to coutrols on
a storage tank operated in such & way that when one valve is open, the other
15 shut and vice versa. While o complete model would have to teke care of
simultaneous multiple inputs, the first approximation could follow the classifi-
cation of Hoyt,

In the systems formulation, it is only necessary to use tweo phases. The first
phase would be the rainless period. The initial storage in the different parts
of the watershed would be determined by the previous history of the system.
The verintion in that storage would be determined by the natural rocession
of storage plus the effect of potential evapotranspiration on the soil mnisture.
The second phase would be the rainy period. The initial condition: would be
set by the history of the system during the previcus rainless period in which
evaporation and transpirarion would be neglected leaving precipitation as the
only input.

The decomposition of the total hydrograph into components is shown in
figure 4-5, which is based on o figure by Linsiey, Kohler, sand Pauthus (25).
In figure 4-5, the total hydrograph has been drawn on semilog paper. The
ground water recession is taken to be exponentisl, thus giving a straight line
on this plot. The exponential recession is continued back from A to B, and
B is then joined to the start of the rise of the hydrograph. When the assumed
ground water flow is subtracted from the total hydrograph, the hydrograph
of surface runoff plus interflow plotted in figure 4-6 is obtained,

Again the straight line recession may be extended back from C to D, and
the interflow separated out leaving the surface runoff. Thus, the total hydro-
graph has been divided into three elements—ground water flow, interflow,
and surface runoff—ench of which is plotted as a triargle on semilog paper.
This figure is reproduced here as an illustration of a partieular coneept of the
components of the hydrograph without any comment on the sxtent to which
it.reflects the position in most natural hydrographs. Whether we approach the
problem of runoff prediction from s classical or a svstems viewpoint, it is
necessary to make some assumptions as a basis for the runoff prediction. The
division of the runoff cycle into phases and the division of the runoff hydro-
graph into the three components described above are examples of such
assumptions.
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TFreuue 4-3,—Hydrograph of total flow.

The Rational Method

During the latter part of the 19th century and earlier part of the 20th
century runoff was predicted in one of two ways, Most engineers used em-
pirical formulas which were derived for particular cases and then applied to
otlier cases on the assumption that conditions were similar enough for the
predictions to be of some value. The second method used was that which has
eome to be known as the “rational method.” In this review there is little need
to examine the empirical fermulas as they were ad hoc models whose param-
etors were derived for one particular ease and then used in a wider context.
The rational method, however, waz essentially a procedure and, as its name
imylies, was an attempt to approach the problem of runoff prediction ration-
ally. The assumptions which it made were unduly restrictive but, nevertheless,
it is interesting to discuss this approach here as it was the one which lead
uitimately to the development of some important methods in classical and
modern hydrology.

Though the rational method is often dated from the papers of Kuichling
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28) and Lloyd-Davies (26), the method is clearly outlined in a paper by
Mulvaney (28) presented to the Institution of Civil Engineers of Ireland in
1851. In this paper, Mulvany gives & clear exposition of the concept of the
time of concentration and its relation to the maximum runoff in the following

terms: ’
The first matter of importance to be ascertained in the case of o small or mourtainy
cntchment is the time which a fiood requires to astain its maximum height, during the
continuance of & uniform rate of fall of rain, This may be assumed to be the time neces-
sury for the rain which Fails on the most remote portion of the catchment to travel to
the oputlet, for it appears to me that the discharge must be greatest when the supply
from every portion of the catchment arrives sim ultaneously at the point of discharge
supposing, us above premised, the rate of supply to remain constant, and this length of
time being ascertained, we may assume that the discharge will be the greatest possible
under the circumstances of o fall of rain ocenrring, of the maximum uniform rate of
fall for that time,

Mulvany then cites the example of & eatchment with o time of concentrs-

tion of 3 hours. He points out that 1 inch of rain falling in 3 hours on such a
catehment would give a greater flow than 2 inches of rain falling in 24 hours.
He goes on to discuss the factors which affect the time of concentration as
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follows:

This question of time ns regards any catchment, must depend chiefly on the extent,
form and rate of inclination of its surface; anel therefore one great object lor investi-
gation is the relntion Letween these causes and their effect; so that, haviang sscertained
the extent, form and nverage inclinution of any catehment, we may be able to determine
in the first place, the duration of constant rein required to produce a maximum dis-
charge, nnd consequiently to fix upon the mazimum refe of rainfall applicable to the
ense. It is evident that, a5 o space of time is reduced, the rate of maximum rate of ruin
is incrensed.

Mulvany was concerned with the maximum rate of runoff and that he
assumed a constant rate of rainfall, The circumstances of the develepment of
the rational method have been described clsewhere by Dooge (£1).

The original rational method which was used to predict the maximum run-
off was medified in the 1920's to allow for nonuniform intensities of rainfall
during the storm and also to allow fur irregularities in the shape of the catch-
ment. The first proposal for adapting the classical rationsl method to take
aceount of variations of rainfall within the storm period appears to have been
that by Hawken and Ross (15, 37). A few vears later, o second variation was
introduced to overcome the defect in the original rational method that—in
certain irregular shapes of catchment encountered in the design f sewerage
schemes—the predicted discharge from a part of the catchment could be
greater than the predicted discharge from the whole of the catchment. The
first medification of this type appears o be that due to Reid (34) in 1926.

Aethods of handling the nonuniform rainfall can also be studied in papers
by Rousculp (38), Coleman and Johnson (&), Judson (21), Ormsby (388),
Harte {{4), and Laurenson (25). The method of allowing for & higher runoff
from a partial area depends on the type of rainfall formula used. The methods
are deseribed in papers by Riley (85), Eseritt (£5), and Munro (29). Some
af thege methods for allowing for the nonuniformity of rainfall and irregu-
larity of area are discussed in somewhat more detail in lecture 8, {see “Time-
Aren Metheds”), where they are related to the process of deriving synthetic
unit hydrographs. In both of these lines of development, use was made of a
time-aren dingram, which indicates the distribution of the time of travel from
diffcrent parts of the eatchment.

Figure 4-7 top shows a watershed on which have been drawn isochrones of
eqrued travel time. Thus, each point on the isochrone labeled r=4 has o travel
time of 4 hours, that is, it takes 4 hours for water to travel from any point on
that isochrone to the outlet. If o detailed survey of the catchment is available,
the position of the isochrones can be estimated by making allowanee for the
time of overland flow to o channel and then ealeulating the time of flow in the
channel by Manning's formula or by some similar method.

If the area of that part of the catehment whose time of travel is less than
or equal to a given value of 7, is plotted against that value of r, we obtain &
time-area diagram as shown in figure 4-7, boitom left. According to the rational
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Fraure 4-7.—Top: Tsochromes of travel time. Bolfom: Left, time-nrea eurve; right, time-
nrea-concentration eurve.

method, this diagram shows for any value of , the ares which will contribute
to the maximum flow at the outlet due to rainfall with a duration equal to r.
Often it i= more convenient to use the time-area-concentration curve shown
on figure 47, botlom right. The latter is the derivative of the time-area curve,
and 1s base length is equal to the time of concentration {t,). The time-ares-
concentration curve in the modified rational method corresponds to the
instantaneous unit hydrograph (ITH) in the unit hydrograph methed (30).
In applying the modified rational methed, the maximum rate of runoff was
obtained by superimposing the cumulative rainfall pattern (or the rainfall in-
tensity pattern) and the time-area diagram {or the time-area-coneentration
curve). To facilitate comparison, the time seales on the two diagrams were
made the sanx¢ but with the time scale on the time-area diagram rending from
left to right and the time scale of the storm rainfall eurve reading from right
to left. When the time-are-concentration curve and the rainfall intensity
curves were used, the maximum runoff was obtained by superimposing the
maximum rainfall intensity over the maximum of the time-area-concentration
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curve, then multiplying corresponding ordinates of the two curves, and, finally,
summing these products to obtain the maximum runoff. It is easy, in the
hindsight of the systems approach, to interpret and describe this graphical
and numerical procedure s a convolution of rainfall intensity and the time-
area-concentration curve, By sliding onc curve laterally over the other, it was
possible, in the medified rational method, to obtain ordinates other than the
maximum and, with patienee, to obtain sufficient points to define & complete
hydrograph of runoff {12},

In faect, we now realize that these methods developed in the 1920's use the
time-area coneentration curve as & synfhetic unit bydrograph. Before the unit
hydrograph had been tnvented, engineers were deciving synthetic unit hydro-
graphs (or synthetie S-hydrographs) 1n the form of time-ares-concentration
curves {or time-ares diagrams) by using Manning’s formulsa to estimate the
{ime of travel, Beeause such synthetic unit hydrographs were based purely on
transiation and did not take account of storage effects {either in the sewerage
system or on the ground, in the soll, and in the channel network), it is not
surprising that when combined with the true rainfall intensity pattern, they
teaded to overpredict the peak rate of runeff, It is worthwhile noting that in
the original rational method in which a uniform rainfall intensity is assumed,
the error due to sssuming uniform rainfall intensity and the error due to
neglecting storage were opposite in sign. Thus, the predicted peak would not
be as great as in the modified rational method and might in fact be closer to
the true peak.

Those who used empirical formulas for the time of concentration were slso
using a synthetic method; this time one based on empirical relstionships be-
tween this particular parameter and the watershed characteristics. The ra-
tional method is still quite properly used in eertain routine design problems
such as small roadway culverts.

The rationat method may be considered as & parametric method in which
» simple model is used. The basic formula of the rationsl method is given by:

Qmax=c"£(tc) -4 (1}

in which Quax 18 the estimated peak discharge, C is a coefficient whose value
must be determined in some way, 2{i.) is the intensity of rainfall of the chosen
frequeney for a duration equal to the time of concentration (i), and 4 is the
aren of the catchment. In a recent publiention, Nash (31) pointed out that
the rational method might have been developed on the basis of parameter
optimization. In this case, the data would have been examined to determine
the vatues of " and £ which gave the optimum fit in some defined sense. To
do so for a reliable set of data would be an interesting exereise.

Beeause these lectures are concerned with parametrie hydrology, we have
only discussed the application of the rational method to the prediction of
individual sterm events. Equation 1 ean also be taken in a statistical sense
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m which € represents the ratio of the peak rate of runcff of a given frequency
to the rainfall of the same frequency and a duration equal to the time of con-
centration. The use of the rational method in this way is outside the scope of
the present lectures, in which we are largely concerned with the rational
method as a forerunner of unit hydrograph procedures.

Unit Hydrograph Concepts

The unit hydrograph concept and its development was one of the high-
lights of the classical period of hydrology. Figure 4-8 reproduces figure 1 of
Sherman’s basic paper (40) published in 1932, In this figure, Sherman illus-
trated for the ease of & triangular unit hydrograph the effect of rain during
suceessive standard periods in building up the shape of the surface runoff
hydrograph through the superposition of displaced triangular unit hydro-
graphs, which combine to give the total runoff hydrograph. If the duration
of effective precipitation is greater than the base of the unit hydrograph, the
runofl becomes constant. For about 235 years, unit hydrograph methods were
widely used in applied hydrology without a recognition of the essential as-
sumplion involved, namely that the relationship between rainfall excess and
surfnce runoff was that of a linear time-invariant system.

It is instructive to quote a elassical formulation of unit hydrograph pro-
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cedures and {o compare this with the systems formulntion of the same basic
iden. One of the best classienl discussions of unit hydrograph procedures is
that given in “Elements of Applied Hydrology® by Johnstone and Cross (26},
They state the basic propositions of the unit hydrograph as follows:

We are now in a position to stuty the three basic propositions of unitgraph theory, all
of which refer solely to the surfnce-runoff hydrograph:

I. For a given drainage basin, the duration of sutfnce runoff is esseptially constant
for all uniform-intensity storms of the same length, regardiess of differences in the
totul voluine of the surfper runoff,

IT. Forargiven drainage basin {wo uniform-intensity storms of the same length produce
different total volumes of surface runoff, then the rates of surface runoff at corre-
sponding Limes ¢, nfter the heginning of two storms, are in the same proportion
to cach other as the tolal velumes of the surface runoff,

II1, The time distribution of surfnee runoff from r given storm period is independent
of coneurrent runoff from antecedent storm periods.

The classical statement of unit hydrograph theory quoted above can be
summarized in six words: The system is linesr and time-invariant. Proposition
I and proposition II together make up the property of proportionality. If,
the length of input remaing constant but the volume of input increases, then
the base length of the outflow is not altered, but the ordinates of the outflow
are raised in proportion to the volume of input. Proposition III is the principle
of superposttion, which allows us to decompose the input into separate parts
and then superimpose on one another the separate cutputs to obtain the total
cutput.

The classical manner of stating the unit hydrograph conecepts and proper-
ties was not questioned until about 1855, Nowadays, we make the assumption
that the watershed, in converting precipitation excess to direet storm runoff,
acts as a linear time-invariant svstem. It is interesting to note the comments
which Johnstone and Cross {20) make following their outlining of the three
basic propoesitions:

All these propositions nre empirieal, It is not possible to prove them mathemnéically.
Tn fued, it is & rather simple matter fo demonstrate by rationnl hydraulic nnalysis that
not a single one of them is mathematicsily accurnte. Fortunately, nature is not aware
of this,

In this regard our position has not changed. We are aware thet the assump-
tions of linearity and time-Invariance for & catehment system are not strictly
correct, but we are content to ndopt them as long as they are useful. We can
look at the fundamental equations of open channel flow and show that they
are nonlinear; we can look nt laboratory results which show that the runoff
from model watersheds is nonlinear; we can look at ficld results and demon-
strate their nonlinearity. Nevertheless, we cling to the assumption of linear
operation. The reasons are that lnear metheds are relatively simple, are by
far the best-developed methods we have, and that the resulis obisined by
using these linear methods are acceptable for engineering purposes. We will
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continue {o use them until such time as workable nonlinear methods ars de-
veloped and that are more accurste without being unduly complex or
costly.

The original vnif hydrograph developed by Sherman was s continuocus
hydrograph of runoff due to uniform rainfall in unit period. Later, Bernard
{4} introduced the ides of a distribution graph in which runofl is expressed,
usually as a percentage, in terms of volumes of runoff in standard pericds.
Where the flow is subsequently routed through reservoir stornge or channel
storage, it may be convenient to use a distribution graph rather than a unit
hadrograph.

The S-hydrograph, or S-curve, is defined as the hydrograph of surface
runcll produeced by & continuous effective rainfall of 1 inch per hour, If the
unit hydrograph has been normalized to unit volume, then the D-hour unit
hydrograph corresponds to rain falling ot a rate of 17D inches per hour for
D hours, For a pate of 1 ineh per hour Iasting for D hours, the ordinaies of
the D-hour unit hydrograph have to be multiplied by D. In the S-hydrograph,
there are D inches in the first unit period of D hours, D inches in the second
unit period, 2 inches in the third unit period, and se¢ on. The equation of the
S-hydrograph is, therefore given by:

S8y =D 3 hpl{i—iD) for aD<i<{(n+1)D {2)

=0

One of the big advances in classical unit hydrograph theory was the dis-
covery that the S-hyvdrograph could be used t¢ convert o unit hydrograph
from one unit duration to pnother. Before this, it was necessary to find a
storm of the appropriste duration to derive the required unit hydrograph
from the data. I you wanted a §-hour unit hydrograph, you had to find a
6-hour storm, or & storm whose durstion was an even submultiple of 6 hours
50 that the shorfer unit hydrograph could be developed and then shifted and
superimposed to give o B-hour unit hydrograph. Figure 4-9 shows the classical
dirgram of the relationship between the S-hydrograph and the unit hydro-
graph. Onee the S-hydrograph has been obtained from any unit hydrograph,
a unit bydrograph of & new given period can be derived from it by displacing
the S-curve by the required amount, subtracting the ordinates of the two
S-curves, and normalizing the volume. This process ean be represented by
the equation:

St~ 8¢~D)

ho(l) = 7

(3)

As D beeomes smaller and smaller, the process represented by the shove
equation comes closer and closer to the definition of differentistion, and in
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the limit we have:
h ft}-d [S(t)] (4)
1% (ﬂ, A 1

The hydrograph defined by equation 4 is known as the instantaneous unit
hydrograph ([TH). 1t was developed in hydrology from hydrologic concepts
rather than from syslems analvsis where it was already known under a variety
of names, but most commeondy as the impulse response (see pages 20 and 25,
lecture 13, The maln motivation for its derivation in hydrology appears to

TO

| LAG=34hr. |

v
L
J
o
o
=}
=z
w
T
©
=
T
O
=24
=y

“‘ ——
] i T
7e Qg 120 144
HOURS

Frorre 4-0.--1"nit hydrograph and S-curve for 1,200-square-mile drainsge ares.




88 TECHNICAL BULLETIN NO. 1468, U.8, DEPT. OF AGRICULTURE

have been the need to simplify the treatment of synthetic unit hydrographs.
For a finite period unit hydrograph, the shape naturally depends on the unit
period {2}, and it was discovered that for very short durations the changes
in shape were quite slight. SBome workers in the field suggested going to the
limit and using an 1UH, thus getting rid of the variable D,

Once the IUH is aceurately known, any other finite periad unit hydrograph
can be obtained through the S-bydrograph. Indeed, the time-to-peak of a
fnite period unit hydrograph of any given duration ean be found dircetly
from the IUH. The penk of the finite period unit hydrograph, given by equa-
tion 3, is the time for which the above expression is & maximum. Since the
derivative of the S-hydrograph is the IUH X, (t), then the condition for the
maximum ordinate of the finite period unit hydrograph hip(¢) is:

Mol —h{—DY=0 (3)

that is, the peak of the finite period unit hydrograph oceurs at the time when
the ordinate of the ITUH is equal to the ordinate at a time D carlier. The
ordinate of the finite period unit hydrograph at any time is given by the
integral expression:

1 [
ho(0) i})f he() dt (6)

=D

Looked at from the viewpoint of classical bydrology, all of these results have
to be proved before we are convineed that the TDH can be used to derive any
other expression which we wish., From a systems viewpoint, we know {rom
our basic theory that for a linear time-invariant system, the impulse response
contains all tlie necessary information about the behavior of the system.

The process of deriving finite period unit hydrographs from an S-hydro-
graph is not as ensy in practice ns it appears on first sight. This is because the
S-hydregraph may not be known continueusly, but only at eertain intervals
of time. If we start off with & unit hydrograph which is defined only for 6-hour
intervals, the derived S-curve will be defined for the same intervals. We ean
certainiy try to derive the unit hydrograph for a period of 1 hour, 2 hours,
or 3 hours from this S-curve, but the results may not have much meaning.
I there are inaccuracies in the original unit hydrograph, then there will
probably be oscillations in what would be & smooth S-hydrograph. These
oscillations my lead to grossly errongous ordinates in 8 second unit hydro-
graph derived from the S-hydrograph. Though a smooth TUH will always
produce o smooth S-hydrograph, there is no guarantee that the S-hydregraph
derived from a smooth finite period unit hydrograph will itself be smooth.
Somie of the problems at the end of this lecture arc designed to show the pit-
falls in this particular connection. Though hydrologists attribute oscillations
i S-curves to measurement and other errors in the data, it is quite possible
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for oscillations to arise in S-hydrographs derived from synthetic finite period
unit hydrographs which appesr physieally reasonable,

Separation of Base Flow

The tirst step in analyzing an actunl hydrograph is to separate the base
flow [rom the direct storm runoff, Hydrologie literature abounds with methods
for making this separation. The effect of different types of storm event on the
hydrograph are shown schematically in figure 4-10 which are due to Horton.
Figure 4-104 shows the effect of an intense rainfall of short duration. Be-
eaust of the high intensity there would be surface runoff, but due fo the short
duration and conseguent small volume, the feld moisture deficit might not
be satisfied, and, thus, there would be no recharge to ground water. Under
these conditions, the base flow recession before and after the storm event
would fotlow the same general curve, and the response of the hydrograph
would consist of a sharp rise and sharp recession back to the samne master
curve of base How recession,

On the otler hand, if we have prolonged rainfall of small intensity, we get
the condition shown in figure $-108. In this case, the intensity dees not exceed
the potential infiltration rate, and, thus, there is no surface runoff. However,
the rainfsll is sufficiently prolonged to make up the feld moisture + oficiency
and to give a recharge to grownd water shortage. The effeet of this recharge 1s
to increase the amount of ground water outflow or baseflow, and the recession
cueve 15 shifted as shown in a stylized fashion on figure 4-108. In this case,
the recession eurve after the rainstorm has the same shape as the recession
befpre the raiustorm but is shifted in time. More usually, however, in storms
which are of consequence in hydrologic analysis, both of the above effects are
rombined so that we get both the distinet peak and & measurable amount of
surface runoil on the one hand and a recharge of ground water giving & shift
in the master recession curve on the other. This mixed condition is shown in
figure 4-10C. One of the first steps necessary in unit hydrograph analysts is
to separate out these two effeets.

if during the analysis of a discharge hydrograph, we encounter # storm
event of the first tvpe, as shown on figure 4-104, where there is no recharge
to ground water, then there is no problem in separating the surface runoff
from the basefow. Al that has to be done is to join up the line of recession
before and after the storm event and treat all fow above this single master
recession curve ag surface runoff. In the second case, as shown on figure
4-10C, where all the flow is base Sow, no difficulty arises because this is not
a storm event from the point of view of surface runoff.

For a storm event giving rise to both surface runoff and ground water re-
charge, some method of separating the two must be applied if the unit hydro-
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Figrae 4-10.-~Hydrograph response to different types of storm events: A, SBurface water
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graph of direct runoff is to be derived. The applicd hydrelogist has quite &
wide choice of such separation technigues to draw from in the technical Litera-
ture, but few of them are soundly based. In these methods, the base flow is
separated in some arbitrary fashion and then the total precipitation is ad-
justed so that the volume of effective precipitation is equal to the volume of
direct storm runofl, There is no atterpt to link inflirating rainfall with
ground water reeharge and hence, with ground water outflow. Transition from
the recession curve before the storm cvent to the recession curve after the
storm event is usunlly taken as being of relatively lLittle interest in applied
hydrology, but this is a grave error. In fact, the form of this reeession gives us
the shape of the ground water unit hydrograph, a concept which has heen
studiously ignored by applied hydrologists over the past 35 years, If a biock
dingram is drawn of the procedure described sbove, it would show an open
loop between the infiliration into the soil and the ground water outflow. This
would indieate that these two quantities would have to be cither separately
measured or else eonnceted by a subsystem. In the systems formulation of
catehmoent response, this open loop is closed as shown in figure 1-8 (p. 16).

Alost workers in applied hydrology are ready to accept that a good repre-
sentation of the recession curve can be got by fitting a straight line {o the
recession part of the hydrograph plotted on semilog paper. This is equivalent
to assuming that the ground water reservoir acts as a single linear reservoir.
Once this assumption has been made, the maximum benefit should be obtained
from it and the further assumplion made that the ground water reservolr acts
as a single lincar reservoir during the recharge as well as during FECession.
Figure 4-11 shows the application of this approach. The total precipitetion
is taken as being divided into precipitation excess and a constant rate of in-
Gltration: this represents a ¢-index approach rather than the use of 2 more
sophisticated infiltration cquation. The first part of the infiltration will re-
charge ground water &t a constant rate. The ground water hydrograph will be
as shown in figure 413, F'rom A to B during the replenishment of field mois-
ture deficit, the base RBow will continue to decline as before and we will

have:
i—i4
Q=0Qu exp[— (—f)} (7)

From B to C, the ground water reservoir will operate as a linear reservoir
being recharged at a uniform rate (Ro) and the cutflow will be:

— ({18}
K

@={Qs—R.) exp[

J—%—Rg (8}

After the cessation of rainfall and an allowance for time of travel through
the soil, the recharge to ground water will cease and the recession will be ex-







92 TBCHNICAL BULLETIN NC 1468, UU.S. DEPT. OF AGRICULTURE

ponential as before:

(t—te)
@==Cc exP[ 7 ] (8}
The above approach to ground water separation is rational insofsr as it is
Lased on a definite model of ground water behavior. As such, it is superior
to purely empirical rules ustually quoted.

There is little doubt that the actual separation of base fow made in practice
in ad hoe hydrelogie studies is superior to the scparation that would be ob-
tained by a blind application of the rules of thumb and empirical procedures
quoted in the texibooks. This is so because the hydrologist is usually familiar
with the particular watershed under examination. He modifies these empirieal
rules to get & commonsense result based on his own sensitivity to hydrologic
behavior and his knowledge of the watershed. The trouble is, however, that
though the individual separation in ad hoc studies may be reasonably correct,
it makes the comparison of results between one watershed and another very
difficult when there is a Iarge subjective element in the manner of separating
base flow from surface runofi.

In his study of 80 storm events on 48 British catchments, Nash (32) pro-
posed & method of base flow separation which, though not founded on any
physical principle or model, had the great advantage of both being objective

A-B recharge of
soil moisture

B-C recharge of

groundwater

F1gurE 4-11.—Separation of base fow.
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and of affording some scope for investigating the effect of the assumption on
the resuits obtained. He proposed separating the base flow by drawing a
straight line from the start of the rising portion of the flood hydrograph to a
point on the recession such that the time between the end of the effective
rain and the point on the recession was equal to three times the lag between
the center of effective rain and the center of storm runoff. The point on the
recession to which the separation line was drawn could .only be determined
by trial and error. In effect, Nash’s method of separation gives an IUH whose
base length is three times its lag.

Analysis of Complex Storms

Leaving aside for the moment the difficulty of ensaring that the base flow
separation has been correctly made, we turn to a consideration of the problem
of deriving the shape of the unit hydrograph from the surface runoff hydro-
graph due to & complex patiern of effective precipitation. In the early unit
hydrograph studies in the 1930's, the procedure was esscatially one of trial
and error. This approach hes already been referred to in lerture 1 and illus-
trated on figure 1-9. Without an objective eriterion for the acceptance or
rejection of a trial unit hydrograph, the subjeetivity of such an approach was
necessarily very high.,

At the end of the 1930's, some less subjeetive methods were developed,
but these still did not have the objectivity required of a really scientifie
method. In 1939, Collins () suggested an iterative method in which a trial
unit hydrograph is assumed and applied to all periods of rainfall except the
maximum. The trial surface runeff hydrograph thus generated is subtracted
from the total measured hydrograph to give a net runeff hydrograph, which
can be taken as the runofl due {o the ignored maxi.cum rainfall in a unit
period but which will also contain the errors in outflow due to errors in the
trial unit hydrograph. If this net hydrograph is then assumed to be the outflow
due only to the maximum rainfall in a unit period and ordinates are adjusted
by dividing by the volume of the maximum rainfall, we obtain & second ap-
proximation fo the shape of the finite period unit hydrograph. This process is
repeated until there is no appreciable change in the ordinates of the trial unit
hydrograph. Another special method for determining the shape of the unit
hydrograph from a complex runoff unit hydrograph is the graphical method
described by Sherman (47). If consistently applied without modification,
metheds such as these could be ranked as objective methods of hydrograph
derivation since strict application of the method would always give the
same result. In practice, they were rarely objective since any anomalies in the
derived bydrographs were arbitrarily corrected by the investigator.

In the 1940’s, the derivation of the unit hydrograph from complex storms
was based on the solution of the set of simultaneous equations giving the
ordinates of the finite period unit hydrograph {or volumes of the distribution
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graph) and the rainfall volumes in each unit period. Those cquations, which
have already been given in lecture 1 may be written as:

Yo=Zghs {10a)
y1=3‘,5}io+l‘ohg (10[))
Yo =Toho+Th,+ 2ohs (10¢)

ymzxmhn"_xm—lhl-I_ (Iom)
Y1 = xmhl_{— (l(}n)

Y (10p)

This set of equations cun, of course, be summarized as:

k=i
= ZI;J!.‘_;; (11)

k=
In the above set of equations, the values of Yo, Y1, #p &re assumed to be
known, the values of zy, 13, T, are known, and the problem is to find
the values of hy, Ay, Ap—m. ¥rom a mathematical viewpoint, this can he
done by solving the first oquation for he,; substituting this value in the second
cquation and solving for &; substituting for the value of kg and A in the third
equation and solving for hy; and so on until all the unknown values of k arc
determined. In practice, the existenee of errors in the values of the effective
precipitation z, or the dircet runoff y, will produce crrors in the ordinates of
the unit hydrograph . The substitution of an inexact value of hg in the second
equalion will produce an error in &, and the substitution of these two erronc-
ous values in the third cquation will produce an error in 4. Under cortain
circumstances, the crror in the values of h, that is, in the ordinates of the
umit hydrograph, can grow rapidly and quite unreal values arc obtained in
the solution for the later ordinates of the unit hydrograph,

Several methods have been proposed to overcome this disadvantage of the
above direct algebraic solution by forward substitution. One of those was the
metnod of least squares, whose use is mentioned by Linsley, Kohler, and
Pavtbus (25). The method was developed by Snyder {42) in the United
States and Body (3) in Australia and programed for the digital computer.
The least squares method of unit hydrograph derivation will be discussed in
greater detail in lecture 6. Another approach to this preblem was that of
Barnes (3), In his approach, any oscillations oceurring in the unit hydrograph
were chminated by deriving the unit hydrograph in the reverse order. This is
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in line with general expericnce in numerical methods—a ealeulation which is
unstable in one direction is usually stable if taken in the reverse direction,
Barnes further suggested that the estimated effective precipitation should be
adjusted until the unit hydrograph obtained in the forward and reverse diree-
tions was substantially the sa: e,

Although the derivation of the unit hydrograph from the sutflow hydro-
graph due to a complex storm (that is, the problem of identificetion) is a
difficult one to solve, the predietion of the flow hydrograph due to a complex
storm when the unit hydrograph is known is relatively easy. All that is re-
quired is the appliention of each of the volumes of effeetive precipitation in
p. unit period to the known finite period unit hydrograph. To obtain the out-
flow hydrograph, carcfully locate each volume of effective precipitation in
time and then sum the results, In terms of the set of simultaneous equations
105 to 10p, the problem is simply to determine the left-hand side knowing all
the values of z and all the values of A.

Classical hydrology nearly always made use of a finite period unit hydro-
graph and, therefore, of the superposition of a finite {and usually small)
number af block rainfall events, Research workers who are interested in plac-
ing the classical unit hydrograph approach on a sounder theoretical basis
tended to use the TUH rather than a finite period unit hydrograph. The pro-
cedure for prediction is similar in this case cxeept that summation is replaced
by integration. The relationship is shown on figure 4-12. In the upper part of
the figure, the rainfall fulling between the time r4-dr has been shown as
shaded. The volume of precipitation represented by this shaded area is z(r)dr.
If A(1) is the IUH produced by & unit volume of precipitation excess falling in
an infinitesimal short time at (=0, then the shape of the hydrograph due to
the shaded area of precipitation will be the same as the shape of this [UH,
but the ordinate: must be multiplied by x(r)dr, and the whole hydrograph
must be displaced along the time axis by an amount . Each element of pre-
cipitation excess will produce a similar hydrograph.

Instead of concentrating on the effeet of all times in the future of a given
clement of precipitation excess, wo ean concentrate on the outflow at a given
time and examine how this is made up from contributions from precipitation
excess af all times in cthe past. As seen from figure 412, the contribution of the
shaded area of effective precipitation to the outflow at a time, ¢, will be:

sylty =x(r)h(t—=) dr (12)

Beeause all elementary areas of precipitation excess whose value of r is less
than ¢ will contribute to the outfiow at a time {, we get [or the outflow the
relationship:

9 (0 = f 2(r)h{i—7) dr

—_—

which is the familiar convolution relationship for & luraped linear time-invari-
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=

dr

x(T)h{t-¢v)dr

f—t- r—*T

yit)

{

.
|

Figure 4-12.—Convelution of inflow with TUH.

ant causal system. The above derivation is inherent in the time-arca version
of the rational method, or isochrone method, as this method is sometimes
known. The above physical demonstration parallels the purely mathematieal
derivation of the convolution relationship given in lecture 1.

In the 1950's, a number of research workers in hydrology, working inde-
pendently of one another, began te grasp that unit hydrograph methods
represented the application in hydrology of systems technigues used in other
disciplines. An essential step forward here was the recognition that the unit
hydrograph method was merely the assumption that the watershed under
examination was converting effective precipitation to storm runoff in a linear
time-invariant fashion. The gradual development of the systems formulation
of hydrologic problems can be traced in publications by Larriev (24), Nash
(801, Dooge (10), Amoroche and Orlob (2), Iuchment (22), and Roche
(86). The changes brought about by this new viewpoint can be appreciated
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if the references given are compared with the treatment of the corresponding
topics given in the number of textbooks on hydrology published in the 1940's
by Meinzer (27), Foster (13), Johnstone and Cross {20), Wisler and Brater
(45), Linsley, Kohler, and Paulhus (25), and the American Society of Civil
Engineers (1).

All of the concepts and methods of the classical unit hydrograph approach
ean be neatly formulated in systems nomenclature. The only necessary as-
sumptions in the unit hydrograph approach are those of linearity and time-
invariance (10). Once these sssumptions are made, the relation between the
input, the output, and the system response are given by the convolution
cquation. Where the inputs and outputs are defined continuously, the con-
volution cquation takes one of the eontinuous forms discussed on pages 28 to
35 of lecture 1. The various methods available for the solution of the continu-
ous convolution cruation are discussed in detail in lecture 5. If the input and
output data are only defined as discrete points, then the unit hydrograph
approach can be formulated in terms of the discrete forms of the convolution
cquation discussed on pages 35 to 40 of lecture 1, and the methods of solution
used in these cases are discussed in detail in lecture 6.

Problems on Classical Methods

1. The time-ares vartations of the rational method enable the complete
hydrograph to be predicted for a given storm. What is the relationship be-
tween this method and the unit hydrograph method?

2. Table 8 in the Appendix shows the efiective rainfall in inches and the
runoff in cubic feet per sccond for the Big Muddy River at Plumfield, I,
for April and May 1927. Derive the 24-hour unit hydrograph from these
figures.

3. The figures defined by function 9 in Appendix table 2 when reduced to
unit velume represent the ordinates at hourly intervals of a 2-hour unit hy-
drograph. (1) Determine the runoff if the volume of effective rain in succes-
sive 2-hour periods is giver Dy funetion 6 in Appendix table 2. (2) Caleulate
the ordinates of the S-curvand from these derive the ordinates of the 8-hour
unit hydrograph. (3) What would be the effeet of ignoring the variation of
the intensity of effective rainfallz"#he given storm? (4) Derive the 1-hour
unit hydrograph.

4. Carry out the calculations indicated in guestion 3 for the case where
the 2-hour unit hydrograph is defined by a triangle of unit volume whose
ordinates at hourly intervals are in the proportion indicated by funetion 8 in
Appendix table 2, Comment on the results obtained.

5, Assume that the hydrograph of effective precipitation is given by fune-
tion 12 on Appendix table 1 and the hydrograph of storm runoff by function
13 on Appendix table 1. Determine as accurately as possible the form of the
ITH.
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6. List & number of conventional methods used for separating the base
flow and the storm runefl, Compare these methods critically, and give your
opinicit as to the probable order of merit.

7. An cfiective rainfall lasting 2 days produces an outfiow lasting 6 days.
If the daily volumes of outflow are distributed aceording to function 11 in
Appendix table 2, apply Barnes method to determine the distribution graph
for the cnichment.

8. lor the outflow given in problem 7, show that a second unit hydrograph
can be derived from the same outflow hydrograph. Is it possible to prove that
there are no further exact solutions except these two?

9. {1} For the putput oblained in either question 3 or question 4, make &
small alteration in one or more ordinates of the output and then seck to derive
the unit hydrograph for the original input and rhe adjusted output, Compare
the resulting unit hydrograph with the original unit hydrograph. (2) For the
same example, make an adjustment in an ordinate of the input leaving the
output unaltered and again proceed to derive n unit hydrograph. Contrast
the effeets of errors in the input and the output.

10, Derive a matrix formulation for the Colling’ method of deriving a unit
hydrograph.
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LECTURE 5:
IDENTIFICATION BASED ON CONTINUOUS DATA

Transform Methods of Identification

Lecture 5 deals with the identifieation of linear time-invariant systems
where the data arc given in continuous form, that is, by functions of & con-
tinuous variable, Historically, unit hydrograph procedures were first developed
for discrete or quantized data and only later adapted to continuous data.
In a systematic approach, one can start either with continuous inputs and
outputs or with diserete inputs or outputs. Since most hydrologists are more
familiar with continuous mathematies than with discrete mathematics, the
present lextures desl with continuous data before going on to discrete data.
In lectures 5 and 6, we will be dealing enly with the question of identification;
the problem of simulation will be dealt with in lectures 7,8, 9, and 10.

In tackling the problem of system identification, we are trying to develop
objective methods for deseribing the way in which a particular system operates
on inpufs in order to produce outputs. This deseription—which reay be
expressed in graphical, numerical, or functional form—will reflced the general
operation of the system but will tell us nothing about the nature of the $;-tem,
about the nature of any of its compenents, or the way in which these com-
poncats are put together. If we can obtain a deseription of the operation of the
system for some general class of inputs (and if our assumptions of linearity and
time-invariance are reasonable), then we will have little difficulty in pre-
dicting the cutput from the system due to any input belonging to this general
class. If lincarity holds, then we can use the principle of superposition to
predict the output from any shape of input; if time-invariance holds, we can
apply the desceription of the operation of the system obtained from past
-ecords to a future time. These assumptions may appear unduly restrictive,
but the strategy of parametric hydrology is to master the special case of linear
time-invariant systems before relaxing these assumptions,

It was shown in lecture 1 that the assumptions of linearity and time-
invariance allow us to relate the input and output of a particular system by
the convolution relationship:

y{) = fm z{r}h{l—7) dr (1a)

—m

y(t) = [,, 2t~ r)h{r) dr (1b)

—_—

where h{¢) is the impulse response of the system and provides & complete
102
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description of the cperation af the system. If the system is & causal system,
then the relationship between input and output is given by:

y{l) = f_ 2l h{t—1) dr (20)

96 = [ 2(t—7)h(r) dr (2b)

If, in addition to the system being causal, the input is isolated, then we can
write:

g = f 2()h(t—1) dr (30)

i)

y(i) = f 2=k {r) dr (3b)

vrovided the time origin is taken to be not later than the start of the input.
In these circumstances, the problem of system identification reduces to the
mathematical problem of determining the function 2(t) when given the
funetions x () and y{{} and the relationship indicated by equations 1, 2, or 3,
The approach to the solution of the identification problem by transform
methods was mentioned in lecture 1. In these methods, the input, output, and
impuise respounse, which are connected by the convolution relationship:

y(Oy =z (0)*h{t) (4)

arc cach subjected to the same transformation so that:
T(x) =T[x(t)] (5a)

T(y)=Tly()] (5b)
and
T(h)=T[R(D)] (5¢)

These transformed functions are then connected by the relationship:
T{y) =T{x)\T(h) (6)

where A is the operation in the transform demain, which corresponds to con-
volution in the time domain,

I cquation 6—which may be deseribed as a linkage equation (18)—is
simple in form, then the transform of the system response may be expressed
in terms of the transfurms of the input and the output. This transform of the
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impulse response can then be inverted, though sometimes only with great
difficulty, to obtain the system respouse in the time domain:

h(Q) =T-[T(R) ] (7)

The general procedure is illustrated in figure 1~11. There are three separate
stages in the identification process: (1) the transformation of the input and
the qutput (equation 5), (2) the solution of the linkage equation (equation
G}, and (3} the inversion to obtain the impulse response in the time domain
{cquation 7). The etfieney of nny transform method depends on the ease with
which these three operations may be carried out. Mearly all of the methods
proposed for the identifieation of hydrologic systems with eontinuous input
and output, where the input can be isolated, may be eonsidered as transform
methods. These methods are discussed in detail later in this Jeeture, but at the
moment, it is only neecssary te commend briefly on their relationship to
one ancther.

System identification based on Fourier series involves the expansion of both
the input and the output into a serics of sine and cosine terms. In each case,
the voefficients in the Fourier series ropresent the transformation of the
respeetive function, and the determinntion of these Fourier cocfficients
represents the step corresponding to equation 3 above. Because the sines and
cosines are orthogonal te one another, the Yourier coefficients for the input
and output can easily be obtained by integration. If a linkage equation can
be obtained corresponding to equation G, then the Fourier coefficients of the
impulse response can be determined from the Fourier coefficients of the input
and the output (18). The solution of equation 7, that is, the inversion of the
transform, offers no difficulty beeause the impulse response in the time domain
can be reconstituted from its Fourier elements, Though the Fourier method is
largely applicd to periodic data, it can be applied, in the case of an isolated
input, to a system with a finite memory by basing the analysis on the assump-
tion that the input and the output are periodic with a period which is equal
to or greater than the length of the output,

The restriction to isolated inputs and finite memories ean be relaxed by
using the Fourier integral or Fourier transform instead of Tourler series (20).
This was the line of development adepted by electrical engineers in dealing
with transient phenomena. The use of the Fourier transform, however, has the
disedvantage that the problem of inversion is much more diffieult than in
Fourier series. If the Fourier ecefficients of the impulse response are known,
then the impulse response itself is known in the time domain to an accuracy
depending on the number of Tourier terms. In contrast, the Fourier integral is
difficult to invert, particularly if it is only knrown numerically. In systems
analysis, the Fourier integral is usually replaced by the Laplace transform to
enabic us to handle unstable systems or systems whose stability is in doubt.
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The numerical inversion of the Laplace transform (6} is even more difficult
than numerical inversion of the Fourier integral.

The first transformation method used to analyze hydrologic data was the
method of moments proposed by Nash (17) in 1959. From a theorctical point
of view, thc moments (and the cummulants which will be discussed later) can
be derived from the Fourier integral or ihe Laplace transform. Moments and
cumulants share with the Fourier integral and the Laplace transform the
advantage of a simple linkage equation coupled with the disadvantage of
difficulty of inversion,

Dooge (9) has proposed the use of Laguerre functions in place of Fourier
analysis. Laguerre analysis shares with the Fourier series the advantage of
orthogonality and with the Fourier transform the property of covering the
range from zere to infinity. However, Laguerre analysis has the disadvantage
of requiring & more complicated linkage equation, which makes the deter-
mination of the coeflicients of the impulse response numerically less stable
than where the linkage equation consists of a single term.

Analysis by Fourier Series

The definition and properties of Fourier series and other orthogonal func-
tions were discussed in lecture 3 {see pp. 86-93). In the present section, we are
concerned with the application of Fourier series to the identification of linear
time-invariant systems. For such a system, the input, impulse response, and
putput are connected by the convolution relationship:

g(8) = f” () h{t—r) dr (78)

—_—

If the system is eausal, this relationship ean be written as:

gy = f 2(r)h(t—1) dr (7b)

—

and if the system is causal and has a finite memory M, then we have:

-t

R{t) = j 2(r)h(t—7) dr (7c)

t—=ar

Where the input is periodie with & period T, the output will be given by:

Il

y (kD) = [ e +kTIR(—1) dr (8)

i—ar

If the period of the input (7') is greater than the sum of the duration of
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input (¥) plus the memory length of the system (Af), that is, if—
T2 (M-+N) (9a}

then the value of the output y will return to zero during each period. Equation
8 can be replaced by the equation for an isolated output due to an isolated
mput:

y(t) = f 2(r)hll—1) dr (9b)

=

which is seen to be identical with equation 7¢. An isolated storm event can be
analyzed by Fourier methods provided the essumed period T is greater than
the duration of output, which is the condition given by equation 9a.

In the Fourier analysis of systems, we need to obtain the Fourier coefficients
of the output as a function of the Fourier coefficients of the input and the
Fourier coefficients of the impulse response. These cocfficients appear in the
Fourier series expansion of the three functions:

z{l) = i £ BXP (-.i m;wt) {10a)

Frim=— 00

h{l) = i Yn EXD (z %ﬂ) (10b)

y(6) = i Cpexp (ﬁ':o %ﬂ) (10c)

pr—a

The exponential or complex form of the Fourier series has been used in the
above equations because the linkage equation between the respective coeffi-
clents and other properties take 2 particularly simple form in the complex
coefficients. Since k(t) is zero for values of £ between t~M and {= T, equation
9b can also be written as:

(b = f 2(r)h(t—r) dr (9¢)

—r

By the property of orthogonality we have:

1 /7 _p21rt)
= _ t B indibg W)
Cp Tuy()exp( 1 T dl

Substitution from equation 9c into equation 11 gives:

1 7 2L AL
Cp= Efu exp (—t' —TT-) j:_rsc(r)h(t-—r)dr ai
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Reversing the order of integration gives:

C,= -fr_T ‘.‘c(r)[a exp (wzw)h(t—r)dt dr (13)

which can also be written as:

1 rf AN L P2wi—7
Co= 7l . z(r} exp (—‘t ?)fn exp (—1 T )h(f—f)dt'df (14)

Performing the inner integration with respect to {{—r) gives:

Cp= f‘ x{r) c*{p( pz;,”) vp dr {15a)

i .
C,,=‘fpf .'G(T) CXp (-—-?: B*,;:“) dr (15b)
=T
so that on integration with respeet to r we obtain:
Co=Trvpr¢p (18)

which is the required linkapge equation between the Fourier coefficients of the
output C,, the Feurier cocfficients of the input ¢, and the Fourier coefficients
of the impulse response ¥,,.

In practice, the linkage is not quite this simple, because for a real function
the exponential Fourier coefficlents will be complex. Accordingly, it is pre-
ferable to write the output in terms of cosine coefficients (Ax) and sine coeffi-
cients {B:), the input in terms of cosine coefficients (ax) and sine coefficients
(), and the impulse response in terms of cosine coefficients a. and sine
cocfhicients 8:. Beeause we have:

=13(Ar—1B:) (17a)
cr= Y4 (ar—iby) (17b)
Ye= 35 (cr—1Bs) (17c)

equation 16 can be written as:
14 (Ar—~1B:) =T Y5 (ax—1bi) 32 (cr— 1) (18a)

which the real part gives:
T
AL-= E (a;,ak—bkﬁk) (le}
and the imaginary part:

T
Bk= é‘ (Gkﬁk“}‘btﬂk) (180)
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In system identification, we need to express the coefficients of the impulse
response (e and 3) in terms of the coefficients of the input {a and b) and the
coefficients of the output (A and B). These are obtained by solving equations
18b and 18¢ for a: and £, getting:

2 G;,Aghf*bek

S Tkt (192)

8= 2_ . 2B — A,

T al4b2 (19b)

Once the values of o: and 8, have been obtained, the form of the impulse
response is casily determined since it is given by:
X L N
R{ty=1Y4aet 3. ({n cos @Hn sin ;"—2’-’-‘) (20}
k=1 T T
If only & limited number of coefficients are determined, the effect is that the
bigh frequency components neglected by the truncation are not included in
the impulse response. Beesuse hydrologic systems are heavily damped, the
neglect of high frequency components does not give rise to appreciable error.
The linkage equation derived above is for Fourier coefficients defined in
terms of a continuous function. If the data were defined continuously, it
would be possible to compute these coefficients cither by Gaussian quadrature
formula based on a very large number of equally spaced sample points. In
lecture 6, the same linkage equation is obtained for the pulse response where
the input and the output are defined discretely. In the latter case, the linkage
equation was derived and applied by O'Donnell (18) to actual data of surface
runoff.

Analysis by Fourier and Laplace Transforms

As mentioned in lecture 3, the Fourler and Laplace transform techniques
have been widely used in the analysis of nonpericdic phenomena {12, 20}, In
these cases, a simple linkage equation can also be found. Most hydrologic
systems are inherently stable and, thus, could be analyzed by Fourier trans-
forms; however, Laplace transforms are more widely treated in the engineering
and mathematical literature, and the tables of transforms are more extensive
(12, 23). In lecture 3, both techniques were mentioned and both will be dis-
cussed in this lecture.

The Fourier transforms of the input, output, and impulse response are
given by:

X(w) = f " (1) exp(—iot) dt (21a)

—_—
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¥{w) = fﬂ (£} exp(—iut) dl

-—

His)= f" R{t) exp(—iwt) dt

—

For a linear time-invariant system, we have the relationship:

y(t) = fﬁ () h({i—r1) dr (22)

—

Tt is necessary to find the linkage equation between the Fourier transform
of the output and the Fourier transforms of the input and the impulse response.
Substituting from cquation 21 into equation 22, we obtain:

¥ (w) = f exp{ —iwl) f s(r)h{t—7)dr dt (23)
Reversing the order of integration gives:

o

r=[ 2 [ " exp(—iwl)h{t—r)dt dr (24)

Replacing ¢ by ({—7) as a variable of integration in the inner integration and
rearranging expf —1wt) gives:

¥i(w) = fu (7} exp{—iwr) fﬂ exp[ —iw(l—r) h{t—r)d(i—1) dr (25)

and perferming the inner integration gives:

¥(w) = f " £(s) exp(—iwt) -H({w) dr (268)

=0

—H(w) f " 2z} exp(—iwr) dr (26b)

Performing the remaining integration then gives the required relationship:
Y{w)=H(w) X(w) (27)

As compared with analysis by Fourler series, the coefficients of the Fourier
series analysis are replaced by the continuous functions of the Fourier trans-
form. If we sllow for this difference, the linkage equation given by equation 27
is seen to be of the same form as the linkage equation for Fourier analysis given
by equation 16 above.

While the form of the relationship shown in equation 26 is suitable for
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analytical purposcs, it is hiecessary for the purposcs of calculation ts separate

the real and imaginary part of the Fourier transform., Thus, we need to write:
X{w) =Xg(w) +iX1 (w) (28a)
Y(w)=Yilw)+iVr{w) (28b)
H{w) =He{w) +iHy(w) (28c)

Substituting the expressions from cquation 28 into equation 27 and cquating
the real and imaginary parts, we obtain:

Ya(w) =He(w) Xplw) ~Hr{w) X1{w) (29a)
Yi(w) =Hy () Xr(w) + H;{0) Xplo) (29b)

In the identification problem, we need to express the real and imaginary
parts of the Fourier transform of the impulse respanse in terms of the real and
imaginary parts of the Fourier transforms of the input and the output. These
are given by

Xn{) ¥Velw Nr{e)YYrfe

Hp(w) = #{ EYR?&)Z:‘:’;E:))SNJ (30a)

Xplw) Vr(w) — X7 {0) Yelw)
Xepl(w)+ X {w)?

In electrical engineering, it is unusual to express the Fourler transform of
the system in terms of the amplitude and the phase angle. In hydrologic
systems, the formulation of equation 30 is prebably more convenient.

The determination of Hp(w) and Hi(w) only specifies the impulse response
i the frequency domain. To find the description of the impulse response in
the time domain, it is necessary to invert the Fourier transform H (w). This
is given by:

H;(w) =

(30b)

AL =%fﬂ [Hr(w) coswt~H;(w) sinwt] dw (31a)

-
Because A(£) is real, we have:

Hp(~w) =Hglw) (31b)
and
Hi(—a)=—Hi{w) (3lc)

so that we can write:

k() =lﬁ fq [Hr(w) cos{wt) —Hi(w) sinet] du (31d)

If A(t) is causal, that is, if it is identically zero for all negative values of L
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we can also write:

R(l) =2ﬁf¢ Hr{w) cos{wt) dw (31e)

h(D) =Zﬁf Hi(ew) sin(ut) do (316)

0

Equation 30 may be compared with equation 19. Again, the Fourier integral

approach is similar to the Fourler series approach except for the replacement

of summation by integration. The necessity to integrate suggests the possible

use of values of w determined by the requirements of Gaussian quadrature.
For the bilaternl Laplace transform, defined by:

Fu(sy=23[ f1O]
= fﬂ f{t) exp(—st) dt (32)

the development of the linkage follows exactly the same steps as in the Fourier
transform. However, in the more usual unilateral Laplace transform defined
by

F(s)=2[ (0]

= f ) F&) exp(—st) dt (33)

eare must be taken with the limits of integration.
Tor a lincar time-invariant svstem for which the input is zero for negative
time, we have the relationship:

y() = f” s{r)h{t—7) dr (34)

0

The Laplace transform of the outjut is given by:

Y{(s)= fm y(t) exp(—st) dt

- f” exp(—st) f” 2 (r)h{t—r)dr db




112 TECHNICAL BULLETIN NO. 1468, ['.8. DEPT. OF AGRICULTURE

Reversal of the order of integration gives:

Yi{s)= jm z(r) fﬂ exp{—st)h(t—r)dl dr (36a)

=f“z(1-) exp(—sr) /mexp[:—-s(t—-r)]h(t-—r)dtdr (36b)

Because the system is causal, h{t—7) will be zero for any value of ¢ less than T,
and, conscquently, the lower limit of integration for the right-hand integral
ean be set equal to , thus giving us:

Y{(s)= fﬂ z{r) exp{-sr) ]w expl—s(t—r) Jh(t—r)dt dr {37)

Changing the variable in the inner integration from £ to u=i—r, we obtain:

¥{s)= fﬁ z(r) exp{—s7) fﬁ exp(—suYh{u)du dr {38a)
Y(s)= [ 2(r) exp(—sr)-H(s) dr (38b)

Y(s)=H{(s) ]m z{r) exp(—sr) dr {38¢)
0

Y{s)=H(s)-X(s) (38d)

Oree again, the linkage equation has the same general form as in the case
of Fourier series and Fourier transform. Equation 38d only gives us the
Laplace transform of the impulse response or the system function as it is
sometimes called. The numerical inversion of a Laplace transform is extremely
difficult. One of the most efficient ways of doing it is to expand the Laplace
transform in terms of a series of orthogonal polynomials and then invert this
series term by term {6). It would appear, however, that if the orthogonals
are going to be used for inversion, then we right ag well start and base our
whole analysis on the use of orthogonals.

Both the Fourter transform method and the Laplace transform method
have been used for the identification of hydrologic systems. In 1852, Paynter
(2I) suggested the use of Laplace transform methods for the study of both
hydraulie and hydrologic systems. Diskin! determined the Laplace transforms
for & large number of storm events. The watersheds examined were between

PDisrin, M. H. A BASIC STUDY OF THE LINEARITY OF THE RAINFALL-RUNOFF PROCESS
IN WATERSHEDS. Ph.D). thesis, Univ. Iil. 1064 [University Microfilms Publ, Ne.
64-8375.}
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30 square miles and 1,420 square miles in area and between four and 10 storms
were examined for each watershed. In the same year, Levi and Valdes (16)
discussed the application of Fourier transform techniques to the determination
of the JUH and applied the method to the Tuxpan River in Mexico. More
recently, Blank and Delleur {7) used the Fourier transforin approach in a
study of 1,059 hydrographs from 55 watersheds in. Indiana. -

Moments and Cumulants

The first transform method of identifieation applied to hydrologic data was
based nn moments used by Nash (17) in 1959. In systems analysis, moments
are used in the same sense as in statistics. Thus, the R% moment of a function,
which has been normalized to unit area, about the peint ¢, is defined as:

M= [ 1wty a (39)

In particular, moments about the time origin are defined as:

Ui ()= [ -

—t

and moments about the ecenter of area arc defined as:

Us(f)= [ e a-voHma (41)

The moments are related to the Fourier transform and the Laplace trans-
form; in the theory of statisties, the Fourier transform is used in the form of a
charscteristic function or & moment generating function. If we are dealing
with functions that are zere for negative time and are only interested in
moments about the origin, it is possible to perform all the operations necessary
with the ordinary Laplace transform. If, however, we wish to deal with the
moments about the center of area {or with funetions which are not zero for
negative time), then it is necessary to use either the Fourier transtorm or the
bilateral Laplace transform. The following development is in terms of the
bilateral Laplace transform, which is defined by:

Fals) = f " O exp(—st) dt (42)

If the above expression is differentiated with respect to s, we obtain:

LFa]=— [ S0-texp(—s) dt

—
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and if the differentintion is carried out B times:

%EFB(S)]:(MI}R L:f(f)'iﬂ°exp(—st) dt

By setting s =0 on both sides of the equation, we obtain:

:—;—Z[FB(S)]._O-——- (—13® f_if(i) R di {452}

={-=1)* U (f) (45b)

so that the B* moment about the origin ean be obtained from the Laplace
transform provided that the transform exists and can be differentiated R
times af s=0.

The relationship between the moments of the input and the cutput and the
impulse can be cbtained as follows. For & linear time-invariant system,
we have:

Yu(s)=Xas(s)-Hals) {46)
The 2 moment of the output about the origin =0 is given by:

4B
Uy =(—1)* R REIONE

Substitution from equation 46 into equation 47 gives:
dR
UR'(!J}=(—1)R(ER XNo(s)-Hp(s) Jime (48)

Using Leibnitz’s formula for the continued differentiation of a product, we
have:
k=R d.l— dR—-k
0

U () =(—1)" LZ (f)*;k Xa(s) - e ERION S (49)

which gives the relationship between the moments sbout the origin as:

F 4

Ue'(y) = ; () U (2) U, (R) (50)

It can be shown that if the moments of the normalized output are taken
arcund the point (=g, the moments of the normalized input around é=5, and
the moments of the normalized response about the point t=c, and if a=b+c,
then the relationships between the moments is the same form as equation 50.
In particular, if the moments are taken about the respective centers of ares,
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we have:

k=R

Urly) = ,‘Z (D Ux(x) Urs(h) (61)

which was the form of the theorem of moments {or a lnear time-invariant
system published by Nash (i7). For the special case of R=1, equation 50
hecomes:

Ui =0 +TY () (52)

which expresses the fact that the lag of the ocutput is equal to the lag of the
input plus the lag of the impulse response. For R =2 and B =3 in equation 51,
because I ) =0, we have the special cases:

Caly) =Us(z) 4 Ua(R) (5632)
Us(y) = Us{z) -+ Us(k) (53b)

This specisl additive relationship does not hold for any higher moments.

Equations 50 and 51 represent linkage cquations between the moments of
the oufput, the input, and the impulse response. Once the moments of the
input and the output have been determined, the corresponding moments of the
impulse response can also be determined, The final inversion of the latter can
only be made via the Fourier transform or Laplace transform. The problem of
moment inversion is to determine the nature of the function given the moments
of that function. If the Laplace transform of the funciion is consistent when
near gero, it may be expressed in terms of & Maelaurin series:

& 1y

POY= 3 o lF9 Tty (50

o ds*
which can be wrilten as:

b
F()= 3 (DS (55)
E=0 L
Lven if only a few moments are known, they give & certain amount of in-
formation about the Laplace transform near the origin and, therefore, of the
original function at relatively large values of time.

AMoments are not the only set of parameters which may be used to deseribe
the response function; in some eases they are not the most convenient set.
Another set of useful parameters used in statistics are the cumulants or so-
called semivariants (14). These are defined as the set of parameters for which
the logarithm of the characteristic function {or Fourler transform) is the
generating function. All the cumulants except the first are unaffected by a
change of origin. In a similar manner to the moments, the cumulants can be
derived by continuous differentiation of the logarithm of the Fourier transform
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or the Laplace transform. Thus, the cumulants may be defined by:
. af
Ke(f)= (—l)RE;;UOEFb(S)J:-o

For a linear time-invariant system we have:
Y(s)=Y(8)-H(s) (38a)
and therefore:
logY (s) =logX () +logH (s) (57)

Differentinting both sides of cquation 57 R-times, and setting s =0, we obtain:

dH dR dh‘
Zr[108Y (8) Jo=—logX (8) Jumot 2okl (5) Juco 58)

which is clearly equivalent to:
Kply) =Kz(z) +Kz(h) (5%)

thus, indicating that in the case of cumulants wo get the simpic additive
retationship of equation 58 for all orders of cumulant.

The simple form of the moments relationship in equation 52 and cquation 53
is duc to the fact that the first eumulant is equal to the first moment about the
origin and the second and third cumulants are equal to the sccond and third
moments about the center of area, respeetively. The fourth cumulant is equal
to the fourth moment about the center of arca minus three times the square
of the second moment about the center of area and is known in statisties as
excess kuriosis., The Gaussian distribution has a first cumulant which deter-
mincs the position of the mean and a second cumulant which determines the
variation about the mean, but all cumulants above the second are zero. In
the gamma distribution, which is widely used in hydrology, the Rt* cumulant
takes the form

Kg=n(R~—1)IK* (60)

where 1 and K are the parameters of the gamma distribution.

Nash (17) also introduced the ides of plotting dimensionless shape factors
derived from moments in order to compare the shape of derived unit hy-
drographs. He defined a dimensionless moment of order & as the B* moment
about the center of area divided by the first moment about the origin raised
to the power of R, that is,

Ug

mg=(U!)R {61
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In dealing with the linear theory of open channel flow, Dooge? found it more
convenient to define dimensionless shape factors in terms of the cumulants
rather than the moments, These are defined as:

Kz

Sp= —“'—“‘(K‘)R

(62}
and can be plotied against one another to compare different functions or
models with onc another or to compare a model with the data which it is
attempting to simulate,

In the above discussion of moments and cumulants, it has been assumed,
as indicated ecariier, that all the distributions involved have been normalized
to unit area. The use of normalized distributions is convenient both in theo-
retical investigations and in aetual computations. If required, however,
eorresponding relationships can be derived for the case where the input and
output have not been normalized.

Laguerre Analysis of Systems

1t was noted previously that & Fourier analysis of systems had the advan-
tage of orthogonality but the disadvantage that the method could only be used
for an isolated input te a system with finite memory. The success of the
method, however, would suggest that in systems with infinite memory an
alternative method of analysis which might be useful would be one based on
functions which are orthogonal over the whole range from zero to infinity
instead of only over a finite range. Because Laguerre polynomials are or-
thogonal over the range 0 to = with respect to the weighting factor exp(—¢3,
this suggests the use of Laguerre functions defined by:

.00 =exp(-"§) 'Z (= 1))k (63)

as the basis of the systems analysis. Dooge (9) has suggested that these
functions may be more convenient than Fourier methods for heavily damped
systems because the Laguerre functions can be seen to be made up of gamma
distributions, a funetion which has been widely used to represent the damped
response typical of natural watersheds.

If Laguerre functions are to be used as the basis of system identification,
then it is necessary to express the input, output, and impulse response in

* Dooge, J. C. I. LINEAR THECORY OF OPBN CHANNEL FLOW, III! MOMENTS AND CUMU-
vawrs. Dept. Civ. Engin., University College, Cork, Ireland. 1967, (Unpublished
report.)
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terms of Laguerre functions. Because the Laguerre functions are orthogonal
to one another this is easily done. There is no guarantee, however, that the
Laguerre functions would be convenient functions to use in the analysis of the
system. The first step necessary is to cxamine what the effect is of convoluting
ore Laguerre function with another, that is:

g(t) = [ Il Vn(t=1) dr (64)

where £,.(1) and f.{!) are Laguerre functions as defined by cquation 63, The
right-hand side of equation 64 results from multiplying & power series of order
m by a power series of order » and then integrating, thus preducing a power
serics of order (m-4n+1). The resulting power series could therefore consist
ef {m+n+1) terms, each of which is a Laguerre function. In practice, all but
two of the terms drop out and only the last two terms remain, the result being:

F(8) = forgn (83 — frrgonia (E) (65)

For the Laguerre series analysis of a systemy, we proceed as before and
expand the input, impulse response, and output in terms of Laguerre functions:

M=o

() = 2. anfull) (662)

=i

n=og

RO = 32 anfald) (66b)

YW= S A S0 (860)

Due to the property of orthogonality, these coefficients are given by:

o= jm:c(t)f.,,(t) dt (67a)
= [ " RS () de (67b)

A= [ yi0 d (67¢)

The linkage equation can be derived as follows. Substituting for y{¢) in
equation 67¢, we obtain:

A= /mf,(t) [ wehi—rydr a (68)

o
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and substituting in this equation the expressions for £(t) and h{t) in equations
86a and 66b, we obtain:

L] £ Mot oy
A= [ 50 [ T anfalr) 3 anfult—ridr (69)
a 0 m=D n={
Reversing the order of the summations and the integrations, we have:
=g ) FAmmmy oy 1 K
A= Toaw Do [ HO [ filt-ndra (70)
sri=f] n=) 0 a
Using the result of equation 65, this becomes:
A= 2t D [ SO fmal) ~Faena(®1d (7D
w={ =} 0
Integrating with respect to ¢ and using the orthogonality relationship, we have:
Ap= 2 tm 2, @[ Bpmbn—Bpmins1] (72)
m={ nil)

Performing the summation with respect to » results in:

T ()

Ay= 2 tm[&p-n—apm] (73a)

m={

Since the Laguerre coefficionts of the impulse response are only defined for
nonnegative values of », this can be written:

[LEd - = e 1

A p= E Il p—m— E Qpllp1—m (73b)
el eyl

which ean be readily shown to be equivalent to:

km=p T

2 Ar= 2 anttym (74)
Lem} mm{}

The problem of identification is to determine the values of a, given the
values of 4, and .. This can be done by successive caleulation of the values
of & in accordance with;:

k=g m=p—1

tooy= D, Ap— > nlpem (78)
Ka=d) m={

Once the values of a. are determined, the impulse response is easily found in
terms of equation 86b.
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The mair purpose of using orthogonal functions is to determine conveniently
the coefficients in the expansions of the given input and output. It is possible
by means of Laguerre analysis to cxpress the linkage in terms of gamma dis-
tributions rather than coefficients of Laguerre functions. The input and other
functions can be expanded in terms of gamma distribution as follows:

=5 sy
()= g‘; d: 20

(76)

Because gamma distributions are not orthogonal to one another, it is not
possible to obtain the values of the coefficients, d,, directly, but they can be
expressed in ferms of the corresponding Laguerre coefficients obtained from
cquation 67n, or corresponding equation. The relationship between the two
sets of coofficionts is given by:

i iy

de={=2)" 3, ()an (77)

The result obtained by convoluting two gamma distributions, one of order

m and the other of order n, is o gamma distribution of order m-+n+1 as
indicated by equation 78:

_ 'e—n’?(,’./z)m e—(l—r]{‘.‘(t__.r’/g)n -
9“)“.[0 2m) 2 (78a)
e-tht {mtntt
B(m+1n+1) (78b})

=2(m!) (n!) T2

where 8(m--1, n4-1) is a beta funcetion. Expressing the beta function in terms
of factorials gives;

e— 2, (t/g) m-+tn-l

[ =
o) 2im+tn+1)!

{78¢c)

When the input function, output funetion, and impulse response functions
are all expanded in terms of gamma distributions, we have the relationship:

Eﬂ 5 e_m(uz)p:; mf J e (t/2)m “iw ne—:;2(£/2)n

P
ey p! i m! nl

(79)
n=0
By comparing the terms on the two sides of this equation, we obtain the
linkage relationship;

kemp—1

L]

Dp=20

g

Aibp_ia (80)

X

1]

Because, in the problem of identification, we need to express the values of §
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in terms of the values of D, and we neced the linkage cquation in the form:

knp

dodp=Dps1— 2, didps {81a)

k]
if the value of dy is zero, then we can use:

kmp

d;ép_;‘—:Dﬁ.;— Z dkap_k (Slb)
Jezed
It is not known whether use of the linkage equation in terms of gamma dis-
tributions is numerically more stable than direct use of the Laguerre coefhi-
cients,

If a funetion is to be expanded in terms of a Laguerre series, the length of
series required to reproduce the function to a given degree of accuraey will
depend on the time seale chosen for the Laguerre functions, In any given
function, it is possible to determine the optimum time seale for Laguerre
representation. For a time scale other than the optimum to reproduce the
function to the same accuracy, & longer series would be required. In system
identifieation, there would be different optimum time seales for the input and
the output. The problem of chevsing the optimum time scale in this ease is
currently under investigation.

Though Laguerre nualysis has been applied to some discrete hydrologic Aeld
data (for which it is not orthogenal and therefore not appropriate), it has only
heen tested on synthetie hydrologic data of a continuous type (9, 10}, The
method has, however, been applicd to the analysis of cascaded systems in
Chemical Fngincering by Anderssen and White (7).

Time-Series Analysis

If the interval between noazero inputs is shortor than the memory of the
systeny, then the output will not return to zero and the techniques deseribed
above will not be applicable. In such ecases, the input and output can be
viewed as time series and ean be deseribed in terms of their autocorrelation
and cross correlation as is done in the case of time series in communication
theory (15},

The sutocorrelation function may be defined by the limit:

:x(T) =%‘1ij2 x(t}x(t+r) dt as T—ow»

-7t

and the cross correlation function by

it

¢,,(T)=l¥f 2O yli+r) di as T—roo (83)

—-T'2

If there were no errors in input or output, then any of the systems deseribed
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earlier in this lecture should, apart from errors in computation, prediet the
impulse response perfoctly. If however, there are errors in the data, that is,
noise on the aystem, then perfect prediction is not possible. Methods of time
series avalysis have been proposed by Fagleson 11y and by Bayazit (3) as a
method of handling this problem of noise in the same way as is done in com-
munications engineering,

For any assumed causal impulse response, the residual error in the output
ordinate is given by

-
=y~ [ hinri—1) dr (84)
0
"The optimum lnear response is one which minimizes the residual given by the
above equation in some sense. 1 the eriterion is taken as one of least SGUATes,
then the problem is to minimize the expression

_ 1T
1:'[.31{{)]:?-;/ (MO JFdt as T—x (85)

T2

Insertion of the value of ri) from equation 84 in equation 83 gives:

i T2 E 2
!;'[inﬂ]=-?-,/ [:‘I(('l—+] hlr].r((-—r)dr} dt as T—=x  (86)
]

~-Tr

The problem, therefore, reduees ttself to finding the optimum value e (1),
which, when used in cquation 86, minimizes the expression £[2{)]. Squaring
the expression between square brackets in equation 84 gives rise to three
terms as follows:

i

Ty(ﬂylﬂ dl as T—=x (87a)

2 =

—Tw\f R rti—rddrdt as T (87h)
1

1 Ta = =
f f kin}xit—.—;}dn[ Rirdztl—rddredl as T (S7c)
T —Tunp

14

Both the first and the third terms must bo nonnegative because they are the
result of squaring the terms inside the square brackets in equation 84. The
first of the three terms, that is, that given by equation 87a, is clearly cqual to
$i (1) The reversal of the order of integration in equations 87b and 87c and
use of the definitions of the autvcorrclation and cross correlation function
given by equations 82 and 83 reduee the second torm to a single integral and
the thied term (rom a triple to a double integral. The expression to be mini-
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mizeid can now be written ns;

E[hi.'t'!]=¢w([})—?f h{_ﬂ%,(r)dr—k[ !'L(rﬂc‘frlf h(rY oz {ri—72) dra
o

n '}
(88)
The minimization of the above expression is obtained by a mauipulation of
thie ordinates of the impulse response A(#) until the optimum causal impulse

response is obtained, If the aptimum cavsal linear response is denoted by
FopHY, then any nonoptimum linear response can be denoted by:

RO =hope (D e W (D {(89)

where ¢ is an arbitrary real nonnegative number and #7(#) i1s an arbitrary
eausal funetion, I Ay, 1LY 1s a true optimal, then we must have:

ETAD 1= ELhopel) €2 1012 Elhepi) ] (00

whore E[Ai6Y] is the ercor eriterion defined by equations 84 to 88,
Substitution from equation 88 into cquation 88 and segregation of the terms
involving Aqpet £ and A'() results in the cquation:

H[;‘u‘!)]=E[h.,ml_ﬂ]—Qef (P ey (91)
13

—i—?ef h'{_rt]dn[ Nope{teYdz (ri— 7o) dra
o

U

-!—e"[ h’m}dn[ R (r2) el r1—7a) dre
[i] 1]

which can be written as:
.ﬁ[hu}j=h‘[hu|nu}]_25I1+EQIE (92)

where the second term on the right-hand side of equation 92 corresponds to
the seeond and third terms on the right-hand side of equation (91), and the
third term on the right-hand side of equation 162 corresponds to the fourth
term on the right-hand side of equation 91.

For hopet ! to bea true optimum, it is necessary for the condition of equation
90 to hold and heace for:

(rl—%h) <0 (93)

for any value of 410 and any nonnegative value of e, Beeause the fourth term
on the right-hand side of equation 91 is a perfeet square, then I must also be a
perfect square, and thus for arbitrarily small values e the condition for
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optimality reduces to:

L<h (948

Iy ean be seen from an inspeetion of the second and third terms on the right-
hand side of equation 91b to be:

ﬂ—'——-f f.‘.'{f)q‘uy(ridr—f }!'ETI)[ bt 1) ol Ty —72)dre dry (95)
0 0 B

IT 7y as given above Is either zero or negative, then the condition of cquation
94, and hence of equation 90, is satisfiod. If, however, Ty s negative for g given
funetion &(), then it will according to cquation 85 be positive if the sign of
A"ty 1s changed. Consequently, unless T, is zero, it is possible to find a function
ALY which makes £ positive and therefore violates the condition of equation
94 for an arbitrarily small value of e la these circumstances, the Tunetion
hopet €3 would not be truly the optimum causal lincar response, Accordingly,
the condition for the optimum response is:

Sinee the condition must hold for any arbitrary causal function A7(t), then
we must have;

Peylmi) — / fopil 7Y oz (11— 12) dry=0 (97
5

Beeause A1) was defined as 2 causal function, the above relationship need
ouly hold for nonnegative valuos of r,.

The condition represented by equation 97 is frequently referred to as the
Wiener-Hopf equation, and the solution of this equation gives the optimal
causal Hinear response for a system whose input and output are in the form of
continueus time series, It can be seen that determination of the optimum
finear response in the least squares sense depends not on the original funetions
but only on the autocorrelation function of the input and the cross correlation
function between the input and the output.

Problems on Identification Based on Continuous Data

1. Find the Fourier cocfficients for the functions given in table 1, of the
Appendix,

2. Find the Fourier transform and Laplace transform for tho functions
chosen in problem 1.

3. Find the first 4 moments and cumulants for the functions chosen in
problem 1,

4 Tind the Laguerre coefficients for the functions chosen in problem 1,
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5. The input sod output to a linear time-invariant systom are given on
Appendix table 1 by functions 12 and 13, respectively. Tind the impulse
response of the system by some method of system identification suitable for
continuous data.

6. Find the impulse response for the data of problem 5. Use a different
methed of system identifieation,

7. In Appendix table 1, the output from & linear time-invariant system is
given by function 16 and the input, by Junction 15. Find the impulse response
of the system by some method of svscem identifieation.

8. Find the impulse response by & second method of system identification for
the data of problem 7.

0. Compure the results of problems 5 and 6 or problems 7 and 8, and the
difficuitios of the two methods used and give roasons for the differences found.

10. Write a general computer program for the identification of linear time-
invariant systems for which the data are available in continuous form.
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LECTURE 6:
IDENTIFICATION BASED ON DISCRETE DATA

Basic System Equations

Beeause hydrologie systems are continuous systoms with eontinuously de-
fined inputs and outputs, it might be thought that the methods of system
identification deseribed in leeture 5 would be the most approprinte techuiques
to use in identifving hydrologic avstems. In many cases, however, hydrologie
data are only available in diserete or guantized form. A good deal of rainfall
data ix only reporied as hourly volumes, and the input in these enses is repre-
sented by a number of square pulses beeause all that we know are the volumes
cor the nwean ratesd of rainfall during cach interval, Modern recording equip-
ment s usuadly digital in form, but the frequeney of sampling is so high that
the records could, i neeessary, be treated mathematically as a continuous
record without apprecinble error. Fyven where a eentinuous or virtually con-
tinuous reeord is available, it may be unceconomie Lo process the complete
reeord. Tn this ease, the record will he sampled and the sample data processed
in some way, The daia, though actusdly recorded in continuous form, must be
considersd dizerete data for the purpose of analysis.

If an attempt is made o analyze a square pulse by a series of continuously
defined orthogonal funetions, serious difficulties of representation arise. Even
if a large number of terms is used in the series, the discontinuitics at the be-
ginning and the end of the pulse will not be faithlully reproduced and oscilla-
tans, known as Gibby' escillutions, will oceur. In barmonic analysis, certain
mathematical teehnigques are available for the smoothing of these oseillations.
[t seems preferable, however, to aceept the discontinuous nature of the data,
and instead of looking for the impulse responae of the system, to try and
identify the response of the system 1o a square pulse of standard length, In
effvet, this means seeking the finite period unit hydrograph rather than the
IUH und, thus, returning to the basic concept used during the original de-
velopment of unit hydrograph methods.

If we define the pulse response Apt) as response of the system to an input
of unit volume occurring at a uniform rate for a peried D, then as expressed
in equation 244, leeture 1, the relationship between input and output is given
by

Ly L

ytti= 2 XNieDihpli—oD) {1}

g D=0
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where X{a¢D) is the volume of input in the interval from time oD to (e+1)D
and y(t} is the continuous output. In the above case, both the finite pulse
response and the output are continuously defined.

If the pulse response is only defined at certain intervals; then as expressed
in lecture 1, equation 27a, the relationship between input, output, and pulse
response is defined in terms of the diserete variables s and o

y(sD1 = % X(aDVhp(sD—aD)

e=(

which can be written as:

Twy

yist= Y, X(elhpls—a) (2h)

o={

where the interval between ordinates is D Tt is necessary for the interval at
whieh the impulse response and oulput are determined to be a submultiple
or a multiple of the unit period of input, D. Otherwise, interpolation will be
neeessary before the ordinates making up the output are summed together.
Ll the output is taken in block form, as in Bernard's distribution graph, then
we have:

=y

sy = 2 X(a)dp s—o) (2¢)

o=}

where dp represents the distribution grapn, that is, the distribution of volume
of output for the unit period of input.

The above equations nre for the ease where the input is defined in terms of
volumes, {f the input is defined in terms of diserete ordinates, then the equa-
tion corresponding to rquation 2b would be:

¥}

ys)= 3 r{elhp(s—a)D (2d)

ae=(]

for the diserete input z(s).
The convolution relationship of equation 2 ean be written in matrix form.
{See leeture 1.)

{¥lrra=2desrma R} nsan (3)

where y is the vector of outputs, X is the matrix of inputs, and h is the vector
of the pulse response. The general structure of the malrix X formed from the
input vector z is indicated in lecture 1, A typical matrix of inputs is formed as
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follows:

Iy

The above example shows the ease where the input lasts for five unit periods
and the pulse response has four ordinates; it iltustrates the general method of
forming the matrix which might be called the convolution form of matrix.
I'or the above case, the output has eight ordinates in accordance with the
goncrnl relationship p=n+m, where there are m blocks of input, n+1 ordi-
nates of the pulse response, snd p+-1 ordinates of output. It is equally pos-
sible to leave the input as a veclor and eonvert the impulse response into a
mattrix:

{y}p-!-i.'l = [“f]:*-kl.mﬂ{x}m-;-i.l (4b}

The form given in equation -a is most convenient in the identification of the
pulse response; form b is most convenient where a derived pulse response
has been adjusted to eliminate anomalieos and where it is required to ascertain
what corresponding adjustment in the input should be made.

This lecture is concerned with the various methods which might be em-
ployed 1o sotve equations of the forms given above. In contrast to the case of
continuous data where the solution of an integral equation was called for, in
discrete or quantized data it is only necessary to solve a set of simultancous
rquations. Consequently, we would expeet that matrix methods would be
applicable to the identification problem for diserete data. We would also ex-
peet that diserete versions of the various transform methods and of time
seties analysis deseribed in lecture 5 would also be available, These are dis-
cussed in the remainder of the leeture,
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Matrix Methods of Identification

If the available input and output were compictely free from error there
would be no difficulty in determining the ordinates of the pulse response or
finite period unit hydrograph. The set of simultancous equations given in
matrix form in cquation 4a can be written out ag:

h="Tohq (5a)
=21k {db}

= Taho b3y - ok {5e)

I R (51)

ym-lf'&-rm—lhﬂ_#rm-‘?}il'{_ . '+Iﬂhm—1
ym - rmhll'I_ e +Iﬂhm (5“1}

Ype1® Tudlucr Tt {5n)
Yp= Toetn {Hp)

If the output and input are known, then all the values of the veetor Xo, Ty,
tm and ol the oulput veetor gy, yy, Ya...., Yr-y; ¥p are known. The
values of the unknown ordinates of the pulse response or unit hydrograph,
that iz, kg, ky, he Mooy, B ean be determined sucecessively from thoe set of
equations 5, Thus, equation 3a is used to obtain the value of hg; substitution
of this value in cquation 3b enables us 1o eafeulate the value of 47 and so on
until ail the unknown ordinetes of 4 have been determined. W here there is no
error in the data, the values obinined by the solution of the first n equations
tuwtomatically satisfy the remaining equations. This method of solution by
forward substitution is equivalent to solving a subset of the equations 3a to
apin the form:

{y]iﬂ-rlr " [-Y]m-sll{k}(ne-ll (6]

which indicates that only the first (n+11 values of output and the first
tn+1i rows of the X matrix are used. There are now the same number of
equations as unknowns, so that direct algeliraic solution is possible, We also
note thae the maurix of inputs X is now a square matrix and this ean, there-
fore, e inverted. There is, of course, ne neeessity to use the first (n41) rows
to form the (x<-1) by tn4-1) matrix, Any in+1} rows could be used, hut
if the first tn41) rows or the st (n+1) rows arc used, the matrix is tri-
angular and therefore more easily inverted,

An alternative way of cquating the number of equations and the number
of unknowns is to treat the unit, hydrograph or pulse response as if the num-
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ber of its ordinates were equal to the number of ordinates of runoff. In this
case, the matrix cquaiion beecomes:

{hrn={XToa{l]pn (7)

Again, the equations ean be readily solved by dircet algebraic methods. In
the absenee of errors in the input or output data, only the first n-ordinates
will have significant values, and the ordinates of the unit hydrograph between
fayr annd B, will come out as identically zero.
The rule for eateulating any ordinate of forward substitution (that is, the
use of the first (a4 1) equation is:
= Z;:éf:_—{f"i

= 205 for i<m (8a)
iy

Hh— 2 tCE i )
b= s ___Z_,__. I far i (8h)
Iy
which ean be solved suceessively for i=¢, 1, 2,
For hackward substitution tthat is, the use of the last (a4 1Y equations),
the rorresponding formulas are:
'Up-;'— Z;:él‘m—-it-jhﬂ—j

fn =

L

for i<m (Sc)

o1 |
:’!!’;‘__”_Z;u E—rm £ "i—‘l_‘_‘ )hﬂ‘—f

Em

hoi= for izm (8d)

In the absenee of errors in the data and of ervors of computation, it is im-
material which sot of (#4111 equations are used to solve for the (24+1) un-
known ordinates of (he unit hydrograph. The direet solution by forward
substitution tor backward substitution) is, however, unreliable in practice
due to the prosence of error. [ ean readily be shown hy the use of synthetic
data that if errors oecur in the measurement of the input or the output, wn-
realistic unit hydrograph ordinates are obtained in the solution. We are thus
faced with the problem of finding an optimum solution for the unit hydro-
graph using all the information available.

The matrix method based on least squares solves the problem in the form
of eruation Ha. [t assumes that the length of the unit hydrograph is known
by subtracting the length of the input from the length of the output and,
thorefore, that the ordinates of the unit hydrograph between A and hp are
zero. In the presence of error, therefore, we must restrain these particular
vrdinates and distribute the ervor on the other ordinates.

The methad of teast squares is based on minimizing the sum of the squares
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of the residuals hetween the actual output and the oulput predicted by using
any particular value of A, The residuals are given by the column voctor:

rlovia= {vhwon—[X Dot insr [ wprs (Oa}
= {y""\r“p-n.l (9b)

the sum of the squares of these residuals is most conveniently got by using
the inner produet, that 18, by multiplying 7 by its franspose 77, Taking the
inner product (see poge 99, leeture 17 and using the rule for the transpose
of & produet, we obtain;

Zrds oTre [y — WTXTY[y— X ] (10)

On multipiving out the terms, we got:

Do yTy— YN —TX Ty XY ) (11}

Sinee fand y are column veetors, their transposes will be row veetors, and,
consequently, the second and third terms on the right-hand side of equation
T are sealar in form, Since a sealar transposes intg itself, the two torms must
be equal so that we can write:

21 Y Ty— 2R TN Ty ATNT YR (12)

The problem is 1o chouse the ordinates of the response veetor A sa as to
minimize the expression given in cquation 12, For ordinary funetions, (his can
be done by taking each ordinate in turn and setting the partial derivatives,
with respeet to that particular ordinate equal to zero. However, the COMDres-
sion of veeior notation may he used. Beeause the first torm we are difforentic
ating dots not invelve A, the derivative for this term will be zero. Vectnr
differentiation of the second term on the right-hand side of cquation 12 with
respeel fo & resembles the ordinary differentiation of the fest power of a
Munction, Similarly, veetor differentiation of the third term on the right-hand
side of equstion 12 with respect to h resemblos the ordinary differentintion of
the econd power of a function. The result of differentiation with respect 1o h
ean he readily verified, Retting the result equal to zero is given by

—2XTy+2XTX A =0 {13a)

XTXh=XTy (13h)

The veetor & which satisfios equation 13b makes Y r;® a minimum. It is
therelore the bhest least squares solution to the ariginal set of equations Ha to
ap. o solve equation 130 for &, it ix necessary to invert the matrix given by

Z=XTX {14a)
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thus obtaining the solution
h=Z-'XTy (14b)

Since the matrix formed by multiplying any matrix by its transpose is neces-
sarily a square matrix, this inversion can be carried out.

Note (hat the sum of the syuares of the residuals for the above solution is
not an absolute minimum. Tt is a minimum subject to (he restraint that 2 has
o base length from zevo to n+1, that is, that the values of the ordinates from
husr 10 I, ave zevo. The offect of other constraints and of errors generally will
be diseussed tater in the leeture,

Discrete Transform Methods

Transform methods are available for handling discrete data which corre-
spond to the transform methods for continuous data discussed in lecture 5,
“Tdentifiention Based on Continuous Data.” Thus the classical Fourier series
ean be replaced by the fntte Pourier series, which will reproducce exactly the
functions invelved at the sampled points and can be used to interpolate
trigonometrieally between these points. In place of the Laplace teansform, we
have the Z-transform which was developed for use with sampled-data systems.
Dooge (written commun., 1966) has derived a diserete analog of the Laguerre
methods of analysis, but this has not yot been fully developed or published.

The method of harmonie analysis has been applied to hydrologic data by
O'Bonnelt {9, £0). If an output is specified af a number of equidistant dis-
eroete points, then it ean be fitted exactly at these points by a function of the
form:

kap kmp s
yi) "-——i— > Ay cos ( ) z By sin (— ) (15}

- el

where n=2p+1 is the numbcer of data points. Since there are only a-picces
of information, it is impossible to derive more than s-mesningful coefficients
A and By for the data. Sinee sines and cosines are orthogonal under summa-
tion, the cocflicients can be detormined from:

n) =1 k_
A= , Sy cos( ﬂ) {164a)

i}

43 A=l ;\')
Be=" 2 y(s) sin (—T:{i) {16b)

LI

whore & can toke on the integral values 0, 1,20, p—1, p. The above formu-
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lation ean also be expressed in the exponential form:

)= 3 Croxp (’“"2”8) (170)

km—p n

n—1 e
C'k=-1- 2. y(s) exp (:ifu_?_‘rr_s-) {17h)
 — n
For a lincar time-invariant system which is causal and has an isolated in-
put, the diseretle ordinates of the input, output, and pulse response are con-
neeted by
o

y(sD)= 3 X(eD)hp{sD—cb) (18w)
a=i]
where X represents the volume of input in suecessive unit periods of length,
Dy hp represents the finite period unit hydrograph for the unit period (D)
defined at intervals equal to the unit period; and y represents the output de-
fined at intervals equal to the unit period (D). For convenience, the unit
period can be taken as the unit of time and (he relationship written as:

A% ]

y(s)= > X(o)hpls—o) (18}
i}

If the input is of finite duration and the memery of the sysiem is fnite, then
we can use finite Fourier series in the same way as infinite Fourier series were
used in lecture 5. The development is analogous and will not be repeated in
detail. The diserote functions representing the input and the output are as-
sumed to be periodie with a period equal to 2. Since the input is periodic, it
1 neeessary 1o write the relationship between input pulse response and outpué
as:

W)= Y X(o)ho(s—a) (18¢)

oA g—=n4|

The linkage equation can then be found in similar manner to that indieated
by equations 11 to 18, lecture 3.

By substituting equation 18e in equation 17c, reversing the order of sum-
mation, and using the orthogonality relationship twice, it can be shown that
in the discrete case, we have the linkage relationship:

Cr=nCr o (19)

which is the same as the linkage equation given by cquation 16 of leeture 3,
exeept for the fact that the symbol # is used for the period in the discrete
case, the symbol T for the period in the continuous case. For the expansion
in trigonometrical rather (han exponential form, the linkage relationship
takes the form:
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:’h=2 (aron—beBs) {202}

Br="2(ase—bine) (20b)

which correspond to equations 18h and 18c, respectively, in lecture 5.

The fact that the trigonometrical funclions arc orthogonal under both inte-
gration and summation results in the same linkage relationship for continuous
and disercte data. The eocflicients appearing in cquations 19 or 20 of the
present lecture are frequently referred to as harmonic cocefficients and the
cocfficients appearing in equation 18 of lecture 5 are referred to as Fourier
cocflicients. The differences between the two cases should, however, be clearly
recognized. Fiestly, the coeflivienls o and 8 in equation 20 of this lecture,
dofine the fisite period unit hydrograph kp(); the corresponding cocfficients
in equation 18, lecture d, define the instantancous unit hydrograph ho{l).
Secondly, the coeflicients of cquation 20 of this lecture are finite in number
beeause only as many coeflicients as there are data points can be determined
altogether. For continuous funetions, there is no limit to the number of co-
officients which can be caleulated i required. Thirdly, the cocfiicients of
equation 20 of this lecture, when substituted into the finite Fourier expansion,
define the pulse rosponse Ap at diserete points which are equally spaced at
the unit interval, D; whereas, the cocfficients derived in lecture 5 define the
IUH continuously.

If a Tunction only exists at disercte points, or is only known at discrete
points, it is not possible to ebtain its Laplace transform directly. Such a fune-
tion can be considered as being defined by:

= 3 1st—nT) @)

n=0

shere 7 is an integoer and 7 is the interval botween data points. If the Laplace
transform is now (aken, we have:

A= S faTyes

1=}
It is customary to write:
Z= exp{T) (23)

and henee to write what is known as the Z-transform of the discrete variable
as;

P =20nrT)]= 2_fnTY2Z-" (24)

=0
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The properties of the Z-transform (4) are similar to those of the Laplace
transform, in particular, for a linear time-invariant causal system given by

Tyt
Y= 2 zleVkis—e) (23)
L]
We have the following simple relationship between the Z-transform of the
inpue:

V(D=2 X(2) (26}

INys) and es) are given numerieally, it is possible (o compute Y(Z) and
NiZy and, henee, to determine the Z-translform of (he pulse TOSPONSe;
H(n n
X7
I HZY ean be expanded in inverse powers of Z, 1he coeflicionts of the ex-
pansion will give the ordinates of kst sinee hy definition:

HlZ}==hL(])+!¢(1)Z"'+?1{212“2+ (28)

In practice, however, it is likely that, as in the Laplace transform! (he Z-
transform will not be easily nverted in practieal eases where we have numeri-
aldata rather than 2 mathematical function,

The other transformy method diseussed in this leeture corresponds to the
Laguerre analysis of svstems with continuous inputs and outputs. If an ot-
templ s made to represent a square pulse by a series of Laguerre funetions,
the diseontinuity eannot be well represented even if the number of torms in
the expansion ix quite high: for 50 terms, the oscillations will be of the ordoer
of 25 pereent of the height of the pulse, Accordingly, if it is wished o use
quantized dats, the method of Laguerre analyvsis described in lecture 5 is no
longer ardequate without modifieation. At fir=t, it was hoped that (he Laguerre
funetions might be orthogonad under summation as well as integration, ns
wilh {rigonometrie funetions Unfortunately, this did not prove to be the
case, and it was neeessary to derive the diserete analog of the Lagucrre
functions,

Though some books on numerieal analysis mention that diserete analogs of
the classieal continuous orthogonal polynomials do exist, no deseription of
these was available in any of the Hterature eited. ventually, the form of
the polynomials orthogonal under summation from zere lo infinity with re-
speet to a damping factor expi—s) was derived from first principles, It is

tDogex, J. C. I uINEsR THEORY OF Ores CHANNEL FLOW, 111 MOMENTRE AND CUMU-
Lants. Dept, Cive Engin,, University College, Cork. Treland. 1967, [Unpublished re-
port.]
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easier, huwoever, in vetrospect to derive the form of the diserete analog to the
Laguerre funetion by an analogy hetween diserete and continuous opoerations.

Integration in the continuous case becomes summation in the disercte case
and differentiation in the continuous enses is replaced by forward differoncing
in the diserete ease, The Laguerre polynomial is defined by

ken k

L
Liy= 2 (—DHo

;— {‘29;1)
ko v

In the above eguadion, the continuous variable ¢ oceurs in the form & AL
This funetion his the property that when differontiated with respeet 1o ¢, it
mainlains the same form but with the order reduced by one degree. The
analogous diserete polynomial might be expeeted to be that funetion of the
diserete variable s which has the analogous diserete property, that is, the
function when furward differenecd with respeet to § maintains the same form
but with the order reduced by one degree. It can be verified that the form of
diserete function required is the binomial coefficient (2. Henee, we would
expeet Lhe diserete anndog to the Laguerre polynomial to be of the form:

ftan

Matsi= 20 (=1 5eh {29b)

Freml

It can be shown that the above expression s & Meixner polynomial with a
sdue of b=0and e=1.,

The Laguerre polynomials defined by equation 262 are orthogonal in the
range zero Lo infinity with respeet to the weighiing factor exp(—¢), that is,

f e UV L U =G, {30a)
u

I (he Meixner polynomials are to be written in similar form, it is recessary
not only to replace the integration by a summation but also 1o find the diserete
analog ol the welghting factor expi—21, The reciproeal of the weighting fune-
tion i the eoutinuous ease, expi), differentintes into itself. This suggests &
funetion which forward differentates into itzelf as a diserete analog. It
may he readily shown that 2% has such & property and consequently, 156 may
be tried as & welghting factor. Wlhen this is done one obtains the orthogonal
eelationship:

e ag

Do e s Mats) =205, (30h)

FL

ey, vt po S8, Teeture 1, and p, 173, lecture 3.
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The nermalized orthogonal function in the econtinuous case is;

kmn t,[-
= o— {2 . kyom,
Fuftr=e El L

and the normalised orithogonal function in the diserete case is:

kv
falsy=()gyleemtnr 5 0 1y(ny(Y) (31D}
k=0
The Tunetion given in equation 31 may be described as a Meixner funetion
and its properties explored by the use of the Z-(ransform (63,
To derive w method of Metsner analysis, it is necessary to determine first
of all the effeet of convoluting one Meixner function with anather s follows:

dm g

gis) = meio'lf,,(swar'}

i}
It can be shown that:
f}'-’“ [2-’t .ym—rr[““_‘fm-u-e-].(”] (33]

Again the result is similar to (hat for Lagueree funetions exeept for the seale
factor 282 "The linkage equation is derived in o similar manner as for Laguerre
funetions and is given by

ke p=-1

E29 2ot g — E Ol s {34)

bt}
which eorresponds with equation 73 of leeture 3, For the identifieation prob-
lom, 1L ik neeessury (o determine sueeessively the values of the Melxner co-
efficients for the response funetions, These are given by:

kmp ke p—1

orptly = Z (1 2:._;:-.&-—1:'2;1’{_ Z Qplly g (33]

k=0 Kl

The method of Meixner analysis is still under development and so far has
only heen applied (o synthetie data. There is some indication that it is not
as numerically stable a2 the Laguerre analysis of continuous data. In Meixner
analysis, as in Laguerre analysis, it is necessary to choose an appropriate time
scale to represent the funetions involved by a relatively small number of
cocflicients,

Time-Series Analysis of Discrete Data

The methed of time series analysix developed by Wiener (71 and used in
the theory of communication has been applied to diserete hydrologic data by
the group working at the Massachusetts Institute of Technology under
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Eagleson (8). The problem is to determine for a given set of diserete inputs
and outputs, the causal linear response which is optimal in the least squares
sense. [t is necessary to define the diserete analogs of the autocorrelation and
eross correlations defined by equation 82 and 83 of Iecture 5 for the continu-
ous case. The nutocorrelation funetion for a diserete variable f(s) is defined
as (he limil:

¢;,-l_k}—- Eflalfls-{-m a5 p—rwo (3Ga)
J-*ﬂ
where w=2p+1 s (he number of data points. The eross correlation funetion
hetween two diserete variables fis and gus) is defined as the limit;

l I
k)= 2. Jtsrglsth)  as pees (36h)

EL ]
Yor a causud linear time-invariant systom, we have:

sl = 2 Xigthp{s—o)

-

m

yist= 2 Xis—alhpla) {37h)
o}
where £ is the interval between the equally spaced diserete or quantized
data cand eonsequently also the unit period of the finite period unit hydro-
graph or pulse rexponse fiptsiy, which will enable us Lo predict the output
with minimum error. The individual error prediction for the single ordinate
B griven by

o

P go— ZA'H‘—(T”!D[O') (38)

=il

where £ is the integer denoting the ordinate of output concerned. For a con-
tinvous record which has been sampled or of diserote or quantized data, we
wixh to minimize the leasr sgquares error, that i,

- 1L .
Eflesid=" > tro*=minimum (39a)

im—7

If thi<is (0 be done by menipulation of the ordinates of the response function,
then we have the cond’tion:

8 z 1,

2. ri= {/: 2 = =0 (39h)

u&:_,n,__;, ahtj

It is elear from equation 38 (hat for every value of J greater than 0:
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so that

a T - N . R . e P
e TS X =P D =X~ 3 k(o) X (=)
ShLJI =i

The eriterion of equation 39 can now be written us:
Fal " an
2 Ni—jiyiiy— > XNt—=j) I hotoY (i—o) =0 {123
= p P ] o=t}
The above relationship must hold Far all vadues of § greater than 0, Revorsing
the order of summation in the second term gives:

id o >
25 Nti=jythi— 3 hpted Y Xti— )X (i—a) =0 43
V=g =i} T
Using the definition of autocorrelation and eross correlation for diserete fune-
tions given by equations 36a and 36b above, equation 43 can be written as:

w
Soytii = D hplo et j— o) (44)
oo
provided tha  the valne of § is zero or positive, This is the diserele form of the
Wiener-Hopf equation wsed oy Eagleson (31 in the analysis of hydrologic
systems,

Where we are dealing with isolated inputs and systems of finite memory we
absy have isolated outputs, In this case, the correlation method of analysis of
time series ean be shown o be equivalent to the least squares method. As
shown in leeture 0, page IS8T, the least squares moethod arranges the input
amd vutput data in the form;

XTy=XTXh {43)

where the matris X is of the form given by equation b of the present lecture,
that is, the input veetor has been used to form a convolution-iype matrix.
Aecordingly, for the example given on page 39, leeture 1, and page 181, lecture
&, the lefi-hand side of equation 43 will be of the form:

Yo

Y2
s
Y4
¥s
s
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In the above example, the matrix X has Tour rows and eight colums, and
the column veetor y has cight rows. The resule of multiplying them together
will be to preduee a column veetor withi Four rows, Il we follow the rules of
vector multiplication, these four rows will be given by:

T+ iy Dot Tayat Tagps == 6y (0) {47a)
Toifi O Doy o s = dgt 1) {+7h)
ot it et ol g = ey (2) {47¢)
Yots it Xolts - OatfeF ath = By L 3 (47d)
The left-hand side of equation 45 is therefore seen to be of the same form as
the Tefi-hand side of equation -4,
Similarly, it can be shown that
[(6::t0) Gl — 1) $er{ =21 Grr(—3)]
Gt 1) ot el =11 (=2}

’\b.r:t?.' ¢‘::{ l} ‘qf-’x:(U.} qb:zt_l)

| ¢ 3 Pt b 1 {0y

whirh ean be seen to be a convolution-type matrix formed from the auio-
correlation eoeflicients of the input veetor, Beeause the multiplication of this
convolution-type veetor by the optimum response veetor b is cquivalent to
the convolwtion of the input awecorrelition coefficient veetor and the re-
sponse veelor, the cight-hand side of equation 45 is equivalent to the right-
hand side of rquation 4,

In time series analysis and the use of equation 44, the number of equations
is not limited as in equation 47, I the system being investigated were a truly
linear system with a finite memory and (he input and output datn were free
framn ervar, the eross correlation enofficients for values of § greater than the
memory of the system would be zert, and the number of equations would he
the same in hoth methads. 1, however, the system is not truly lincar, or if
there are orrors in the daiy, the time series correlation method gives addi-
tiomal equations which ean be included in the set of equations to be solved. In
the latter case, the number of equations (o he solved will be greater than the
number ol ordinates required in the pulse response and, henee, restraints can
be intradueed into the solution.

Computational Methods

In o teuly linear system in which the Input and culpul are given in the dis-
erete form and enn be determined without error, all of the methods of system




142 TECHNICAL BULLETIN NO. 1468, U8, DEPT. OF ACGRICULTURE

identifieation deseribed above will give the same answer within the limifs of
computational crror. For this ease of error-free data, the choice between
methods is merely one of the ease of computation, and there i= no reason 10 g0
bevond the direet solution of the simultancous equations involved by the
method of forward substitution, For these ideal conditions, once the numboer
ol equations solved corresponds to the length of memory of the system, all
the remaining cquations will be automatically satisfied by the values for the
ordinates of the sutput response already found. If, however, there are orrors
in the data, or if the system is not truly linear, then the values of the ordinates
obtained for (he optimum linear response may vary according 1o the method
used. T this more general case, the choice between the methods depends nat
anly on the convenienee of computation but also on the manner in which the
various methods handle crrors in the duta and lineurize any nonlinear proper-
ties of the system under idendifieation, Exeept for the basic ease of solution
by forward sabstitution, all of the methods require the use of & high-speed
digital computer unless the problem ix trivialiy small, The technigues used in
the aetual computations involved in the different methods are deseribed in
the literature cited at the end of this lecture.

Only the essential features need be mentioned here. In the least squares
methad, Body €23 suggested that the data be loaded into the computer as a
single unit in the form:

LY g povs (49)

Im the least squares method, the input consists of (m+41) ordinates of the
input and ¢p+1) ordinates of the output. A convenient way of organizing
the caleulations is as follows. The input data can be used Lo compute the
elements of ;

Z=XTX {492}
which we have already seen to be the diserete autocoreeintion cocfficient of
the input, [ is also necessary {o enleulate the clements of

HW=XTy (49h)

which are the cross correlatinn cocflicients of the inpul and output. A standard
routine for matrix inversion can now be used to solve for the unknown finite
period unit hydrograph as follows:

h=Z"'I" (51}

Z will be o square mafrix of sze (p—m31) and W will be a eolumn veetor
with tn+ 1t rows, The unknown pulse response & will also he a column veelor
with (413 rows,

Onee again, it muost be emphasized that the least squares method involves
optimization subjeet to the restraint that the length of the response function




LINEAR THEORY OF HYDROLOGIC SYSTEMS 143

dors not exceed the amount given by the difference between the length of the
output and the length of the input, The predietion of the output using the
finite period unit hydrograph, which is optimum in the least squares sense,
will not be as good as the predietion of the output by a unit hydrograph,
which is allowed to be of the same length as the output. However, the use of
the method of least squares reduces the tendeney towards wnrealistic negative
or wildly nscillating ordinates which mayv occur with the forward substitution
method where there are ervors in the data. If it were cortain that the system
were linear and that these unrealistic values were solely due to errors in the
dala, then there is & strong argument for introdueing the restraints involved
in the lenst squares estimate, However, if negative ordinates result from the
attempt to represent A nonlinear system in a linear fashion, then the ease for
rejecting the negative ordingtes is not nearly as strong.

For computation, further restrain are sometimes introduced into the cal-
cuttion. Thus, Buedy 123 made the assumption that from a certain point
onward the finite period unit hydrograph (pulse response) shows an expo-
nentind deeline and made use of this assumption to reduce the amount of
computation required. Rimilarly, Newton and Vinyard t8), in their deserip-
tion of the Tennessee Valley Authority method, referred to the introduction
of the restriction that the ordinates of the pulse response may be replaced
over & number of intervals by a straight line, thus simplifving the numerical
computation at the cost of this reatraint.

The sequenee of compulations is standard for any transform method bhased
on orthogonal polynomials 170}, The first step iz to read in the input and
output data and compute the cocflicients of the input data (e.) and of the
outpat data 1€, Tor the parGeular orthogonal expansion assumed. The cor-
responding coeflicients for the pulse response or finite period unit hydrograph
Lyt are then ealeulated from the linkage equation, These eocfficlents in the
expansion of the pulse respanse ean then be used to find the actual ordinates
of the pulse responses In the harmonie analysis method applied to hydrologic
iata by 'Donnell «93, the actual period of runeft, when divided into standard
intervals, provides a finite number of equidistant data points, The number of
harmonie corlficients derived is the same s the number of data peints. In
Meixner analysis, however, the range is from zero to infinity so that account
is tnken not only of the finite number of dawa points in the isolated output
record but also of the infinite number of points after the conelusion of aulput.
For perfeet matehing, it would he neeessary to take an infinite number of
terms in the expansion of the pulse response. However, ii is only necessary
to earry the series far enough <o that the ardinates within the period of output
are determined suflicientdy aceurately, and errors in the zero ordinates afler
the elose ol outpui in which we gre interested may be ignored,

In time serle= analysis, the autoeorrelation and eross corrolation coefficients
of the input and owtput must ficst be determined, If we are dealing with an
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isolated input to a linear system ol limited memory, then the autocorrelation
and cross correlation functions will become zero bevond a certain point. 1f,
ot the other hand, woe are dealing with a continuous time series, it would be
a matter of deeision as to the poinl at which these lunctions should be Lrun-
cated. After the autocorrelation and cross correlaiion coofficients have been
determined, it is still necessary to solve the Wiener-Hopt oquations given by
equation -t If all of the equations are used, then it will be possible 1o predict
the output closely but wnrealistic ordinates may be obtained. Engleson (3)
introdueed the idea of solving the equations subjeet o the restraint that no
negative ordinates occurred, This necessitates a computation of w linear pro-
graming solution to the Wiener-Haopf vguations.

The whole subject of the comparison between the various mothods for 8yS-
tem identification in the presence of noise and of possible unonlinearily is one
requiring careful investigation. Several researeh workers are known {o be
working on the problem at the moment, but none of the results have so far
been published, It may be instruetive to considor briefly the effeel of an error
on o simple ease using synthetic data, The data used are those in problems
Land 2 ut the end of thi iecture. 1f the values of the input and output from
L SyEtem are given as:

r=20,1 {52a)
y=0,4, 14,8 1,0 (52h)

any of the methods deseribed above can be used 1o show that the linear pulse
response for the system is given by

h=0,2,1,0 (53)
If however, the output were mistakenly given as:

¥=0,4,17,8,1,0 (54)

then, the estimates of the optimum linear pulse response would vary with
the methed used. In this ease, (he method of direet forward substitution
would give the linear response as:

h=0,2, 2.5, —4.5, 12.75, —36 (55)

whieh 15 elearly unstable.

In using the method of least squares, it is necessary (o deeide the length of
the pulse response to determine the size of the input convolution matrix. The
oufput = given at six points and (he input is given for three standard inter-
valz. It eould, therelore, be assumed that the pulse response, which is (he
response due (o input in pne standard interval, would not exeeed four intervals
in length, Assuming the pulse response (the finite period unit hydrograph) to
be four intervals long, the least squares method gives as the oplimum pulse
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FOSPONSE;
h=—0.15, 2,31, 0.82, 0.02 {36)

This result is seen to give an anrealistic nogative ordinate af the beginning of
the mpulse response, I the restroint were inserted that this ordinate should
bo zero, the result obtained would be:

k=0, 2.23, 0.76, 0.01 (57)

The latter result is seen 1o he not oo different from the true pulse response
given by equation 33, However, even ordinates as smail as the fourth ordinate
of 0.01 have an offect on the solution, IT the fourth erdinate were constrained
to be zor, the resull would be:

h=0, 2,18, 0.82, 0 (58)

bt ean be seen from the above series of results that the more information
concerning the realistie formy of the pulse response that is fed into the compu-
tation, the eloser the resait will be 1o the true pulse response, which has been
masked by the ervor in the output. Siimilar variaGons in the result are oblained
in the correlution method if a certain aumber of Wiener-Hopf equations are
chosen or if additional restraints are placed on the problem.

Problems on Discrete Systems Identification

L. If the inpul in a system is given in Appendix table 2 by function 8 and
the output by function 4, find the unit pulse response of the system both by
the direet algebraic method and by the loast squares solution.

2, For the data of problem 1, find the autoeorrelation funetion of the input
and the cross correlation function between the input and the output. Write
down the set of diserete Wiener-Hopf equations for these particular data.
Verify thae the solution obtained in problem [ is & solution to the latter
rauations.

3. Use the Z-transform o identify the pulse response of the system in
problem T for the given inpul and output.

£ Nolve probleny | by either harmonie analysis or Meixner series,

30 Inproblems 1 tod, what is the effeet on the solution if the output fune-
livn correctly given by function 4 in Appendix table 2 is mistakenly taken as
funetion 5 in Appendix tahie 27

8. In Appendix table 2, i the input te a linear time invariant gystem is
given by the diserete funetion IN and the sutput by the diserele function 19,
fimd the pulse response of the sy=tem by using Meixner series,

7. Pind the pulse response for the date of problem 6 by using harmonie
analysis,

N Appendix ble 4 gives the effective rain and the storm runedt for a
rainfull event on the Ashbrook eatehment. Find the uait hydrograph for the
atehment by & matrix methed,
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9. Find the unit hydrograph for the data in Appendix table 4 by using
harmonic analysis,

10. Vind the unit hydrograph for the dats in Appendix table 4 by using
Melxner series,

1. Iind the harmonie cocfficients or the Meixner cocfficients of the fune-
tiens for a number of the discrete functions given in Appendix table 2.

12, Find the Z-transform of the function for a number of functions given
in Appendix table 2,
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LECTURE 7:
SIMULATION OF HYDROLOGIC SYSTEMS

Basic Ideas in Simulation

Having spent three leetures on the problem of analysis, we now turn fo the
question of synthesis or simulation. It will be recalled from lecture 1 {see
pages 5-7, 24, and 27) (hat simulation consisis essentially of synthesizing
o system (absiraet or real) which will operate on 1he given inputs so as to
produee an oulput which will approximate the output of the pratotypoe system
within a given degree of accuraey, Chorafas (78) has defined simulation as:
“Simulation is simply o working analogy. Analogy means similarity of proper-
ties as relations without identity.”

A model or a simulation reproduces some hut not all the characteristies of
the prototype. Ideally, we might expeet the simulafing system to reproduce
the behavior of the protolype system exactly, but to do this the simulating
system would have to be as complex as the prototype. It is necessary to fix
the accuracy required and {o choose the features of the prototype system
eperation which we hope to imitate. Any attempt at simulation is intimafcly
tied up with standards of aceuraey and with a definition of objectives. Unless
we are explicit on these matiers, our simulation wiil not be scientifically
respeciable.

In many parts of hydrology, as in many paris of mechanies, we simulate
the action of the system in which we are interested by a set of mathernatical
cquations. Thus, we can simulate the physical problem of open ehannel flow
by the cquation of continuity and the dynamic equation. Already, two sue-
cessive simulations are involved. The finite differenee algorithm may thon be
simulated on s digital computer so that there i3 a further degree of removal
from the original physical problem. At esch level of simulation there is a
danger that the simulating system will not correspond in some important re-
speet to the system it is aftempting to simulate. At each level, we must cnsure
that our imitation is sufficienuly accurate for our purpose.

In open channel fAlow, we must be satisfied with the validity of the cquations
of continuity and momentum; we must be satisfied that our finite difference
scheme is stable, convergent and aceurate; we must be satisfied that our com-
puter program does not invelve an undue buildup of round-off error; and so on.

In devising a simulating system, it is necessary to compromise between
simplicity in the model and accuracy of prediciion of the prototype behavior.
A simple system may simulate a prototype system to a high degree of accuraey
without resembling that system. In network theory, it is quite easy to show
that eertain systems are cquivalent to one another though quite different in
strueture. It must he romembered that synthetic systems used in simulation
are at hest only operationally equivalent to the prototype system.

148
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Bimulation has long been used in hyvdreology to transfer resulis from one
watershed to another. This can readily be done i we can find a relationship
bhepween the operational behavior of 2 watershed for which measuremeoents are
avaifable and e eharacteristios of that watershed. Thus all the moetheds for
ohiuining a syathetic unit hyvdrograph used in applied hydrology are methods
of simulating the behavior of an ungaged watershed, Sophisticated methods
of simulation have been introduced into hvdrology in recent yeurs. Simulation
i weed In stochastie hydrology, where long rocords of flow are synthesized
from & refatively short historiead record and used o study the behavior of a
reservolr or a reservolr svstem, Complex waler resouree systems have been
simulated and the decisionmisking proeess ineluded in the simulation (28,
38, 431

In these beetures, however, we are ondy coveerned with the use of simulation
in parametrie hvdrology, Leeture 8 deals with the question of synthetie unit
hydrographs and lectures 9 and 10 with the mathematieal simulation of hy-
drodogie systems by means of nthematical functions and conceptual models.
Aveordingly, these two topies will not be dealt with in the remainder of this
lecture. lastead, atiention wiil be concentrated on the basie priveiples of
simulation and on the remaining types of simulation which can be useful in
hydrology, These may be grouped under the headings of regression models,
digital stmulation, analoy simudation, snd physical models, Sinee the discussion
rapges over so wide & ficld, the coneern will be with general prineiples and
basie ideus rather than the details of any particular method of simulation.
The emphasis will be on the essential similarities between the basie steps in-
volved i the different mevhods,

No matter what the ficld of application, the {ype of problem involved, or
the {ype of simulation, the approach is essenlially similar. It is necessary first
of afl to decide what tvpe of maodel is to be used to simulate the action of the
prototype. Having decided on this, it is necessary to choose the components
of the model and their interconneetion. Onee o irinl model has been deter-
mined in this way, the ability of the model 1o simulate the profouype must he
vertfied on the basis of 2 record of inputs and outputs measured on the proto-
tvpe system. For o physieal model, this is done by verifying that the model
an predict the output of the prototype sysiem to an acceptable degree of
aceuraey for apast event for which records are available. If it is unable to do
sy, the model must he modified until adequate simulatinn is obtained. TI'or a
mitthematical madel, the verification may consist of applying the model to a
suses for which there 15 1 known selution, as o prelude to applyving it to a easc
in which no solution iz known. For a mathematieal model, it may he necessary
during the verifieation phase to modi{y the strueture of the model or to change
the values of some of the parameters of the medel to achieve a satisfactory
precision of prediction, In modern hydrology extensive use is made of para-
metrie synthesis in which & form of mathematical or conceptual model is
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assumed and the optimal value of the parameter is determined, Parameter
values in a model are said to be optimal when these particular values result
in a predietion of the output which is a eloser fit tin some defined sonse! to
the output from the prototype than ean be obtained with any other parameter
values for the same model.

There is a wide choice among types of models suitable for simulating deter-
ministic hydrologie systems, We may deeide o use o physical model or an
analog model; we may decide to use 2 conceprual model consisting of an ar-
rangement of dinear channels, linear or nonlinear reservoirs, threshokds or
fordbacks, and so forth; or we may deeide te use 8 mathomatical model {o
represent the hydrologie system by o set of mathematieal equations. Even
after deeiding the general 1vpe of moded to be used, there are still a number of
matters to be determined. For example, if we have deeided to use an analog
tevhnique, we must deeide whether we are going 1o use {0) a direel analog
model in which various seetions of the prowtype will be modeled direetly and
be more or less recognizable in the analog, or (b & general-purpose analog
computer in which the mathematieal behavior of the protype is simulated by
analog components representing specifie mathematical operations, If, on the
other hand, we have decided to use a mathematieal simulation, there is a
chuiee hetween regression models, representation of the system by a sot of
differentiad equations, or representation of the svstem operation by a mathe-
matieal curve belonging to snme particular family, In the ease of a concoptual
randel, it i necessary to deeide whether the model is to be linear or nonlinear,
whether threshoelds are 1o be ineluded, what partieular types of eomponent
are Lo be used, and how they are 1o be conneeted together.

Insome types of hydrologie simulatian, it is usual to determine parametor
values on the basiz of field measurements or of personal judgment. However,
the uprration of thiz initial version of the model should he thoroughly verified
and the model parameters adjusted until satisfactory operation is obtained.
Only then ean the madel be safely used as the basis of predietion. For most
mathematicsl and conceptual models, the values of the paramoters are not pre-
determined but are optimized on the ba~is of kuown input and output. There is
some exeuse {or a lack of objeetivity in the optimizartion proeess when faced
with ad hoe problems In applied hydrology. Even in this ease, however, opti-
mization on an ebjeetive hasis has the advantage that the results from this
individual study ean be comined with others in a meaningful fashion. In
hydrolpgie research, there is no excuse for avoidable subjectivity. Neverthe-
less, the hydrologie Hterature is full of models justified by a single illustration
which shows that the prediered output elosely resembles the actual output.
Sueli “oplimization by eye” is ineapable of being integrated into a general
body of seientific knowledge and is unwarthy of the name of scientific
bvdrology.

We ran borrow from siatisties and numerieal analysis 2 number of eriteria
of aptimization, These inelude the methods of moments, least squares, mini-
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max error, and maximum likelibond. One sueh technigue may be preferable in
one situation, and another in another situaton, What is important is that the
method boe abjective, repeatable, and that it be clearly deseribed in any re-
porting of the work,

Regression Models

Hegresston technigues 127, 37, 63, 681 are eszentially a method of simula-
tion, Their main value 1= in prediction rather than in the investigation of
sl linkages, Ounee the deelsion has been made Lo use a rgeression mothod,
it is necessary 1o deeide what 1vpe of regression model will he used.

An example (70 of multiple linesr regression, 8 method which has been
widely used in hydrology, i< shown on Agure 7-1. In this example, the follow-
ing basie relationship is assumed:

Or=ai (N Shds ey {1a)

In thi formulation, the peak annual ficod (Jry, which iz taken as the de-
pendent varinble, is assumed to be related 1o unknown powers of the various
watershed parameters t4, S, N, I, 4 and Oy, which are taken as independent
varinbies, ¢ i the innuad peak diseharge in cubie feet per second for a re-
eurrence interval of 77 vears; oL is the drainage area in sguare miles; S 3s the
main channpel slope in foet per mile; N, iz 2 measure of the surface storage
area: £ ix the 24-hour rainfail in inches for a recurrenee period of T vears;
{ s & moasure of freezing conditions in midwiner; and O is an orographieal
fuctor, If the reladonship given by equaden 1a is expressed in logarithmic
furm as follows:

foplly = toga-+bdogU S edogSt S dilog S
+elogh +Hfdogt) +g{logQ)  (1b)

then the relationship is linear bath in the new logarithmic variables and in
the unknown parameters. Consequently, the unknown parameters (g, b, ¢,
d, e, f, and ¢ can be determined by the standard techniques of multiple
linvar pegression,

The assumption of the pargieular relationship given by cquation 1a or
equation 1b makes this approach just as much a meodel as if the variables
were fed into an analog computer, Indecd, to the hydrologist devoted to the
analog approack, the method of muliipie linear regression models wou'd ap-
pear somewhat as shown in Agure 7-1. In this diagram, cach of the depcndent
variables 19 fed into a function generator which raises it to the designated
power. The resulting outputs are then multiplied {ogether to give the de-
pendent variable, For the parameters to be optimized cither in the regression
euation vr in the analog, the value of the exponents of the independent vari-
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ables that give the best fit between the predivcted peak flows and the observed
peak flows must be determined. The logarithmic transformation of the vari-
ables would be paralleled in the analog case by replacing the analog shown in
figure 7-1 by one in which the function generators would transform the inde-
pendent variables logarithmically and the multiplier would be replaced by an
adder.

Q7 = alaP(s)c(spdinemfo)9 lid]

| -~

log Qr = log a+ b(log A)+ c(log S)
+d{log S3) + ellog 1)+ f(log t)
+ g(log O) [1b]

Figure 7-1,—Regression analysis,
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The standard regression teehnique takes a5 a eriterion the minimization of
the sums of the squares of deviations of the prediered values of Qr from the
measured values of Op, The model ean he evaluated by examining the value
of the square of the multiple correlation cocfficient t 223, For a porfeet maode,
22 would he equal 1o 1 and the eloser B2 approaches 1, the better the simula-
tion of the protofype sysient As in all eases of simulation, we must try (o
reconcile the advantages of inereased accuracy and the convenienee of keeping
the model as =imple as possible. I one of the listed watershed parameters is
dropped from equation L--which is equivalent o fixing the appropriate ex-
penent as zero—we ean view this o< cither simplifieation of the model ar a
constraint on the parameter. If one or more parameters are held at zere, the
oplimum values of the remaining parametors ean he determined and the cor-
responding value of f* calealnted. [T, subsequentdy, one of the previously
consirained parameters is allowed (o enter into the optimization procedure, a
new sel ol parameter vidues will he obiained for all the vartables, and (he
value of £ will be inereased provided the variable which now enters (he re-
lationship has an influence an the dependend variable not aceounted for by
the other viriabdes in the relationship,

In the example of multiple linear regression quoted above, which is laken
from Benson's 1Y study of 164 station records in New England, the correla-
tion of the W-vear peak How Qu with the area A4 alone gave o value of R2=
075, This figure may be erudely interpreted as indicating an officieney of
simulation of 78 perecat, I, instead of using n single input, the channel slope
()i alzo taken ine aceount, the value of K% inereases to 0.580 whieli is o
distinel improvement. The inclusion of the orographie factor (01 with the
aren and slope inereases £2 10 0.832: the further addition of the storage pa-
rameler (8¢ results inoasmall inerease giving 0.945; inclusion of the tempera-
ture factor t4: brings the value up {0 09540, [nelusion of the preeipitation
Metor of does not give any luriher improvement, The exact values of the
expunents were simplified, thus giving & more convenient Tormula without
apprecinhle loss of aceuraey. The final regression equation with simplified
CXPONCNES was:

_ ‘.1 l\‘ﬂ .-izﬂ.-t()!..l

This is an interesting and somewhat surprising iHustration of whaf may hap-
pen when using a regression model; though rainfall is an important physical
eause of the runofl, the inelusion of the rainfall factor does not impreve the
aceuracey of predietion based on the other factors and rainfall is not included
in the final equation. The fact ¢t the rainfall parameter does not improve
the neewraey of predicton would suggest that it is highly correlated with the
walershed parameters aleeady ineluded in the model and henee, has ne addi-
tional independent information (o contributoe.
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If a linear regression does not give 1 good working model, the use of curvi-
linear regression may improve the situstion. The commonest model used in
curvilinear regression is polyviiomiad regression, which for the ease of simple
regression tonly one independent variablier takes the form;

y=athrdertbdot+ (32)
Thix s elearly equivalent to the multiple inear regression equation
Y= a4-hrytersdr - {3h

il eael of the powoers of ¢ s considered as a separate variable. Though equation
Ja expresses @ noulinear pelationship between y and x, the equation is linear
i the unkuown purameters v, b, ¢, f, and <o forthy and the standard methods
for extimating these parameters ean e used, The above appronch can e ox-
tended to cover multiple polynomial regression, which ix represented by the
CORELL U

¥tk et e 4 sl g (B1]

where prao denctes w polynominl of r,
I the Taetors are thought 1o eombine as produets rather than as MUME,
then an equution of the following form ix appropriate:

¥ o forpfoase iy Falr) 41

Equation Ia on page 800 is a special eaxe of equation 4, which is adopted be-
ause it can be readily transformed to the multiple linear regression form
shown in equation ITh, I this particular model does nol result in sabisfactory
simulation, then another model must be ried, A model whieh is another
spocil case of equation -4 ix desertbed hetow for the ease where there are three
independent varinbles,

As g fiest approximation, iU may be gssumed that the individun) variation of
¥ withory eancbo represented by the Bnear reladonship:

f],' Xy ooy +l’-’1.1’1+ {on1

and a similar boear relationship is assumed for the other two independent
variahiles;

Lrray s et baro+ [1535%:
faxrat = gl .., {3e)
The grnersl relationship for these assumptions ean be written:
YT ugthatny
+ hyttatz a2y thybattara - tsbiarg
It ry 2 el vy -+ basbarar,

+ bylabar ety
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The relationship Between ihe dependent variable, g, (he three original inde-
pendent variables 1xy, e, xp and the four products formed from them ean
new he analyzed 0371,

If the factors do not aet indepeadently of ane another, then & model of
jotnl regression:

I =ft T T o DR {60

mutst be used, The very general form of equation 61 may be modified by
assuming that the variables et In groups so that we can write some such
Lo us;

TN MU S O -}-',l'._,i_r‘,l rov 4 (Gl

Unless there is some apriori reason to stggest 8 partieular relationship, joint
regression analysis is more eonvenientdy handled by graphie than by algebeaie
methods, For joint regression, s Trequently holpful (o assume the model of
multiple linear regression, then plot (he residual values of g against (he inde-
pendent variables and fit “vontours’ il there is any indieation of a joint rela-
tion. In this ease, the joint regression term is wdded to the linear 1erms,

Muliiple regression analysis makes (he a=sumpiion that all the errors are
enneentrated inthe dependent variable and also thai 1the so-catled indopendent
variubles nee not correlated with one another, Violation of the latter assump-
ton does not prevent the derivittion of 2 regeession relationship which can he
used as o prediction tool, but it renders meaningless the tests of stenificance
wed in A regression analysis, In hytlralogy, due to the operation of geamorpho-
logieal faetors, the watershed parametsrs used 2= independent variables are
olten very highly eocrelated among themselves, Multivariate analysis (33)
speks to avold these two problems by treating alt the variables alike and by
performing component analyxis ro determine any truly independent grouping
ol variables which may be present, Wong 421 applied component analysis Lo
the data for New Kogland floods refeered (0 on pages 000 to 000. Wong de-
seribed how to isalie orthogonal components and <howed that for the average
annual Mood it was possible ta praduee a celationship based on two parameters
whiel was as aeeurate as the multipte linear regresdon equation hased on Bve
parameters, Some pther papers dealing with the applieation of mualtivaciace
analysis (o hydrology are ineluded among the referencees at the end of this
leeture < § 4, a8, 9,

The method of enaxial eorrelaton deseribied by Linsley, Nobler, and
Paullius -+ ;20 has been widely used in applied hydrology. Coaxial eoreeladon
is essentially o graphie method of nonlinear regreszion and i= suitable for the
sohution of ad hoe problems Tn some eazes; the zhape of curves used refleeted
eerfain assumptions about the sail moisture aecounting involved. In its origi-
nal form, conxial eorrclation was subjeet to the disadvantage that the process
was 1 osthjeetive one and different workers would produce different diagrams
from the same <ot of dag Those experienced o the use of e method tended
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to foltow a fixed procedure and to produee conxial correlation dingrams which
wore similar in their general form.

If conxinl eorrelation is to he used ws a ool In parametric hydrology, it
should explivitly invalve the azsumption of a given modol of watershed be-
hnvior, This approach Lo coaxind correlation is reficeted in the work of Becker
e, 10y, Figure T2 15 hased oo hix papers nmd ean be used (o $lustrace the
approueh 1o coaxigl correlztion based on physical reaoning and the use of a
particutar model. The dingram s inteaded (o be used 10 estimate the basin
recharge following rainfall. Ax indicated by arcows in figure 7-2, progression
i from .4 to B o ¢ quadrants, Quadrant (U= imended 1o give the relagion-
ship Between potential basin recharge and initial moisiure content, the latter
betigr represented by an anteeedent precipitation index. The separate lines in
gquadeant L1 represent week numbers and, therefire, different sensons of the
vear. Quadrant B allows Tor the offeet of raiofall duration cand henee of the

ate of infiltration and replenishment of sail moistares on the basin recharge,
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(undrant € cefleets the effect of the amount of rainfall on the actusl basin
recharge.

Becker srgues that beeause of the pliysical processes involved, there are
certain constraints on the shapes of the curves in the different quadrants. He
invokes s simplified mode! of the watershed behavior to determine the general
nature of these restraints. The higher the value of the antecedent preeipita-
tion, the less stornge will e available in the watershed lor recharge. [T the
antecedent precipitntion index approaches an infinite value, then all the rain-
fall must run off, and there can be no recharge to the basin no matter what
the value of the volume of eninfall or duration of rainfrll, Beeker argues from
this that all the lines in quadrants B and € must pass through the origin,
whereas in the most of the published literature (see for example 873, the lines
in quadrant £ ace deawn as parallel ines, and those in quadrant O are drawn
a3 meeting 1t g point on the axis between guadrants A and D,

The next step in Beeker's procedure is 1o take aceount of the fact that most
prosent-day models of total catchment response assume the existenee of a
threshold betwoen soil moisture and direet runoff {39, §41. A simple threshold
operates as follows, If the storm rainfall is less than the initial feld moisture
doficir, there will be no dircet runol, and alf of the rainfall will be aceounted
for as basin recharge. H, however, the storm rainfall is greater than the initial
fiold moisture defielt, then the soit moisture storage will resach its threshold
value snd direet storm runcf will oecur, For a stmple threshold, the amount
of direet runofl will be equal to the volume of rainfail minus the volume of
the initial field moisture defieit.

I the duration of the rainfall is suffetently long, the intensity of rainfall
will be less than any predetermined limiting infiltration rate, Beeker argues
that for a finlte amoeunt of rain and & very long duraiion, the line in quadrant
(" must consist of 2 Hmiting line which makes the ordinate between quadrants
# and C equal to the ardingte between quadrants ¢ and D, together with a
vertieal line, eorresponding to the ameunt of rainfall. When the dehicit given
en the ordinate between gquadranis B and (7 & greater than the amount of
rrinfall, there is no direet runoff; then the recharge is equal to the amount of
rninfall and ix independent of the value of the initial deficit. In this ease, the
vatue of recharge to be read on the ordinate between quadrant ¢ and quad-
rant & 12 governed by the vertieal line corresponding to the rainfall amount.
The inelined cqual vakae line—which acts as an upper limit to the series of
veriieal Hnes— governs the determination of the basin recharge for the case
where the rainfall i= greater than the initial field moisture deficit; in this case,
the busin recharge given on the ordinate between quadrants B and D,

Beeker recognizes that & guadrant C pattern of this type (& serios of vertieal
lnes for different minfall amounts and one line &t 45%) is essentially o simpli-
fird model based on o lumping of the charneteristics of the catehment, which
assumes thar the rainfall disiribution and the distribution of fcld moisture
defieit are uniform throughout the entehment. IT allowance s made for the
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variation of field moisture deficit {or of rainfall) throughout the watershed,
then the curve in quadrant € for any given rainfali amount will show a smooth
transition rather than a sharp bresk from the sloping 45° line to the appropri-
ate vertical line, If the rainfall is very high relative to the initial ficld maoisture
deficit then the threshold will probably be excoeded in nearly all parts of the
catchment, and the basin recharge will closcly approximate the initial defieit.
If, on the other hand, the rainfall wore very small relative to the iniiial dofieit,
then the threshold capacity would probably nat be reached in any part of the
catchment, and thus the hasin recharge would be equal (0 the amount of
rainfall. For intermediate ratio of rainfall to moisture deficit, a smooth transi-
tional curve would be obtained as shown in quadrant (", figure 7-2, The
curves shown on the figure reflect the assumption of varying thresholds
through the watershed, that is, of o multicapacity accounting system (39,
a1, 530,

For vory long durations, the tow intensity of rainfall will ensure that all of
the rainfall will infilteste into the soil, For such cases, the duration will not
affeet the recharge to the basin, and henee the line in qundrant B will be an
inclined stenight line giving cqual values on the ordinate betwoeen quadrant
and quadrant B and the ordinate between quadrants 8 and C. For the same
amount of rain and a shorter duration, the rate of rainfall may oxceed the
mfiltration capacity of the soil at some time during the storm, and the full
amount of potential basin recharge may not be realized; eonsequently, water
failing to infiltrate the soil will contribuie to direet storm runoft, During &
storm event, infiltration is limited to the duration of rainfall (T} plus the
time for which overland flow persists after the rainfall ends (T,). Becker as-
sumes & Himiting rate of infiltration into the moist soil (fw}, and henee for a
given duration of rainfall the recharge eannot excoed the product of this in-
fltration rate plus the total duration of overland flow (that i5, the sum of the
rainfall durstion plus the time of overland Aow after the erssation of raind,
which is assumed to be constant, This limitation on infiliration is reflceted in
the horizontal lines in quadrant B for low durations of rainfadl; those lines
represent the limiling reeharge fut Te+T0).

Where the minfall intensity is fess than the Hmiting infittration rate for a
wet surfree, the actual basin recharge depends on the rate at which moisture
in the soil profile is replenished, If the water infiltrating through the surface
s in exeest of that required for soil moisture recharge, then interflow will
oeeur amd contribute to direet storm runofl. Becker assumes that the rate of
soil maisture recharge is proportional to the soil moisture deficit, varving from
zero when the deficlt is zero tihat is, the =il is at field eapacity)} to the rate
of maximum infiltration into a dey seil when the doficit is equal to the field
maisture eapacity, This assumption gives an exponential deeline with time in
the rate of =oil moisture reeharge, Becker shows that for a constant rate of
infiltration into & dry =0il 1 fuaxt and a constant value of field moisture ca-
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pacity (.VI7) that the velume of recharge for a given duration (7%) is pro-
portional to the volume of soil moisture recharge for the same amount of
rainfull and an infinite duration, Consequently, for all cases where the re-
charge is not limited by the rate of infiltration through a wet surface, the lines
in quadrant 2 (whieh reflect the effeet of duration on recharge) will form a
ray of lines Lhrough the center of the coaxial system as shown in figure 7-2,

The general shape of (he curves in quadrant . ean be shown to be plausible
by means of arguments based on relatively simple assumptions. If the cateh-
ment were homogeneous, one would expeet the lines in quadrant A to be
struight lines joining the value of the soil moisture deficit under wilting condi-
tions on the (wo axes. If, however, the catehment is considered as heing made
up of & number of areas with differing maximum field moisture deficits, then
the curve conneeting the initinl soil moisture (represented by the antocedent
precipitation index) on the axis between quadrants o and D with the maxi-
mum pessible reeharge on the axis between quadrants 4 and B would take a
general hyperbolic form, The existence of different curves for different scasons
of the year would he expeeted due to the effeel on moisture accounting of
evaporation, transpiration, and consumplive use. Becker showed that by
drawing the coaxial eorrelation diagram as deseribed above, results eculd be
obtained as good as (if not better than) with the more eonventional form
usually recommended, His approach has the advantage that the pattern of
lines in his dingram and the position of some of the lines can be related to a
definite madel and to physically reasonable eatehment parameters. It would
be interesting to link up Beeker's approach with some of the models which
have been suggested for stmulating the entre watershed response discussed
later in this leeture. Beeker (93 also ineludes o quadrant reflecting the offect
of ground water level on the relation among anteeendent conditions, rainfall,
and basin rechacge. This quadrant is not shown in fgure 7-2.

Inall types of regression analysis—lnear or nonlinear, numerical or graphi-
cal, multiple regression, or multivariate—it must be remembered that the
choiee of & partieular model and that the computational procedure merely
represent & way ol optimizing the parameters of this model. By optimizing
the parametess on the basis of sn acfust record, we enable the particular maodel
chosen to simulate the operation of the prototype ns nearly as possible in
aeeordance with some chosen criverion. There is no guarantee, however, that
we have chosen well in choosing the particular method or model used, Iar
too litte has been done in the systematie exploration of the problem of choos-
ing between models,

Regression modlels of all types share with models in general the feature that
they may peediel (he behavior of the prototype without resembling or reveal-
ing the nature of the protorype svstem, However, it is correet to say that the
more eloxely a model s based on the physical nature of the prototype system
the more likely s it 1o prove its worth as o general-purpose model (that is, to
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prediet the behavior of the prototype under a wide aariety of eonditions) and
facilitate the meaningful comparison of parameter values derived from usig
the same general meded to simulate different prototypes.

Digital Simulation

Exeept in the simplest cases, the regression models previously doseribed
and the mathematieal methods of simulation deseribed in leelure 9 require
the use of digital computers. In such cases, the use of the compuler is nog
compulzory in the simulation of the hydrologie system, but rather it is the
most convenient method of computation. In the present section, we are not
cosicerned with the use of the computer for these purposes of ealealation
enly but rather with simulations of hydrologic systems involving teehniques
which are only feasible on a digital computer, for example, systemadie search-
ing for optimum values of relatively large numbers of paramelers,

[n the present section, a deseription will be given of some taypical simula-
tions on the digital computer of the hydrologie processes involved in elements
af the hydrologic eyvele and the simulation of the total response of (he catch-
maent, The highly important subjeet of the optimization techniques required
to obtain objective estimates of the best values of the paramelers to be used
iz left until the next seetion,

Dgital simulation can be used to reproduce the behavior of any clemoent in
e hydrologie eyele. In leeture 2, we discussed the empirieal formulas used
inapplied hydrology for estimaling snowmelt. The simplest of these formulas
wils:

M= G-OB{T:nenn —24) (68‘)

which refates the daily snowmelt in open areas in inches I (o the mean daily
temperature (7. in degrees Fabrenehit, A complex formula which has heen
widely quoted is:

- e L
S0 log.(a 'z log b z)

U [(’pT-{— (9—611}%] {(6b)

7

which relates the snowmelt D to a number of micrometcorological factors.!

in contrast to the ahove formulas, figure 7-3 shows a digital simulation
model for snowmell developed by Amorocho and Espildora (£). Tt can be
seen that this simulation for the snowmelt process is much more complex
even than equation 6h, In the simulation proeess, the inputs to the system
are the meteorclogical eonditions and the initial condition of the snow. The
simulation model is shown in the form of the flow chart whick ean be readily
programed for a digital compuler. Indeed it would be difficult to apply the
medel shown in figure 7-3 without the use of a digital computer due to the

! Lecture 2, pp. 44 and 45,
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large number of logical decisions as well as computations which are requiced.
These logical decisions arc represented by lozenge-shaped boxes on figure 7-3.
The first question is asked in decision hox 0: Is there precipitation? If there is
not precipitafion, we travel by & route through box 1 and then consider the
heat budget in box 15 which takes into sccount such vectars as incoming
radiation. If there has been precipitation in the form of rain, the amount of
interception is allowed for, and a distribution of the precipitation is made
between bare seil and snow-covered soil in box 5. The rain going diveetly to
the soil is an output of the model and an input to the watershed. The rain
falling on the snowpack is taken into account in a heat budget.

In this simulation, the snow eover is divided into layers which arc treated
separately. The effect of heat, rainfall, or new snow on the cxisting snow
layers arc all taken into secount, Each box in the fow chart represents o
physical process; some of these processes are of a high eomplexity, and this is
refleeted in the computational equations used in the step. Thus, box 16 in
figure 7-3 has to be expanded into a flow chart as complex as figure 7-3 itself.
Equations Ga and Gb and the flow chart shown in the figure arc simulations
of cerlnin physical processes. We ean recognize the empirical equations of
classical physical hydrology as very simple models of these physical processes.
Due to the advent of the digital computer, we ean now replace these simple
physical equations by simulation models involving both complex mathemati-
cal relationships and multiple decision processes. The simulation shown in
outline on figure 7-3 and described briefly above is only one possible model of
the snowmelt process, and other digital models have been developed and re-
ported in the literature. One such simulation model by Anderson and Craw-
ford forms part of the later vorsions of the Stanford watershed model (3, 29).

The other individual processes in the hydrologic cycle may also be simu-
lated in this way. The contrast between the elassical empirical equations and
more ermplex simulations based on the digital computer can also be illustrated
for trangpiration. Thus we could estimate transpiration according to 2 com-
bination-type formula such as that of Penman {49):

_Ea+d/'y-HT.

Ep= (7N

14+-Afy

where the potential transpiration Er is estimated as a weighted average of the
aerodynamic factor B, and of the heat budget factor Hy, the weighting factor
a/y being a function of temperature. This equation may be confrasted with
the simulation of transpiration shown in figure 74, taken from a recent n.iper
in “Water Resources Research” (87). This represents the simulation of
the action of a plant in removing moisture from the soil and transpiring it to
the atmosphere, While it is not likely that such a detailed simulation would
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be required in hydrology, it does indicate the complexity underlying the
processes with which the hydrologist is concerned.

The full simulation of the process is more complex even than shown on
figure 7-4. On the lower right-hand side of figure 74, stomatal aporture con-
trol appears as an input factor. Figure 7-5 shows that this factor, whieh is an
mput to the transpiration simulation, itself depends in a complex fashion on a
number of inputs. When we look at simulations such as those, woe realize that
the complexity of o Tormula such as Penman's is negligible compared with the
complexity of the physical processes which it is intonded to represent. It is
interesting, in the case of the two simulations for transpiration and stomatal
control, that the authors first show the dingram from a botanieal viewpoint,
then from a more abstract system viewpoint, and finally in terms of system
funelions of the different operations involved,
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{ther elements of the hydrologic eyele can be similarly freated. The proc-
esses mvolved in flow—whether overland, in open channels, through soils, or
from ground water reservoirs—can be simalated by modoels of varying com-
plexity, These phenomena lend themselves to relatively simple simulation by
overall mathematical cquations or by conceptual models. These methods will
be diseussed in fecture U, 3, however, we were not satisfied with the use of
bulk friction formulas and insisted on {aking into account the fine detnils of
turbulence strueture and viscous dissipution of encrgy, the simulation of
these processes would become extremely complex. For flood routing in natural
ehannels, one may choose among the simple methods of flood reuting used in
applied bydrology, the relatively simple coneeptual methods which huve hoon
developed reeently, and the solution of the problem in its full complexity on
a digital compuler.

In all these cases, we are faced with the dilemma of using either a simple
model which is vasy to manipulate and comprebend but which may be too
crude o simplilication of the physical process or, on the other hand, & highly
complex model which may be difficult to develop and expensive to operate Lo
obtain further aceuracy, No matier how complex our simulation model may
be, the odds sre that it still will not mirror the true complexity of the physical
processes invelved and henee not refleet the physical reality of the situstion.
While this failure might worry the pure selentist secking to determine the
nature of things, it is of little consequence to the engineering hydrologist
who seeks only for 1 technique which will be suffieiently accurate for his im-
mediate purpose. The rescarch hydrologist comes somewhere between these
twer extremes. e seoks results and methods that are grounded on a general
body of knowledge and henee of wide application.

Digital simulalion ean also be used to model the total response of a water-
shed. Here again there is a cholee between a simple model, which will of
necessity be crude, and 8 more cemplex model in which it may be difficult to
optimize the parameters owing to their number and their interaction. The
simplest model of total watershed operation which gives any semblance of
reproducing the behavior of a watershed was discussed carlier in lecture 1
{see fig, 1-8). In its simplest form, such a model might attempt to simulate
& watershed by assuming that (1) dircet storm runcff could be ebtained by
routing precipitation excess turough a single element of linear storage (K);
12} base flow, by routing recharge to ground water through another element
of linear storage of longer storage delay time (RL); (3) the division between
precipitation exeese and infiltration, by use of a constant infiltration rate
(fe}; and (4) the recharge to ground water, by assuming a threshold of field
moisture capacity (/). Even in this highly simplified form, four parameters
would be required to doeseribe the eperation of the madel, one for each of the
four olementa.

If we now seek to make the model more accurate or more realistic by a
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detailed simulation of any of the clements, o numbrer of addizionai partmet ey
will be introduced. The number of purameters quickly increases, and the
problem of objectively determining their aplimum veiues can be handled
ouly on & digital computor, The determination of he alues of these param-
elers for optimal reprosentation of (he prototype is the key problem in digital
simulation of total eatchment response. We may insert values of the param-
eters based on field measurements made cither in the watershed under study
or i a similar watershed; but it would be foolish to take such mossured
values or any fextbook values as other than indieators of the order of magni-
tude of the parameters required for simulation,

Onee an aifempl is made 1o simulate the operation of a watershed by a
specific madel, & model preameter which is designod to correspond to some
single physical parametor in the fiold may, in fact, take on other funetions in
the simulation process. If our desire is to understand in detail the physieal
proeesses which are invelved, we have no option but to seek the parameters
corresponding to these additional funetions and synthesize o more compli-
cated model. If, on the other hand, our only purpose is to reconstruct the
aperation of the protoiype and prediet the outputs, then we should seek the
vadue of the paruneters of our model which optimize is perfornance.

The best known work on the digital simulation of the {otal watershed is
that done at Stanford University (21,22, 23, 40, 45). The Stanford model
Mark IV i shown on Agure 7-6. The various versions of the Stanford model
are essentinlly compromises between thoe oversimplification of the four-
parameter modet shown on figure 1-8 and the uncontrollable complextiy of a
modet which would attempt to inelude everything we know about physical
hydralogy. The tnputs o the model are preeipitation in the form of mean
hourly rainfall and cvapotranspiration in the form of daily means. The out-
puts are streamflow in the form of; (1) summary tables of mean daily flow;
123 hydrographs of all storms greater than a given base; and (3) some monthly
daty, such as volume of interflow and actual evapotranspiration and initial
and final soil moisture conditions. Other outputs can he obtained on an op-
tionad basix, A feature of the model is the division of soil moisture siorage into
upper zonce storage from which evapotranspiration takes place at the potential
rate and lower zone storage from which cvapotranspiration takes place at a
rale loss than the potential rate when the upper zone storage is exhausted.
The routing of the various Bows—overlind flow, interflow, ground water flow,
and channel flow—is based largely on reservoir routing. The Mark IV model,
which Is more complicated than earlier versions, allows for such features as
overland flow and snowmelt. There are 19 parameters in the model (excluding
snowmelt parameters) and four initial parametors for setting the values of the
various storage components. All bui four of these parameters are estimated
from the records or from MAps,
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An glternative model of the total watershed response is that Dawdy and
O'Lonnell (24), which is shown on figure 7-7. This model is somewhat simpler
than the Stanford model and was deliberately designed to be so. While the
Stanford model on figure 7-6 is drawn in block diagram form, the Dawdy-
O'Donncll model is drawn in terms of tanks and overflows after the manner of
Sugawara (60 and other Japanese workers in the field. It would be a useftf
exereise to attempt o redraw each of the models in the othoer form, Dawdy
and O'Lonnell were primarily interested in investigating the problem of de-
veloping the most efficient techniques for optimising the parameters of a
model, rather than in simulating any particular watershed, For this reason,
they first fixed “correct” values of the parameters of the model shown on
figure 7-7, generated the cutput due to a synthetic mput and then, starting
from erroneous initial parameter values, tried to discover from the record of
input and output the predetermined “correct” values of the nine prrameters.

The inputs to the Dawdy-(Donnell model are precipitation and evapo-
transpiration. The oulput is the eventual total runof including surface run-
off aud base flow. There are nine parameters in the model whose valucs are {o
be optimized. R* is the depression storage which must be safisfed hefore
overland flow oceurs, The operation of the linear channel storage is character-
ized Ly s single storsge delay time, £,. The Horton equntion is used to model
the infiltration, thus accumulating three more parameters Jo, foy and k. Flield

Figoae ~7.—Dawdy-O'Donnell model.
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moisture capacity is taken as 1™ and ncts as a threshold on recharge to
ground water, I'urther parameters introduced are a ground water eapacity,
G*, which enables the model to simulate water logging under very wet condi-
tions and a maximum rate of capillary rise, (., 1o simulate the loss of watcer
from the ground water by capillary rise during very dry periods. The ground
water reservoir is assumed to act as a linear reservoir, thus giving the ninth
parameter, Kg. This model will be used to illustrate the problem of parameter
optimization later in the lecture.

A number of other models of the total catehment response have been de-
veloped for various purposes and from various points of view. Among those
which are deseribed in the literature are the Tennessee Valley Autharity
model (64, 62) and models developed in Australia (12) and Japan (46).
Beeause all models of this type will be compromizes, they will be different
from one another. The only way in whieh they ¢an be judged is the cfficiency
with which they earry out their specific purpese. If models are constructed
for different purposes, then it is impossible to compare them. We should be
very careful of saying that one model is better than ancther unless we are
sure that the objectives of buth models are the same or can be expressed in
commoen terms,

Optimization

Frequent reference has been made above to the optimization of the param-
oters of o simulation model. The present section deals with this problem of
paraméter optimization, The output predicted by the simulation model will
vary with the value of each of the parameters in the model. If the efficiency
of the model in predicting the ontput of the prototype is defined in terms of
an objective eriterion, then the optimal values of the model parameters are
those values which give the optimum value of this defined criterion of cffi-
ciency, The chetee Detween models and the choice of synthesis must neces-
sarily be subjective, but the optimal values of the parameters should be ob-
jectively determined, U this is done, we will know (in regard {o the applica-
tion of any particular model to any partieular set of data) that the model is
nperating at its highest efficiency and thus may be fairly compared with any
other model operating at its own peak efficieney for the same set of data.

Optimization is essentinlly a mathematical idea and is, in o sense, somewhat
at varianee with human nature. In our ordinary decisions of life, we “salisfize”
rather than optimize, As soon as a certain level of satisfaction or performance
i= chtained, human judgment is usually satisfied and does not wish to go to
complete optimization, In this context, the decision is a correct one because
the rlfort expended in going from o satisfactory selution to an optimal one
may be very groat, and the resulting gain may be very small. Indeed, we make
the same deeision in simulation when we deeide to compromise on a model
of o ceriain degree of compiexity, However, if we are using mathematical
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methods and a digial computer 1o find values of parameters for our model,
then the effort to oplimize may not be appreciably greater than (hat of
achivving a certnin level of performance and the truly optimal selution has
the added advantage of being unigue or virtaally 5o, There are many cases
in applied hedrology and in hydrologie design in which the correet decision
is to halt the process onee a eeriain level of aceuraey hias heen obtained. In
seientifie researeh, on the ather hand, optimization is necessary to eliminate
as much subjretivity as possible from thwe result,

If we are going to optimize, we ean only optimise with respeet to some
criterion. Unless o speeilie eriterion is invoked, it is not even passible o say
whether the optimum has been nbtained, Some hydrolagists are convineed
that they are suflicienty experienced (o optimize by personnl judgment or o
olpimize by eve; i they are explicit in this respeet, nobody will be deevived,
but very often the subjeetivity s implicit, Objeetive eriteria are, however, to
Lo preferred.

IT we have chosen a specitic model, then the predieted estimated ouipuat is
a funetion ol the input and of the parameters of that model. Thus, in the case
of o simple model with three pacameters, we could wrile:

gitv=¢lrihh, q, b, ¢] (S}

where iy s the input, a2, &, and ¢ are the parameters of the maodel, anl git)
i the sutpul predieted by e maodel, The problem of optimization is (o find
values ol «, &, and ¢ 5o thai the predieted values of o4 are as close as possible
to the measured values ol oty in some sense 1o be defined. The most common
criterion is that the sum of the squares of the differences between the pre-
divted vutputs and the actual outputs will be a minimum;:

Eta, b, ev= 2 (j,—y, 1= minimum (h

Axan alternative to using 8 least squares criterion, we could adopt the Cheby-
shev eriterion of minimizing the maximum error:

g, b, Y= max i~y =minimum (1m

In his case, we avoid the oecurrence of one or two targe deviations hetween
predieted output and messured output whose presenee might bhe aeeepied in
the lenst squares eriterion, sinee their effeer could be smoothed out by a
faithful reproduetion in the remainder of the reeord.

Another eriterion which ean be used is moment matehing. We can say
that il a model has the same first 1 statisticn]l moments as the protofype,
then (he two systems are squivalent in some sense. Actually 1t ean he proved
that il the moments of the two impulse responses are identical up to the at
moment, then the systems will give identieal ontput for any input whieh is
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a polynominl of the degree noor less. Consequently, a model system with a
given number of parameters will reproduee the behavior of 1he prototype for
polyromial inputs if the values of these parameters are determined by match-
ing the appropeiale number of moments of the model with those of the proto-
type:

pa-gis oo, b ey =pp 111}

Where o barge number of paramoters are involved, the method of moment
matehing s not suitable beesuse higher order moments become unreliable due
1o the distarting effect of errors in the tadl of the Function on the values of the
moments, Howeser, the moethod of moments has the great value (hat in eases
where the moments of the model system ean he expressed s o simple function

of the prrameters of the maodel, then the parameters can be relatively easily
dorived.

For eriteria such ns least sguanres or minimax error, diseet devivation of the
pirrmeters may be fue from casy. T cortain easos, 1 s possibie (o express the
eriterion to be minimized as a funetion of the parameters. To dilferentiate
this funetion with respeet (o each parameter in turn, set all the results equal
tey zero and solve the resulting stimultanvous equations to find the oplimal
vithue of the parameters, For any but the simplest model, it will probably be
simplor to optimize the parameters by using a syatematie soarch technique to
fd those parameter vialues which give the mintmum value of the ervor fune-
tin, Saeh o search technigue gives rise (o s own difficulties, which will be
diseussed later 1o this seetion.

{1 i often neeessary (o decide whether we wish to put bounds on the values
of the parameters, Any model with which we attempt to simulate the proto-
tvpe wil be based to a greater or Tesser degree on our assumptions nbout the
ature of the physieal processes n the hvdrologie system undoer investigation,
W oape then Taeed with a dileauna i the optimized values of the parameter
of s wusdel turn ;Lo be physieally unrealistie, For example, we might
seeh (o simulate diveet storm runoff by @ caseade of equal Binear storage ele-
ments, Such g model has tao parameters, the storage delay time (K of the
individual clemenss and the number of equal elements (n.

An analyss of the daw by moment matehing might indieste that hoth »
and A e negative. Bimilarly, we migit insert into a model of a watershed
the Horton infifiration equation and then find on oplimizing the parameters
that the vadue of £ tarns out to boe 1,000 Teet per second. Even though we are
tnterstidd in predicting the ouiput and the unrealistie parameter values give
a gootd predietion, we are inelined 1o rejeet such values and put bhounds on the
sariation of the prrameter. This is to bring a subjective element into our
simulation and to import knowledge from physieal hydrology into parametrie
hydrolagy. Tomay or may not be the right thing to do.

I{ the restriction of the parametor to realistic values does not increase the
error funetion mueh above b= mintmum value, then i i3 eortainly permissible
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to use the model with the restricted range of parameters. If, however, the error
function is greatly increased by refusing to allow the parameters to take on
unrealistic values, then this may be an indication that the modol itself is at
fault and should be modified or replaced. One consequence of oplimizing sub-
jeel to restraint is that the mathematies tand the computation) become more
diffieutlt. In an analytical solution, partial derisatives must be replaced by the
use of Lagrange multipliors. If the error funetion and restraints are not linear,
we may be involved in nonlinear programing which means serious computa-
tivnal problems, In n systematic search technique, the extra difficulty created
by the introduction of bounds on the parameters is not nearly as serigus, It is
important, however, to remember that the imposition of a restruint nlways
resulls in some loss of optimality. Where the error function does not vury
sharply, then the effeet may not he serious,

As in all computations, our final (ask is to interpret our results, In the
simulation of hydrologie systems, it is difficult to know how much moeaning
should be attached (o the optimal values of the parameters found. It i prob-
ably correet to say that the answer to this problem depends on the model
used. 1f the model is an extremely good representation of the prolotype, then
there s a good chanee that the parameters are of physieal significance, and
there s likely to be a elose conneetion begween the values of these physieal
parameters and the corresponding field parameters of the prototype, If, how-
ever, the mode! is mueh more simple than the prototy pe, then there is no
guaraiier that the parameters will correspond to the real physical parameters
of the protolype, It may well be that a particular parameter in the model is
un amalgan of several parameters in the prototyvpe, but there is no guarantee
of this, It may be dangerous to try and give a elose physical meaning to some
of the parameters found by optimization. 1t is safer to consider these param-
eters as the parameters of best fit and be satisfied with a model which does
what we require it w do, namely, prediet the output within a given margin
of error,

The optimization of model parameters by a systematie seareh technique is
& powerful approach made possible by the use of digital computers. It is,
however, not quile as casy as it might at first appear. If you consider the
almast trivial ease of a two-parametes model, then the problem of oplimizing
these parameters subjeet to a least squares error eriterion can be casily illus-
trated. We ean imagine the two parameters o and b as measured along co-
ordinate axes and the squarces of the deviations between the predieted and
actual ouiputs as indicated by contours in the plane defined by these axes.
The problem of optimizing our parameters is then equivalent to scarching
this reliefl map for the highest peak or the lowest valley, depending on the
way in which we pose the problem. W have to search until we get, not merely
& local optimum {maximum or minimum), but an absolute aptimum. To
examine every point of the plane would be prohibitive even to this simple
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example, In ysing a search technique, we have no guarantee that we will
find the true oplimum.

The simplest method of searehing is Lo start at some point on the boundary
and travel paralliel 1o the other axis uniil the optimum o that Hne s ob-
tained, The diveetion of search ean then be changed to a direetion at right
angles to that just teaversed and the search continued until the optimum
along that line s obtained, Again the direction ean be changed and the process
repeated until a point has been obtained, which i= the optimum in s im-
medinte neighborhood, Thers wonld be no guerantes, however, that it weuld
be an absolite optimum, This stmple methad of searching turns out on ex-
aminafion to be quite inefhcient even for o small number of parameters, and
more sophisticited teehnigques have been developed 183, 64), Some of these
are based on the steepest deseent methods, which are considerably more
efeient than the upivariate technique deseribed above, However, onee more
than a few parameters are tnvolved, even the sophistieated gradient methods
breome inefliciont compared with a direet seareh technique.

We saw that the simplest model for a tolal watershed would involve at least
four purameters and that models now being developed and used have more
than 2 parameters. Even engineers trained in deseriptive geometry would
fid it bard to visualize the complexity of the searching technique in such 2
multidimensional problem,

A direet search technigque based on Rosenbroek's methed {52) was used by
Diawdy and O Donnell for the systematie optimization of the parameters of
the model shown in Bgure ¥-7 1 241, The search through the multidimensional
parameter spree was made in o sequence of stages, In the first stage, an initial
set of parameter values was assumoed, and searches were made along the
parameter axes. At the start of each subsequent siage, a new set of orthogonal
axes was chosen for the search, the best dirvetion for the new search being
determined from the progress made in the provious stage. During cach stage,
movemsnts were made slong the new axes subjeet o their producing an im-
provement in the objeetive function and following a specific set of rules about
the sige and direction of movement along the axes. These rules also specified
when a stage should end and a new set of orthogonal axes begin. Progress
was usually rapid in the first five or six stages but tailed off thereafter. The
whole process was revitadized by starting a new round of stages with the latest
parameter values from the end of the previous round of stages but starting
again with the parameter axes as the orthogonal search directions.

It was easier to obinin reasonable approximations to the values of some of
the parameters than others, If the parameters were initially set with a large
error, some of them would be within a few pereentage points of the true value
after a single round of stages, whereas others might show little improvement
after 20 rounds, and some might end up further from their true value. A
parsmeter ean only be readily optimized if it strongly affects the output and
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thir effeet enn be xolated in some Taxhion. Consequently, i the particular
input for which the model is tested does not eall a particular paramaler into
pluy, the effect of this paraneter cannot be isolated or its value deternyined
from (hat particular record. The paraumeter in question cun take any vajue
over o wide range without aifecting the objeetive function. Thus, the opera-
tion or even the existence of the pirameter for maximum capillary rise iy e
Bawdy-('Donnelt maodel eould only beeome apparent if a reeord was as st Jo
containing a long dry spell. Rinee the parameters diffioult to optintize eie these
which do not affeet the outpnt for (e particular input used, fuiluee o Gind
their vadues will not alfeet the madel as a predietor provided i s wwed only
for tnpuis whieh are, by and large, of & similar type 1o the input used 150 L he
optimization of the purameters,

There is o great deal more work 10 be done bhelore (he comparisos ol jmu-
lation models for hydrologie sysiems ean be put on a praper ohjees, v hasis,
A maded strueture or a set of parameter values thar predied efficienily for
one type of input and one type of eriterion of it may prove tuite inefliciont
for another set of innut dag or another eriterion of predietion, We must be
elear at all towes what eriterion we are using and what type of oulput we are
trying to predie, Table T 1 is taken from a paper by Dawdy and Thompson
0235 nnd dlustrates the effect of the use of different eriteria on the aptimiza-
tien process. An attempt was made to fit the model developed by Dawdy and
("Donnelt 1o datn for the Arroye Seeo, near Pasadena. The first objective
taken was to mintmize the sums of the squares of the Togarithms of the ratio
of computed o observed monthly discharges. As shown in the upper halfl of
table 7 1, 482 teials resulted in the values of the objective function. The
eriterion was then changed (o one based on daily discharges rather than

TavLE 71~ Hesvlts of three optimizing runs during 1943-.04 in Arroye Seeo
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monthly discharges, The next 368 trinks weee made on this basis with the
results shown in the middle of table 7- 1. The last 156 rials shown on the
bottom half of the table 7-1 were based on a eriterion of peak disehargos,
Fur each triad, the value of the objective function aeeording to each eritecion
wits evaluated though only the objective exterion indiesied wis used to search
for the aptimal values of the parameters,

We ean xee from table 7-1 whether an optimization based on months goes
anywhere near getting the degree of optimization which would be ohtained
if we concentrated on daily diseharges or on peaks, It ean be soen that opiimi-
zition bused on monthly discharges gives values of the parameters which are
not oo fur from the optimal for daily discharges and that optimizntion hased
on duily diseharges gives values of the parameters that are not oo far from
the optimal for monthly diseharges. The differenees, though serious enough,
or not enormeus, However, when we compure the value of the objeetive fune-
tisn when the parameters are optimized on the basis of peals with the valae
when the parametors are optimized on the basix of their daily or monthiy
diseharges, we find 8 tremendous diffeeence, The eriterion for peak matehing
an b reduerd (o (L01 when aptimization i< based on the peaks themselves
But only reaches o value of 0448 for optimization based on monthse and 1,02
for aptimization bused on daily dischargoes,

These resubts are exteemely interesting when woe consider that what is in-
volved here is not o change of model but merely 8 change in choice of the
period of flow, whieh is the basis of the optimization, The modol is o relatively
complex one, and the parameters used all have definite physical implications,
Nevertheless, it ix not eapable of acting as a general-purpose model for peaks,
dadly diseharges, and monthly diselseges. 1F we are only intercsted in one of
these at o tme we ean adjust our model parameters aecordingly, Tt would
also be possible to define @ weighted objeetive Funetion which would take into
geenuil eaclt of these sepaeite objectives in 2ome fashion. The welghting of
thu ditferent objectives, however, would H=elf tend 1o be subjeetive,

There 1 a seope for a great deal of work in the field of digial simulation,
A pure of thi< should be devoted (o a systematie exploration of the subject
using bent neise-free synthetie data and syuthetie data with eontrolled error.
Tt <hould, for examole, be possible 1o determine Feam the Input and ouput
records of 1o sysieny whether or not one or more threshalds cecur in the sys-
ten A4 the sme time, another part of the work should be concerned with
the simulation of field data and the further problems involved,

Analogs and Physical Models
The use of amdogs and phasieal models comes within the seope of parametrie

livdratoxy <ieee these analoss ad models are uxed 1o simudate Lthe aetion of
the pratstyvpe systems, Analogs may be divided into two types—indirect
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analogs which solve the mathematienl equations thought to govern the phe-
nomeng, and direet analogs which attempt to simulate the physical behavior
of the prototypes by an analogous physical system. Though physieal models
have been used for & long time in hydraulics, their use in simulating hydrologic
systems gives rise to & number of difficuitios which have not as yet been
oVereome,

As mentioned above, an indirect analog secks to solve the mathematical
equations which themselves simulate the action of the prototype system. The
most widely used type of indirect analog is the indirect cleetronic analog,
also known as an analog computer or o differential analyzer. The actual solu-
tion of the problem involves the standard technigues common to the large
variety of problems for which the analog computer s suitable. In the use of
an indireet analog for hydrologie systems, the key clemoent is the formulation
of the mathematicnl equations to be solved, or the synthesis of conceptual
models whose mathematical equations can casily be written down. This may
be ilustrated for the case of & very simple conceptual model congisting of two
linear reservoirs in series, Actually, as will be seen later, this particular model
can be readily represented by a simple direet analog.

Fer the frst Dnear reservoir, the inflow (I) and the cutflow (@) are con-
nected by the relationship:

Ld6h p
I—Q=K-— - (12)
where A is the storage delay time of the reservoir, If two such clements are
caseaded, that is, are placed in series so that the output from the first (Qy)
is the inflow to the second, we have for the operation of the second element the
relationship:

di:
dl

Qi—Q:.=K (13}

whore s 3s the outflow from the second reserveir. Substitution of the value
of {h from equation 13 into cquation 12 gives:

4@ _ - 4@ d*Qs

I-Qu- K- 2= K= S (14a)
or
d;{,— + >A‘59-+ Q=1 (14b)
or \
A L (14c)

de dt
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In setting up an indirect analog for any system, if is wise to follow a basic
step-by-step proeedure {4). The first siep in the basic procedure is to draw a
block dingram of the type shown in figure 7-8 for two linear reservoirs in
geries represented by equation 14, The highest derivative in the differential
equation is assumed to be known, and blocks are inserted to integrate it to
obtain the lower order derivatives and the unknown function itself, as shown
in figure 7-8, The appropriate terms are then combined by clementary arith-
ematical operations, salso shown in the disgram by blocks, to construct the
highest derivative in accordance wiih the equation which is being simulated.
Thus, in our case, the first derivative is multiplied by 2K and both the derivate
and the unknown function @ are reversed in sign before being added to the
original inflow; the sum of these three components is then divided by K? to
produce the second derivative.

Sinee the sealers, adders, and integrators in an analog circuit reverse the
sign of the voltage, the bloek diagram must next be modified o allow for the
change in sign; at the same time, the individual symbols for the various opera-

a'Q aQ

f‘—ti—b—-— fat at_, fat

Q

Fiacre 7-8.—Block diagram for indirect analog.
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tions may be inserted as shown on figure 7-9. Tt may be possible at the same
time to take advantage of the possibility of combining several operations into
one block.

After the block diagram has been modified, an rquation is written for each
block in the diagram, and the scale factor is determined for eaeh variable in
the eireuit. This sealing is neeessary to avoid overloading any clement in the
compuling cireuit. To do this, it is necessary to have some ostimate of the
maximum vaolue of each of the variables. The analog of the system can now
be redrawn as shown in figure 7-10 and is seen to require two integrators nnd
one operational nmplifier together with the necessary potentiometers. The
indireet analog has the advantage of allowing an extremely rapid adjustment
of parameters and visual presentation of the comparison of the simulated
output and the actual output. It has great advantages for exploratory work
and could be used with advantage in hydrologic investigations. A team at
Utah State University has piancered the simulation of the total watershed
response on an clectronic computer, The Mark T model contained 46 apera-
tional amplifiers, three multiplicrs, two funetion generators, and 192 po-
tentiometers, The Mark [T model contains additions to the above compo-
nents together with some nonlincar elements and arrangement for greater
flexibility of operation (47).

There are o variety of types of direct electrieal analog, They may be classi-
fied s coutinuous direet analogs, diserete dircet analogs, or combined direet

-aQ
at

71

Fraure 7-0,—Modified block disgram.
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Frauxe 7-10, —Indireet analog for two linear reservoirs in series.

analogs, They have been used widely in the field of eround water flow (4,
20, 563, but there have also been o number of applications to flow in the un-
saturated zone (13, 14, 31) and to flow in open channels (32, 38, 85%. Two
waoll-known forms of continuous direct clectrical nnalog are the electrolytic
tank and Teledeltos resistance paper, These analogs are used in studying the
flow through porous media by utilizing the similarity between the differential
equaiions governing flow through porous media and those governing the flow
of cleetrienl currents through conductive materials. For exploratory studies,
a simple electrolytic tank or Teledeltos resistance paper (or sheets of some
other conductive material) may be used, In the ense of the eleetrolytic tank,
more sophisticated and aceurate work is possible in both two and three di-
mensiong. The method can be applied to anisotropic media by means of scale
distortion. In the case of continuous anglogs, every point in the analog simu-
lates the corresponding point in the prototype.

Diserete direct analogs have been more widely used in hydrology than the
continuous type. Such discrete analogs are usually discretized only in respect
of the space dimension, and time is left as a continuous variable when un-
steady Aow cases are studied. Such o diseretization is subject to the same types
of error as are involved in the representation of a differential equation by its
finite difference form.

For problems involving the steady flow of ground water, a complex proto-
type system can be simulated by a direct analog made up from resistances
oaly. These resistances may be set out in either a symmetrical or an asym-
metrical notwork and may be applied to two-dimensional plane flow, axi-
symmetrical flow, or three-dimensional flow. For other types of electrical
analog, it is necessary to determine the scaling of the analog carefully.

Unsteady flow problems in porous media can be successfully studicd by an
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analog network containing both resistances and capacitors (R-C natwork).
In such analogs, the clectrical resistances simulate the resistance to flow, and
the capacitors simulate the storage properties of the aquifer. A diserete direct
analog for the one-dimensional linear diffusion equation used to solve land
drainage problems is shown in figure 7-11. Two types of R~-C network annlogs
are used. Slow analogs (time constants of the order of 10 minutes) record the
solution of the problem on paper charts, while rapid or repetitive analogs
(time constants of the order of a tenth of & sccond) show the solution on an
oscilloseope.

Direet eleetrieal analogs based on R-C networks have been applied tu
other phases of the hydrologic cycle besides the ground water phase. Because
the flow through unsaturated porous media csn be represented by a diffusion
type equation, it is possible to represent this phase of the hydrologic cycle by
a similar analog to that used for ground water flow. Tt can also bo shown that
a diffusion model gives a very close approximation to the complele solution
of the lincarized vquations fur unsteady flow in open channcls. Consequently,
the same type of R-C analog network could be used in this case also. This
suggests the possibility of simulating the various subsystems of the hydrologic
eycele by the same fype of network analog.

Many other types of direct diserete electrical analogs have been applied to
surface water hydrology. Some of these were attempts to simulate specifie
modcls of the hydrologie process as in the case of the electrical analeg of the
Muskingum (41) and Kalinin-Milyukov {$7) methods of flood routing. Some
parts of the hydrologic cycle can be simulated by conceptual models consisting
of standard clements, such as distortionless linear channels and linear storage
clements. These elements can, in turn, be simulated by @ dircet eleetrical
analog and the operation of the prototype system studied in this way.

Figures 7-11 and 7-13 show three simple elements which could be used as

I R R Q
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Froune 7-11.—Analog for unsteady ground water flow.
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building blocks in a direct clectrical analog of a hydrologic system or of a
conceptuat model of that hydrologic system. The element in figure 7-11 repre-
sents the typieal element used to simulnte a diffusion-type equation slready
referred to. These elements can be linked as shown and as mentioned above,
more than one phase of the hydrologic eyele might be simulated by the use of
such elements, Figure 7-12 shows the direet clectrical analog of & lincar stor-
age clement and the connection of two such elements in series. The latter
arrangement corresponds (o the indireet analog for the same system shown on
figure 7-10. Comparison of the two analogs shows little similarity between
them. Figure 7-13 shows the direct analog circuit suggested by Shen (55)
for a distortioniess inear chanoel. Such an element could be used as part of a
Ing and route model or similar conceptual model,

Because any function can be expanded in terms of Laguerre {unctions, it
can be shown theoretically that any linear system can be represented by an
saalog system consisting entirely of linear storage elements, though the analog
system might need to include a large number of such elements connected in
serics and in parsdlel. [f o particular system ean be represented by s smali
number of such clements, then a dircet analog with clements as shown on
figure 7-12 can be constructed.

The basic types of dircet clectrical analogs deseribed above can be adapted
to deal with special problems. It is possible to combine continuous and diserete
elements in the one analog. While the discussion given above is concentrated
on the simulation of lincarized hydrologic systems, the techniques indicated
can be adpeted to include nonlinear elements, though this naturally introduces
certain complexities and difficulties,

There are & number of other direct analogs besides electrical analogs, and
some of these have polential applications in simulating hydrologic systems.
The best known nonelectrical direet analog is the Hele-Shaw apparstus or
viscous flow analog, which is widely used in two-dimensional ground water
investigations. In this type of analog, a viscous liquid is allowed to flow be-
tween parallel plates whose distance apart is about 1 mm. Properly used, the
Hele-Shaw model can be a powerful scientific instrument and not just a piece
of demonstration apparatus. Vertieal versions of the Hele-Shaw apparatus
can be used to study such problems as flow to a parallel drainage system,

Q
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Figurse 7-17.—Direct anzleg two linesr reservoirs.
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Frovus 7-13. --Direet analog for distortionless linear channel.

while horizontal Hele-Shaw models can be used to study conditions in & large-
scale acquifer. Another analog with possible applieations in the study of
ground water systems is the membrane analogy, which has been applied to
some problems of flow towards wells.

The fact that still other analogs are available for hydrelogic systems is
illustrated by the recent development by Diskin {26) of a salt-concentration
analogy for flow from a watershed. Tt would boe & grave pity if absorption with
the digital computer was to lead hydrologists to negleet the many useful tools
avuilable in the form of analogs.

If the space between a pair of parallel plates is filled with sand, or glass
bends, wo have not o Hele-Shaw apparatus but a sandbox or granular model.
Such a deviee is more correctly deseribed as a physical model than an analog.
Aany problems invelving the flow in unsaturated and saturated porous media
can he studicd on such & model (6). The effect of the capillary fringe is rela-
tively larger on such & model than in the protatype, and this may give rise
10 considerable difficulty.

In the case of unsaturated flow, there are difficultios in the problem of model
scaling, but recent work indicafes that these problems are being overcome,
In one particular version of the granular model, the filling material is glass
beads or crushed glass, the walls are transparent, and the liquid used has the
same refractive index as that of the glass. This enables themovement of a dye
tracer to be followed with ease. Columns of glass beads ar used by soil
physicists in the study of the problems of infiltration and percolation of water
in the unsaturated zone. These represent idealization of the actual movement
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in the =oil and ax such are artempts to simulitte the prototype soil sy=tem on
simplified physieal models,

Probloms on the houndary henween hvdeologs and open ehannel hvdraulies
an he studied by the use of the hydrulie models, for which some high* -
doveloped and widely texted teelinigues are available. The model of the
Mississippi, operated by the Corps of Fngineers, handles what is essentially
a hvdrologie proldem - (e routing of Aoads an the Mississippt and its tribu-
taries, The reduetion in twe time seale of (he model compared with the proto-
1vpe visthles this model (o be used For muking predietions, Aany proponents
of numerieal comptaion objeet to the technigue of introducing artifieial
roighness o onsure verifieation of o hydrualic model, Sueh people seem (o
forget that the digital simulation of the same problem uses a so-eadled rongh-
nesx eovtliclent whieli= more a reposttory ol unkaown effeets than a roughness
factor, by many digital simulations, the values of Manmng's » are adjusted
both with stuge and along the channel unddl the required downstream dis-
eharge i obtained, Whetlter we simulie on the hydraulie model or on a4
digital computer, verifieation is neecessary i our work is to be worthwhile,
L vither ease, the deviers used 1o ensure verifiention are not abways logieally
defonsible,

A unnsual model of the hvdrologie svstem of Take HHefner was tested in
A wind tunnel ar Colorado Soaee University £, The model laws were in-
viestigalml and the evaporation from the lake was suecessfully studied on a
small seale.

The inal type of madel to be eonsidered 15 a physieal model of an entire
watershed, [F suell models attempt to do more than solve purely hydreaulie
problems un a labopatory seale, they run into o great number of difficulties?
112, 9,3 Rexeareh 2 now soing on in g numbor of eountries on the hehavior
hoth of labortory-size catehnwnt= and of highly instrumented outdoor
“aoddel”™ eatehments, What has heen roportod ~o Tur fends to underline the
ditficuitios invedved inthis line of researeh, 1t may not he possible to use such
stall-seale phyvsical models as predietion tools unidl sueh time as we undee-

standd the inherent seif-similaritios™ imposed on hydealogic systems by geo-

morpholugieal provesses, Nevertheless, the results from sueh experiments on
laboraiory catehment= earried owe under controlled and repeatable conditions
will viekd extremely wseful data which should lead to abetter understanding
of hyilrologle processes and of the manoer in which response parameters vary
with system parameters. Data from sueh smatl-seale Inhoratory catchments,
which would be uermediate between synthetie mathematienal data and field
observations, should prove extrenwdy useful for testing other methods of
simulation,

TALwssr, JU I BEVELOPMENT 0F AN ACRICULTURAL WATERSHED BY SIMILTUDE,  ALS,
Thesic, bma SBtate Cal, dmes, 1052,
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Problems on Simulation

L Bisewss one particular type of simulation in terms of the phases of the
simulation process diseussed on page 150

2. Contrast the different methods of simulation from the point of view of

ronverenee, sceuraey, and stability for some part of the hydrologie evele with
which you are familine,

3. Appeadix table 5 shows some digial computer data for the linear re-
sponse of the uniform open channel. Hopefully, this data will he used o dee
velop w method of predietng the time-to-peak for values of tengths of 3, 30

¥

and JU0 miles and slopes of 1, 20, and 50 feet por mile, What sort of POEression
analysis would be suitable in this pacticular ense, and how would you go ahout
applyving it (o this partiewlar problem?

4 Deseribe how the problem posed in question 3 midy be solved by
anatog simuladion.

A, Deseribe what would be necesse v if the same problem were (6 he solved
By wseries of Hume experiments.

. Whit eritenia of it are most commonly used in deviving empivieal ex-
pressions o it kydrologie data? What other eriteria could also he used? Dis-
cuss the merits of the difforent eriterin,

f. Compuie the evaporation and potential transpirntion by a number of
formuldas for the data given in Appendix *able 5. Under what conditions would
you expeet cach empirieal formula to work hest? Can you deaw a dingram
tHustrating the different assamptions made ahout the relationship hetween
actuad and polential transpiration?

No Dizeuss the relntionship between o ecomplex simulation of the snowmelt
processand a formala relating the rate of snowmoelt 1o degree days,

9 Compare o number of the total eatchment models which have been
Iropesed in the henuaee, What are their common olements and how do they
differ?

L Diseuss the method deseribed in the literature to oblain the optimum
prirameters for various models of (a0 the unit hydrograph, (b) ground water
response, aml (e {ofal catehment response, Diseuss how these methods might
be tmproved, and estimate the optimum prameters for some example in
fifeenture which, in your opinion, have negt been optimized,

L. Derive 2 direet and an indireet analog reprosentation for both the
Horton and the Philip equations for infiltration.

12, Draw up a classification of the various types of analog and physical
mudels wsed in hydrology,
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LECTURE 8:
SYNTHETIC UNIT HYDROGRAPHS

Leeture 8 is largely devoted to u discussion of synthetie unit hydrographs
as developed inelassieal hydrolugy, and then as modified with the cmergonee
of the sysfems approach. The lecture is intended to serve the sSAMEe purpose
tor simudution as lecture & on *Classical Mothods of Runoff Prediction’ was
intended ta serve for enedysis.

it buth classical hydrology and parametric hydrulogy, simulation techniques
were first developed or swlaee water hydrology, Thus, in this leeture we will
be primarily concerned with {he direet storm runoff and its relationship to
preeipitation exeess, The problem of synthesis is to devise o system whieh will
operate onoan input, (43, to repraduce the required output, y(8), to a given
tegree of aceuracy, The deeam of the applicd hydrologist is to be able to
loreenst direet storm runefl from a catchment map; this means being able to
prediet the unit hydrograph from a contoured map {(preferably with in-
formation on soil types) where no records are available for the derivation of
a unit hydrogeaph.

Types of Synthetic Unit Hydrographs

The standard synthetic procedure hus been to derive a sories of unit hy-
drographs in some systematie fashion for watersheds with adequate records
and then (o correlate these unit hydrographs in some way with the watershed
characteristivs. These corvelations are then used to prediet the seale and shape
ol the unit hydrograph for some watershed whose characteristies are known
hut for which no records of outflow are available.

In elassical hydrology, synthetie unit hydrographs developed along two
maztin fines, both af which converged at the time of the emergenee of parametric
hydrotogy, These twe lines of development are shown in figure 8-1, The
methods at the left-hand side made thoe general assumption that cach cateh-
ment had a untgque unit hydrograph, and those at the right-hand side made the
general asswmption that all unit hydrographs might be represented by a single
eurve, or g family of eurves, or a single equation,

The first lue of development (16, 44, 45) derived from the rational method.
(See leeture 4, pp, 75-101). About the vear 1020 (54), the rational method
was moditied o include the effect of nonuniform rainfall distribution by the
use and time-area curve or the time-area-concentration curve. This modifica-
tion was, in cffect, an attempt to synthesize the response of the watershed on
the basis of the characteristics which equld be read from a map. By using a
contoured map aud the Manning formula, it was possible to construet the
time-nrea-concentration curve or the Hime-area-curve, This was assumed to be

184)
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TIME AREA EMPIRICAL
METHODS CURVES

ROUTED EMPIRICAL
TIME-AREA EQUATIONS

ROUTED __ CONCEPTUAL CASCADE OF
TRIANGLE MODELS RESERVOIRS

Fraune 8-1.—Type of synthetic unit hydrogrph.

the instantanecus unit hydrograph (IUH) (or the 8-hydrograph) for the
watershed involved, though the unit hydrograph method 'was not to be
developed for another 10 vears. Since, in each case, the time-area-concentra-
tion curve was built up from the information available for the partieular
catchment, each unit hydrograph was unique. In the 1930°s, Zoch (71)—and
afterwards Turner and Bourdoin (85) and Clark (9)—assumed that the
response of the watershed would be given by routing the time-arca-concen-
tration curve through an element of linear storage. In this case also, each unit
hydrograph would be unique, but the variation be!seen them would be
reduced and diflerences in watershed characteristies smoothed out to o greater
or lesser extent depending on the degree of damping introduced by the storage
routing,

On the other hand, the sccond line of development tended to ignore varia-
tions in watershed charncteristies and in the unit hydrographs. Thus, we find
in the hydrologic literature a number of curves which are presented as giving
the unique shape of the unit hydregraph. Une, by Commeous (12) was pub-
lished in 1942, Unique ropresentations of unit hydrograph shape were also put
forward by Williams (89}, the SCS {68), and others. These ussumed, in cffect,
that there is one shape for the unit hydrograph, though in most cases the seale
is still left frec and the specified shape is given in terms of dimensionless dis-
charges (for cxample, ¢/gmax) and dimensionless time {for example, i/ bnoat) -
Sinee the volume of the unit hvdrograph is conventionally taken as unity,
there is only one parameter to be fixed to determine the unit hydrograph. All
that is required in this empirical curve approach is to know the time-to-peak,
or the peak rate of discharge, and then to use the standard shape of unit
hydrograph fo determine the unit hydrograph for the watershed. This is in
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distinet contrast to the time-area curve method where all the watershed
information must be used.

As further studies were made of senthetic unit hydrographs, it was realized
that o one-parameter method was not sufliciently flexible and that two-
parameter methods were required for adequate representation. These would
reguire the use of 1 Family of eurves from which the unit hyvdrograph could be
tuken. Sinee it is casier to represent a bwo-parameter model by an equation
rather thar s family of curves, the natursd develapment of this approach was
towards the suggestion of empirieal cquations which would represent adl unit
hydrographs, It is remarkable that people working in many dilforent countrios
nll turned towards e same enpirieal eyuation for the reprosentation of the
unit hydrogeaph, The independence of thiz development is proved by the fact
thid they expressed this single cquation in different forms. The equation in
question was the (wo-parameter gamma distribution or Pearson type I1I
empirieal distribution.

About 13 years ngo, these apparently quite separate lines of development
started to approach one saother, O'Kelly, Nash, and Farrelt warking in the
Lrish Ofliee of Publie Works found that there was no essential loss in aceuraey

W the rouled time-area-concentration curve was replaced by a routed isosceolos
rinagle (4. In their early work, this group had followed the approach of
Clark +@ and luboriously developed a time-urea-concentration curve for each
atehment and thea routed through a linear stornge in arder o obtain the
IUH. 1f the individual time-area-coneentration eurves for natural watersheds
rould be replaced by dsosceles triangles without serious distortion of the
resulting unit hydrograph, this was an indiention thar the smoathing of the
lincar reservoir was such that the individual variations in catchment char-
acteristies were removed by routing, Thus, the line development which started
out by treating every unit hydrograph as unique had been modified so as to
represent cach unit hydrograph by a two-parameter system, one-parampter
being needed to fix the base of the triangle (7'} and the other the storage delay
time LAY of the linear reservoir. A somewhat similar approach was adopted by
the SCS though, in this case, the triangle was nonisoseeles. In our modern
terminology, find the unit hydrograph by routing a triangular inflow through
a linear reservoir represents using coneeptual model for the IGH.

While this development was taking place among cxponents of the routed
time-area curve approach, there was a similar development among those who
followed the tradition based on empirieal curves and empirical equations.
About 10 or 15 voears ago, Japanese hydrologists (56, 61, 62) attempted to
simulate the response of rivers by models counsisting ol one or two linear storage
elements. Following this line, Nash (46) suggested the two-paramoter gamma
distribution as having the general shape required for the TUH and pointed out
that the gamma distribution could be eonsidered as the impulse response for a
cascade of equal linear reservoirs. He suggested that the number of reservoirs
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could be talen as nonintegeal if necossary. In this way, the secoud tradition
algo arrived af o coneepfual model but in this case, a different ane. The routed
trinngle had two parametoers and generated o family of curves with o partieular
shape duae to the nature of the model. Similarly, the easeade model had two
parameters—the number of reservoirs # and the storsge delay time of cach
Ke—nnd geuerated a family of shapes specific to this medel.

In 1539, Duooge atterapted to develop a geneeal representation of the unit
hydrograph based an the Muskingum method of routing. When this did not
prove satisinetory, the assumption was made that the translation and storage
clements in the watersheds eould be separated and the action of the watershed
represcnted by fonear distortionless channels and lincar storage dlecaents ar
reservoirs (/7). This ropresented a more seneral type of coneoptual maodel
than the routed trinngle or the exseade of reservoirs and, in (aet, included the
two of them as special eases.

Onee this stage had heen reached, the way was open for atiempts to ropre-
sent the unit hydrograph by all types of coneeptusl models. It oy be dan-
gorous to think of these eoncoptual models as anything more than an attempt
to simulate the watershed, Dooge (171 was quite convineed that the linear
storage clements whieh were part of the proposed general model had a real
physical meaning. Now he is by no means so sure, It may be that a break-
through in understanding the marphology of watersheds would in the future,
allow g elose link ty be established between the nature of the prototype and
the structure of the optimum simulating svstem. Aeanwhile, it is safer to
think of these models merely as attempts to simulate and to judge them by
their performance in doing so,

Time-Area Methods

[t s justrucdve to review the subjeet of svathetic unit hydrographs from
its origins in the time-aren versions of the rational method which were in use
even belure the unit hydrograph method was discovered, In this way, we can
compare the approaches of the modified rational method, elassical empirical
unit hydrograph methods, and modern methods of parametric hydrology to the
same problem and to the various clements of that problem. With the hindsight
allorded to s by our knowledge of unit hydrograph methods and of the newer
methads of parametrie hydrelogy, we ean recognize the carlier methods nsed
as speeinl cases of the luter appronch.

As mentioned in leeture 4, pages 79-84, the original rational method was
intended for predieting the maximum discharge from & eatehment and was
not concorned with the predietion of the whole hydrograph (7, 34, 40, 43).
Later developments of the method allowed for variations in rainfall intensity
during the design sturm and, in doing so, enabled o full hydrograph of runoff
to be developed i required (17, 24, 26, 28, 30, 50, 54, 55}. Other developments
allowed determination of the question of whether o storm contered over part
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of the arca might not give o greater peak cunotl than one spread vver the
whole of the entchment area (24, 44, 52, 331, These variations of thoe rations
method nre suwmmarized as follows:

fawinfoll Assumption
Tupe B e S Authors
Area Intensity

Classieal mational moethod ., ... fall untform Mulvany (1850}
Kuichling (1589)
Chamier ({897)
Lioyd-Davies {1906)

Tie-aren. .., L. L full hiypothetieal  Rose (1921}
Ronseulp (1927)
Ormshy (1932)
Hart (1932

vriticnl Hawken (1921)
Judson (1932)
typieal Coleman & Johnson (1931)

Laurenson (1932)
Jens (1048)
Pangent' wethads, .. . partiat wniform Reid {192¢;
Riley {1931}
Escritt {19300
Munre {1936)

Lo 1921, Ross 34) suggested that o hyvpothetieal storm be dorived from the
curve of raindnd] inlensily versus duration and then used in conjunction with
the time-nrea-concentration dingram to predict the mavimum rate of runoff
and, if need be, the whole hydrograph. In an appendix to Ross’ paper, Hawlen
c201 suggested futroducing a factor of safety by shufHing the unit periods of
rainfnll info a evitieal pattorn of storm, that is, one in which the most intonse
rinfall would be eemtered over the maximum ordinate of the time-area-
concentration curve, the second most intense rainfall over the second highest
ordinate af the eurve, and =o on. While the methods proposed by Ross and
Hawken ean give safe values for design, they would, of their nature, tend to
overestimate the peak rate of runoff. In 1931, Coleman and Johnsen {1n
suggested that the patterny of the starm rainfall be based on typical storms for
the area under investigation.

Under vertain conditions (which arise mostly in urban catchmoents) the
runoll estimated by the rutional method for part of the area may exeeed the
runofl estimated by the same method for the whole area. Special techniques
were developed where the rainfall intensitv-duration relationship was assumod
to be of the form:

43
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where £ g the average rainfall intensity; ¢ the duration of raiufall; and e, b,
andd ¢ are empirieal coclicients. In such cases, the partial area giving the
greatest estimated runoll ean be determined by drawing a tangent to the
time-aren curve, thus plving rise to the name “tangent method” for such
technigues, Where the rainf:lt formula is of exponential form:

pe==

’:b

the eritieal partial area may be [ound by the use of o series of overlay curves
121, 443, The eritical aren may also be lound by locating the intersection of
the two curves given by the time-area-carve (scaled up by o factor of b) and
the produet of the time-arca-concentration curve and the time clapsed. These
time-aren methods were widely applied in urban hydrology and, to a lesser
oxtent, in the hydrotogy of agricultural watersheds,

The time-aren variations of the rational method (known in the Hussian
literature sis genetie or isuehrone methods) were actually erude methods [or
developing synthetic unit hydrographs. The hypothetical or typical storm was
plotted to the same seale as the time-avea-concentration curve, but in one
ease the time seale was plotted in a reverse diveetion, The two curves were
then superimposed, and the produets of corresponding ordinates taken and
summed together to obtain the runoff at auy given time, The runoff for any
particular time was obtained by superimposing the zero point of the reversed
rainfall<intensity curve on the point of the abseissa of the time-area-coneen-
tration curve corresponding to the vequired time. By shifting the twoe curves
relative to one another, enough points could be determined 1o give a repre-
seatation of the whole hydrograph of runoff for the pattern of rainfall intensity
used. This, in effcet, was a graphieal method of carrying out the mathematical
proeess of convolution. The time-area-coneentration curve in such methods
has the sume function as the TCH in unit hydrograph procedures. Thus, the
timeepren-coneentration eurve, however found, was in fact a synthetic unit
hadrograph.

If the time-aren-concentration curve was based merely on an estimate of
the time of translation over the ground and in channels, then the results
ebtained tended to overestimate the peak rate of discharge from the watershed,
This was enly to be expeeted sinee the offeets of surface storage, soil storage,
and chanuel storage ave all ignored, and the time-area-concentration curve
was based purely on translation. In practice, design engineers soon developed
wavs of avolding the tedium of constructing a time-arca-coneentration eurve
for ench separate watershed, Where they were interested only in the peak rate
of runoff, they developed empirieal formulas for the time of concentration
1) and for the coctlicient of runeff () in the cquation:

Q=C-i{l)-4 (3)
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where @ s the peak discharge, A is the ares of the catchment, and < is the
rainfall intensity {or a duration equal to the time of concentration, /,, and for
the particular frequeney of reeurrence caosen for the design, Others derived
the time-arca-concentration curve but, realizing that their values of runoff
were too high, used empirical values for the time of conceutrasion te correct
the time scale of the time-arca-concentration curve. This was possible because
the time ol coneentration is equal to the base length of the time-area-concen-
tration curve, that is, the ITHL

In wrban design, rules of thumb for estimating the time of concentration
were used, The time of concentration was usually taken by calculating the
time of travel in the sewer and adding to it an inlet time, which usually is
within the range from 5 tn 30 minutes. In such urban catchments, the coeffi-
vient € i equation 3 depended largely on the amount of impervious area in
the eatehment and was also atfected by any storage in the system. A typical
empirieal formula for the value of € was one which related the coefficient of
runoff () to the number of houses per acre (N) in the following way (2/):

C=~/N/19 (4)

The range of cocfficients normally used for different types of urban arcas
can be found in standard referenee books such as the American Saciety of Civil
Engineers “Alanual on the Design and Construction of Sanitary and Storm
Sewers” (£}, More sophisticated methods have heen developed in recent
vears for the design of storm water sewers, but the discussion of them is outside
the seope of this lecture,

For agricultural catchments, o commonly used formula for the time of
conceatration is that of Kirpich (31):

3 0.7
t.=0.0078 (%’) (3)

i

where & is the tine of eoneentration in minutes, L the iength of flow in feet,
and § is the ground slope. The eocflicient of runoff ¢ may be related to a
number of factors by

C=1.00~ {Cr-+Cs+C.) (6)

where Cr varies inversely with the slope and has values between 0.1 and 0.3;
Cs varies between 0.1 for a tight clay and 0.4 for sandy loant; and C, varies
with the vegetal cover between 0.1 for cultivated land and 0.2 for woodlands.
These remarks on the rational formula are made not as an encouragement to
its use but as a background against which to judge the further development
of simthetic unit hydrograph methods,

As indicated on figure 8-1, the time-area methods were, for unit hydrograph
purposes, replaced by a method in which the time-arca-coneentration curve
was routed through a linear reservoir. Zoeh (71) put forward a general physi-
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eal theory of streamfiow based on the assumption that, at any time, the rate of
diseharge was proportional to the amount of rainfall remaining within the soil
at that time. He analyzed runoff due to a uniform rainfall of finite duration
and obtained the equations Tor four separate segments of the hydrograph.
Zoch solved these equations Tor two simple cases—a vectangular time-area-
concentration curve and n triangular time-area-concenteation curve, He
pointed out that the extension to the general ease would involve the integra-
tion of a function of the type:

Gy =wix)-exp(Ax) (7)

where w{x) ropresents the time-area-concentration curve and K s a constant.
He suggested the use of series gpproximation or numerical integention,

Horton (27 introduced the idea of the virtunl channel inflow graph. This
was an attempt to derive from the outflow hydrograph a simple form of inflow
by drogeaph which when routed through a linear reservoir would give the
outliow graph, The start of the channel inflow was taken at the same time as the
sturt of channel outflow and the end of chanuni infiow st the time correspond-
ing to the point of contraflexare on the recession limb of the outflow hydrograph,
This, in fact, represented the pstimation of the thme of eoncentration from
the outfiow hydrograph. Beenase of the further assumption. of routing through
a single storage clement, the recession limb of the virtusl channel inflow
graph had to pass through the peak of the outfiow graph. The only remaining
condition was that the volume under the inflow and outflow hydrographs
should be the same.

Clark (&) suggested that the unit hydrograph [or nstantancous rainfall
could be derived by routing the time-area-conecntration eurve through a single
olement of linear storage. Physically, this is equivalent to Zoch’s formulation,
but the eguations are simplified by redueing the rainfall duration to zero and
replieing the numerieal integration of the term in equation {9 with the reser-
voir routing procedure. The Zoch-Clark method elearly represented an
advanee over the time-nren or isochrone methods, which ignored storage
olfeets and only took account of varintions in the time of translation to the
autlet. The allowanee for storage throughout the catehment by a single reser-
voir at the outiet scems a highly simplifying assumption but, nevertheless, a
step in the right dircetion.

As mentioned earlier in this leeture, ('XKclly and his coworkers (49) replaced
the time-area-concentration rurve by an isosceles triangle and thus produced
the TUH by routing an isoseeles triangle through a linear reservoir. This was,
in effeet, a combination of the Zoch-Clark approach with Horton’s virtunl
channel inflow graph.

The motheds of Zoch, Clark, and O'Kelly only became synthetic unit
hydrograph methods in the real sense of the term when empirical relationships
boetween seme of the parameters of the process and the catehiment characteris-
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ties were derived. An ompirieal relationship is required whieh correlates the
base of the time-aren-eoncentration disgram (that is, the time of concen-
tration) to catehment characterigtios, Except in the ease of O'Kelly's mothod,
some method is required For ostimating the shape of the time-arca-concen-
tration diagram itsell once the base lengtl: has been determined. Finally, a
methnd of estimating the storage factor (&) must be preseribed. Tu the case
of a gaged catehment, the value of the storage constant X ean be estintated
from the reeession of the hydrograph. In the absence of records of sterm runoff
the katter method eannot he used.

Jehnstone (29) vsing the (lark method derived relationships based on 19
eatechments with arens botween 25 and 1,624 §q. mi in the Seotie and Sandusky
River basins. Johnstone proposed the following relationship [or the base of the

tme-nrea-coneentration curve;
.7 LS
fe=-TT G {(8a)
N

where £ is the base of the time-nrea-coneentration curve (that is, the time of
concentration) in hours, L is the length of the principal stream in the catch-
ment in miles, S is the average slope of the main stream in foet per mile, and
ris & branching Inetor based on the stream pattern. Johnstone found that
there was little toss of aceuracy in neglecting the branching factor and writing,

=50 (Tﬁ;) (8b)

where the torms have the same meaning as in equation 8a. Johnstone also
terived an empiriesl expression far the storage delay time (A7) which is the
ratio of storage Lo outflaw for the lnear reservoir through which the time-area-
eoneentration curve is routed. On the basis of the ‘atchmeunts studied by him,

he proposed the [ollowing empirieal eetatiouship for the storage delay time K

A
j\ul'o+QOLIB (8e¢)
where A Is the area of the eatchment in square miles, L is the leagth of the
main stream in miles, and £ is an overland slope factor in foet per mile esti-
mated by placing a square grid over the contour map and counting the uumber
of interseetions of contour lines and grid lines,

Faton (19 did a similar correlution study for seven Tasmanian rivers with
catchment areas varying from 48 to 322 sq. mi. He estimated the base lengths
of the time-arca-concenteation diagram to boe given by

K 0,37
t.=1.35 (—iﬁ) (9a)

P

where {e is the base of the time-area-concentrs? ion curve in hours, A is the
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antehment aren in square miles, L is the length of the main channel in miles,
and r is a branching factor varyving between 1.0 and 2.0, Eaton’s use of a
branching factor rather than a slope factor can be explained by the lack of
contour maps for the region studied. He found that for five of the seven basing
the stornge constant A was adequately defined by:

A42\14
19
K=1. (Lgr) (9b)

where A is Lhe stornge delay time in hours and the catchment [actors are
defined {or equation 9a.

O'Kelly (48 presented results for 10 eatehments in Ircland ranging in area
from 56 to 366 sq. mi. In his paper, the results are reduced to o stundard
eatehment prea of 100 sq. mi. by assuming a hydrologic time-scale factor
based on one-fourth root of the aren and then expressed graphically as a
function of the overland slope.

In a diseussion of O'Kelly's paper, Dooge (15) indicated that a logicsl
extension of the Wdea of o model catchmeni (based on Froude similarity)
would be to cxpress the base of the isvsceles triangle (1"} as:

111’-{
5'“:“151.-*.- (10a}

where T is the base length of the inflow triangle in hours, A is the catehment
area in square miles, § is the slope in parts per 18,000, and ¢ is an empirical
eomstant, For the values of T derived by O'Kelly (48), the parameter ()
varied from 10 at a slope of 10 in 10,000 to 14 at o slope of 500 in 10,000,
On a similar besis the values of X could be expressed as:

A
K=bes (10b)

where K is the storage delay time of the linear reservoir in hours, b is an
empiciecal constant, and the other factors are as for cquation 10a. For the
values of K derived by O'Kelly, b could be taken in equation 10b as varying
from 13 for a slope of 10 in 10,000 to 10 for a slope of 500 in 10,000. Dooge!
also derived the relationship:

FLE

T'=258 (11a)

S

based on n least squares analysis of O’Nelly’s data and his estimated values

LDooge. J. O [, SYNTHETIC UXIT HYDROGRAPHS BASED ON TRIANGULAR INFLOW.
MLE, Thesis, fows Btate Univ., Ames. 1934,
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of T In equation 11n, A is the catehment in square miles and S is the overland
slope in parts per 10,000, A least squares analysis of the values of K derived
by O’Kelly gives:
‘,:ll}.i'l
K= 100.5:@3—0 {11b)
where A is the storage delay time in howrs, A is the arca in square miles, and
8§ is the slope in parts per 10,000,

Empirical Expressions for Unit Hydrograph Parameters

We now turn o & review of the empirical line of development of synthetic
unit hydrographs based on the representation of all unit hydrographs by a
single curve or a family of curves. The procedures based on this approach
follow a standard pattorn in nearly ali cases. A number of unit hydrograph
parameters are chosen as the basis for defiming the unit hydrograph.

At the same time, a number of catehment characteristics are chosen which
are thought to have the strongest influence on the shape of the unit hy-
drograph. For a number of eatchments with adeguate records of rainfsll and
runoff, unit hydrographs arc derived and the values of the unit hydrograph
parameters determined. These are then eorrelated with the choson cateament
chuaracteristies. This correlation can then he applied o the catchment char-
acteristics of a catchment without adequate runoff records in order to estimate
the parameters of the unit hydrograph for such & catchment. The latter
parameters are then used to derive the full unit hydrograph by using
standard shape of unit hydrograph or by using additional relationships be-
tween the basic unit hydrograph parameters and other features of the unit
hydrogzaph.

In the time-aren methods reviewed in the last section, we discussed first
the shape of the unit hydrograph (that is, the time-area-concentration curve
routed through a single lincar reservoir) and after this the empirical relation-
ships by means of which the catchment characteristics could be used to
estimate the two parameters required, that is, the base of the time-grea-
concentration curve (£} and the storage constant characterizing the linear
reservoir (K). In dealing with the sceond line of development, the order of
discussion will be reversed. In the present section, we will discuss the empirical
reintionships between the unit hydrograph parameters and the catchment
charaeteristies, leaving unti! the next seetion the question of the shape of the
empirieal syathetie unit hydrograph. In this review of empirical methods,
attention will be concentrated on the main lines of approach, which will be
llustrated by examples. No attempt will be made to list all methods or all
features of the methods mentioned. Those interested in the latter can read
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details of procedures in the original papers that are referenced at the end of
this lecture,

As mentioned above, the first two steps are the choice of unit hydrograph
parameters and catehment characteristics. Three types of unit hydrograph
parameters are used—time parameters, pesk discharge parameters, and
reeession parameters. There are a large number of time paramcters used in
unit hydrograph studics, the most important of which are shown on figure 8-2.
In this illustration, D is used to denote the duration of precipitation excess,
which is assumed to oceur at a uniform intensity over this unit period. Common
time parameters used to characterize the outflow hydrograph are: the time of
rise (), that i, the time from the beginning of runeff to the time of peal
discharge; the time of virtual inflow (7), that is, from the beginning of runoff
te the point of contrafiexure on the recession limb of the outflow hydrograph;
and the total runoff time or base length of the unit hydrograph (B). The
common time parameters used to conneet the precipitation excess and the
hydrograph of direct runoff are: the lag time {iz), that is, the time from the
center of mass of precipitation excess to the center of mass of direct runoff;
the lag to peak time {¢,), that is, the time from the centor of mass of effective
rainlall to the peak of the hydrograph; and the time to peak (£, that is, the
interval between the start of rain and the peak of the outflow hydrograph.

Gmax.

R

“!‘:
F‘L

|

Ficune &-2.—Unit hydrograph parameters.
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One of the most importaat factors in surface water hydrology is the defay
impostd on the precipitation exeess by the action of the catehment. If the
parameter representing this delay is to be useful for ecorrelation studices, it
should, if possible, De independent of the intensity and duration ol rainfall. In
the ease of a lincar system-——and unit hydrograph theory assumes that the
system under study i hinear--the time paramoters are independent of the
wtensity of precipitation excess, but only the lag time (4) has the property
of bong independent of both the intensity and the duration, Aceordingly,
with the hindsight given by the systems approach, we can say that only the
lag time should be used as 2 duration parameter in unit hydrograph studies.

In regard to discharge parameters, the peak discharge (guae) 18 almost
ivariably used when sueh a parameter is roquired. Another parameler, which
ean be estimated for a derived unit hydrograph, i« the time parameter K,
which churacterizes the recession of the unit hydrograph when this recession
is of declining exponential form. In sueh eases, (he unit hydrograph may bhe
considered as having been routed through o Hnear reservoir whose storage
delay time is X IT the recession can be represcuted in this form, a togarithm
of the discharge plotted against time will give a straight ue, and the value of
A can be estimated from the slope of this line. Alternatively, the value of &
may be determined at any point ot the recession eurve by dividing the
remaining outflow after that point by the ordinate of outfow at the point.
Other parameters used to characterize wait hydrographs are the values of
W0 and W-73, which are the width of the unit hydrograph {or ordinates at
30 pereent and 75 pereent of the peak, respeetively,

Nash (46, 47, 48) suggoesied the use of the statistien] moments of the IUH
as the determining parameters of the unit hydrograph. The first moment {7} is
equal to the lag of the TUH £, For higher moments, Nash suggested the use
of the dimensionless moment factors obtained by dividing the moment of
any order nbout the center of area by the first moment raised to & power
corresponding to the order of the moments, Nash showed that the moments
of the unit hydrograph could be derived [rom the moments of tho precipitation
excess and the mowents of the divect runofl without the necessity of deriving
the unit hydrograph itself.

The second stage n the standard procedure is the choice of catchment
characteristies. As might be expected, all procedures involve a seale factor,
but a variety of seale factors is used. The simplest seale factor is to use the
area of the catchment itself (), Qthors commonly used are the length of the
main channel or length of highest order stream (L) the length to the center
of area of the eatchmont (L) ; or for small eatchments, the length of overland
flow {Ly). Where only one catchment characteristie is used (in & one-parameter
model}, the eatehment characteristic used is always a length or area parameter.

A review of synthetie unit hydrograph proecedures reveals slope as the
second most frequently used catchment characteristic and, therciore, if the
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applied bydrologists have chosen wisely, the second moest important eanfeh-
ment choracteristie. Sinee slope varies Lhiroughout a watershed, a standard
deflinition el some represeutative slope is required. The slope paramceters
most often used are the average slope of the main channel or some average
slope of the ground surface. The measurement of average slope parnmeters
usually tuvolves tedious computations (/0, 60).

Although area or stream length and channel slope or ground slope have been
used almost universally, there is ne agreement about the remaining param-
ctoers, The shape ol the eatehment must have some effect, but there is such a
varicty of shape Tactors to choose from—form factors, eircularity ratios,
elongation ratios, leminiseate ratiog, and others—that the laek of uniformity
s not surprising. Another factor which must affect the hydrograph is the
stream pattern. This may be representod by drainage deasity or strenm fre-
queney or some suech paramoetor.

Although purameters representing mesn characteristios must have o primary
influener, the varistions in certain characteristies from part to part of the
watorshoed will glve rise to sceondary parnneters, which may not be negligible,
Thus, having taken grea and slope into account, the third most important
purameter may well be variation of length or of slope rather than shape or
drainage density. The ehoice of eatehment charaeteristies for correlation with
unit hydleograph parameters will remain o subjective matter until we have o
deeper knowledge of the morphology of natural catchments. The latler is a
vital subjeet for modern hydrology. Il we neglect the study of geomorphologi-
cal processes to concentrate on mathematieal manipulations which have no
physical foundations, then the whole progress of hydrology may be impeded.

Having deeided on the unit hydropraph parameters and the catehment
charaeteristies, it is necessary to correlate the two. In most methods used in
classieal hydrology, the correlation has been one of linear regression. It may
be that the use of factor analysis would reveal significant groupings of eatch-
ment charactervistios, I the same or similar groupings appeared in o number
of different reglonal studies, the eatchmoent parameter thus indicated could be
tentatively assumed to have general validity and could be used consistently
in a variety of studies. The use of such general parameters might disimprove
slightly the degree of ecorrelation between unit hydrograph parsmeters and
atehments characteristies for each individual study, but it would make the
various studies comparable with one another and point the way towards
geoerad laws of catchiment bebavior, It is uncertain, of course, whether the
extra insight gained would be worth the extra work involved in [ollowing this
particular line.

1 the same vear in which he published his classical paper on the unit
hydrograph 137}, Sherman published another paper (88) in which he proposed
that lor a eatechment without records a unit hydrograph be transposed from a
ratchment of similar characteristies but with all the time factors adjusted in
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proportion to the square root of the ratio of the two arcas. In the following
years, a large varicty of synthetic models were suggested which involved
corrclations between catcliment characteristics on the one hand and the unit
hydrograph parameters (or in some cases selected ordinates of the unit
hydrograph) on the other,

The most important of these were those proposed by Bernard (4},
AleCarthy,? Snyder (59), Morgan and Hullinghovst,* Mitchell (413, Tavlor
and Schwartz (63), the Burcau of Reclamation (66), and the Corps of
Engineers (67). Probably the most widely used method for synthetic unit
hydrographs is that proposed by Snyder, which has since been adapted by
many workers for their own needs. This method will be discussed briefly
below and compurative details of the other methods ean be read in the refor-
ences indicated above, details of which arc given at the end of this lecture.

Soyder's work (89} was based on data from 20 eatchments in the
Appalachians. He took as the basic unit hydrogruph paraneter the lag time
to peak {4} defined as the interval in hours between the center of rainfall
exceess and the peak of the unit hydrograph and took as the basie catchment
characteristie the produet of the length of the main channel in miles (L) and
the length from the outlet to the ceuter of area of the catchment in miles
{Le). Hoe suggested that the unit hydrograph parameter and the catchment
parametoer could be connected by

fp=C( LLc )% {12a)

Having determined the time to peak of the unit hydrograph, Snyder assumed
that the recession from peak to zero flow took § days. He derived the base
length of the unit hydrograph from the formula;

B=3 (1 +;—1> (12b)

where B is the base length in days and ¢, the time lag to peak in hours, Snyder
related the peak of his unit hydrograph to the lag to peak already determined
by the relation:

C
qmux:ﬁ‘io'_t_p (128}

'

where gumax i the unit hydrograph peak in cubic feet per second per square

2 McCanrny, G. T. THE UNIT IVDROGRAPH AND FLOOD ROUTING. U.S. Corps of
Engineers Office, Providence, R.I, 1936,

¥ Moncaw, R.. and HuLriNeronst, 13, W. UNIT HYDROGRAPHS FOR GATGED AND GN-
GAUGED WATERsHEDS, T8, Corps of Engineers Office, Binghampton, N.Y, 1939. (Un-
published manuseript.)
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mile, ¢, is the time to peak in hours, and ', is a cocflicient that takes account
of the flood wave starage effected n the eatehment.

Faor the entchments which he studied in the Appalachians, Snyvder found £,
to vary between 1.8 and 2.2, and ), to vary between 0,50 and 0.68. Sayder
used n standard duration of rainfall (L1 sueh that:

1,=5.5D (12d)

ang the peak of the unit hydrograph had to be adjusted Tor other rainfall
durations. In his original paper, Sayder (59) published a diagram for deriving
the 24-hour distribution graph, but this was not adopted by later workers who
used bis basic method.

A number of subsequent workers used Snyder’s form of relationship be-
twoen the lag time to peak and the eatchment length parameters. Linsley
(329 found the value ¢ varied from 0.7 to L0 for catehments in the Sierra
Nevada, The Corps of Engineers (67) found values of the same parameter
varying from 0.4 in southern California to 8.0 for States bordering the Gulf of
Mexieo and reeommended that the value O be determined in a given ease from
neighboring or similar eatchments, The Corps of Engineers investigations
indieated that the value of £, could vary from 0.31 in the Gulf of Mexico
Btates to 0.94 i southern California,

In general, the empirical methods for synthetic unit hydrographs tended to
adopt a correlation equation of the general type:

Ciatye . C{LLG)e

fplovi,orfy,) =- & o 3

(13)

The values of the exponents and the coefficients varied as might be expected.
For example, Mitehell (44} m his study of 58 Illinois streams found the lag
rime in hours ({2} could be related to the area in square miles (4) by

ir=1.05(A)%% (14}

and that the slope did not improve the corrclation substantially. This result
becomes understandable when we realize that, for the eatchments studied by
Mitchell, the coefhicient of correlation between arca and slope was of the order
of 0.6,

Some of the synthetic unit hydrograph methods resemble Sayder's in that
there is only one correlation with catehment characteristies. If a fixed shape
of unit hydrograph is used, then the synthetic unit hydrograph method is o
one-parameter method. 1f, however, & further degree of freedom is introduced
by using a relationship between unit hydrograph parameters involving an
adjustable cocfficient, as in the case of equation 12¢, then the methow will
become a fwo-parameter one. In other eases, such as the method proposed by
Tavier and Schwartz (64), there are two independent correlations of unit
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hydrograph parameters with eatchment purameters and again in this ease, we
have a two-parameter method for deriving o syathetie unit hydrograph.

Empirical Shapes for the Unit Hydrograph

When unit hydrograph parameters have been determised, i is still neeessary
to derive the compliete unit hydrograph. 11 the time-to-peak, the peak dis-
charge, and the base length of the unit hydrograph are known, then we know
three points on the unit hydrograph, and a curve ean be sketehed in by friad
and error to pass through these three points and to have the requisite area. A
number of authors have suggested particular shapes of dimensionless unit
hydrographs or of S-curves which ean be usod to delermine a complete unit
bivdrograph or B-curve, unee a singte parameter has been determined. Fxam-
plos of such standard shapes are those deseribed by Langbein (35), Commons
1123, the Bureau of Reelumation (66, the SOS (68, Willinms (£9), and
Bender and Roberson (31, Sinee a single curve is used to represent all unit
hydrographs (or all unit hydrographs within a given region, or atl unit hy-
drographs within & given range of watershed size), i is only necessary to
determine one parameter from the eatchment characteristios to fix the stale of
the zetual unit hydrograph.

I¥ it ix desired to introduce more flexibility into the empirical approach, it
would he necessary to develop a family of curves to represent the shape of the
unit hydrogeaph. In this ease, it would be neeessary to derive two unit hy-
drograph parameters from the catehment characteristios. However, tf we wish
to synthesize unit hydrographs with two parameters, that is, with two degrees
of freedom, then 1t s more convenient to use an empirical equation rather than
empirieal curves (o represent the synthetie unit hydragraphs,

The first suggestion of an empirical equation to fit the unit hydrograph
appears to have been made by Edson 1201, He argued that the time ares curve
for a eatehment would have the general parabolic form:

Atlyete (15}

and that the valley storage nets ns a reservoir so that the discharge with time
decrenses expotentiaily:
QU1 = bt (16}

Edson argued that both effects operate throughout the hydrograph and
therefore that the combined effects could be written as:

QU w faght
which ean be normalized and written as:

b bt yae—bt
=0 ——
Qn Tla-+1}
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where (F is the discharge per unit areq, £ is the time, (" is 2 constant depending
on both the valume of inflow and the unitx used, and a and b are the param-
eters determining the shape of the unit hydrograph. The reasoning used by
Edson (20} to arrive at equation 18 bs faulty, beecause he uses ordinary multi-
plication instead of convolution to represent the effeet of storage on the time-
areg curve, Nevertheless, he arrived at a form of the IUH.

Some vears luter, Japanese workers in hydrotogy (56, 81, 62) based the
form of the LUH on g conceptual model consisting of Hiear reservoirs and used
fs it equniion:

hotl} = (aotadFt*y expl =N\ (19)

Foliowing this Nash 046) suggested the model of a easeade of equal lincar
reservoirs which gave the equation of the unit hydrograph as:
LRV oxp{ 5

}iu( fle e

20
KT (20)

where het!) ix the ordinate of the IUH, # ix the number of rescrvoirs, and
A is the storge delay time of each of the reservoirs, Nash suggoested that in
fitting cquation 2} to unit hydeographs, the value of 7 need pot necessarily be
taken as au integer, Gray 23, Wa {70, and Reich® all used the same mathe-
maetiend Tunction to fit derived unit hydrographs and to synthesize further
hydrogeaphs.

The funetion represented by equations 18 and 20 {which are obviously
eguivalent = varously known in the hydrologieal Bterature as the “gamma
distribution” or “Nash's model.” It iz the same as the Pearson Type III
smpivical distribution used i statisties, which s commonly written in the

form:
% M . :
firv=H/ (H—l-) exp (mg_m_?:) —g << ® (21a)
{1 i3

1
firr= i‘;*\—;x*"t"" Der <o {21b)}

equiation 21 s elearhe equivalent Lo equations 18 and 20,

The shape or distribution represented by equation 20, or the eguivalent
equation 18, s 8 bwo-parameter distetbution, A cor §) being s seale factor and
1 tor @ being a shape factor. Thus, {or complete synthesis, it would be neces-
sary fo have two independent relationships between the two parametors of
the gnzona distribution and two independent eatehment characteristies.

tRetcin B M. DESIGN 1YDROGEAMILS FOR VERY SMALL WaATEISHEDS FROM RAINFALL.
Civil Engin, See., Calo, Btate niv,, 07 ppa, illug, 29062,
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Edson suggested the direet use of the parameters for correlntion purposes,
and this has been done by some lafer workers, Nash preferred to use the firsk
moment about the erigin tthe lag) and the second moment about the contor
for correlation. Sinee these moments ean be expressed as very shimple expres-
sions involving the parameters 1 and K, the values determined by one typoe of
correlation can, in practice, easily be converted to the other, Examples are
given in the next seetion of the correlation of gumme distribulion parameters
with eatehiment charactoristios az dorived by Nash ¢48) and Wu (F0). As
mentioned above, the gamma distribution has been widely used in hydralogic
studies,

The model developed by TVA (44 uses an empirical equation which
essentinlly involves & time transformation of the genmma distribution, 1t is
given by

(- 1yehw
glty={"" ! +1 }---—)-—{-xp(—bl"') {22a)
A
where
4
oo (" ﬂ) (22b)
e

where @, b, and m are parameters. Whea m has the value of I, equation 22
reduees to the form ol equation 18, The transformed gamma distribution
given by sguation 22 has been used in stoehastic hedrology by Kritskii and
Moenkol (923,

Other mathematioa] equations have boeea proposed for the representation
of the form of the unit hedrograph, but none of them have been tested as
widely as the gumma distribution, DeCoursey (14} has proposed the use of
the gamma distribution ns far as the poiat of eonteaflexure on Lhe falling leg of
the unit hydrograph and then the use of an exponential reeession from that
point on. Brakensick (6) has recontly proposed the use of a unit hydrogeaph

of the lorm:
¢ L\ o [(ﬁ .
[R— N — j {1._.{ 230
Fainx (sz> o [ " (V ¢ ):] ( 3!\)

which can also be exprossed as:

I =L {\i)E;\/j‘?J {23b)
Mok FEa T ©
and ean be shown to be equivalent to a Pearson Type V empirieal distribution
with a squuce root transformation of the time seale. It has two prameters;
henee, the problems of Gtting and correlation would be essentially the same as
for the guama distribution,
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Conceptual Models of the Unit Hydrograph

In the preeeding sections, we have traced the development of synthotic
unit hydrographs along two different lines. We have seon, as outlined on figure
8-1, that the line of development based on the time-area diagram led to the
conceptual madel of routing an isosceles triangle through a linear reservoir and
that the line of development based ou purely ompirical relationships led Lo the
use of the gamma distribution, which Nush (48) showed to be equivalent to
the coneeptunl model of a enseade of cqual linear veservoirs, Within recent
vears, attention has been concentrated on the simulation of the direct response
af catelments by conceptual models.

For o conceptual model to be an adequate tool for synthesizing unit hy-
drographs, it must provide a conveuient method for predicting the shape of
the unit hydrograph, and a relationship must alse be established between the
basic parameter of the conceptual model and the catehmoent charncteristics.
For any conceptual model, we ean relate such unit hydrograph parameters as
the fag (i), the time to peal (¢,}, or the peak discharge (guae) with the basic
parameters of the model, Heaee, it should be possible to combine a concoptual
model with any of the empirical relationships between unit hydrograph
parameters and catchmoent characteristies {(some of which were reviewed in an
carlier seetion), which have been derived indepeadentiy of any conceptual
model, Beeause we are dealing with synthetie unit hydrographs in this lecture,
we will coneentente on conceptual wmodels of linearized systems but will
indicate, where approprinte, the way in which the approach can be extended
to cover the simulation of nonlinear systems,

The use of conceptual models is quite explicit in a paper by Sugawara and
AMaruyama (63) published in 1958, Starting with the case of a river where the
unit hydrograph could be approximately represented by a negative exponcutial
funetion, the authors developed a eoneeptual realization of the system opera-
tion in the form of an open vessel filled with water. The water discharges
through o capillury tube at the bottom, thus giving a linear relationship
between outflow and storage in the vessel, They then attempted to model the
hehavior of certain rivers by means of the sum of several exponential com-
ponents, that is, by using several different vessels with different storage con-
stunts arranged in parallel and taking different proportions of the inflow.
By placing the capillary at a level higher than the bottom of the vessel, the
threshold cffeet of initial storage satisfaction could be simulated. (Further)
conceptual clements used were vessels tapped by capillaries a2t & number of
points, which produced a segmented lincar storage-discharge relation that
could approximate a nonlivear relationship and, henee, simulate a nonlinear
systom.

Shortly afterwards, Nash (46) published his work suggesting the gamma
distribution as the appropriate equation for the ITCH. He derived this equation
by considering the offect of routing a deita function through a cascade of
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equal linear reservoirs. For a such reservoirs in series, the impulse vesponse of
the caseade (that is, the discharge from the last reservoir for a s-function input
to the first) takes the form of equation 20, where K is the storage delay time in
each reservoir and # is the number of reservoirs. Nasl supgested that this
equation rould be generalized and # allowed to take nonintegral values.

Nash also gave heuristic arguments lor belicving that for & caseade of un-
equal linear reservoies, the shape would not differ greatly from that given by
cquation 20. His arguments suggested that for a given value of the dimensior-
less seeond moment (s, the dimensionless third moment ) for o easeade
ol unequal linear reservoies would lie between the value for a caseade of equal
linear reservoirs, that s, 20m)2, and the value for the combination of o linear
vhonnel aud v linesr reservaoir in sevies, that s, 20ma? s For sa=lur 1, the
values of wig are soen to eoineide, and it can be readily verified that tor values
ol ste between 0 and 1 the lines corresponding to the two limiting enses enelose
tcompuratively narrow region of the mg— e plane.

In 185389, Dooge (7Y attempted to produce a general coneeptual model of
the unit hydrograpt. The argument was made that sinee the unit hydrograph
only existed For alinear system or a lincarized system, a general model of the
unit hydrograph could contain only lineur elements, Ax mentioned previously,
when we wish to simulate we must first make up our minds about the tvpe of
simulation and then abhout the components of our model. In this case, it was
deeided to use as components of the model only linear distortionless channels
and Tinear storage elements, In an actual watershed, the inflow at any point
travels through the system to the outlet and in doing so is subject to both
transintion effects and storage or attenuation efects,

The assumption made in Dooge's coneeptunl model (/7Y was that these two
effeets could be complotely soparated fram one another. The o fects of transla-
tion in different parts of the eatehment were considered to be lumped together
and represented by linear channels, whereas the storage effoets in the various
parts ol the eatehment were lumped together and represented by linear
reservoirs, Sinee the model is a linear ane, we have the full advantage ol super-
position and the operations may he earricd out in any order. Sinee linecar
chaonels merely delay an inflow without distarting i, any number of lnear
chanmels enn be conneeted together to farm ane linear ehannel. Similarly, the
order ol the linear reservoirs in o caseade ean be altered without affecting the
response of the system. Channels and reservoirs can also he interehanged
without affecting the response of the system.

The most general model developed was one in which the storage in different
parts of the watershed was eoneentreated so that the flow from any part of the
watershed could be simutated by a linear channel whose length corvesponded
to the time of translation (or time of concentration for that point) and a
number of Hoear reservoirs whose sforage time need not be equal. If the
assumption is now made that for every point along an isochrone (that is, for




LINEAR THEORY OF HYDROLOGIC SYSTEMS 211

equal tranglation time to the outlet) the cascade of reservoirs to be passed
through in reaching the outlet are the same, the equation of the unit hy-
drograph can be written as:

Vot o /e 5{t—r) v\
} =-- ' S e Comeses o f i — 2
tat) :f'/u : (T) I (LKD) [d(z")J (24)

whore At ) s the ordinate of the IUH, T is the volume of infow, 7 is the time
nf roncentrntion of the whole watershed, wis T is the time-area-coneen-
tration curve, §(4Y is an impulse funetion, K ix a typieal reservoir storage
delay time, D is the differential operntor, and ] represouts succossive
multiplication,

1f the gssumption is now made that the easeade of unequal Hnear reservaoirs
apprapriate to u given isochrone ean be replaced by o caseade of egual linear
reservoirs, then the unit hydrograph ean be written as the convolution of the
time-nred-concentration curve and a gamma distribution, as follows:

T (5 ) R 51
v T Kin—11!

where nis not o fixed value but varies with the value of £ The geueral model
represented by equation 23 is still excremely flexible, If n=1 for all points on
the eatelment, then the madel reduees to the Zoch-Clark model of routing
the time-nrea dingram through o lsear reservoir, 17z is greater than 1 but the
same for all puints e the eatchment, then the model represents routing the
time-area dingram through o number of reservoies all situated at the outlet.
If the time-prep-concentration curve is itsell o gamma distribution with the
time seale K, then the madel given by equation 25 reduces to the Nash madel
ol a easeade of equal linear reservoirs with inflow af the upstream end.

A number of concepiual models have been developed by graduate students
working under Professor Ven Te Chow (8 at the University of Illinois, The
mndel paramelers in these cases were correlated not only with the eatehment
characteristis but also with the intensity of rainfall, The analysis was con-
sequently one of a linearized system rather than a linear system. Such an
appronch fakes aceount of the nonlinear effeets due to varying levels of input.
The model used by Bingh’ consisted of translation to the outlet and then
sucerssive rouling through two linear reservoirs of different storage coeffi-
cients. The response function for this model would be:

{ c—-t.'f\'*;__(»—i.'hH
ot =t { == Pom——— 9
il =t (:f) o (26)

sHivar, I, T 4 NONLINEAR AVPHOACH TO THE INSTANTANEOUS UNIT HYDHOGHRAUH.
Ph.ii thesiz, WL Umiv. 1962,
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Diskin® used two eascades of linear reservoirs in parallel, the number of
reservoirs and the storage coeflicients being different in the two cases. The
respense funetion for this model is:

" " (: )"-—1 ( ! )+ 1—a (: )"=-' )( ‘ )
R T (1 | (U VI IS L S S
O =11\ PATR) K DI\E PATH,

(27}

caseade, wy and v are the number of equal reservoles i cach easeade and A,
and K, are the respective storage delay times.

Kulanduiswarmoy” used o model which ean be deseribed as o generalized
Muskingum maodel. As shown in lecture 2, pages 43-57, the essential assump-
tion of the Muskingum method of flood routing is that the storuge is a linear
funetion of the inflow and the outflow. When the expression for the stornge is
inserted in the continuity equation, an equation for the system is obtained
linking inflow and outfiow and their first derivatives. If the Aluskingum
assumption is extended to make the storage o funetion not only of the inflow
and the sutfow but also of their derivatives, then we have what might be
ealled n generalized AMuskingum model, If the cocflicients of the terms in the
general relationship depend on cither the inflow, or the outflow, or both, then
we have a generadized nonlinear Muskingum model.

Rulandaiswamy restricted his detailed analysis fo the case of a linearized
system in which the derivatives of the outflow higher than the third and the
tlertvatives of the inflow higher than the sccond were ignored, thus giving as
a general equation:

dQ Q &Q dr &

Q'{'ﬂ-l';;é__}_ﬂ‘-' '(-R—Z—I-ﬂa EF:I_E“E_{MEE (28)
where £ is the inflow to the system and @ the outflow, and a, @z, A3, Uy and b
are vonstants, which are parameters of the system. For a heavily damped
system, all the roats of the polynomial on the loft-hand side of equation 13 will
be real and negative. If the system enn be represented by a number of caseades
in parallel (without reverse flowl, then the values of b and bs, in the form pven
by Kulandaiswamy in cquation 28, will be negative. If b, and ba are both equal
to zero, thea the system reduces to a caseade of three linear reservoirs whose
delay times are given by roots of the polynomial on the left-hand side of the
equation. If the coeflicient by in equation 28 is negative and the cocfficient bs is
sere, then the madel will in general consist of twe eascades in parallel, each

¢ Diskay, M. Ho A BASIC STUBY OF THE LINBARITY OF RAINFALL-RUNOFF DPROCESS [N
wATENSHEDRS.  Pho1), thesis, Il Univ. 1961,

TRvrnavpaswanr, V. € A DASIC STUDY OF THE RAINFALL EXCESS-SURFACE RUNOKFE
RELATIONSHIP IN A DASIN 8SYSTEM.  Ph. D), thesis, T, Univ. TUrhapa, 1064
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made up from linear reservoirs whose delay times are given by the polynomial
on the feft-hand side of equation 28, If both b and by are negative, then the
equation will represent a syvstem of three easeades in parallel.

In classical hydrology, use is made of routing through & nonlinear veservoir
in which the storage is proportionsd to some power of the outfiow. If the
outflow is controlled by n weir, the exponent in the storgge equation would
be three-halves; whereas for an cutflow controlled by a deep sluice, the power
would be one-hall. Prasad (§8) introdueed o coneeptual model in which the
storage was expressed ns the sum of two terms, the first of which is related to
some power of the outflow (as Tor the noulinear reservoir) and the gecond of
which lnvolves the eate of elange of satflow,

As with all types of models, it is necessary to lind the optimal values of the
purnmeters of a conceptual model. This can be done by the method of least
sguares, by minimax error, by matehing of moments, or by o direct search
technigque on o digital computer. To use the method of least squares, it would
he necessary to differentiate the equations for the IUH with respeet to cach
of the parameters in turn and solve the resulting simultancous equations, This
may involve us in some complex mathematies. It is easy enough to differ-
entinte the gamma distribution with respect to time to lind its peak, but to
differentinte it with respeet to n or A soon leads us into an undergrowth of
unfamilinr mathematical functions. Where conceptual models have been
used, the eriterion of fit has been that the model should mateh the two co-
ordinales of the peak of the empirienlly derived hydrograph, In effect, such a
eriterion means matehing the model to the pratotype at two points only
tthe origin and the peak) and ignoring the information available in the
remainder of the hydrograph.

ln practiee, it has been found relatively easy to compute the moments of
most eoneeptual models. This suggests that matehing by moments be used as
the criterion for determining the optimal values of the parameters. The
general formulda for the £ moment of the impulse response of 4 linear reservoir
about the origin is given by

[p=(RYIKE® (29)
and the general expresgian for its cumulant is:
k= (R—1}IR® (30)

If Hoear storage elements are combined in series, then the cumulants of the
resulting caseade are obtaived by adding together the corresponding cumu-
lants of the individual reservoirs. If linear reservoirs are combined in parallel,
the moments of the resulting system about the origin can be obtained by
adding the individual moments about the origin. The moments and the
cunmulnnts have the advantage that they take into account the complete unit
hydrograph, but for the higher moments there is the disadvantage that the
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recession limb of the hvdreorraph makes 0 dominant contribution to the value
of the moment and errors in the recesston may distort this value,

Where a time-area-concentration curve is represented by o geometrieal
figure and routed through a Bnear reservoir, then the cumulants of the re-
sulting eoneeptual model are obtained by adding the cumulants of the geo-
meteieal figure representing the time-aren-concenfralion eurve and the
cumulants of the livear reservoir. Thus, for the case of the routed isoseeles
triangle, if the base of (he teiangle is given by T and the storage delay time of
the linear reservair by K, the cumulants of the resulting model are as foliows:

?‘
by= ',":-9-—]—.!\' {31a)
N L '
o= | 2:9;[4._1\_- (31b}
;1,32{'3”___?['3 (3led
iy
hy=U—30 (02 = {1}\4—%0 (3td)

If the respective momputs tor cumulants) of the coneeptual model are
equated to the derived moments (or cumulants? of an empirieal bydeograph,
thew the values of the parameters (hat are apfimal in the sense of moment
matehing ean be evabunted,

As menlioned at the beginning of the seetion, a conceptual maodel ean only
be used to synthesize o aetunl unit hydrograpl if some rule is available lor
predicfing the values of the paramoeters of the concoptual madel on the hasis of
reaclily nvailabile catehment charactoristios. Usually sueh rules are based on
the vorrelation of the model parnmefers with eatehment charmeteristies for
wnit hydrographs derived from eatehments where reenrds are available, IF the
paratueters of the conceptunl models chasen Tor coneeptunl models are not
very stable, or if the optimal values of the parameters eannot be sharply
identified from the past records of input and output, then the enrrelations on
which is based the synthesis of the unit hydrograph lor a ungaged entehmendt
will be unrelinble,

There i= a great deal to recommend ihe proposal by XNash (47) that the
moments be used as the basis of this corrclation beeause the lower order
muments are more slable than sueh parameters as time-to-pesk and peak
diseharge. On the basis of 90 storms on 30 British catehments (whose area
varied frpm 4.8 to 854 square miles), Nash 148) derived the relationship:

A\
Ci=t=27.6 (b) (32)
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where £ is the fiest moment or lag, A is the area in square miles, and S is the
overland siope in parts per ten thowsand, Belare adopting this relationship,
Naush had tried the regression of the first moment on varigus combinations of
nine eatchments eharacteristies, The coeflicient of multiple correlation (&)
for the relationship given v equation 32 was 0890, When the dimensionless
seeontd mowent was correlated against the eatehment charaeteristios, the
Lest result shtained was:

{7 _ 0.-£L

Ml = = 7o M -

2= (33
where oz 1s the dimensionless seeond moment and L is the length of the longest
stream to the eatehment boundary it miles, In this second regression, the
eoeflicient of multiple corvelation (/) was 0.5,

Onee the moments of the unit hydrograph have been defermined and
estimated, the equations relating the moments of the coneeptual model chosen
for synthesis to the basie model parameters ean be solved for the values of
{hese parameters, In gamma distributions, the parameters can be determined
direetly from the moments sinee we have:

(34)

(35)

The parameter values derived in this way oan then be used to penerste the
particular gamma distribution which is used as 4 representation of the ICH
for the eatehment being studied.

Wu 704 has reported ona syathetie method derived from the records for
21 watersheds in Indinna varving from 7 to 100 square miles. He corrclated
the time-to-peak with eatehment characteristies and found:

B3Tk2( 131,08
SRRV AT

(36)

where £, 1s the time {o peak in hourg, 4 38 the area 1n square miles, L is the
length ol the main stream in miles, and 8 is the slope of the main stream in
parts per ten thousand. The other parameter which was correlated by Wu was
the recession constant K, for which he proposed.:

- 780(‘4 ')U.D:l‘f
ST D

where K is the stornge counstant in hours, and the catchment characteristies
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are as defined for equation 36, Because the time-to-peak for the gamma dis-
tribution is related to the paramoters n and K by

L= {(n—1)K (38)

there is no difficulty in deriving the value of » from equations 36 aund 37 and
so geoaerating the syatbetic unit hydrogeaph.

Comparison of Methods

fn this keeture, we bave outlined s number of methods which ean be used in
attempting to solve the problem of synthetie unit hydrographs, that is, the
problem of predieting the unit hydrograph for a watershed in which wo records
of inflow and outflow are availeble. A large number ol methods bave been
proposed, some belonging to the eategory of time-area methods, some to the
eategory of empiriea]l mothods, some to the eategory of coneeptual models.
The hydrologist faced with an immediate preblem, but anxious to use as
objeetive a method as possible might well ask, “How shall I choose between
these methods?” To answer (his question, it is necossary {0 compare the
methods belonging to each category and also to compare the different cate-
EOrkes,

In time-aren methods, we must decide whether to use the netual Hme-area-
coneenfration curve or a geometrical figure and whether to route through one
or more linear reservoirs. It would appear that the extreme tedium of deriving
a time-area-concentration curve is not justified by any appreciable increase
i aecuraey in representing actual unit hydrographs and that the judicious
replacement of the time-arca-councentration curve by a geometrical figure is
unobjectionable. Care must be taken, however, that o entchment of untypical
shape s not forced into the straight jacket of being represented by a geo-
metrical ligure whose shape is based on the general shape of other catchments
w the rogion, Onee it has been decided to route & geometrical figure rather
than a derived area-concentration curve, the problem realiy reduces to one of
& conceptual madel. The question of what figure to use and how many reser-
voirs to route through can be determined by the methods given below for
conceptuat modols,

The empirieal curves used to represent the wnit hydrograph {nearly all of
which are one-parameter models) can be eompared by dimensionless plotting.
It is important to remember that for ene-parameter curves only one parameter
is available to act as a scale factor. Thus, a comparison by plotiing the ratio
of discharge to pesk discharge against time over time-to-pesk may not be
valid as the volume under the hydrograph may not be normalized {o unit
volume,

Both theoretical considerntions and practical results in the field indicate
that the lag (the time interval between the conter of preeipitation excess and
the center of direet storm runefl) is the most stable time parameter and the
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one most highly correlated with the catehment characteristies usually uscd.
1t is suggested, therelove, that any comparison of dimensionless unit hy-
drographs should be made by plotting:

qli_ [t D) 0
'lrr _¢(!LJ ff‘ (3")

- where g 18 the ordinate of the unit hydrograph, {1 is the lag as defined above,
V7 i the volume of rainfall exeess, and £ is the duration of rainfall exeess.
Similarly any dimensionless S-curve should be plotted as:

5() =0 (&) (33)

In each case, ¢ is an undefined fuuction representing the standard shape
acloplecl.

A vomplete comparison of different methods of synthetie unit hydrograph
generndion based on empirical curves must take into account the empirical
relationships with catchment eharacteristies used to determine the basie
unit hydrograph parameter or parameters. A number of ecomparisons have
been made but none of them were comprehiensive, Dooge® compared, in a
erude fashion, the shape obtained by routing an isosceles trinngle through a
linear reservoir with the shape of the dimensionless unit hvdrographs proposed
by Commons ({2}, Williams (69}, and the Soil Conservation Seevice (68).
The romparison was made by platting the vatio of the discharge ordinate to
maximum discharge (¢, gnax} against the ratio of the time to the time-of-peak,
({74p). Beenusoe all the curves were constrained to go through common points
at the origin and the peak, no great dilferences wore revealed.

Coulter {13) in a study of rural eatehments in New South Wales, compared
1he synthetie unit hydrographs generated for nine catehments by the methads
of Tayler and Sehwartz (63), Clark and Jobnstone {9, 29), Eaton (19),
O'Relly (48}, and Morgan and Hullinghorst.? For a few of the eatchments,
the peak flows predicted by the various methods were quite close to one
another, but other catchments showed a three- or Tourtold variation.

Dooge (footnote 1) put forward the idea of comparing methods of synthetie
unit hydrograph generation on the basis of their predietions of the unit
hydrograph for one or mare standard eatchments. A standard eatchment is
taken as being one in geomorphological eqmalibrinm, Though all catchments
ure not in cquilibrium, it may be assumed that eatehments cut of equitibrium
are tending to eguilibrivm and tend 50 more rapidly the more they are out of
cquilibrium. Onee the size of the standard catchment was fixed at 100 square
miles, the remaining topographical characteristics were fixed on the basis of

5 SBec footnote 1, p. 109
# Bee Tootnote 3, . 204,
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geomorphological principles and published relationships. In this case, the
channel slope was taken as 100 fect per mile and the ground slope as 400 feot
per mile. Other characteristics were a drainage density of 1.25 and a length
of overland flow of 2,200 feet,

Morgan and Johnson {42} compared the relative accurncy and reliability
ol the synthetie unit hydrograph methods proposed by Snyvder (491, the 8ol
Conservation Service (68), Commons ({121, and Miteholl (4£). They applied
the methods to 12 drainage areas in Ilinols ranging in size from 10 to 101
siuare miles. Again wide variations hotween the svnthetic unit graphs anel
between them and the aetual unit graph were found. No method consistently
over- or underestimated the actual peak discharge. The bighest mothods of
prak diseharge ranked in the following order: $CS, Commons, Aitehell, and
Snyder. There was little difftrence hetween the estimatos b the SCS moethad
and the Commons method. When an observed lag was used instend of a lag
ostimated on the basis of eatehment charneteristies, the svithotic methods
gave much better results. Studies by Coulter (73) and by Morgan and
Johmson (42) are of interest beeuuse they test the geueral applicability of the
empirical relationships between unit hydrograph parameters and eatehment
characteristios originally derived from regions whielh are widely separated
from one auother,

The (ollowing tabulation shows the ability of a number of methods to
predict the lag of a standard eateliment. When MeCarthyv's mothod (sec

Author Location Lag in hawurs

MeCarthy {1038) Connecticut 16.
Suyder {193%) Anpalaehians 16.:
Mitehell (19048) Tlinois 13.
O Kelly {1053 Treland .0
Nash (19060)........,.... Britain 15.9

footnote 23, which wus based on a very {ew streams in Counecticut, was
applied to the standard eatehment of 100 square miles, a lag of 16.2 hours was
obtained; Snyder's method based on work in the Appalachians gave a lag of
1G.5 hours; Mitehell's method based on watersheds in Tilinois gave a lag of
1544 hows: ' Kelly’s methad based on a number of eatchments in Ireland,
gave LED hours; and Nash’s method based on eatchments in Britain o lag of
15.9 hours, With the exception of the result by O'Ielly’s method, these are all
remarkably close varying only from 154 to 16.5 hours, a difference of only
7 percent. In addition to this remarkable concordance, there is a reason why
the catehments studied by O'Kelly would be expeeted to have shorter log
times for standard dimensions, O'Telly was concorned with the problem of
designing arterial drainage schemes (main river improvement schemes) in
Ireland. Aceardingly, his method was based on the characteristies of rivers for
which such schemes had been earried out. Under post-drainage conditions,
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catchmends are expected to show shorter lag times than the average. It would
appear that, while the dimensionless unit hydrographs, which were used in the
past is a purely empirieal fashion, will be replaced by mathematical equations
or by conceptual models, the eorrelations of hydrograph parameters {particu-
larly lag) with catehment characteristics developed in the classical syathetic
methods may still be useful,

There remains the problem of deciding how complex the mathematical
equation or eonceptual model must be and bow to choose between different
madels tor equations} of equal complexity. Nash (47, 48) proposed a general
synthetie sehome along the fines shown in figure 8-3. As has been repeatedly
emphasized, the velationships on which the synthesis are based must be
dertved from the analvsis of a number of watersheds Tor which measurements
ave available and whieh serve as a sample for the region. Nash suggested that
the moments of the IUH be decived from a set ol sample catehmoents and these
moments corretated with one another and with the eatchment charactoristics
to determine the number of degrees of feeedom inherent in the response of a
eatchment wher operating on preeipitation exeess to produce flood runoff,
This would enable us to detorse'ne the number of parameters needed in the
sinwlation syxtem. He suggested that the dimensionless moments of the actual

MOMENTS CATCHMENT
OF [UH PARAMETERS

IUH DEGREES OF
PARAMETERS FREEDOM

1UH

Frovue 843, --Nazh's svathetie scheme,
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responses (and the dimensionless moments of 5 number of conceptual model
systems with the required number of parameters) be plotted agninst one
another. (n such a plot of m, agninst me or m, against me, 8 one-pacameter
madel would plot as a single point; a lwo-parameter madel, as o single curve;
and a three-parameter model, as a family of curves. By comparing the curves
for the model system with the plot of points Tor actual eatehments, the best
maodel conld be chosen,

Onee the eorvelations of TUH naments with eatchment characteristios
have been determined and the maodel ehosen, it is possible to sytithesize the
unit hydrageaph for 2 watershed for which no records ave available, Firstly,
the moments of the [UH are determined by the regression equations using the
values of the ealehment charneteristios of the particulur eatehiment, These
predicted moments van be equated to the expressions for the corresponding
moments of the model chosen, and the optimal values of the model parnmetors
fur the partieutar eatehment thus determined. Onee the model and (he uptimal
values ol the parameters are known, the vompiete TURH for the particular
watershed can be geneealed.

Nash 581 applied his method to the data for 80 storms on 30 eatehments i
Great Britain, Regression analysis muve a relationship between the frst
moment a) and the eatehment characteristies of area and overland slope
with a eoefticient of multiple correlation of 0.90. A further regresston of the
second moment 123 with my and the overland slope gave a coefficient with a
multiple correlation of Q.31 Though the latter rosult is statistically significant,
it does not give o good determination of the second moment and, henee, the
ability of the seheme tn prediet an unkoown unit hvdrograph is impaired.

When Nash plotted the moments of his actual responses against one another,
as shown on figure 8-4, they covored a region rather than foll along a single
line. Tn diseussing Nash's paper, Dooge pointed out that the data and the
curve are not strictly comparable, The data were derived on the assumption
that the base of the unit hydrograph was three times its lag; whoreas, the
base of the gamma distribution is infinite. A crude correction can be made
and the two made more comparabie by truncating the gamma distribution
according to the method of base flow separation given by Nash so that the
base of the truncated gamma distribution is three times its lag. When this is
done. the truncated gamma distribution plots as a line Iving below the data
points shown on figure S and, thus, appears to approximate & limiting
form rather than an average form lor the IUHs derived by Nash. Figure
S-4 also shows the comparison of the data with three models: (1) o channel
and reservoir in series veurve 21); (2) a caseade of equal linear reservoirs with
an upstream inflow, that is, the gamma distribution (curve B}; (3) and the
cascade of equal linear reservoirs with lateral snflow {curve .

The general synthetic scheme praposed by Nash could, with advantage, be
medified to the secheme outlined on figure 8-3. It is suggested that, instead of
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correlating the moments with the eatchments characteristies, the moments be
correlated among themselves to determine the number of degrees of freedom.
Thus, in & two-parameter system, the third moment will be completely dater-
mined onee the first and sceond moments are known; whereas in a three-
patameter system, the fourth moment will be known once the first, second, and
third moments are known. If the moments are made dimensiontess by using
the first moment as a scaling factor, then the eriterion for a two-parsmeter
model is that the third dimensionless moment is completely determined by the
second dimensionless moment {or cumulant) ; the criterion for a three-param-
eter system is that the fourth dimensionless moment (or cumulant) is com-
pletely determiined by the second and the third dimensionless moments.

In his discussion of Nash's paper, Dooge (18) caleulated the coefficient of
aultiple correlation of ma with ma. for Nash’s data as 0.717. This indicated
that the variation in the third dimensionless moment (m;) was only 50 percent
accounted for by variations in the dimensionless second moment (m.) and,
hence, that the two-parameter model would not be highly efficient as n basis
for simulation. However, the coeflicient of multiple correlation between the

0.5

& Ghannel and reservoir

B Cascode with upstream infiow
~C  Cascede with fateral inflow

P

0 0.l 02 03 0.4
Sg

Ficure §—1.~—3hape factor diagram for Nash's data.
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CATCHMENT MOMENTS
PARAMETERS OF IUH
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¥
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IUH

Teear 8-3.--- Modified synthetie scheme.

dimensiondess fourth moment () and the two lower dimensionless momoents
Doy and ey was found to be 0.93, indicating that the variance in my was
accounted for by the varianee in the lower moments to the oxtent of almost
80 pereent. Constdering the basie nature of Nash's date {which were normal
river observations rather than research readings), this was a very high correla-
tion and indieated that a three-parameter model would probably give as
satisfuetory a simulation as the data warranted. The remuinder of the modified
graeral synthetie seheme shown on figure §-5 is the same as for Nash’s original
proposal shown on figure 83, except that the parameters of the IUH are
correfated direetly with catehment parameters.

It must be stressed that what is required in the correlation for unit hy-
drograph synthesis is vot necessarily a correlation with individual eatchment
charneteristies. To determine the three independent TUH parameters that
would be required for a three-parameter model, it is necessary to have three
independent eatechment parnmeters which between them would aecount for
40 pereent or more of the variation in the shape of the IUH. Each of these
parameters might be maade up from a number of catehment characteristics
tsuch as area, stope, drainage density, and shape} in the same way as the
Froude number and the Reynolds' number are made up from a number of
hydraulie characteristics.

The determination of the significant grouping of catchment characteristics
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into catchment parameters remains one of the grest unsolved problems of
surfuce water hydrology. Factor analysis may help in the preliminary trinl
grouping of eatchment characteristics, but it is likely that the Anal significant
forms of the groupings will only emerge through a better understanding of
geomarphological processes.

The shape factor diagram in which dimensionless moments or cumulants
are plotted against one another is o most useful deviee for comparing nlterna-
tive conceptual models of the same number of parameters and of comparing
coneeptual models with actual data. Thus, figure 8-6 shows a comparison

2.0

|
0.5
Sz

Routed rectangle
B Routed triangle

C Caosccde of reservoirs

Flaurs 8-6.-—8hupe fctor for models.
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between three two-parameter conceptual models: (1) a routed reclangle, (2Y a
routed triangle, and (3) 2 caseade of equal hnear veservoirs, It can be seen
thet cach of these two-parameter conceptual models defines a line in the
s3— s plane, where g is the dimensionless third cumulant {or moment) and
s the dimensionless seeond cumulant 1or moment). These lines plot rela-
tively elosely together on the dirgram, thus explaining why ali of these models
have been suggested as o basis for simulating the same type of prototype
wvaten.

Figure & 7 shows a comparison of a Pearson Type 171 distribution (gamma
distributiont with a Pearsop Type V distribution and a Pearson Type 1 dis-
tribution, This diagram could be used to decide which Pearson distribution to
rhoose for fitting unit hydrographs or other response curves by laking the
distribution which lay closest on the shape fuetor dingram to the plotied
paiats corresponding to the unit hydrogeaphs for a number of sample eateh-
JIHHIES

Figure 8 8 shows a comparison between the time-teansformed gamma
distribution and the ardingry gamma distribution. The case plotled 18 {or o
value of 1= Ly and curresponds to the type of model used by TVAL I curves
were drawn for other values of w, it would be possible to see if the plotted
points from sample catehments all fell alon one line, This would enable us to
use & bwo-paramoeter model based on the value of m eorresponding to that line
ar else tu indieate whether the family of curves swept out the region of plotted
points, thus allowing us to wse cquation 22 as a three-paratieter simulation
of the prototype svstem.

Problems on Synthetic Unit Hydrographs

. Compare the values of the lag, time-to-peak, and peak discharge given
by four different synthetie unit hydrogeaph methods for the 100 square mile
eatehment whose characteristios are listed on Appendix table 6.

2. Compare the values of the lag, time-to-peak, and peak discharge given
by four difleront syathetic unit hydrograph methods (fwo erpirieal and
two time ares) for the eafehment whose characteristios are given on Appendix
table 7,

3. Compare o number of standard unit hydrograph shapes by plotting
dimensionless ordinates against dimensionless time,

4. Compare a number of standard S-curves by plotting dimensionless
ardinates ngainst dimensionless time.

4. Compure & number of standard unit hydrograph shapes on a plot of
dimensionless third moment versus dimensionless seeond moment.

G. Deseribe the various steps of one particular mothod for synthetie unit
bydrageaphs, and comment on the strong and weak poiots in the method.
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7. Deseribe the retationship between (he generalized Muoskingum formule-
tion of linear catehment response with the peneral linear equation with
constant coeflicients, [NMustrate by sinaple example,

8. Deseribe the relationship between the generad linear equation with
conatant coeflivients and the representation of the linear eatehment response
in tocms of egual linear stotage elements. Mustrate with a simple example.,

9, Describe the relatiooship between the general linear eguation with
constant coofivients and the representation of the catchment by o smaldl
number of woequal storage elements, Wusteate your answer by o simple
example.

10, Choose n speeind inear model with an infinite time base, Caleadate the
offoet of trunealing this response eurve to make the base finite and work out
the correetions Lo be made (o the moments of the response curve,

1L, Compure 2 nanber of twosparameter models by plotting dimensionloss
perh disehurze amiinst dimensionloss time-to-peak.

12, Compaee o number of twosparameter models by plotting in ternms of
dimensianless shape factoes,

13, Devise a geneenl <yntheite seheme Tor linear eatehment response. Work
ot o How dingeam for the vompulations velved, Apply this flow dingram
to a set ol reliable duta.
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LECTURE 9:
MATHEMATICAL SIMULATION OF SURFACE FLOW

As a resuit of the development of coneeptual models in unit hydrograph
theory, there has been a tendeney sinee the mid-1960's to propose the use of
conceptual models to represent specific elements of the hydrologie evele other
than the overall diveet response of a catehment. The principles of mathematical
physies can he applied to the mvestigation of various parts of the hydrologic
eyele, and the individual processes can be represented by a set of equations
and boundary conditions. To solve these equations, it is necessary to make
[urther simplifying assumptions, which accontuate the simulation nature of
the mathematical solutions ebtained. The replacement of these simplified
mathematical expressions by conceplual models is in accordance with the
general systems approach, which considers each system in terms of o eortain
number of interconnected clemoents and judges a system by its overall opera-
tion vather than the precise uature of the clements themselves. Coneeptual
models are formulated on the basis of o simple arraagement of a refatively
small number of elements, cach of which is itsolf simple in operation. The most
widely wed conceptual elements are linear reservoirs and linear channels,
Though vonceptual maodels wore originally introduced as highly simplified
versions of the actual physical operations mmvolved, they ean also be looked
upon as mathematical abstractinns whose only function is to simulate the
hehavior of the physieal systems being studied.

In the two final lectures, we diseuss four segments of the hydrologie eyele
that to some extent lend themselves to mathematieal simulation and to the
synthesis of conceptual models. The four segments involved are overland flow,
open channel flow, unsaturated fow in soils, and ground water fow.

Overland Flow

Overland flow is an interesting exampie of the application of mathematical
simulation and the possibility of applying conceptual models to the solution
of a hydrologic problem. Overland flow has been studied analytically, in the
laboratory, and in the field. It vecurs carly in the runoff eycle, and the in-
herent nonlinearity of the process is not dampened in any way. Hence, the
methads of linear analysis and synthesis are inadequate in this case, and the
general approach used in developing linear methods must be extended.

A physical picture of overland flow is shown in figure -1, The cssential
problem to be solved is to determine the flow off the planc at the downstream
end for given physieal conditions and a given pattern of lateral inflow along
the plane. The equation of continuity for the two-dimensional lateral inflow
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Fraore 9-1.—0verland flow {two-dimensional).

preblem can be written as:

ag Ay
Pl Y . S ¢
6$+3£ rzt)

where
q=g({z,f} =rate of overland flow per unit width

y=y(z,t) =depth of overland flow
and

r=r{z,t} =rate of lateral inflow per unit area.
The dynamic equation for two-dimensional overland flow can be written as:
ldu dy udu
gdl dr gax

= So— 8y~ —er(zt) (2)
gy

where
w=u(x,t} =velocity of overland flow

Ss=slope of plane
S, =friction slope.

Though the continuity equation is linear in ¢ and y, the dynamie equation is
highly nonlinear. It is possible by means of a high-speed digital computer to
obtain o numerical solution of cquations 1 and 2 for any given set of boundary
conditions. This approach will be considered briefly later in this section. For
the present, however, we are concerned with the simpler appreaches to the
particular preblem, that is, with the attempt to find a simpie mathematical
simulation or a simple conceptual model.
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The elassiea! problem of ~verland flow 12 (o sobve the particular case where
the Interal inflow is uniform along the plane and takes the form of 2 unit step
funetion:

radi={"th {3

There are several parts to the complete solution of this problem, Firstly, there
s the aleadystate problem of delermining the equilibrium profile when the
outflow at the dewnsiream end of the plane s sgual to the inflow over the
surinee of the plane. Becoudly, there is the problem of determining the rising
hydrograph of outfiow helore equilibrium for the special nflow case represented
by equation 3 above, I the problem were 0 Doewr one, the solulion of this
seeond problem (that ix the determinntion of the step-function vesponse)
would he suftieient te charaeterize the vesponse of the system, and the outflow
hadrograph fur any other inflow patfern could be derived from it However,
sinee the problem is inherently nonlinenr, the prineiple of superposition eannot
be applied, and caeh ense of inflow must be teeated on bs merits, The third
husie problent ix that of determining the recession from the equilibrium eondi-
twn after the eesation of long continued inflow. The nature of the recossion
whoen the inflow ceases before eguilibrium is reached (that i, before the out-
flow builds up to a value equal to the iflow) must be investigated, and this
constitutes & fourth basie problem. The next step is to investigate the effect
of an inflow formed by the superposition of two or more step functions. Thus,
the fifth baste problem involves consideeation of the case where there is o
sudden inerease Trom one uniform rate of inflow to a second higher rate of
uniform inflew, The sixth case considered is that when a uniform tate of
inflow is suddenly changed to a second uniform rate of inflow which is smaller
than the fiest.

A few af the elassieal exporimental rosults by Izzavd (28) are shown on
figure G2, The top figure shows a rising hydrograph, & recession, a seeond
rising hydrogeaph, nad a {inal reeession. The second figure shows the effect
of chauging the inflow rate from L83 to 3.50 in. per hr. {4.65 and 9.02 em. per
hr., respectivelyd and the lower dingram shows the cffeet of changing the
inflow rate from 3.65 to L84 tn. per hr. (9.27 and 4.67 em. per hr,, respec-
tively . Also, shown in the figure is o logarithmic plot of the detention storage
on the surfaee of the plane against the discharge at the gownstream end,

The first approach to the selution of the overland flow problem in elassieal
hydrology to be considered is that based on the replacement of the dynamic
eguation 2 by au assumed relationship between outflow and storage. Beeause
this method was first propesed by Horton 122) for overland flow on natural
catchments and subsequenty used by Tzzard 128) for paved surfaces, it may
be referred to as the Horton-Lzzard approach. Hydrologists noted that when
the cquilibrium runcfl (that s, the cquilibrium discharge at the downstroam
end? of a number of experimoental plots was plotted against the average surfacc
detention for total surface detention} at equilibrium on log-log paper, the
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experimental points fell approximatoely along » straight line. An oxact lineay
relationship on logarithmie paper would indicate that the equilibeium outfow
at the downstream end and the equilibrium storage were connected as follows:

qi\“{’lie) =qt=aScr (4)

where g, was the discharge at the downstream eod of the planc uader equilib-
rium conditions, 8, was the total surface storage at equilibrium conditions,
and & and ¢ were parametors.

In the Horton-lzzard approach to the overland flow problem, the assump-
tion is made that such a power relationship holds not only at equilibrium, but
also at any time during the rising hydrograph or during the recession, Using
this assumption we ean write;

gl =g, =0Ne (a)

where g is the discharge at the downsiream end at any time and S is the
corresponding total storage on the surface of the plane of averland flow. The
cquatiom of continuity, eguation 2, ean be written in the hydrologiend form us;

L= (6
! = ot )

which for our assumptions ean e written ns:

S
r,:,-—aS’=?kr {7a)
ur
th
= = 7t
ol Ty (7h)

The soluwtion of equation 7 is:

1 dU8. 8
{= f —- 8a
aS. ) 1—(8/8.¢ (8a)

:1 f d{ Q:",Qa} Lie

@ ) 12 (glan (8b)

Equation 8 ean be sobved analytically for values of e=1 (linear), ¢=2, ¢ =3, or
c=14, and also for ratios of these values, that is, for c=34 or 44,

Horton 122} solved the equation of the rising hydrograph due to a step
function input for the ease of e=2, which he deseribed ns “mixed flow” since
the value ¢ is intermediate between the value of 5¢ for turbulent flow and the
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vilue of 3 for laminer flow. Horton’s solution may be written as:

Z— = t{anh? (i)

where

{9b)

Binee the system is nonlinear, the Lime parameter A, will depend on the
wntensity of inflow, Horton gave an emipivical expression for the equilibzium
storuge per untl width and hs equation for the rising hydrograph has been
wsed in the design of atrport destnage sinee that time, Tzzard (27) presented
the solution for the case of e=3 (that is, for laminar flow) in the form of a
dimensionless rising hyvdrograph, Tzzard used as his time parameter a time to
virtual equilibrium, which is exactly twice the time parameter used in equation
9t above, 1 i of wterest that the integral in equation 8§ is of the same furm as
the Bakhmeteff varied flow function and, beoce, tabulated values of the
varied flow furetion may boe used to tabulate or deaw the rising hydrograph
for any value of ¢ for whiel It is tabulated. Typicul ristng hydrographs are
shown on figure 9-3,

For recession from eguwbthrium, the recharge in equation 6 becomes zero,
and the insertion of the value for ¢ from equation 3 leads to the solution:

fette
¢ {
("-’-) =14fe—1) — (10)
g I\-e

whore ¢ is the ordinate of the reeession curve and {15 the time elapsed sinee the
cesstion of inflow, that is, the time sinee the start of recession, Typieal
revession curves as predicted by the Horton-lzzard modol are shown in figure
8- 3. The speciad rase of eguation 10 for the value of ¢=3 was given by 1zzard,

If the duration of inflow (D is less than the fime required to reach virtual
equilibrivm, we get o partial recession (rom the value of the outflow (g}
which has been reached at the end of the inflow. It ean be essily shown that
this curve is the same shupe as [ur recesston from equilibrium except that the
recesston flow enters the curve defined by equation 18 at the appropriate
value of ¢, gp.

If there is a change fo o new rate of uniform inflow during the rising hy-
drograph, two cases can occur, IF the new rate of inflow is higher than the rate
ol outflow when the change oceurs, the same dimensionless rising hydrograph
ean stifl be used, but since g, is oqual to the inflow at equilibrium, the vatue of
g q. will ehange a8 soon as the mte of inflow changes. If the new rate of inflow
is loss than the outfiow when the change occurs, the hydrograph will correspond
to the falling curve of the varied Bow funetion. The latter funetion ean be used
tt determine the shape of such a falling hydrograph, which will be of the type
shown in the bottom of figure 9-2.




238 TECHNICAL BULLETIN NO. 1468, U".S. DEPT. OF AGRICULTURE

1.O

c=3
C=2 RISING

q/q¢

RECESSION

0/qq

t/ke

Figunes 9-3. —-Shapes of rising and recession hydrogzaphs,

Looked at as a coneeptual model, the Horton-TIzzard solution clearly assumes
that the whole system can be lumped together and treated as a single nonlinear
reservoir whose outflow-storage relationship is given by equation 5. Even
though this conceptual model is extremely simple in form, the fact that it is
nonlinear mnkes it less easy to handle than some of the apparently complex
conceptual models used to simulate linear or linearized systems. Thus, the
impulse response for such a system no longer characterizes the system because
the output will aiso depend on the form and intensity of the input. The cumu-
lants of the impulse ean no longer be added to the cumulants of the input to
obtain the cumulants of the output. The solution for a step function input
eannot be used to obtain the cutput for o complex pattern of input.
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The second simple solution propesed for the overland flow problem is the
kinematie weve sobution. 1t also wvolves a power relationship between dis-
charge and depth but, in this ease, vot a lumped relationship covering the
whole svstem, but a relatiouship between the diseharge and the depth at ereh
point and, therelure, & distribtited relntionship. The basie assumption for the
kinematie wave solation is that all the terms of dyoamic cquation 2 are
negligible compared with the slope term and the friction term, so that we
have:

SG'_kq‘f‘=Q {113)
which can alse be written as:
gl Yy =g=by* {1ib}

H friction s taken aecording to fhe Chezy formula, the value ¢ will be #§;
wherpus, i 10 s {akien according to the Manning fuemula, the value of ¢ will
be 3y, For zers inilinl conditions and an eguilibrium dischavge g, (equal Lo the
produet of the constant supply rate » and the length of overland fow L3, we
huve the Tolowing solution for the rising hydrograph:

tal (2] + o

! Sf;’; : b " ( 12&)

lek:

where

L e“f He
b= = ey (12c)
In equnlion 12, & s the kinematie time parameter and g, is the depth of flow
abtainod when the equilibrium discharge g, i substituted in equation 11b,
The kinematie time parameter {p should be distinguished from the time
parmmeter for the Horlon-tzzard model K, defined by equation 9b above and
from the time to equilibrium ¢4, used by 1zzard. The rising hydrograph for the
Kinematic wave solution is shown on the upper part of figure 9L,
The reeession from fall equilibrium for the kinematie solution can be

showa to be:
1fe ¢
)4
i Te b

which is alst shown on the upper part of figure 9-4 Where the duration of
inflasw (I is bess than the time of kinematie rise (43, the kinematie wave
sofution gives a flat topped hydrograph, in which the flow is constant until it
moels the full recession carve as shown in the lower diagram on figure 94,
The kinematie wave solution bas beea apphied to overtand flow by Henderson




240 TECHNICAL BULLETIN NO. g, U8, DEPT. OF AGRICULTURE

Duration < tk

Figure 0—~-—Kinematic wave solution.

and Wooding (21), and Wooding (60, 61, 62) and used to construct o model
of catehment response. They analyzed the problem and developed equations
for the rising hydrograph and falling hydrograph by arguments based on the
method of characteristics.

The numcrical solution of the overland flow problem has been tackied by
Woolhiser and Liggett (63). They reduced the equations of continuity and
momentum to dimensionless lorms by expressing the variables in terms of the
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normal depth and veloeity at the downstream end of the plane for the maxi-
mum discharge, Whea this is done {see reference 63 for details), equations
1 and 2 become:

dg dy
—=f—==1 14
{J.r+a£ (14)

i W i
— =R (1=~ }—- 1o
at +[f"’ i).r+ gr ( Y ) ¥ (150)

where

N
K=ok {15b)

=i
in which the supeeseripts denoting that the variables are dimensiouless
variables have been omilted tor convenicace, There are only Lwo parameters
in thege vquations, the Froude number for normal flow at maximum discharge
of and the porameler K defined by equation 15h, which refleets the length
and slope of the plane tor channelt as well as the normal flow variables.
Bguations 1 and 15 were expressed in characteristic form and solved by a
fintte difference technique, For high vabues of &, the slope and friction
dominated the Row and, as might be expected in these conditions, the solution
approximated the kinematie wave solution. For values of the paramoeter K
smaller than 10, the kinematic wave solution was found to be a poor approxi-
mition.

A typieal ristug hydrograph fowxd by Woolhiser and Liggett (60) is shown
on figure 93, [ would appear that in the early stages of the rising hydrograph,
the shape of the hydrograph approximates to the kinematic solution, whereas
in the laler stages it approximates more to the Horton-Tzzard solution. This
s not wnexpected beeastse in the early stages of the flow dgfdz would be
relatively small, thus approximating the kinematie solution for which dg/fdz
i zero downstream of the charseteristie which starts from the upstream end
of the plane at the siart of infow, In the later stages of the rising hydrograph,
the value of dy dr would approach the rate of lateral inflow and the Horton-
Lzzard solution, based an an empirical relationship which is 8 good approxi~
mation at equilibrium, might be expected to give better predictions than the
Rinematic model.

In simulating overland flow, eithor as a hydrologic system or as a subsystem
of a watershed, considerntion should be given to the type of flow involved.
The Stanford model incorporates a rising hydrograph for overland flow de-
veloped by Aorgali and Linsley {49y, Their hydrograpl: is far & high value of
K and heace approximates very elosely to the kinematie solution. For lower
vidues of A, this rising hydrograph woukd not necessarily be 2 good representa-
tion of overiand How.
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Dooge (9, 10) recently proposed as a conceptual model for problems with
laternl inflow a eascade of equal reservoirs, either lnear or nonlinear, with
mtermediate inflow. For overland flow, these resorvoirs would be nonlinear.
This conceptual model is what the author has referred to as uuniform non-
linearity. In such cases it can he shown that the outfow lrydrograph for
uniform inflow can be represented in dimensionless form by

t D
oo D) (160)

where q is the outflow, g. the equilibrium outflow, ¢ the time, {4 o charactoristic
time which depends on the intensity of inflow, and D the duration of uniform
inflow. For n step funetion input, there is no duration to affect the issue and
the equation of the rising hydrograph can be written as:

%: C_o) (16b)

It can be shown that the outflow from a easeade of equal nonlinear reservoirs
is of the form indieated by cquation 16b. Daooge (10) has shown that the
cumulative outBows measured by Amoracho and Orleb (2) for pulse inputs to
a laboratory catehment (which was nonlinenr in behavior) ean be plotted as &
single line when a characteristic time based on the intensity of inflow is used




LINEAR "THEQRY OF HYDROLOGIC SYSTEMY 243

for dimensionless plotting, In the same paper, Dooge showed that the wide
variations in the unit hydrographs derived by Minshall (47} can be enor-
mously reduced by the snme type of plotting.

A comparison of equations 8 and 9 with equation 16b indieates that the
Horton-Izzard model belongs to the elass of uniformly nonlinear models with
K, ns the characteristie time, Similarly, & comparison ol equations 12 and 13
with equation 16 indicates that the kinematie modet also belongs to this class
with the # as the characteristic time, As slready pointed out, the Hortoun-
lzzard solution represents the speeisl ease of one nonlinear reservoir. The
bemalic wave sotution for the linear ense, can be approximated by o eascade
af linear reservoirs in which the producet of the numboer of reservoirs and the
individual storage delay time remains finite as the number of reservoirs tends
to inlinity, From these considerations, it is plausible to suggest that it might
be pessible to simulate satisfnetorily the hydrographs generated by Wouolhiser
and Liggett - which are intermediate between the kinematie solution and the
Tlorton-lzzard solution by a vascade econsisting of & finite number of cqual
nonlinear stovage clemoents,

Unsteady Flow in Open Channels

The problem of predicting the disehurge hydrograph at a downstream point
on the basts of the hydeaudie properties of the channel and a known discharge
at an upstrean point is a clussical problem in hydrology. The various methods
propused for its soluticn ean be reviewed in the recent biblography by
Yevievieh (441, The equation of continaity for unsteady flow in open channels
withaut lateral inflow is given by

ag  ad
_J +— =

) 17
tr M [ (178)

where @ is [he discharge and A the area of flow, The above is the form in
whirh the continuity equation at & seetion is written in open channel hy-
draulics. Hydrologists more frequently write the continuity equatien in the
lumped form olitained by integeating cquation 17a over a channel reach, thus
obtaining the hydrologie vquation:

I—0= il (17b)

dt

where I ix the inflow to the reach; 2, the outflow {rom the reach; and S, the
starage in the renel at o given time. In open channel hydraulics, the dyaamic
pquafion is written as:

] it 1 du
By, ui z+ SIS (150)

dr ga—.r Tt

The carrespunding cquation in hydrology is the equation for the looped
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rating curve:
. O3 di 1 &
Q=(‘A-J13(Hu- J-H"T‘»-~‘----f) (18b)
dr gaxr gaf

where £ is the hydrautic mean sadius and ¢ is the Chezy friction factor, which
may be evaluated from a Friction formula sueh as the Alnnning equation.
Fyuations {Ta and 18a reflect the hydraulio approach to the problem of un-
steady flow In an open channel, while cquations {7h and 18b refleet the
hydrologic approach to the same prohleny These two separale approaches
have developed independently of one another, A systematie appronch to the
probleny, however, enables us (o reconeile the (wo,

Varinus methods have beeo used lor the solution of the hydraulie formula-
tion ol the preblem of routing a food down an open channel, Mathematieal
methods ean be wsed to find solations Tor simplificd versions of cquations
L7 nnel 184,

IF we wish to go beyvond these idealized mathematical formulations, it is
necessary to use numerieal methods. The roeasting of the equadions in terms
of characteristic variables facilitates sueh numerical solution, Kven hefore the
advent of high-speed digital computers, numerical solulions were obtained in
this way, The advent of the computer, howover, has groatly faellitnted the
runerical solution of the problemy, The method of characteristios is still used
in some numerienl approaches to the problem; in others, cither an explieit or
an implicil finite difference sehome using u rectangular network is used, In
explicit sehemes, serious problems of stability may arise, whereas in implieit
schemwes the storage capacity required to solve the resulting simultancous
euations is o limiting factor,

In the hydrologic approach te the solution of the reuting problem, the con-
tinuily rquation 17b is retained and the dynamic equation 18h replaced by
soe simplifying relation. The methods most commuotily used in applied
hydrology for floud routing are the Muskingum method of AeCarthy,! the
g and route method of Mever 1467, the diffusion anplogy of Hayami (18),
and the sueeessive routing method of Kakinin and Milyukov {30). These are
all linear methids, and thus, i practice, the channel reach is assumed to be
linear with constant parameter values or else is linearized and a relntionship
found between the parameter values and the level of cithor miflow ar outflow,

Sinee we are interested in 2 solution at ene particular downstrenm location,
we do not aeed te know conditions at all intermediate poitits, A syvsioms
approach would therefore seem to be more appropriate than a complete

e —— e e

PMeCantiy, G T, THE UNIT IVDROGRAPH AND FLOOD ROUTING. Unpublished paper
presented at the Conference of North Atlantie Div,, T7.8, Curps of Engineers, Providenee,
R.Lo 1049,
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numerical solution, which generates unwanted solutions at intermediante
points. However, our present systems techuniques in hydrology are such that if
we wish to use 8 systems approach we must confine ourselves to the linenrized
version of the problem. Recent studies have been made involving the complate
lincarized solution to the cquations of rontinuity and momentum for two-
dimensional flow in a uniform chanunel, (71, 76). This approach, in fact,
applies to the food routing problem the xame assumptions that are made in
unit hydrograph theory Tor the more complex problem of eatchmant response.
It is remarkable that in the past 25 years, during which the unit hydragraph
approach has been widely used, no corresponding attempt has been made to
trent a channed as a linear system.

Ll we confine ourselves to the ease of o semi-infinite uniform wide rectangular
ehnanel, without Tnternl inflow, for whicl the friction effect can be represented
by the Chezy formuln, we can write equations 17a and 18a as:

dg . oy

FraT (a9

ay wadn 1au 9
qy wdu lau o 9F 20
ax ga.r+g8t T 20)

“The houndary conditions to be satisfied are the initial conditions determined
by an initial uniform flow throughout the length of the channel and an up-
stream boundary condition determined by the inflow hydrograph st the
upstream end. Though the equation of continuity {equation 19) is linear in
g and y, the dynamie equation {equation 20) Is highly nonlinear.

If we consider o small perturbation nbout the steady discharge go, then we
can write the [pllowing equation for the perturbation of discharge (q) from
this relerence value qo:

&g ¥q q

&y a an
gy Loy T 3.8, L 1298, - 21
(o) a0 g = 050 g 2050, 1)

it which the coeflicients have been frozen at the values corresponding to the
reference discharge {go). The above linearization was proposed by Deymie
{7} who also derived the solution given in equation 20. The work of Deymie
and of Masse (48) published in 1938 was not followed up, and the lincarization
given in equation 21 and the solution given in equation 29 were developed
independently by Dooge® in 1965.

Strictly speaking, equation 21 is only valid for perturbations small enough
that the variation cocfficients in the nonlinear equation is not sufficient to

tooar, . C. T LINSAR ANALYSIS OF FLOW IN OPEN CHANNELS. Unpublished memo-
mndun, Univ, Col., Gork, Treland. 1865,
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affect the vesult. If we {ollow the unit hydrograph approach and ignove the
fact that large perturbations give rise to nonlinear behavior, we can apply
equation 21 to large perturbations and aceept the solution of this lincarized
equation as an approximation to the solution of the original nonlinear problem.
How good an approximation it will be can only be determined for a given ¢ase
by comparing this complete lincar solution with the complete nonlinear
solution, The fact that Huear routing methods have been used in applied
hydrology would indicate that the cffeet of linearization eannot be so cafug-
trophic as to make finear methods worthiess. The complete solution of the
linearized hydraulic cquation 21 has the advantage that it ean be used as o
standard against which to measure the simple linear models used in applied
hydrology. Indeed, the Iatter can be eonsidered as attempts to simulate the
complete Huear solution,

Since equation 21 is linear, it is only neeessary to determine the solution for
a delta funetion input. For any other inflow, it is only neeessary to convolute
the impulse response with the actual inflow. For convenienco, the Impulse
response of a channel obtained from equation 21 will be veferred to as the
luear ehanuel response {LOR).

IF the oviginal independent variables (z,8) are replaced by the characteristic
divections {m and ) and the dependent variable (g) is replaced by a new
transformed depondent variable (2), the equation eau be writfen in the more
compuaet form:

& 0 (222)
aman o “5
where

g=2z-0oxp{—rft+sr) {221>)
m=f—t (22¢)

0
n=1—= (224)

. Ca

where oy and ¢ are the characteristic wave velocitios and 7 and s are parameters
defined in terms of the channel parameters (11). Though equation 22a is more
compact i form than equation 21, it is no casier to solve since the simpler
form of the equation is counterbalaneed by the fact that the boundary condi-
tions are not as convenient when expressed in terms of m and » as they are
when expressed in terms of z and £,

Any ol the standard mathematieal techniques ean be used for the solution
of either form of the equation, but it is probably more convenient in each ease
to use Laplace transform methods. When this is done in terms of z and L,
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the Laplace transform of the impulse response or LCR is Tound to be' as
follows:

His) =expl — e~/ at+bsFofers4-fr] (23)

where a, b, ¢, ¢, and fare parameters depending on the hydraulic charaeteristies
ol the ehannel,

Ninee the Laplace transform of the LOR is of exponential [orm, the cumu-
fants can he determined by repeated dilferentiation of the quantity inside the
square hrackets in equation 23 and evaluated at s=0. "This process is com-
plicated by the continunl oeeurrence of indeterminate forms which have to be
pvaluated by L'Hopital's Rule. When this is done sud the values ol the
parameters @, b, ¢, o, and f ave substituted, it is possible to write the cumulants
us Tollows;

N (240)

1.3
r\
L 9.
) (lihm) (24b)
; e i kg .
) (SD,]‘ (2'-]1(.)

. A 11 34\
=0 =3 ( ) ( :I_fu_) ( T ) (24d)
. Nor 1.5

The result Tor the lag given hy eauation 24a indicates that for the linearized
solution, the avernge rate of propagation of the flood wave is 1.5 times the
veloeity carresponding to the reference discharge. This corresponds to the
value indicated by the Kleitz-Seddon Law 132, 55} for the celerity of a flood
wave in o wide veetangular channel with Cheay friction:

(25)

The higher enmulants can be made dimensionless by dividing by the appro-
priate power of the lag.

It ean be readily seen from equation 24 that the resulting dimensionless
cumulants or shape facters are funetions of the Froude Number and the

IDoGE, J. U 1, LINEAR THEQRY OF QPEN CHANNEL FLDOW! IFCOMPLETE LINEAR SOLUTION
oF MoUTING PRounEM.  Pnpublished memorandum, Univ. Col., Cork, Treland.  1967.
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dimensionless length parameter ¢ Sor- g1 of the following form:

th‘:qu[F} [[))l-ﬂ' for R=2, 3 (2{){1}
where

.n‘; vy

D {260

e
Consequently, even if we were unable to inverd the transformed function given
by equation 23, it would still he possible to deteemine the eumulants of the
sulution and to plot the solution for any given value of # on o shape factor
dingram,
The inversion of equation 23 gives a solution in the original {x,¢) eoordinates
consisting of {wo torms:

Qurdy=q g (27}

where g represents the head of the wave and 32, the body of the wave, The
term represeating the head of the wave is of the following fornu:

I
m=34 (t—~--) expi — pxd (28a)
Cy
where
2—F Ny

H:F-}-Fﬁ-Qyu

(28b)
It can be seen that the head of the wave moves downstroam at the dynamie

wave speed ey in the form of a delta function of exponentialy deelining volume.
The body of the wave has the form:

, Ii[2ha
fa==hh (i-.——l ) expy —ri-Fsrd i[-—z-a—]- r (t—{) (29a)
& Ca a &1

where
I[2ha3=modificd Bossel function {29h)

== ;l(t-—-gl) (t—-z) {29¢)

{’[t]=unit step function (29d}

and

orand ez are the dynamic wave velocities, and 7, & and A are parameters
depending on the hydraulie properties of the channel {(11).

The shape of the body of the wave for F=0.5 and various values of the
dimensioniess length factor D are shown on figure 9-6. For short lengths, the
impulse response declines monotonically; for intermediate lengths, the impulsc
response is a unimodal curve with an appreeiable initial ordinate. For long
rhannels, the unimodal shape of response vises from an initial ordinate which
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is practically zero and declines again to zero. For other values of the Froude
number (F), the same three shapes are obtained, though the values of the
dimensionless length parameters at which a change in shape occurs incresses
with the Froude number.

Tigure 96 is plotted in dimensionless terms—gle/ ¥ versus £/fg—and henee,
gives the crroneous impression that the peal is increasing as the flood wove
moves downstream:. This is due to the fact that the time of travel in a reach
(fa) increases with distanee. The variation of the downstream discharge with
length of channel is shown in real terms on figure 87, This shows the result of

SHORT CHANNEL
B=1.0

Q[‘\
1 T —— §
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T T T
INTERMEDIATE CHANNEL
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Y & " 1
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I
T T | l
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: I L]
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|
| 2 3 )

I
4
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Firaone 9-6.—8hape of impulse response.
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computations for a channel with the steady state rating curve:

Qo= 503}03"3 (30)
and for an inflow given by:

4
I{f)=125—75 cos (Z—g) 0<L<96 (313

which corresponds to the inflow used by Thomas (57} in his classical paper
on unsteady flow in open channels. The figure shows the modification of the
flood wave for distances up to 500 miles {805 km.),

For any linearization of the routing problem, it is nccessary to choose a
value of the reference discharge (go) sbout which the discharge 18 perturbed.
Since this value of g is used to evaluate Yo from equation 30 and henee w and
the coeficients in equation 21, it will naturally affect the result, The effect of
the choice of reference discharge on the outflow at 50 miles (80.5 km.) for an
mflow given by equation 31 is shown on figure 9-8,

The inflow varies from 30 eubic fect per second per foot (4.65 m*/sec./m.)
width to 200 c.ls. per foot (18.6 m? sec. 'm.) width and the reference dis
charge is taken at values of 50 (4.65 md), 100 (9.3 m?), 150 (13.9 m?) and
200 (18.6 m®) c.fs. per foot width, It can be seen from fiure 9-8 that for
the smaller values of the reference discharge, the flood wave is displaced in
time and oceurs later as would be experted from equation 24a. It is interesting

200—~—1—
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Froure 8-7.—Variation of outflow with distance.
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Figong 9-8.—Effect of reference discharge.

to note, however, that the shape of the fiood wave for the various reference
discharges is very similar

For & channet whose rating curve is given by equation 30, that is, one with
Chezy friction, the Froude number is independent of the depth of flow and
hence, the value of the second eumulant given by equation 24b is independent
of the referenee discharge. Since the second cumulant of the cutfiow is equal
to the second cumutant of the inflow plus the second cumulant of the LCR,
the second cumulant of the outflow will, for o case of Chezy friction, be
independent of the reference discharge chosen. The reference discharge will
affect the third and feurth cumulants, but these may be small compared to
the third and feurth cumulants of the inflow. In any ease, the third and fourth
cumulants do not have as marked an effect on the shape as the first and second
ewnulants,

Having abtained the complete linear soiution of the hydraulic equations,
it is now possible to comparr *he various special lincar hydrologic solutions
with it and determine the acow cacy with which they can simulate the complete
solution and the range within which they apply. This was done by the methed
of moment maiching, whick is most convenient in this connection. The
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results were checked by the method of least squares. Nine linear models were
studied and may be grouped as shown boluw:

(ne-parameter models:
dynamic wave equation
kinematic wnve eqiation

Two-parameter models:
diffusion analogy
Muskingum methd
L and route method
[Kadinin-Milyukov method

Three-parameter inndels;
diffusion plue lag
nutttiple Muskingum method
three-parameler gnmma distribution.

OF most interest are the (wo-parameter maodels which have been used as
practical channel routing methads in applied hydrology.

The vomplete linear solufion is a three-parameter system. 17 exprossedd in
dimensicaless Toem, the dimensionloss diseharge ean be formulated as n fune-
tion of a dimensionless time parameter, a dimensionless length parameter,
and the Froude number, Tt may appear pointless to attempt to simulate the
three-parameter complele linear solution by another three-parameter system
whieh, at bost, will be an approximation to it, However, the complete linear
solution is eomplex in form and relatively difficult to compute; if it ean be
approximated with o sufficient degree of accurney by another three-parameter
syslem which is easicr to comprehend and easier to compute, then the simula-
tion may be more convenient than the use of the original mathomatical
zolution,

A one-parnmeter simulation will plot as single point on o shape factor dia-
gram, Henee, it ean hardly be expeeted to simulate a three-parnmeter svstem
which plots as a family of lines. Nevertholess, its ability to simulate fload
routing may be tested by eomparing the first moment of the one-parameter
madel with the first moment of the complote linear solution given by equation
g, If the two terms on the right-hand side of equation 20 are neglected. that
is, the difference between hed slope and frietion slope is assumed to be negligible
comparcd to the other terms, then we obtain the classieal linear wave solution.
Fora delta Tunetion input at the upstream end, this solution is a delta finection
traveling down the channel at a velocity equal to the dyvoamie wave speed
tey=ta+ . gied. The problem is only praperly pesed for Froude numbers less
than one. For such enses, the dynamiec wave speed is greater than 1.5 we, which
is the average speed of translation as given by equation 24a.

Alternatively, if all the terms on the left-hand side of equation 20—aor,
what is the same thing, the terms on the left-hand side of equation 21—are
negleeted, then we get the linear kinematie wave sotution. This is equivalent
o assuming that the dynamie equation may be used in the simplified form
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approprinte to steady wuniform flow, that ix, that the effec(s due Lo changing
depth and veloeity are negligible compared to the effeets of slope and iriction,
In this ease, the solution is also a translation without distortion, but this time
at the speed L so that ihe linear kinematie wave solution is o one-parameter
made! whivh hos exactly the sume lug as the complete solution.

Muost of the flood routing methods used in applied hydrology are two-
purameter models, U the seeond and third terms o the lefl-hand side of
vquation 21 are expressed i terms of the second derdvative with respeet to
distanee on the basis of the linear kinematie wave solution ¢whieh is a fest
approximation to the salutiony, then the equation beeomes:

( Hng) Py t?t£+2(!ﬁ dg

i | == =38

= 32
4/ axt gr  uy Ol (32)

which s p parabolie equation in contrast o the original equation 21 which
was o hvperbolie equation,

The parabolie selution tor diffusion analogy, or conveetive-diffusion
solutiont ubtained from eguation 32 may be shown to be identieal ta the com-
plete sotution Tor the speeial ease of the Fraude number equal to zero and
may also be shown to have the same first and seeond moments as the complete
solution for any value of F. While it is preferable to think of this solution as a
parabolie approximation tu the complete solution, equation 32 may be con-
sidered 15 0 eonveetive-difflusion equation in which the ©convective velocity”
is griven by

a=1.5ua {33a)

and the “hydravlie diffusivite” s given by:

i {4‘2
L ;
b NG (l ; ) {33h)

Hadraulie diffusivity must not be taken to mean that the physical process
wvolved is one of diffusion, For the parabolie solution (er diffusion analogy)
the Hoear channel respouse i ghven by

r (x—af)1?
ity = aox anl— (34
N e [ D! ] 34)

The cunnlants e this response enn be determined from the general equation
for the % comulant which ix;

QD =1 o 7 .
ba= 11111313} 2R —-3} (——) C) {33)
T

ar

Substitution of the value @ from equation 33a and the value of D from
equation 33b i equation 35 gives expressions for the eumulants in terms com-
pirable to those used in eguation 24 o page 373, When this is done, it is seen




2510 TECHNICAL BULLETIN NO. 1S, U8, DEPT. OF AGRICCLTURE

that the eumulants given by equation 33 are the same as those indiented by
vguation 24 fur the speeind ease of F=0.

The other speeial models used in applied bydrology ean also be compared
to the cumplete Binear solution. The Muskingum moethod of flood routing is
Lised on the assumption that in g reach:

S=KTXI+1-X10)] 136a)
which ean be combined with the continuity equation to give:
i) {f

O+ RNi1=X1 =l KX 136h
ol it

The Hoear system represented by the sbove equation ean be shown (o have
the impulse response:

wpl— Gl=N ] X
hets < "0 [’___‘Em._WF_A,J_(l \\-;)aqm (375

Kil—-X)

The delta funetion teem in equation 37 tndientes the possibility of the
peeurrenee of negative ardinates in the autfow unless the inflow is sueh s to
enable the confribution of the first term (o the convaluled outflow (o counlor
act the effeet of the seeomd teem, The eumulants of the Muskingum solution
ennt e shown to bes

{380)
=] 2N AR (38h)
Fam 1 =2 1= BX L3N A {38¢}
Bv= =30 =6 ] — 4 XX 2— L YY) A (383

The parameters of the Muskingum model ean be optimized by equating the
first and second cumulants given above to the Grst and second cumulants of
the compicte linear solution. This results in the values:

{30a)

FN 7w
D@

I a uniform channel, we ean determine the optimum values of the param-
vters for the Muskingum method by using equation 39 provided we know the
optimum veference diseharge and the properties of the channel. For non-
uniform channels, the first and seeond moments of the impulse response can
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e got by subtracting the moments of the inflow from the corresponding
momenis of the outflow: the value of K is equal to the Grst moment and Y
et be oblained from equalion 38b onee A s known. This would seem fo be n
mare abjective procedure than the attempt to toansform o looped storage
curve fo p stealght line by taking teind values of X It will be noted from
equation 30b that for cerlain short distanees the value of X will be negative,
Frum the peint of view of classical hydrology which views X as g mensure of
the amount of wedge storage present, this appears physieslly unreasonable.
From the point of vies of mathematieal matehing, the negative value of X
% the correet value to use,

The lng nnd route method (48 assumes that the storage ot sy time may
be tnken as proportionnd (o the outflow whick oceurs after the elapse of n time
g vy 2o that we can write:

St = RO {402}

which ean be cambined with the continuity equation to give:
.4
i+ K- i Ovidb-ry=Tur
¢

This muotel has the system responso:

{<r: hihy=0 {4la}

i
{>r: ki(ln—nkt‘xp[w( {41b)

The cuamulants of the lag and route model may be readily derived cither
from tix Laplace translorm or by taking moments about the origin and using
them {o find the cumulants. The values are:

B=1:  k=K+r (420)
B>1:  hke=(R—1)IKR (42h)

The values of K and ¢ which are optimal in the moment matcehing sense ean
be ubtained by equating the fiest {wo moments of the response to the first
two mements for the complete linear solution. This results in the values:

. x f@2 Ny )J
=i 1= ki .
R 1.5ug [3( 4)(351 (430)
x 2 F? o
T c Y e 43
"7 Lsu [1 3 (l 4)(%:)] (430)

Asin the Muskingum model, one of the parameters may take on “unrealistic”
values, This may happen sinee the value 7 given by equation 43b mny be
negative for short lengths of channel. Again it must be emphasized that this
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unrenlistic parameter value gives the best fit according to the chosen critoria
and should be used if closeness of prediction is required, The element of
unreality lies in the chaice of this particular model for short ehaanel lengths
find the assuraption that the erude bydeologic rensoning on which it is based
will result in the optimum parameters performing the same funetion as they
do in the erude madol,

‘The use of suecessive routing through a eharncteristic reaeh was praposed
by Kalinin and Milyukov 1301 in (957, This is the same model as the caseade
model used to represent the unit bydrograph, It was propased lor channel
routing by Kalindn and Milyukov on the basis of a linearization of the wn-
steady Bow equation, The impulse response funetion of the model s given by

the gimma distribution:
ne R ’) (44)
hdl= - —.exp{ — '
keTint OF k o

whose cumulants are given by:
Kp=npt B—1VIR® (43}

As has been pointed out in dealing with conceptual models of the unit
hvdengraph, though the eonceptual model is based on the idea of & easeade i
which the value n would be integral, nonintegral values of 1 may be used to
fit the mndel o pratotype data, The Ralinin-Milyukoy model, like the other
models diseussed in this section, ean be used as a linearized model, The
parnmeters though taken as constant for a given flood event, or part of &
given flood event, ean be varied with the intensity of inflow to allow for
nonlinear efeets.

By matehing the first and seeond moments given by equation 43 to the fiest
and seeond moments of the somplete Hoear solution, the fellowing eptimal
values lor the parameters K and n are obtained.

' Ho
Y N 6a
4 ) (b‘ono> (462)
) Su.l‘
(2R () 00)

The parameter K ix the time-constant for a single linear reservoir of the
easeade. I the average rate of travel of the food wave (which is 1.81) is
wsed to eonvert this eharacteristic time to a characteristic tength we obtain:

2 ~ yg) ( e o
L=_(1—= ) (")=(1-2). 2 ___ 46
3 ( +4 ) (.‘qu 4 > Ko f Ao’ i) (46c)
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which is identical with the formuls for the characteristic lenygth proposed by
Kalinin and Milvukov {30 except for the factar (1 —F2/4).

The shape Iactor diageam s sy for the complote linear solution and the
elassienl fload routing methods is shown on figure 9-9. The eomplete solution
plots ag a family of parnbolas, and the diffusion analogy cotncides with the
curve for £ =0, From equalion 26, it ean be seen that the higher the dimension-
less lengih (23, the lower will be the value of s and the other shape factors
and viee vorsa, Thus, we ean deduee from figure 98 that for short lengths
(high s, the various two-parameter models other than the diffusion analogy
would appear te be ubout equal in their ability to simulate the complete
linear solution. 1for Jong lengths (small 823, however, the Muskingum methad
it soen Lo have o value of & approaching 0.3, whereas the complete linear
solttion (fur all Froude numbers) and the otlier maodels all have values of s
approaching zero, We would deduee from this divergenee that lor long
lengths of channel, the Muskingum method would not simulate the outfiow
hydrogeaph as well as the other methods, That this is so is shown by figure
910, whieh gives the predicted outfow for the complete solution (for go=130
w.Ls or 425 mt per see) and the different maodels Tor the Thomas input
defined by equation 31 and a channel length of 500 miles (805 km.}.

The parabalic method and the Kalinin-Milyukev 30} method prediet dis-
charges which are graphically indistinguishable from the complete linear
solution, The lag and route method predicts the travel time Lo a fair degree of
aceurney, but underestimates the degree of attenuation, The AMuskingum
method is seen to predict negative ordinates for the first 60 hours and o peak
discharme which is about 20 pereent tuo high and whose time-to-peak is about
30 pereent ton small. It can be verified that for the short channel lengths the
Muskingum method performs as satisfactorily as the other methaods. The
compleie Nuilure of the Muskingum methad for the ease shown on figure 9-10
is due to the faet that the time-to-peak of the resulting hydrograph is greater
than the time of inflow, whereas the Muskingum outflow must decline as soon
ax inflow stops. As & rule of thumb, this suggests that the Mugkingum method
will fail 3 the Ing of the channel reach is greater than about half the duration
af infiow,

The ability of the three-parameter models to simulate the complete linear
solution eun be stmilarly anabvzed * As wight be expected, the three-parameter
models are better able to simulate the three-parameter complete solution.
Figure #- 11 shows a plotting on & s— s shape factor dingram of the complete
linsear solution for & Froude number of 0.5 and the lines for each of the three-
parameter madels for the same Frowde number. The closeness of the lines on

THamekr. B M. LLstAR THEORY OF FLOOD #01TiNG. AL Bngin, Sel, Thesis. Natl
T uiv. Ireland, 1947,
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the shape factor diagram suggests that the actual hydrographs would be very
stmilar. In fact, it is not possible to distinguish the solutions when plotted in
hydrograph form at an ordinary seale.

The manner of variation of the three parameters in each of the models—
which result from the matching of the first three moments to the first three
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Fiovue 9-10.—Simulation by two-prrameter models.

moments of the complete linear solution—shows some interesting features. In
the case of the diffusion plus lag model, a change in the length of channel
considercd does not result in any change in the value of the convective velocity
() or the “hydraulic diffusivity” (D}, but the third parameter, the lag (7),
varies in order to maintain the optimum solution and is directly proportional
to the length of channgl. In the case of the three-parameter gamma model, the
reservoir Ing time K remains constant as in the two-parameter Kalinin-
Milyukov model, but both the number of reaches {(n) and the lag of the linear
channel (#) vary directly with the length to maintsin similarity with the
complete Hnear solution. In the case of the multiple Muskingum model, the
values of K and X are independent of the reach length and the complete linear
solution is matebed by using a number of Muskingum reaches which is propor-
tional to the length, The conclusions given above are developed on the basis of
long reaches of channel and might not hold for short reaches.

The general approach described above can alse be applied to a channel with
latersl inflow.’ Treatment of this case is outside the scope of these lectures. It
muay be said, however, that the derivation of the complete linear solution in
lateral inflow is more complex than the one given above. It should be noted
that the linear response obtained is in fact the IUH for a uniform channel.

s0O’MEARs, W. LINBAR ROUTING OF LATERAL INFLOW IN UNIFORM OPEN CHANNELS,
M. Bugin, Sci. Thesis, Dept. Giv, Engin., Unlv. Coll., Cork, Ireland. 1968.
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It is interesting to note that one of the models which is most suceessful in
simulating the complete solution, particularly for Froude numbers approaching
1, is the model consisting of a rectangle routed through a linear storage
clement. In fact, this model is the Zoch-Clark model of routing the time-area-
conecentration eurve through a linear reserveir.

3.6 T 1 1 T T T T T I T ) T
I
34+ Complete (LCR) X !‘f / i
Lagged Diffusion —x— i -
3.2~ 3-Parameter Gamma — —— }’t I
Muskingum —— S ! / |

- {Multiple Raach)

Frgyne $-11.—Shape factor diagram for three-parameter model (F=0.5).
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Problems on Surface Flow

1. Caleulate the steady state profile for overland flow from a plane 80 fect
long at a slope of 1 in a 1,000 with Chezy coefficient of 100 ££.'#/sce. and a
laterat inflow of 0.001 feet per second. Draw bath the profile and the veloeity
distribution along the length of the plane. How would the result be affected
by the negleet of it various terms in the basie dynamie equation?

2. Compare the Horton-Tzzard solution and the kinematic wave solution.
What is thie relationship between the time to equilibrium in the two methnds?

3. Compare the various meihods proposed for the numericeal solution of
the equation for unsteady overland flow. Based on the different methods,
what difficulties in computation would you expoet?

4. Determine the rising hydrograph and the falling hydrograph by the
Horton-Izzard method for the datn given in Appendix table 12.

§. Determine the rising hydrograph and the recession hydrograph lor the
kinematic wave solution for data in Appendix table 12

6. Determine the rising hydrograph and the recession hydrograph by a
method of numerical computation for the data in Appendix table 12.

7. Tit a Horton-Tzzard type solution to the data for the data in Appendix
table 13.

8. Fit o kinematic wave solution to the data in Appendix table 13.

9. A wide rectangular channel has a bottom slope, Se, of 3 feet per mile
{0.57 m. per km), a leugth of 200 wiles (322 km.), and Chezy friction with a
¢ of 50. Find the discharge hydrograph at the downstream end, using the
method of characteristies if the inflow per unit width is given by function 5 of
Appendix table 1.

10. Use a finite differenee scheme, either implieit or explicit, to solve
problem 1.

11. Discuss the question ol the stability of the solutions cbtained by finite
difference methods for unsteady flow in open channels.

12. Find the linear channel response of the given ehannel for this particular
flood cvent from the given inflow and from the outflow computed in either
problem t or problem 2. :

13. Find the linear channel response for the data of inflow and outflow
given i Appendix table 10,

14, Derive the form of the linear channel response for the following classical
methods of Aood routing: lag and route, Aluskingum method, Kalinin-
Ailyukov method.

15. What basic physical assumptions are made for the three classical
methods of flood routing mentioned in problem 6.

16. For the inflow and outflow hydrographs given in Appendix table 10,
find the best value of the lag and the routing coefficient to handle this flood
rvent by the lag and route method. Draw the linear channel response for
these parameter values,
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17. For the inflow and outfow hydrographs given by Appendix table 19,
find the values of K and X for handling this fiood eveut by the Muskingum
mothod, Draw the lincar channel response for these particular values.

18. For the inflow and sutfliow hydrograph given in Appendix table 10,
find the vahie of n and & to handle this flood event by the Kalinin-Alilvukov
method. Denw the linear channel response for these parameter values.

18, Derive the expressions for the cunralants of the complete Hnear solution
given in equation 24, page 000.

20. It has been suggested that apart from the offcet on fng, o change in the
reference discharge produces only a very small change in the shape of the
outflow hydrograph. Would vou expect this change in shape to he greater
where the inflow is 2 gamma distribution or where the inflow ix & cosine curve?

21, What other maodels, besides those mentioned in the leeture, might be
usedt to simulate the near ehannel response? Indieate o one-parameter modol,
& two-parameter moded, and a three-parumeter model which might have been
used. Caleulate the cumulants of these models.

22, In this lecture, the moments and cumulants have heen used as a
eriterion of matehing, Diseuss the significance of this criterion, and indieate
what other eriteria might have been used and what difference this would have
made to the computations,

23. Using funetion 5 on Appendix table 1 as the inflow, compute the outflow
hydrograph in a wide rectangular channel for different values of S, €, and L.

24. For the corresponding inflow and channel che,acteristies used in
problem 23, compute the parameters of a two-pargmeter simulation maodel and
generate the simulated hydrograph,

25. For the inflow pattern in the ehannel of problem 23, compufe the
patameters of a three-parametoer simulation model and compute the stmulnted
hydrograph.

26. From a scrics of results of problems 23, 24, and 25, draw up rough work-
ing rules for the circumstances under which cach of the maodels are valid.
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LECTURE 190:
CONCEPTUAL MODELS OF SUBSURFACE FLOW

Lecture § denlt with mathematieal simulation and conceptual models for
flow processes that constitute parct of the diveet eatehment response to inflow.,
It was concerned, therefore, with the simulation of processes contributing
to the formation of the unit hvdrograph, whiel is required either as the direet
storm regponse or as part of the simulation of the total catehment response.
The remaining {wo subsystems shown on figure 7-6 are the soil-water respense
system and the growd water response system,

The treatment of these two phases of subsurface fiow is similar to that for
overinnd flow and ehannel fow in the lasé fecture. In each ease, the basie
eguations derived Tram the physies of unsaturated and saturated flow in
porows medin will be given, together with an account of the more important
solutions based oo stmplified versions of the fundamentsl equations, A bricf
deseription will then be given of how conceptual models may be used to
simutlate these portions of the hydrologie eyele. It has been mentioned pre-
viously that the soil phase is the subsystem of the hydrologic eyele in which
the least systems work has been dane. Ouly In reeent yvears has any work of
this type been done in regard to ground water flow. Congequently, the present
loeture will be largely concorned with & review of the thearetical and empirical
relationships which have been proposed and which are necessary as o back-
ground to the tackling of the problem [rom a systems viewpoint.

Movement of Soil Moisture

In considering the seil phase of the hydrologic eyele, we are concerned with
the rate nnd amount of infilteation into the soil through surface entry, the
rate and amuunt of downward perecolation from the surface to the water
table, the amount of soil moisture keld in storage, and the rate and amount of
depletion of soil moisture storage either by evaporation at the surface of the
soil or by transpiration through plants. Infiltration is probably the most
important of these processes sinee it controls the extent to which total pre-
cipitation beeomes effective as an input to the system representing the rapid
response of the eatchment. Physical information on infiltration is available
from laboratory experiments, Aeld results in infiltrometers, analysis of recorded
hydrographs, nud the computation of watershed indicators of equivalent
rates of infiltration,

Any theory of infiltration must be grounded on the principles of soil physics
{1, 5. The water in unsaturated soil is held against gravity mainly by the
action of soil suction, The curve showing the relationship between soil suction
and soil water content is referred to as the moisture characteristic eurve for
that particular soil. The soil moisture eharacteristic curve exhibits a hysteresis

267
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effect for any given history of alternative wetting and drying. The moisture
charneteristic curves in such eases ean span the area befween two limiting
curves, one for drying and the other for wotting.

IFwe ignore the effeet of temperature and vsmotie pressure, the movemont
of water will take place under the aetion of a potential difference in aceordanes
with n peneralization of Darey's Law:

= — K prade (1}

where 1718 the rate of flow por unit area, A is the rdraulic conduetivity of
the soil (which is dependent on moisture contentd, and ¢ is the hvedeaulic
head or potentisl. The potential is made up of pressure head and elevation:

}

qb:‘[ +z (211)
"

= e S-'I'".'.' {2[.)]
whore
. . - -
N= —" i the soil suction {2c)
Y

and z i the elevation above a fixed datum,

In considering infiltration, pereslation, and cvaporation, we are largely
concerned with flow in a vertieal direction. For vertieal flow, equation 1
hecomes:

1'==K g {85-42) (32}
dz
or
)
F'=I\'a—-——K {3b)
dz

U the soil suction (8) is assumed to be a single-valued funetion of the moisture
content (e}, thew we ean define the hydraulie diffusivity of the soil as:

38
D=—K a3 (4a)
dc
and write equation 3 as:
d
VDK (4b)

which is the one-dimensional diffusion form of Darey’s Law. QOver o given
range of moisture content, the variation in D will be less than the variation
in K.

For unsteady flow in an unssturated soil in a vertical direction, wo have the
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equation of continuity:

al’ 36_
oz Bl

where 17 1s the vate of flow per unit arca and ¢ is the moisture content expressed
as a proportion of total volume., Combination of equations 1 and 3 gives us:

i} d dc

~ K —]=-- Bz

9z ( 62) at (62)
or using equation 2 we get:

& _ a8 4K  oe
—_ | — e —=--
oz iz dz Al

4 : A9
P (D 5;>+ (6¢)

For tafiltretion into 2 very dry soit {or upward movement from the ground
water to & dry soil surfaee), the gradient of the soll suction will be very much
larger than the difference in elevation. Consequently, the last term (K7 on the
right-hand side of eguations 3b and 4b can be neglected compared with the
other two terms; similarly, the second terms on the left-hand side of equations
Gb and e ean be neglected. Omission of these terms corresponds to the assump-
tion that the effect of gravity on water movement is negligible compared to
the effeet of the geadient of soil moisture suetion.

Fquation § is & nonhvear parabolie cquation since hydraulic conductivity
{KY and the hydraulic diffusivity (D) are functions of the moisture content
(¢}, Equation e has the same mathematical form as the concentration-
dopendent diffusion equation in mathematicnl physics and is the most con-
venient form for theoretical analysis.

A number of authors have suggested empirical relationships between the
unsaturated permesbility (K} or the hydraulic diffusivity (D) on the one
hand, and the moisture conbent (¢} or the sotl suction (S) on the other. These
can be used in the place of purely empirical moisture eharacteristic curves fo
predict water profiles and water movement; they could slso be used as the
basis for conceptual models of the movement of moisture in the unsaturated
zone. Bear, Zaslavsky, and Irmay (1} suzgested that unsatursted permea-
bility can be related to saturated permeability by the cquation:

K c—ng \° -
Kunt (n— no) @

where ¢ is the moisture eontent, # is the total poresity, and ne is the incffective

and with equation 4b we get:
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or drredueible porosity. Gardnor 13+ suggestod expressing unsaturated
prroreability as a funetivn of woil maisture suetion by an vquation of the form:

i
K= "o i8n)
f--Nm
which can be written as:
K i
t8h)

Kot bSm

where Kis the unsaturated peemeabiiity, 8 is the soil moisture suetion, mis a
parameter whirh has g value of approsimately 2 for heavy soils wndd approxi-
mately 4 for sands, aie o and b are empirieal parameters, Ciardner ajso used
ant exponential relationship  between  unsaturated permeability  and  suil
suetion:

K

ST=expf —aNy {8e)
Raat

Some sperial ensex of (he relgtionship given in equation 8a had been sup-
gested previously by Wind 5 and by Remsan and Fox (36, Gardner and
Mayvhugh 270 have suggested the following relationship for the hydrautic
diffusivity .

Iy

—=explaie—b1] (9)
U

where Dy is the value of the hydraulie diffusivity for the moisture conteat
e =band ¢ and bare exporimental parameters.

Under steady state vonditions with no loss or gain of moisture to the
atmosphers. the soil muisture profile will be in equilibrium. The moisture in
the unsaturaterd zone is held above the water table against the pull of gravity
by the soil suetions the curvature of the interface between soil air and soil
water allows the oil water to be at a pressure loss than atmosphoeric,

Tna steady pereslation rate 1) fram the surface to the water table, we have:

K[1-2) o
g= —_ 8
(=4 dz
ar in terms of the hydrauliec diffusivity;

de
g=K+D > (10)

The level sbove the water table at which o pacticular moisture content oecurs
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can be determined from;:

(1in}

{11

Ia o multilayered soil, the integration can be carried out separalely in
oach layer:

K,
2= Ef o ds (12a)
Sy F

v YL

z= E[ -Ide (12b)

Com} q j\

Sinee it is the soil suetion that & continuous seross the boundary bebween
teyvers, there will be diseontinuities at the boundaries if the computation is
done in terms of moisture content,

The steady upward movement of water from below the waler fable to
provide a steady rate of evaporation (21, gives rise to a similar formulg, exeept
that in thisz case we have:

as
(’=I\( -—-l) {132)
dz

(13b)

and the solution is given by

ﬁ=f ——-dS (14a)
K=

g

z= / }‘:‘:é'd{‘ (léb)

If the water table w very elose to the surface, there will only be o small
drying of the surlace, and evaporation can gecar at the potential rate. In the
ense of a deep waler table, however, the gradient necessary to move water up
from below the water table results in a high soil suction at the surface and,
consequentiy, a lower maisture eontent and a lower unsaturated permeability.
By using an empirical relationship between & and 8, i is possible to integrate
equation 4 and so predict the soll profile for capilary rise (36, 37). A stmilar
ealeulation could be used to cstimate transpiration by using a constant suction
at a given elevation fo sinudate root action.
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For the conditions of deep water table and high evaporation rate, it ean be
shown that there is a limiting rate of evaporation which depends on the depth
of the ground water and the soll properties (13). Under some conditions, this
coneept of a limiting vate of evaporation, depending not on climatological
data but on soil propertics and conditions, may be of importance for the
modeling of the soil phase of the total catechment response.

(Gurdner has shown that i the unsaturated permeability ean be wssenied to
have the relationship with soll suction given by equation 8r, theu for any
given value of m, the limiting rate of evaporation would be gy by

.?!._i__’“. =t onstant (15)

Kant ERL
where z, is the depth of the water table below the surface. Evesurrdon may
take place at greater than this Hmiting rate, but if it does the = gtor being
supplied from soll moisture storage rather than ground water storage and the
soil moisture distribution is not that of » steady state, Schicusener and Corey
(39 have reported experimental results indieating the existence of 2 maximum
rather than a limiting rate of evaporation from the soil surface and suggest
that this phenomenon can be explained by the offect of hysteresis,

Unsteady Movement of Soil Moisture

In practice, the soil moisture rarely attains an equilibrium proflile. Rather
than having a constant rainfall rate or 2 constant evaporation rate at the
surface for a long poriod, we have alternating precipitation and evaporation
resulting in continunl changes in the moisture profile and the unsteady move-
ment of water either upwards or downwards in the soil. As hydrologisis, we
are largely eoveerned with conditions which occur when & dry soil is wetted
by procipitation at a higher rate than the average or when a wet soil is depleted
af 1ts meisture content by an evaporation rate higher than average. As in the
ease of steady downward pereolation, or steady upward eapiliary rise, the
prablems of upward and downward movoment are essentially similar, and
techuiques which work for one wiil be appropriate for the ather. Due to
fimitations of space, only the infiltration problem will be denlt with in the
present diseussion,

It is important to distinguish betwoen the infiltration capacity of the soil at
&ny particular time and the actual infilteation oceurring st that time, Infltea-
tion capaeity is the maxinium rate at whieh the soil in a given condition can
abstrb water at the surface. If the rate of rainfall or the rate of snowmelt is
less than the infiltration capacity, then the actual infiltration will be less than
the infiltration capacity since the amount of moisture entering the soil eanuot
exceed the amount available. A number of empirieal formulas for infiltration
eapacity have been proposed in the literature. Those by Kostiakov (23),
Harton ¢19), Holtan (171, and Overton 129) are discussed below. The theo-
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retical formulas which are discussed are: the solution of the basic equation
on o constant diffusivity (4), the sclution based for a constant profile (30},
and Philip’s general solution for the ponded infiltration case (31).

The following notation will be used for both empirieal and theorctical
formulas:

Jf= rate of infiltration capacity

fo= initial rate of infiltration capacity

fo= ultimate rate of infiltration capacity

fe= rate of excess infiltration { f—fo)

F = volume of infiltration

F.= ultimate volume of infiltration

#,= volume of potential infiltration (F.— )

F o= volume af exeess infiltration (F—f.D
F o= final volume of exeess infileration \Fo—f- {1
.= volume of potential excess infiltration (F..—F.).

Tn (he ease of formulas for infiltration volume, the corresponding formuln far
infiltration rate can be gotten by difierentiation. In the ease of formulas for
infiltraticn rate, the formula for infiltration volume can be gotten by integea-
tion, All of the above definitions refer to nfiltration eapacity. If it is necessary
to distinguish it, the actual infiltration rate can be designated by fa and the
actual volume of inliltration by Fa.

As mentioned above, attention will be confined to the more important
empirical equations found in the literature, In 1932, Kostiakov (23) praposed
the following fornula for the initial high rate of infiltration:

=y (16)

where fis the rate of infiltration up to the time when the infiltration rate would
be equal to the snturated permeability of the soil. Horton (19) suggested the
foliowing formula fur the rate of infiltration capacity:

f"‘fc=l fo“",{r) (‘Xp(*-kﬂ (1?3)
Je=foe exp(— &) (175)
Holtan 177 suggested that the rate of exeess infiltration in the carly part

of & storm could be related to the volume of potential infiltration (#5,) by an
equation of the form:

J=Je=a(Fp)" (18a)
or

Je=alFm (18b)

Overton 1291 showed that for a value of n=2 in equaticn 18, the rate of
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infiltration could be expressed as & function of time in the following form:

I=fese?[Naf,(t—1) ] (19a)

t‘,=\/&zf}-tan_' (Fc -\/%) (19h)

and is the time taken for the infilteation capacity rate to full to its final
vitlue f..

We turn now from empirical formulas based on the analysis of field observa-
tions to theoretical formulas hased on the prineiples of soil physics. For g
soil whose moisture characteristies and unsaturated permeability {or hydraulic
diffusivity) are known, equation & for the unsteady vertical movement of
meisture in a soil ean be solved by numerical methods (22, 31, 38). We are,
however, more concerned with simplified mathematical formulations of this
particular problem.

One of the simplest models of infiltration into a soil (and the subsequent
downward pereolation of the wetting front) is that ebtained if the hydraulic
diffusivity Is taken as constant {4) and, in addition, cither the hydraulic
conduetivity taken as a constant or the offect of gravit; neglected, In this
case, woe have:

where £ is given by:

e dc
D—=— 20a
Azt gt (20a)
Instead of taking elevation {2) vertically upwards from a datum, we exXpress
our equation it terms of the depth of percolation downward from the surface
(x} so that woe have:

(20b)

For the problem of ponded infiltration into an infinitely deep soil, we have
the boundary conditions:

e=¢&, for t=0,z>0 {20¢)
e=¢, for (>0,2=0 (20d)

where ¢ ts the initial moisturc content of the dry soil and ¢, is the constant
moisture content at the surface (usually, but not necessarily, ¢.). Equation
20b s a lincar parabolic equation of the diffusion type and has a solution of

the general form:

which gives the moisture content. (¢) fora given depth of penetration (z) at s
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given time (1. The depth of penetration for a given moisture content can be
writfen as:

r=080pole) (21h)

The total amount of infiltration up to a given time ¢ is given by

F= f eddet-Ko-l (222)

o

where Ky is the unsaturated permeability corresponding to the initial moisture
content ¢ Substituting equation 21b into equation 22a we obtain:

- f {20 - do- Ko (22)
Thix is clearly seen to give:
F:t”-f dafe) de+ Ryt
(]

whieh allows us to express the infiltration volume () as a function of time,
and of the initial and saturated moisture contents and the initial permeability:

F==gy( e, 6 Ryt (23a)

It ean e shown that ¢ takes the form:

%))
g = \/—f {Coni—t0) (23b)

Eguation 23 is the nfiltration eapacity equation for the simple model of
constant divdusivity and constant permeability, On the basis of the definition
of hydreaulie diffusivity in equation -, this is cquivalent to assuming that soil
suction is related to moisture content by

IS,
S== {to—r) (24)
K

that is, that the soil suction is a linear function of the moisture content. It
should be noted that the two parameters in equation 23a both vary with tmitial
moisture content.

As an alternative to assuming constant diffusivity and constant permea-
bility, we can make the assumption that the diffusivity is constant but that
the permeability is a linear function of the moisture content, that is, that

{x - 25a)
Kat  Camt

By inserting the relationship given by equation 25a in equation 4, we obtain
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a logarithmic relationship between seil suction and moisture content given by:

D :7.11
S=="log, (” ) (25b)
k .
where
K’E
=2 (25¢)
Cant

For the model of constant diffusivity and linear permeability, equation 6e
can be written as;
*C | de de

D L — =
dz? dz di

(264)

which is the same as equation 20 except for the addition of the “convective”
term. It is still o linear equation and is similar in form to both the parabolic
(that is, diffusion analogy} form of the lincarized equation for unsteady flow
in an open channel, discussed in lecture 9, and to the lincarized equation for
unsteady ground water movement to be discussed later in this lecture. For the
same boundary conditions as given in equations 20¢ and 204, equation 26a
has the solution;

e~ N _ . o r—kt e (Er_) f okt
(cm—co) saerfe (QVE)J’"”“‘“ 5) e (26b)

When converted from the form of equation 26b, which is appropriate to the
moisture profile, this solution gives for the rate of infiltration capacity:

s [ e (Vi) e 0

Solutions to the problem of ponded infiliration have also been obtained by
assuming the hydraulic diffusivity to be a linear or an cxponential funetion
of the moisture content (40).

In 1911, Green and Ampt {15) propoased a formula for infiltration into the
soil based on a model of uniform parallel capillary tubes. In fact, their approxi-
mate treatment is not dependent on this specific model but merely on the
assumption that the advancing moisture profile consists of two parts—an
upper zone of higher meisture content (e,) separated from the original dry
soil {¢=c¢) by & sharp discontinuity (4, 80). _

The rate of flow through the upper part of the soil may be written as:

v:fcg-w’—;“b—‘) (272)
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where ¢ is the total head at the top of the column and Is given by:
¢r=x+H {27b)

where z is the depth of penetration of the higher moisture eontent and H is
the depth of ponding on the surface. ¢, is the total head immediately below
the discontinuous wetting front and is numerically equal to the suction {S,)
at which air euters the soil medium, Consequently, cquation 27a can now be
written as:

f{z+H+sa] 279)

V=K, L -

Sinve the upper part of the soil is assumed to have a constant mean moisture
contont (e}, we ean also write:
da

175 (cy— ) i (27d)

Combining equations 27e and 27d we have:

() (55)
et C2—Cy %

which integrated will give:

I\:o, | . X
(C'.""‘c!.) t=x— (H+8.) [Iobg (1 '!_H-E-SB)] (28b)

This eguation hae the disadvantage thab it relates the depth of penctration
{z)} to the time (¢) in implicit form. However, it can be seen from equation 26¢
that the rate of infiltration is extremely high for small values of z and ap-
proaches the value Ko for large values of 2.

A more complete theory of infiltration allowing for concentration-dependent
diffusivity and for the gravity term has been developed by Philip (81). Philip
showed that the cquation for the depth of penetration of giver moisture
coutent can be represented by the series:

r=a(e) -t Fa (e}t aa () B2+ an{e)imit4

and states that, for the range of t and of values of D and K of interest to seil
seicntists, the above serics eonverges so rapidly that only a few terms are
required for an accurate solution. Equation 21b developed above for constant
diffusivity and constant permeability is scen to correspond to the first term
of equation 29. _

As for the simpler model, the volume of infiltration can be cbtained by
integrating the depth of penctration over the range of change in moisture
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content. For the presont mode! this gives:

Cyal
= / z-de+ Kt (30a)

o

faat
F= [ fal@t b ttaaont. . Jdet ki (30b)
which converges except for very large values of {, Philip suggested that for
most practical purposes only the first two terms are required so that we can
write:

F=5.gM2p - (31a)
where & is called the sprptivity and is given by

= [ ato de (31b)
and the second parnmeter A s giv"en by

A=Kt [ aate) de (31¢)

L)

In a series of papers, Philip (34, $2) diseussed the implications of the
solution given by equation 30, the nature of the surface nrofile, the cfiect of
surface ponding, and other factors,

It must be emphasized that the solutions given above are all for one par-
ticular [ormulation of the infiltration problem. In cvery case, the analysis is
made on the basis of an infinitely deep soil profile with a uniform initial
moisture content, into which infiltration takes place as & result of the satura-
fion of the surface, Such a stylized case would have to be modified in several
respeets before it would correspond closely to conditions in actual eatehments.
In practice, the theoretical solution would be modified by the presence of a
water table at some finite depth, by the actual moisture distribution in the
profile &t the instant that the surface is first saturated {which would depend
on the previous history of moisture distribution and movement in the profile},
by distinet layers in the soil profile which might give rise {o interflow, on the
possibility of shrinkage and swelling in the soil, and so on. Nevertheless, us in
s0 many other instances in hydrology, a simple model can be adopted to get a
feel of the phenomena under study and then be used as the basis of & more
complex maodel.

Comparison of Infiltration Formulas

I is interesting to compare with one another the mathematical equations
for ponded infiltration based on various simplifying assumptions and to relate
them to the empirieal equations which have been suggested. This is done in
the present section for the theorctical and empirieal equations menfioned
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earlier. Finally, an attempt is made to relate the mathematical simulation of
infiltration to possible coneeptual models of infiltration to exploce the possi-
bility of using eonceptual models in the soil moisture phase of the hydrologic
cyele.

The first comparison made is for initial infiltration rates, that is, for the
form of the mathematical equations at small values of £. For the model based
on econstant hydraulie diffusivity and constant saturated permeability, the
infiltration rate—which ean be pbitained by differentiating cquation 23-—is
given by:

D
= {tya— 0o — . " 2
f—'{llsa (‘\ ’\/ t‘}"[\ (3 ﬂw)

The infileration rate is seen to vary inversely with the square rogot of the time
elapsed nnd to vary direetly with the differenee between saturated and actual
muisture content (that is, with the volume of pore space available).

The infiltration rate for the model based on constant hydraulic diffusivity
and o linear variation in unsaturated permeability with moisture content is
given in equation 26¢. For small values of £, this cquation ean be expressed
{3 in the following form:

- I A . ]
f=§f.‘~2’~‘i7§f [g— Vit ]+Km (32b)

If only tho first two terms are used, this becomes:

D | KytKus
f={Gm—10) \/R+—"i‘0—‘ (32¢)

=

1t can be seen by comparing equations 32a-and 32¢ that if the constant un-
saturated permeability in the first model is taken as the mean value of the
initia! and the saturated permeability, the infiliration rates will be identical
For those small values of the time in which the series within sguare brackets in
equation 32b ean be adequately represented by the first two terms.

For the Cireen and Ampt model, the infiltration for small values of ¢ and,
hence, small values of @ can be obtained by neglecting 1 in the last term within
the brackets in equation 28a and then integrating to obtain:

:::=\[[ B sy (32d)

Cn—(y

By differentiating the latter equation and substituting the value in equation
27d, we obtain for the infiltration rate:

[ \j {oe— &) (K2) (Sot+ H)

2f

{32e¢)

An interesting comparison between the Green and Ampt model and the
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model based on constant hydreaulic diffusivity and constant unsaturated
permeability can be made as follows. If the coneentration difference in eeun-
tion 32 is tuken under the square root sign, it will appear as squared, The
model of constant diffusivity and permeability in squation 24 implies o specific
relationship between soil suction and moisture content indieated by that
equution. Accordingly, one of the two equal Tactors of {Cane—ea) under the
stjuaze root sign ean be replaced by A8, D so that we have for the infiltration
rate:

Nevm i RV TR
=4 A AL

i

i) (326}
thus indieating a elose similarity between the two modols,

Finnlly, the behavior for small vatues of ¢ of Philips general solution for
ponded infiltration can be examined. Philip (3:2) sugaested that fur practical
purpuses oply the fiest two terms of equation 30 need be retained and that the
equation can be written In the form of equation 31a. The nfileention rate
corresponding Lo this equation is given by

8
J=,mtd (32¢)

in which the parameter 8 is termed “the sorptivity.”

All four models are thus seen to give elosely similar solutions for the initial
period of infiltration and to correspond to the empirienl cquation propesed by
Kostinkov in equation 16, with the speeial value of b=15. From g systoms
viewpoint, it would appear that the high infiltration rates ab the searet of o
storm could be represented by equation 32¢ with the sorptivity (S) and the
ultimate fnfiltration rate (A4) as parameters to be determined.

A comparison can also be made between the behavior of the different modols
al very large values of & For the constant diffusivity and constant permes-
bility model, the ultimate infiltration rate is given by the constant value of
the permeability K. For the model based on constant diffusivity and linear
variation of unsaturated permeability, the general solution given in eguation
26e has the fellowing form for large values of £ (33):

DY*™ k2t .
f= (csnt_fﬂ) (;}) *CXp (_4‘0) +Iisnl. (33)

For very large values of ¢ the exponential term will render the first term on the
right-hand side of equation 33 negligible, and give as the ultimate value of the
infiltration rate the saturated permeability K.

It is clear from the above discussion that all of the medeis are compatible
with the equation proposed for practical use by Philip o d given in equation
32z, However, in lincar models the indication is that the first term will be
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proportional to the difference between the saturated moisture content and the
initinl moisture conteat, Aceordingly, it is suggested that a convenient formula
for use in the simulation of infiltration might be:

G.E_E_um_'cﬂ)

=" +fe (34)

11".’

Using the form of equation 34 rather than equation 32g would ¢aable us to
allow for the effeet of varving initial moisture eontents in the synthesis of &
catehment response. For any storm event, the initial moisture eontent would
be svailable from the sotl meisture secounting,

Uvertan 1291 has shown thet a number of infiltration equations ean be
derived by postulating a relationship between the rate of infiltration (or excess
infiltention? and the volume of either actusl or potential infiltration (or excess
infiltzation). Thus, we can write each of the models for infiltration n terms
of the varinbles listed, Thus, i we write:

=7

u -
= (35)
'

we are using the assumption that the rate of infiltration is inversely propor-
tional to volume of infiltration up to that time. Equation 35 can be readily

integrated to give:
F=~/3a (36a)

= \/g e (36b)

which iz the Westinkov formula for b=14. Similarly il we write:

a
fe—"F".

that is
f_f¢= .
the solution can be shown o be:

1 a F -
=plr-fros (1457)] @7

whieh is of the samoe form a8 the Green-Ampt solution.
If the rate of excess infilfration is taken as inversely proportional to the
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volume of exeess infilfration, as follows:

/4

fo=

(380}

then the solution is: _
=\ Sl fit (38¢)
which is Philip's equation 31a with:
{38d)
{38e)
It would be interesting to see il & rate-volame equstion could be found that
would give additional terms in Philip's general solution.
If we relate the rate of infiltration to potential infiliration volume, the
simplest equation is:
f=ut, (39=)

f=aiF.—F (30b)
our
S=fv—aF {30c)

which has the solution:

F-—-’:E [I—rcxpi—at)] (39d}
]

and
J=ls-expi—at) (39¢)

Assuming the relationship:
Je=0F, (402)
is equivalent to equation 39 sinee it reduces to:
J=fi—al (400)
and, henee, it also has the solution;
S=forexp(—ab) (d0c)
The more general relationship:

fi=al,, (41a)

J—fe=aiF,—F,) (41b)
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Qar
f_fc“':fo_fc_u’{F_fcf) {dlc)

has the solution:
S=fe={fo—Jo) vxp{—al (41d)
which is the Horton equation. Finally the relationship:
Joe=af ! (42a)
is the relationship proposed by Overton himgel! which gives:

F=Fe-see[Vafatc—10] (42b)
as piven earlier in this seetion,

Apart from its intrinsie interest, the formulation of the infiltration as a
relationship betwern a eate of infiltration and a volume of actual or potential
infiltention would appear Lo have many advantages in the formulation and
computation of conceptual models of the soil moisture phase and the simula-
tion of catchment response.

W are familiar with the concept of & linear reservoir as an element, in which
the outflow is directly proportional to the storage in the reservoir, Bquation
390 represents an clement in which the inflow is proportional to the storage
deficit and, hence, might be considered as 1 special conceptual element to be
known as o linear absacber, The relationship indicated by equation 41a could
be considered as conslsting of o linear absorber preceded by 4 constant rate of
ovoerflow, whieh diverts moisture at the cate f. around the absorhor and feeds
into the ground water reservoir even when the field moisture deficit is not
satisfied. By analogy, cquation 35 might be considered as being represented
by a second type of coneeptual clement in which the inflow into it is inversely
proportional to the amount of inflow which has taken place. For want of a
better name, this might be referced to as o lincar inverse absorber. Auch
work remains to be done in this area, but there are indications of the track
to be followed.

Basic Equations of Ground Water Flow

Fven though linear solutions have been widely used in ground water
hydraulics, until recently there has not been o deliberate treatment of ground
waler response a8 o linear system. An assumption frequently made in applied
hydrology has been that the ground water reservoir ncts as a single linear
sturage clement. This assumption is implicit in the fitting of expouential
recession curves to hydrographs and the plotting of falling hydrographs on
semilog paper. Such a model is an extremely simple one, and we certainly have
available the teehniques to go beyond it. If we wish to tackle the ground water
phage in the same way in which we tackle the surface runoff phase, then we
should make the assumption that the ground water system is a linear system
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and not that 1t is just a particular highly simplified, single-eloment, linear
system. 1 we do so, we have available alt the techniques of linear analysis and
synthesis, We ean derive a “ground water unit hydrograph” provided we
know the ground water recharge and the ground water outfAow.

From the peint of view of syithesis, we can learn from what has been done
n the simulation of the surface runoff phase of the hydrologic evele, but woe
should beware of following too slavishly the approaches and the models
developed in that particular field. 1f we are to simulate suceessiully, we must
understand the physieal hydrology of ground water Bow and make use of
existing knowledge in this field so that our models ean be as “realistic” as
possible, This section gives a very brief review of the basic cquations of ground
water flow, and then diseusses o lincarized solution of a special ense of ground
water flow and the possibility of simulating this salution by conceptual
models,

The basie equations of ground water fow nre well-established and can be
studied in standard works such as Muskat (281, Polubarinova-Koehina (341,
Luthin (26%, Harr (16), deWiest (1O, and Bear, Zavlavsky, and Irmay ().
Just as in open channel Aow, we avaid the diffieulties inherent in the analysis
of two-dimensional flow by reducing our problem to one based on the assump-
tion of one-dimensional flow. With this assumption, the cquation of continuity
for horizontal flow through soil in a saturnted condition is:

a ol
Qfﬂumu1 (43)

where ¢ 1s the horizontal HBow per unit width, & is the height of the water table,
S is the drainable pore space {which is assimed te be constant), and rixf)
is the rate of recharge at the water table,

The assumption that the stream lines are all horizontal and the velocity
uniform with depth is known in ground water hydeaulics as the Dupuit-
Foreheuner assumption. For these conditious, Darey’s equation:

"= — K grade {ddn)
recuces (o
}
o (44b)
ar

where K is the hydraulie conductivity (usually assumed to be constant) and
gives us the following relationship between flow and height of water table:

}
q=—Kh e {43)
ar

Substitution from equation 45 into cquation 43 gives us the differential
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cquation:

i} ah
}‘a.z (h -—)-1—( N} f——~ (468)

Far a set of paraliel deaios or paralle] trenches, which are a distance S apar
and which are subject to & constant rate of recharge at the water tables, the
equilibrium situation is given by

al
Kh —-‘)+; (474)
a.r

with the boundary conditions given by:
r=u N, h=d (47b)

whoere d is the depth of water over the paraliel deains or the depth of water in
the parallel trenches, whichever is approprinte, This nonlinear equation has
the solution:

"‘
Kik4r (1— )-—-1 [‘-i--— (48)

which iz known as the ellipse equation,

Lt must be remembered that equation 47 18 based on the Dupuit-Forcheimer
gesumptions and s ouly eorrect i the flow can be validly approximated by o
purely horizontal How; if the drains or the trenches do net penetrate to the
impervious layer, or ¥ the depth (d) is small, the assumption ecases fo be
reaspuable. The vartious solutions proposed for dealing with the problem as a
two-dinensional flow may be reviewed tn Lathin (268) or in a review paper by
Kirkham (203, In our diseussion of both steady and unsteady flow, we will be
content to take the Dupuit-Forehelmer assumptions and the solutions derived
from them as the basis of our discussion,

The probleny of the reeession of the water table after cessation of recharge
ix an important one in draiuage ongineering and has been widely studied. A
recent review of work in this Aeld has been given by van Schiffgaard (43}, As
in other fickds, the first attempt is to seek a linear solution. There arc two ways
in which cquation 46 can be linearized, In the first and more common linenrize-
tion, the water table height inside the bracket in the first term of equation
46 is frozen at some parametric value {4} and then removed outside the sceond
differentiation with respeet to x, thus giving:

-H(':: t) fa—h (49)

In the sceond form of linearization, 2? is used as the dependent variable
instend of & and an equivalent parametric vahie of & is used to adjust the term
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on the right-hand side of equation 46;

K (k%) I etk i
[ -~-+r{.'r,ﬂ =T e (OG)
2 axt 2h &

Though the first linearization given by wquation 49 is the more common
form, the second one given by ecquation 50 has the advantage that for the
steady state it gives the ellipse cquation of equation 48, whieh is the corroct
nonlinear solution, whereas equation 49 gives a parabolic shape to the water
table for the steady state condition. Both equations 49 and 50 are parabolic in
form and ean clearly be solved by the techniques which have proved suecessiul
in the analysis of problems i heat How and of “diffusion-type" problems
W2, 1.

Equation 44 for the initind condition of a level water table = hq was solved
by Glovert {Also, see reference 12 by Dumm) who obtained:

i&

I Y- L L (ngﬁ‘u&)

w n=l 35 ... i

{51a)

where

h= clevation of water table above impervious layer
d= elevation above the impervious layver of water surfage
i trench (or above drain)

fo= maximum clevation of water fable

= horizontal distance from trench or drain

S= spacing of trenches or drains
K= saturated permeability of sotl

t= time elapsed since start of recossion

J= drainable pore space

Kraijenhoff 124) has pointed out that the soil and drainage charactoristics
in equation 51a may be grouped together into one parameter, which he defined
s the reservoir coefficieat J:

1 78

L 51
=y (51b)

so that Glover's solution can be writien as:
4 {ho—d 2 8 S {
ootz sinlams/) (*ng __) (51)
T 7

n

n=L3.....,

Kraijenhoff nlso pointed out that Glover’s solution was the solution for g

*Groven, R.E. nnd Brrrivger, M. W, SOURCE MATERIALS FOR A COURCE [N TRANSIENT
GROUNDWATER HYDRavLICS, Colo. State Univ. 1959, [Mimeographed.)
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inite volume of recharge in an infinitesimal time and consequently equation
51c represents the impulse response of the ground water system.

IT we adopt the second linearization instead of the first, a similar equation
ean be obtained, except that it will be in terms of A? rather than . The diffi-
cutty about conflicting predictions of the shape of the water table profile does
not affect us in our study of the recession of cutBow, The cutflow to & dratn
or a trench is given by:

€=2[¢} {52a)
In the firsy lnearization, ¢ is given by

o - ok
= — Kk —me= — Rl e 5
q K e K p {52b)

and in the second equation, g is given by

s that in either equation we obtain for the discharge:

SKfi(hg—d)y 2
g T

3 (53a)

el 3

If the initial Leight of instantancous recharge (he—d) is expressed in terms
of the vulume of recharge, the drain spacing, and the drainable porosity of
the soil, we have:

SRRV & ¢
g=- A > exp (— n -_) {53b)
J

5o

a=l A,

so that for an instantancous input of unit volume we have as the impulse
FESPONSe!

(64)

Obvicusty as i becomes large, the first term in the infinite series will dominate,
and the putflow will approximate that from a single linear reservoir. For small
values of {, however, the other contributions cannot be neglected, and for a
value of ¢ equal to zevo, they are all equal and add up fo an infinite initial
vahue of ().

The response funetion given in equation 54 has been rormalized to have
unit volume, and its moments can be shown to be:

(558)
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Tt
0= k‘ =2 55
Us=lks 750 (55b)
317
:;I( — - ‘3 =
Us=ks 15,120V (55¢)

The shape factors for the Glover solution as given by equation 54 ealeulated
fron: equations 53a to 55¢ as:

Sa=—=1.40 (55d)
5
124
=—=3.54 5
83 Y 5 {55e)

If moment matching were taken as a eriterion, then simulation of the Glover
solution by a caseade of linear reservoirs (that is, by the gamma distribution)
would require a value of n=0.7 and & valuc of K=1.15.

Note that if equation 54 were plotted on semilog paper, the first term would
plot as a straight line and the other terms would only make contributions at
snall values of & Tollowing the lines of classieal hydrology, we might be
inclined to interpret such a result as indicating that the first torm was the true
bascflow and that the contributions due to the other torms represented residual
interflow or surface runoff. If we took the straight line on the semilog plot as
the baseflow, we would in fact truncate the infinite series of equation 34 and
use only its first term in forming our implicit model. Such 2 procedure would
have the further defeet that we would take the Iag of the system as equal to the
reservoir coeflicient j rather than the value given by equation 33a. The work
which Kraijenhoff has initiated in applying the systems approach to the
ground water phase is most important in so far as it indicates the likelihood
of considerable progress if the trehniques of parametric hydrology developed
for the surfuce water part of the eyele are applied to the ground water.

Lven if we wish to persist with the model of & single linear reservoir (that
is, the first term only of the Glover-Kraijenhoff equation), then we can
extract more use from this assumption than is normally done. If we assume
that the recession for the ground water phase of our watershed is given by:

Q=Qo-exp (—%) (56a)

then we are in fact assuming that the ground water resorvoir sets as a single
linear reservoir whare we have:

S=K.Q {56b)

If such a <ystem is subjected to recharge at a uniform rate (1), then the
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ground water outflow during recharge will be given by:

Q:R[l—exp (—;,%)]+Qo-exp <_Ii() {56c)

where the time origin is taken at the start of recharge. If the recharge ends
after o time D, then the ground water outflow at this time will be:

=R [l—oxp (—%)]—I—Qo-exp (—%) (361}

Both bofore and after the recharge, the ground water cutfiow will follow the
master recession curve. The outflow given by equation 56d is the same as
would have been g .en if there had been an instantaneous increase in dis-
charge af a time (=0 of an amount:

=R [exp (IK)) — 1] {56e)

which would then recede along with the initisl outflow. Assuming for the
moment that there were no thresholds in the systein and that recharge were
taking place directly to ground water, equation 56¢ could be used together
with a plot of ground water outflow and a knowledge of the volume of recharge
to determine the rate and duration of recharge. Quite apart from this aspect
of analysis, equation 56c indieates that the separation between ground water
and direet storm runoff should be taken as a curve which is concave down-
wards rather than as a straight line.

The discussion given above for the recession of the water table deals with
horizontal Aow overlying & horizontal impoervious layer. The analysis can be
adapted to flow over an inclined impervious layer, but still retaining the
Dupuit-Forcheimer assumptions and the linearization of the equation. If the
slope of the impervious layer is taken as «, then equation 45 must be modified
to give:

., {ok .
q=—Kh (—-—-a) (572}
dx

where  is still the clevation of the water table above the impermeabie layer,
which has 2 downward inclination of a to the horizontal, Similarly, equation
49 must be modified to give:

_ d*h

£y ah
KR KoL () =f —
ax” dx

— 57b

% {87b)
This is still a parabolic linear differential equation and resembles in form the
convective diffusion equation, which has already been encountered as a model
of unsteady flow in an open channel. Thus we see that the same model can be
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used to simulate unsteady flow in an open channel, unsteady flow in the un-
saturated zone, and unsteady flow in the saturated zone.

Other simple models can be devised for the recession of ground water ficw.
Thus we ¢ould estimate vutflow on the busis of & succession of steady states in
each of which the ellipse equation was assumed. The relationship between
discharge and the water table for the cllipse eyuation is given by:

K .
Qz_S" {h"max"_d ) (38)

while the storage above the water level in the drains or trenchos is given by:

T"=f-f§ (Nmax—d) (59)

Two successive values of A could be taken and the difference in storage
computed from equation 59. The average rate of outflow could then be
approximated from equation 38 for a value of A, half way between the two
assumed. Division of the change of storage by this mean rate of outflow would
give an estimate of the time taken for the level to fail by the amount assumed.
For the combination of a very deep trench and a shallow rise of water table,
as foliows:

hml’:

Kl (60a)

equation 58 could be written as:

Q=% ho(Raax—d) (60b)

Comparison of equation 60b with equation 59 indicates that storage is propor-
tional to outflow so that we would in fact get an exponential recession with
the recession constant given by:

7 (60c)

For a steep rise in water table in a shallow trench, that is, for:

hmux

1
d

equation 38 becomes:
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and equation 59 becomus:

_f=3

4'mu:

80 that the outflow is proportional to the storage squared:

64 T+
Q"EUMM

(61d)

For intermediate conditions, it should be possible to simulate the recession
with fair accuracy by treating the ground water system as a nonlinenr reservoir
with the outflow proportional to some power of the storage:

Q=a(V)* (62)

where ¢ has a value between 1 and 2.

The above discussion was not only based on a simplified analysis of ground
water storage and flow, but it has alse disregarded the linkage between ground
water flow and the other phases of the hydrologic cycle. Space precludes a
discussion of the work that has been done in this regard. However, the ap-
proach which has been outlined above can also be applied to such problems
as the recharge of bank storage due to an increase in channel flow and the
subsequent recession after the channel flow has diminished (8, 42), and the
interaction of ground water with the unsaturated zone and with the at-
mosphere (3, 11).

Problems on Subsurface Flow

1. Look up in the literature empirical results for the values of the soil
suclion and the unsaturated permeability for a number of soils of different
types. In each case, derive the hydraulic diffusivity from the data. Compare
the absolute values, the range of values, and the variability of cach of these
soil moisture parameters according to the different types of soils.

2. Fit the empirieal equations mentioned in the text to the data of the
last problem. Compare the ability of the different formulas to represent the
data.

3. For the soils for which you have obtained or derived data, tabulate or
graph the equilibrium moisture distribution for various depths of ground
water. Caleulate the effect on this distribution of differing rates of percalation
to the ground water or evaporation from the ground water, assuming steady
state conditions,

4, Show that equation 15 for the limiting rate of evaporation from ground
water can be derived from the assumption of the relationship between con-



http:SYSTElI.lS

292 TECHNICAL BULLETIN NO. 1468, U.8. DEPT. OF AGRICULTURE

ductivity and soil suction in the form given by equation 8a. Derive the value
ot the numerical constant in equation for » cqual to 2, 3, and 4.

5. For the data used in problem 1, ealculate the rate of cvaporation for
different valucs of soil suction at the surface for three assumed depths of
ground water.

6. The text stated that for the assumption of constant diffusivity and
constant permeability, the moisture content during unsteady infiltration can
be represented as a function of £2/1. Find the form of this function. Use your
answer to find the value of the coefficient of the first term in the infiltration
cquation for eonstant diffusivity for a number of different values of the
moisture content.

7. Derive an infiltration equation from a relationship between rate of
infiltration (or cxcess infiltration) aud either actual or potential infiltration
(ot excess nfiltration) other than those mentioned in the text. Compare the
derived equation to the standard equaticuns.

8. Compare a number of infiltration formulas. What arc the assumptions
underlying the different formulas? How would you fit cach of the formulas
to the data given in Appendix table 92

9. Compare the solutions given in the literature for the steady outflow of
ground water in equilibrium with a constant rate of rainfall or infiltration,
Compare the solutions for a given set of conditions, and discuss eritically
which solutions you consider would be the most aceurate.

10. Compare the solutions given in the literature for the recession of the
maximum water table level. Compare the assumptions made and the cffect of
the assumptions on the solution. Which solution would you consider to be the
most accurate?

11. Using cither a steady state solution or a water table recession solution
other than those treated in the text, derive an expression for the recession of
ground water outflow. Compare this solution with the solutions already
derived.

12. Compare the various solutions for the recession of ground water outflow.
Contrast the assumptions made and the cffects of these assumptions on the
form of the solution and on its accuracy.

13. Express the onc-dimensional unsteady equation for ground water
cutflow in the appropriate finite difference form for setting up the problem for
golution by direct analog. Show that this formulation is equivalent to a series
of linear storage elements, cach one causing backwater on the one before.

14. Show that the system of backwater storage elements derived in the
last problem can be represented by an equivalent simulation system of linear
storage elements without backwater.

15. Represent one of the unsteady state solutions by a model consisting of
linear storage elements.
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16, List the various methods for the separation of base flow from the total
hydrograph which have been proposed in the literature. Indicate the physical
justification, i any, for these various methods, Rank a few of the methods
which you think are most aceurate in order of their probable accuracy.
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LIST OF SYMBOLS

The following list of symbols should be used as a guide to assist the reader
in recognizing commonly cited variables, rather than as an exhaustive listing
of all symbofs used. In some cases, the number of the lecture in which a symbol
is used in a particular sense is indieated in parentheses. This list doos not
include symbols used once or twice in & particular sense and defined where so
used. Neither does it inelude symbols used to denote systems parameters or
parameters in formulas exeept where such parameters are the subjeet of
discussion,

. S » . superficial area of catchment.

E cross-sectional arca of channel {93,

I TR . .& Fourler coefficient of output (3, §).
B......... base length of unit hydrograph (8).
F£ 7S a Fouricr coefficient of output (5, 8).
C.........capacitor in analog circuit (i, 7).
O cocflicient of runoff (4, 8).
A coefliciont in Chezy formula (10},
Cooiin cocflicient in expansion of output,
Do ... unit period of rainfall excess.

I3 D differential operator (33,

Do dimensionless length facter (9).
Do hydravlic diffusivity (9, 10).

... ... duration of recharge (10).

O cvaporation.
#{Y...... crror criterion.

Foooo .. volume of infiltration eapacity.
F........ Froudd number (9).
Faoooiio.. actual volume of infiltration.
Fish...... Laplace trarsform of f{).
f{w)..... Fourier translorm of f{i).
Fizy...... Z-translorm of f{4).
Fa{sy..... bilateral Laplace transform.

Frio)..... imaginary part of Flaw).
FPaleY. ..., real part of Flw).
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convolution matrix of system response.

..available energy (2, 7).
depth of poading (10).

. aystem function, that is, Laplace transform of £(8).
Fourter transform of impulse response.

rate of inflow to channel reach.
24-hour rainfall (7).
modified Bassel function (9).

storage detay time.
hydraulic conduetivity (2, 107,
. R eumulant of f{4).

tength of channel,
length to center of area (8).
fenglh of overland flow,

.. Laguerre polynomianl.

duration of continunus input {1, 3).
. Meixner polynomial €3, 8).

..memory length of system.

.. precipitation.
duration of output (1, 5).
unit pulse of duration D1},
precipitation excess,

runoff, flow, outflow.

energy (2).

base flow.

ground water flow.

interflow.

peak discharge.

overiand fow.

direct storm response {surface low).

recharge to ground water.
B0 resistance in analog cireuit,
R.o....... Jhydreaulie radius (9).

multiple correlation cocfhicient (7).

runcfl,
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S, storage in reach, stornge.
S slope,

8., ..... . soil suction {10).

S, friction slope (B}.

S ground slope.

See i, channe! slope.

S{...... S-curve, 8-hydrograph.
T........ transpiration {2, 7).

A length of time series (3, 6).

Y P period of repeated function (5, 6).
T ... Hme of virtual inflow {8},
Foevnin s mean temperature {1, 7).
(... .. .unit step function.

el ). R moment of f(1) about contor.
U { £ .. % moment of f{#) about origin,
UH...... unit hydrograph.

| A velocity.

| S volume of runoff,

)., matrix of input values.

D S volunie of input in unit period,
G L transpose of X,

Xisy...... Laplace fransform of z({).
XNw)..... Fourier transform of x{1).
T Fourier coeflicient of input,
beoooiin,. Fourier coefficient of input.
Ck.........coefheient in expansion of input.
T VADOE pressure,

Foorioil rate of infiltration capacity.

Foo oo . speeifie yield, that is, drainable pore space (2, 10).
fao .. .... .actual rate of infiltration.
Sty arbitrary function of time {3, 5},
SulY oo, nth order Laguerre function (3, 6).

) ntt order Meixner function,
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function orthogonal under integration.
function orthogonal under summation,

impulse response funetion.
veetor if impulse response ordinates.
pulse response.

. ....ordinate of unit hydrograph.
optimum lincar response.
insiantaneous uanit hydrograph (ITH).

precipitation inteosity.
rate of distributed inflow (2).

. fime at start of final period of rainfall excoss (m=M — D).
Jdimoensionless moment,

length of finite-period unit hydrograph {(n=N4D).

length of nutput for discrete-time {(p="P).

discharge per unit width,
. .equilibrium discharge.
. .reference discharge (9.

rate of lateral inflow,
roesielual error (3).
veetor of residual errors (6).

disercte time variablo.
complex argument of Laplace transform.
. .shape factor, that is, dimensionless cumulang.

continuous time variable,

fime of coneentration,

time o equilibrium.

lag time.

characteristic rosponse of flow (9).
fperei s ftme to peak, '

u(z, i) veloeity of Aow (9).
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Tovnnnnn. distance slong channel (9).
Tovernnnn. depth below surface {10),
Tieeennnn. ordinate of input.

1 T continuous input funetion,
3 veetor of diserete lnputs.

x(sD). ... discrete input function.

y(y ... ... coutinuous output function.
Yivevuonn. crdinate of output.

771 I, veetor of diserete outputs.

y(s2} ., .. disercte output function.

ylody .. .. depth of flow in open channel.

Bk oo, Fourier voeflicient of system response.
Bi. .......Fouricr cocficient of system responsc.
Srrie v v e n s Kronecker delta.

Boiniiinn, hydraulic potential,

bRy L. diserete sutocorrelation function.
PRSI continnous autoeorrelation function,
o lhY.. ... discrete cross-correlation function,
I £ DU eontinuous cross-correiation function,
Ye. . ... ...coofficient in expansion of system responso.
PR ovvnn. FE moment.

op........diserete time variable,

N continuous time varigble,

L T argument of Fourier transform.

APPENDIX TABLES

TasLe 1.—LConitnuous functions

No. Funetion Range
) S 1 gt
i elsewhere
b J /4 0<t<2
1—t/4 214
0 elsesvhere
3........ t/a 0<t<?
2
T 2Ll
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TasLe 1.—Continusus functions—Con.

No. Function Range

£
12573 cos(%) — <L @

'*:) 0 <{<00
48

Dt
Fntn (T wnx—Iniin} Sin(—,};-) o<t
exp{ — /&) 0<i<w
(/R exp{ —t/k)
(n—1Mk

"
\/ - exp( —al?)

t* exp{ —1)
3f

<t

%cxp{ —4/2)

-;(c‘.+§) exp{ —1/2)

16 8 i

1061 —t) exp{i—1)

t [
. Ia'&YD(S—f)-ﬁ

(8) 2D ewn(9 -0

(&3t 44) exp{l—£}
—(4—te

() (2"]'21) exp(9—1)

(11 =30 —(4 ~te
(12— 1300+335)

¢} 12
—{t—8)¥(152 —dt—1)
{1130

{ exp{G—1t) 8<i<9
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TABLE 2.—Discrefe funclions

No. Function Range

) {2, 1)

A {6, 4)

3.0, {2,6,1)

do, (6,4, 14,8, 1, 0)

So.... (0,4, 11,8 1.0

Goolnll. (1,52, 2)

Tt (0,2, 4,20

S (0,3,6,4,2,3)

LS {0,2,43,2 1,0
0. ... (0, 1, 3, 3.5, 2, 0.5, 0)
| (6, 22, 35, 26, 11, 2)
120 125—75 cos (fg) — <5< o
o 12575 eos(__%) 0<s<06

s

L S lrmin+(1llmx _f.|‘in) gin T s
_ {s7k) 1 exp( —s/k)
B, ———— ;

° (n—1)lk O<s<e
..., (2000 sy 0<s< o
7, ....... {3 1)y 0<s< =
RN (DH DI syuon 0<s< m

9., ..., HOF2DH( e 0<s <
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TasLE 3.—Daily rainfall and average datly flow, Big Muddy River,

Plumfield, Ill. {area 753 sq. mi), April 1920

Day

Rain

Runoff Effective rain  Unit graph

Runoft

G G ope B2 LD

Lo
— W e

1 BD b e b bmt b e e
— 0 S A o~ SN e LY

o
7

Tnches

Cusecs

1,650
2, 50
3,370
3,870
3,540
2,470
1,310

G10

Pereent Tnches

Cusecs
{1an
{176}
{220}
{263}
(312)
(264
(167)
(553)
(666)

(1,615
2,116
4,201
3,138
8,580

1,228

11,481

10,924
9,375

;005

, 186

, D00

, 377

tEuervay, Lo K. STREAM FLOW FROM RAINFALL BY THE UNIT-GRarH MuETHOD. Engin.
News-Ree. 108: 561-305. 1932,
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TasLe 4.—Data for Ashbrook Catehment

Date and time  Effective rain  Storm runoff

{hours}
Cusecsy ("usecs
Murch 26:
5 0
1,820 . ...,
1 S . 30
3,830 ...l
-1 S 34
8,330 ...
b 950
March 27
s . 1,320
..., .. N, 1,290
O o e 1,280
Y . 1,160
oo Lo 1,040
[ 410
b5 I 790
. 680
March 28:
3..... e e 580
Boour e e 150
Qe s 390
120000 oo 0 320
I8, oo e, e 280
8. ... 0 o 240
210 e e 210
M, e 180
March 29:
... e e 135
L 135
| il5
120 . . Ve 100
5...... e e 85
B 70
- SR e reevaaa 65

2 60
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Tapug d.—Data for Ashbrook Catchment~—Con.

Date and time  Effective ruinn  Storm runoff
{(hours}

Murch 30:




[pe=1st moment; F,=Froude number; S;=slope (ft. per mi;); L=length {miles);

TausLe 5.—Dala on linear channel response

K,=ub cumulant]

Casc Ha F o SO L K) Kg K F ]\’1

1 2.7058 0.125 1 50 12.3192 63.7364 985.3K79 26015.398

2 2.7058 125 1 200 49.2769 254.0457 3941.5516 104061. 60

3 2,7058 ~125 1 500 123.1922 637.3643 09853.8758 260153.98

4 2,7058 2125 ] 5 1.2319 1.2747 3.9416 20.8123

5 2.7058 125 5 50 12,3192 12.7473 39.4155 208.1232

6 2.7058 125 5 200 40.2769 50. 9591 157.6621 832.4928

7 2.7058 .125 25 5 1.2319 2549 L1577 .1665

8 2 7058 L125 25 50 12,3192 2,544 1.5766 1.6650

9 2.7058 J125 25 200 49.2769 10.1978 6.30065 6.660
10 - 6.9268 512 15 5 L4812 02533 003718 .001399
11 6.9268 512 15 50 4.8122 2533 03718 .013996
12 6.9268 .512 15 200 19.2489 1.0131 L1487 .0560
13 6.9268 .H12 100 5 4812 .00380 00008367 000004724
14 6.9268 .512 100 25 2.4061 01900 .0004183 .00002362
15 6.9208 D12 100 100 0.6245 L0760 L001673 .00009447
16 6.9268 512 400 1 0962 .0001900 .000001046 .00000001476
17 6.9268 .512 400 5 L4812 0009498 000005229 .0000000738
18 6.9268 .512 400 10 L0624 .001900 .00001046 0000001476
19 8.7668 .729 35 b .3802 00535 .0001915 0000289
20 8.7668 .729 35 10 L7604 01071 .000353 .00005773
21 8.7668 729 35 25 1.4011 02677 0009576 .0001443
22 8.7668 .729 200 1 L0760 0001874 .000001173 . 00000003094
23 8.7668 .729 200 2 .1521 .0003748 000002346 .00000006188
24 8.7668 .729 200 5 .3802 .0009370 000005865 .0000001547
25 8.7668 .729 900 1 .0760 .00004164 00000005793 0000000003395
26 8.7668 .729 900 2 L1521 0000833 .0000001159 0000000006790
27 8.7668 .729 900 5 3802 .0002082 0000002897 .00000000170

WUALIADIYOHY A0 LJFA"§) ‘SOFL "ON NILATING 7IVOINHOLL 90¢
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TaeLe 6.—Characteristics of o standerd 100-
square-mile  basin!

[tem Az B

Aren {square miles). .. ... ..., 10 0
Channet slope {feet per mile). .
Sround slope
Tributary angle
Dirainage density {miles per
square mile)
Length of gverlnnd flow

Stream order.
Bifurcution ratio
Length ratio
Lenglh to center of area
{Lea) (miles), ... .
Length of channel (L) (miles). .
Width of hasin (W) {miles. ..

' Doog, I, C. 1. SYNTILETIC UNIT UYDROGHALIHS BASED
ON PrlaNGULAR FLOow. DMLY, Thesis. lowa State Univ.
June 1956.

? These columns are to be filied in by the user or student
in working problems,
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TabLe 7.—Geomorphic paramelers of a simulated
basin!

Characteristies of drainage pattern:

Designation Na. Aren  Lengtht

Square  Afiles

miles

['nit watershed ., ... .. ... .. 385 0.05 .33
Sutrsubwatershed, . .. ..., .. 49 35 .57
Subwatershed, . ... ... ... T 2.75 2.87

Tota! watershed, . . .. .. 1 21,35 §.09
Channel sizos:

b=6.70 100 n=0.04

z=1,02 ;{008 S=0,008155 A0

Surfnee eharacteristies for computing overland flow:?

300 feet hy 1,750 feet =0.05 sq. mi.

Overland slope., .. ... =10.2 percent
Lo =N ft.
o e =(.2

Rising hydrograph by Morgali,
Recession linear,

Assumed conditions for channel routing:

{a} In first-order channels, translation of overland
flow to cutlet of sul-subwatershed at equi-
librium veloeity.

{b} Tuitinl Aow, 4.0 cusecs/sq. mi.

Channel uniform between junction.
Numerical routing (rectangular grid).

! Macusmziek, R E,, and Lanrsox, C. L. THE EFFECT
OF RUNOFF SUPPLY RATE AND DURATION ON HYDROGHAPHS
FOR A MATHEMATICAL WATERSHED Mobtr. Jour. Hy-
drauiies Div,, Amer. Soc. Agr. Engin. 1966.

? L0885 tributary angle =45°,

*Moprganr, J. R. HYDRAULIC BEHAVIOR OF SMALL
DRAINAGE Basixs. Tech. Rept. 30, Dept. Civ. Engin,,
Stanford Univ, Calil. 1963,
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TasLe 8. —Dala on evaporation!

Solar Average Average Average
No. Month ralistion  temperature vapor wiad Foughness
pressure

Ly, . mb. Al /see. T,
1l...... April T34 14 : . 0.001
b SR April e 2u 8 02
March 5332 17 . 1.0
June 761 2 . i
August, 625 31 ; 3.0

Vean Baven, G H AL POTENTIAL EVAPOUATION: THE COMBINATION CONCEPT AND ITS

EXFARIMENTAL VERIFICAT0N,  Water Resources Res, 2(3): 155467, 1904,

Tanpt .—Data on (nfiltration’

Time Precipitation P=pts
{minutes}

Inches Inches
0 a it

10 .33 .33
20 67 .63
By 00 .39
40 33 K
a0 G7 .20
() 00 .30
70 a3 .30
80 .B7 A3
90 40 .80
100 .33 a6
110 BT .63
120 .00 .70

B R = = b

3]

=)
Y

LA gt ]

t Muserave, . V., and Hourax, H. N, 1¥pU-
TraTion. In Chow, Ven Te, ed.,, Handbook of
Applicd Hydrelogy. New York, 1964,

1 P — P, =precipitation minus precipitated excess.

3 Average depth (D,.)=0.32.
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TasLe 10.—Dala on inflow and outflow!

Day Inflow Dutfiow

Cubic feel per second  Cubic feet per second

1 g3 85
2 137 102
3 208 141
§ 320 205
b 442 260
6 546 386
T 636 470
8 678 39
th 691 591
10 He2 627
il 684 648
12 G671 660
i3 (57 G4
-4 (38 G660
id 609 630
it g G35
17 T3 G190
8 454 580
19 425 540
20 366 488
21 298 430
22 235 365
23 183 300
21 137 233
25 103 178
26 81 132
27 75 100

PLaweer, . A, HYDROLOGY OF FLOW CONTROL. [n
Chow, Ven e, ed., Handbook of Applied Hydrology.
New York., 19G4.
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TapLi 11.—Dala from experimenial wafershed

Qutflow Time Qutflow Time Cutflow Time
volume {seconds} volume {seconds) volume {seconds)

Q (e Q) (c.c.} i (c.c.}

XN =1.75 cc.fsec.

150
160
170
180
190
200
210

220
230
240
250
260
270

280

=
2]
[e-]

— 12 e T L3 O
P R )

.O'Ob'ba-&:lﬁ-!l—-
PR T= AT R e

XN =258 ce.fzec.

10 36.
20 a3.
30 6. 130 I
40 7.1 140 147

6 110 130.
5
3

50 86.9 150 150
3
2
4

120 133.

S

80 95,
70 194.
56 111.
90 117.8 160 170,
100 124.3 200 174,

160 136.
170 161,
180 166.

LR T U, B i )

See footnete at end of table.
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Tasre 11—Dala from coperimental walershed'—Con.

Outflow Time Qutilow Time Cutllow Thue
yvolume {seconds) volume {seconds) volume weconds)
{2 (c.c) 0 () Q (e}
N =350 ceusee.
10 3.3 200 134,73 3% 194,58
) ERINY 21 147.9 100 7.7
30 a2, 220) 1.3 12{} 24,2
40 60,7 230 L8 440 205.9
50 fid. 1 20 1450 4060 204, 7
343 Thod 250 151,85 |80 22001
TO0 8.4 RN 1331, 00 226.1
8O 83.7 270 107.3d 520 231.7
M) ag. 8 250 L D) 237.8
{1} 5.5 200 .7 alit) 2128
(13 1004 300 {G6.7 a%0 MR.2
{20 04,3 3 170, 1 GO 253.4
Lin 105, 5 320 1731 06X 240,40
1-18 112,06 KH)] 17601 G10 2651
130 GO BT 17541 Gl 2706
L#) 120,2 350 182,56 G580 276.2
1 124, 1 E{H] 1853.5 700 28201
150 127.0 370 188, 7 720 287.%
190 130.9 380 191.8 70 203.8
VAsonocuo, ., and Ourion, G RONLINEAR ANALYSIS OF HYDROLAGIC STSTEMS.

Water Resources Center, Cuntrib, 40, 130 pp.

Uiiv. Calil., Berkeley.

14961,
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TanLe 12—Data for cverland flow!

Length Slope Surface Rain

Feet per foot Inches per hour
0.0001 asphuit 3.65
005 erushed slate 3.67
i cae 3.66
.02 : 1.8¢
Ri2: e 3.60
04 - 1.89

LS
I3 Lo 1S b3 b

e e |

FPlzzann, O F. UYDRAULICS OF RUNOFF FROM DEVELOPED SURFACES. Highway Res.
Bed, { Washington, D.C.) Pree. 26: 120-1486. 1046,

Tasne 18 —Erperimenial date for overland flow

|Rising hydrogreph: -2 min., =189 in./hr.; 2-7 min., {=3.78 in./hr.; =1.94]

Time Runoff Time Runoff

Minutes Tnches per hour AMinules Inches por hour
0 0 0

Rk 622
685 071
.32 .139
LG1 .224
.13 320
L0 A4t
R0 L5T0
3.27 L712
3.52 ¢ L8686
3.67

3.78

LT e IR R A ]

Donomo




TaBLE 14.—Runoff data for Coshocton watershed 151 (1963)

Rainfall " Surface runoff Outflow from 0-12" soil Outflow from 12-48” soil
Date and time: Rate (inches Date and time Rate (inches Date and time Rate {inches Date and time - Rate (inches
per hour) per hour) per hour) per hour)
March 19 March 19 March 17 Moreh 17
0405 0 0409 0 2200 0.000553 2400 0.00277
0432 .11 0411 m March 18 March 18
0456 .02 0453 12 2000 .000553 2400 .00109
0502 .30 0457 .0031 March 19 March 19
0517 .08 ) 0505 .0016 0300 .000553 0530 .00109
0602 . .04 0545 0 0500 .000553 0637 .00170
0702 .01 0753 0 0630 000982 0845 .00170
0757 .04 0803 m 0815 . 000982 0930 00277
0802 .12 0825 W 0845 .00161 1000 .00831
0827 .07 0845 .0062 0900 .00818 1018 10101
0832 .24 0905 L0125 0915 .0323 1230 .00670
0847 .28 0925 L0094 0945 .0323 1400 00519
0902 .32 1005 L0031 1015 .0154 1800 .00387
0907 .48 1025 L0016 1100 .0128 . 1830 .00387
0947 .12 ‘ . 1105 0] 1215 . 00639 1840 .00514
1717 0 1205 0 1445 .00497 1850 .00670
: 1752 ' .14 1715 0 1715 .00549 1900 .0120
1757 .72 1719 m 1745 .00497 1930 .0143
1812 .16 1749 ) 1800 .0214 2015 .0120
. 1817 2.88 : 1753 .0156 1810 - L0214 2100 .0101
1820 1.00 1805 .0094 1820 .0611 2230 .00670

1824 R £ 1809 .0156 1830 .0655 2400 .00519

TENLIADIYOYV J0 LAAA SN ‘89FT "ON NILATING TVOINHADHL ¥FIE



1930
2015
2100
2200

2400

0300
0600
1500
2400

1200
2400

1200

2400-

0400
1200
1800
2400

1500
2400

.0281
.0241
.0123
.0104
.00639

AMarch 20
.00349
00245
.00161
.000982

March 21
.000553
.000533

March 22
.000351
.000351

March 23
.000312

0 .000234

.000312
.000312
March 24
.000195
.000195

March 20
0400 .00387
1030 .00277
2100 .00170

March 21
0600 .00209
2400 .000669

March 22
.000380
.000380
.000507
.000507
. 000380

March 23
- .000284
.000380
.000380

March 24
000284
.000249
.000284
.000284

(o
—
Z
&
-
&
3
o
&
o
=
4
o
5}
o
é
=
S
ot
oy
a
[/}
v
=3
&
2
197}
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