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PREFACE 


This pUblication is a shortened version of lectures given by Professor J. C. I. 
Dooge, Department of Civil Engineering, "University College, Dublin, Ireland, 
ill August 196.7 at the Department o~ Agricultural Engineering, University of 
Maryland, under th6 sponsordhip of the Agricultural Research Servicfl, U.S. 
Department of Agriculture. Professor Dooge is a world authority on hydro­
logic systems, which are basic to computations for successfully planning the 
best use of soil and water resources ill agricultural watersheds. 

The original course consisted of 18 lectures suppJemented by problem 
sessions and seminars; however, this publication is confined to the first 10 
lectures, which dealt with the general principles of the linear theory of de­
terministic hydrologic systems. Some important material, originally dealt 
with in later lectures, has been included in <'nmmary form in lectures 7,8, 9, 
and 10 of this publication. 
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LINEAR THEORY 

OF HYDROLOGIC SYSTEMS 


By James C. I. Dooge l 

INTRODUCTION 

ThE'sE' lE'cturE'G were deHigned to int:roduce participants to the theory of 
deterministic hydrologic systems. In recent year", tbis theory has been named 
"parametric hydrology," but is also known as "dynamic hydrology" or 
"d€,terministic hydrology." One object of the course was to make -the pru·tici­
pants aware of cE'rtain theories and techniques rather than to give them a 
perfect kuowledge of the theory or a complete mastery of the techniques. 
AttE'ntion was directE'd to the essential unity underlying the many methods 
that have appeared in thl' hydrologic literature as sep,mingly unrelated to 
one another. Another aim of the course was to reformula\'e established con­
cepts and techniques in terms of a general systems approach and thus to 
extrnd thrif usefulness. 

Tbis publication follows the organization of the original (~.)Urse and is di­
vided into lectures. Lecture 1, which is far longer than any other, consists of 
a prrview of the subject matter of the whole course. Tbis is followed by two 
rrview lectures, one on physical hydrology and the other on the mathematics 
required for the study of deterministic hydrologic systems. Lectures 4, 5, and 
6 deal essentially with the problem of the identification of deterministic 
hydrologic systems and, thus, with the analysis of the behavior of a given 
system. The next fou~ lectures-7 through 100deal with synthesis rather 
than analysi~. In them, the question of simulating the behavior of natural 
hydrologic systems is discussed. 

The original lectures were built around more than 100 figures, wbich were 
included with the handout material for the course, and also projected during 
the lectures. In tbis publication, many of these figures have been incorporated 
into the text. The handout material also contained a number of problems 
and a large number of references for each lecture. These were not confined 
to what would have been directly necessary for a short, 2-week course. Rather 

Formerly, Professor and Head, Department of Civil Engineering, University Col\ege, 
Cork, Ireland (1958-70); since then, Professor and Head, Department of Civil Engineering, 
University Col\ege, Dublin. 
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they were chosen so that the participants could, after the completion of the 
course, go more deeply into any part of the subject which was of particular 
interest to them. These problems and references are included in this publi­
cation and npr enr at the end of each lecture. So as to fncilitate further study 
of individual aspects of the subject, some important references have been 
repented ill the various lectures rather than cross-referenced from one lecture 
to another. 



LECTURE 1: 
HYDROLOGIC SYSTEMS 


The Systems Appr\')ach 


What is a system? 

Before starting to discuss hydrologic systems, it is well to be clear about 
what we meau in this coutext by a system. There are, of course, almost as 
mauy definitions of a system as there are books on the subject of systems 
analysis and systems synthesis. It is worthwhile to review a few of these 
definitions beforp arriving at a working definition which will serve our purpose. 

The first definition by Stafford Beer (6)2, an expert on management and 
cybernetics, mpreiy deHnes a system as "Anything that consists of parts 
connected together." This includes the essence of what a system is. It is some­
thing that consists of parts i there are separate parts in it, and they are con­
nect('d together in some way. Of course, this does not bring us very far because 
philosophers will tell us that everything which is created, everything which 
changes, cousists of parts. While it is true to say that everything is a system, 
this does not help Uf.\ vpry much to build up a consistent theory of hydrologic 
systpms. 

A second deHnition is that given by l\IacFarlane (30) in his book on 
"Engine(\ring Systems Analysis" in which he defines a system as "An ordered 
arrangen1€'nt of physical or abstract objects." Here, the notion of some sort 
of ol'der enters thl:' picture j tb-_, system is put togethel' in accordance with 
somp SOl't of plan. Also we have the idea that there are two types of systems-a 
physical or reltl syst('ni and an abstract one. 

A third dpfinition by Ackoff (2), who was a pioneer in operations research, 
StiLtps that a s~·st('m is, "Auy entity, conceptual or physical, which consists 
of int('rdep(,lld€'llt parts." Again we get the idea that the system can be con­
ceptual or physical and that the system consists of interdependent parts. 

The fourth definition, by Drenick U9), stresses the manner of operation of 
a system rather than its structure: "A device which accepts one or more inputs 
and geuE;'ratE;'s from thE'm OUE;' or more outputs." This concept of a system, as 
that whirh links inputs and outputs, is common in the literature. Further 
definitions and desrriptions of the systems approach in other disciplines are 
found ill works by Bellman (7), Doebelin (14-), Draper and others (18), 
Ellis and Ludwig (21), Koenig and Blarkwell (24-), Lee (27), Lynch and 
Truxal (29), Paynter (37), Stark (,~3) and Tustin (44-). 

Haying considered a large number of definitions of a system, I decided to 

2 It!lJic numbllrs in parentheses refer to Liternture Cited at the end of each lecture. 
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accept as adequate for the present purpose, the definition that, "A system is 
any structure, device, scheme, or ptocedure, real or abstract, that interrelates 
in a given time .reference, an input, cause, or stimulus, of matter, energy, or 
information, and an output, effect, or response, of information, energy, or 
matter." This definition includes the concepts contained in the definitions 
given above. The emphasis is on the function of the system-that it inter­
relates, in some time reference, an input and an output. In mechanics, we 
tend to talk ~bout inputs and outputs; physicists and philosophers often speak 
of causes and effects; workers in the biological sciences talk of stimuli and 
r{'sponses. These are merely alternative words for the same two concepts. 
Reference to all input does not restrict the concept to a single input. The 
input could consist of a whole group of inputs so that we would have an input 
vector rather than a input variable. In some cases, the input could be com­
pletely distributed in space and thus represented by a function of both space 
and time. 

The definition refers to inputs (and outputs) as consisting of matter, energy, 
or information. In some systems, both the input and output would consist of 
material of some sort; in others, attention would be concentrated on the 
input and output of energy j while in other systems, the concern would be "ith 
the input and output of information. There is no need, however, for the input 
and the output to be alike. It is perfectly possible to have a system in which an 
:'lIpLli of matter will produce an output of information or vice versa. That 
there is no necessity for the natures of the input and output to be the same 
has been emphasized in the definition by using the reverse order to describe 
the natures of the input and the output. The essence of a system-which can 
be real or r.bstract-is that it interrelates two things. 

Concept of system operation 

In dealing with problems in applied science, our concern is to predict the 
output from the system we are interested in. Figure 1-1 shows the three 
elements that together determine what this output will be. In the classical 
approach, certain assumptions are made about the nature of the system and 
the physical laws gov('rning its behavior; these are then combined "ith the 
input to predict the output. To apply this classical procedure, it is necessary 
to know the physical laws or to be able to make reasonable assumptions a.bout 
them. It is also necessary to be able to describe the structure of the system 
and to specify the input. A distinction is made here between the nature of the 
system itself and the physical laws of its operation. The nature of the system 
refers only to its inherent structure, that is, to the nature of the components 
of the system and the way in which these components are connected. 

In hydrology, as in many other areas, the classical approach tends to 
breakdown either because, on the one hand, the physical laws are impossible 
to determine or too complex to apply, or, on the other .hand, the geometry of 
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FIGURE I-I.-Factors affecting output. 

the system is too complex or the lack of homogeneity too great to enable us to 
apply classical methods to the prediction of the behavior of the system. In 
the systems approach, an attempt is made to evade the problems raised by the 
complexity of the physics, the complexity of the structure of the system, and 
the complrxity of the input. 

Figure 1-2 shows the essential nature of the systems approach to the 
problem. In figure 1-2, the elements of figure 1-1 are rearranged, and the 
concept of system operations is introduced. In the systems approach, the 
complexities arising from the physical laws involved and from the structure 
of the system being studied are combined into the single concept of the system 
operation of this particular system. If either the nature of the system or the 
physical laws are changed, then the systems operation will be changed. These 
effects are shown in the vertical relationships in figure 1-2. In dealing with 
one particular system, however, we can use this combined concept of system 
operation as being the element which accepts the input and converts it into 
an output. 

Thus, in the systems approach, attention is concentrated on the horizontal 
relationship in figure 1-2. In systems analysis, we are concerned only with the 
way in which the system converts input to output. If we can describe this 
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INPUT OUTPUT 


FIGURE 1-2.-The concept of system operation. 

system operation, we are not concerned in any way with the nature of the 
system-with the components of that system, their connection with one 
another, or with the physical laws which are involved. The systems approach 
is an overall one and does not concern itself with details which mayor may 
not be important and which, in any case, may not be known. 

The concern of the systems approach with overall hehavior rather than 
details can be exemplified by the unit hydrograph approach to predicting 
storm runoff. In this approach, precipitation excess is taken as the input and 
the direct storm runoff as the output. The operation of the whole watershed 
system in converting precipitation excess to direct storm runoff is summarized 
in the form of the unit hydrograph. We are not concerned with arguments 
about whether there is, or is not, such a thing as internow, nor with arguments 
as to whether overland flow actually occurs; and if it does, what the friction 
factor is. 'Ne may overlook our ignorance of the physical laws actually deter­
mining the processes in various parts of the hydrologic cycle. We may ignore 
the problem of trying to describe the complex watershed with which we are 
dealing; we do not have to survey the whole watershed by taking cross sections 
on every stream as we would have to do if we wanted to solve the problems 
by classical hydraulics. Instead we assume that all the complex geometry in 
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the watershed and all the complex physics in the hydrologic cycle is described 
for that particular watershed (but of course for that one only) by the unit 
hydrograph. The systems approach is basically a generalization of this standard 
technique that has been used in applied hydrology for many years. The 
essential feature is that in dealing with the analysis of a particular system, 
attention is concentrated on the three horizontal elements in figure 1-2. 

This does not mean that the structure of the system or the physical laws 
can be completely ignored. If oU!' problem is one of synthesis or simulation, 
rather than analysis, it is necessary to consider the vertical elements in figure 
1-2. Again we have an analogy with the unit hydrograph technique in applied 
hydrology. If we have no records of input and output (that is, of precipitation 
excess and of storm runoff) for a watershed, it is necessary to use synthetic 
unit hydrograph procedures. This is done in applied hydrology by correlating 
the parameters of the unit hydrograph with the catchment characteristics. 
In this way, the effect of the structure on the system operation is taken into 
account. Because the physics does not change from watershed to watershed, 
it might be thought that no assumptions are made about the physics of the 
problem in synthetic unit hydrograph procedures. This is not so. The whole 
unit hydrograph process of superimposing unit hydrographs and blocks of 
precipitation excess depends on the superposition principle, which will only 
apply, as we shall see later, if the system we are dealing with is linear. There­
fore, unit hydrograph procedures make the fundamental assumption that 
the physical laws governing direct surface runoff can be represented as 
operating in some linear fashion. 

In the above example, the details of the operation of a system were ignored 
because they ·were too complex to be understood. In other cases, the details 
are ignored because they are not important. Again we can take an example 
from classical hydrology. The problem of routing a flow through an open 
channel can be solved by writing down the equation of continuity and the 
dynamic equation and proceeding to solve the problem for the given data by 
thp methods of open channel hydraulics. Even with large, high-speed com­
putel's, the solution for the case of a nonuniform channel is extremely difficult. 
The solution proceeds step-by-step down the reach and marches out step­
by-step in time. In practice, the detailed results for the discharge and depth at 
every point along the channel are not required since all we usually wish to 
know is the hydrograph at the downstream end. Whether we use the method 
of characteristics. an explicit finite difference scheme, or an implicit finite 
difference scheme, difficulties of one sort or another arise in the numerical 
solution of this problem. Most of the information which we have gained with 
such labor is of littL interest to us as applied hydrologists. More than 30 years 
ago, hydrologists dodged these difficulties by introducing the idea of hydrolo­
gic routing, that is, the idea of treating the whole reach as a unit, trying to 
link up the relationship between the upstream discharge and the downstream 
discharge without bothering with what went on in between. 
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Systems ter.minology 

As in every other discipline, a terminology has grown up in systems analysis 
and systems engineering. The meaning of the more important concepts and 
terms mt"st be clear before we can understand what is written in the literature 
concerning the systems approach. 

A complex system may be divided inb subsystems, each of which can be 
identified as having a distinct input-output linkage. A system or a subsystem 
may also be divided into components, each of which is an input-output ele­
ment, which is not further subdivided for the purpose of the study in hand. 
Thus, a system is composed of subsystems, and the subsystems themselves 
consist of components. 

Reference is frequently made to the sta.te of a system. This is a very general 
concept. Any change in any variables of the system produces a change of 
state. If all of the state variables are completely known, then the state of the 
system is known. Perhaps it is easiest to look at this in hydrologic terms. If 
we knew exactly where all the water in a watershed was-how much of it was 
on the surface, how much of it in each soil horizon, and how much of it in each 
channel-we would know the hydrologic state of the watershed. The state 
of a system may be determined in various ways. In some systems, it is deter­
mined historically, that is, the previous history of the system determines its 
present condition. In other cases, the state of the system is determined by 
some external factor which has not been included in the system under examina­
tion. In still other cases, the state of the system is stochastically determined 
or else assumed to be stochastically determined, that is, determined by a 
random factor. 

A system is said to have a zero memory, a finite memory, or an infinite 
memory. The memory is the length of time in the past over which the input 
atiect-s the present state. If a system has a zero memory, then its state and its 
output depend only on the present input. If it has an infinite memory, the 
state and the output will depend on the whole past history of the system. In 
a system with a finite memory, its behavior, its state, and its output depend 
only on the history of the system for a previous length of time equal to the 
memory. 

The distinction between linear and nonlinear is of vital importance in 
systems theory as it is in classical mechanics. The analysis and synthesis of 
linear systems can draw on the immense storehouse of linear mathematics 
for techniques. The special properties of linear systems will be dealt with in 
detail later. For the moment, it will suffice to say that a linear system is one 
that has the property of superposition and a nonlinear system is one that 
dOf:'~not have this property. 

Another important distinction is between time-variant and time-invariant 
systems. A time-invariant system is one whose input-output relationship does 
not depend on the time at which the input is applied. Most hydrologic systems 
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are actually time-variant; there are seasonal variations throughout the year 
and a variation of solar activity throughout the day. Nevertheless, the advan­
tages of assuming the systems to be time-invariant is such that these real 
variations are usually neglected in practice. 

It is necessary to distinguish between continuous and discrete systems, and 
also 8,IIlong continuous, discrete, and quantized systems. Whereas hydrologic 
systems are continuous, the inputs and outputs may be available in either 
continuous, discrete, or quantized form. A system is said to be continuous 
when the operation of the system takes place continuously. A system is said 
to be discrete when it changes its state at discrete intervnls of time. An input 
or an output of a system is said to be continuous when the values of it are 
either known continuously or can be sampled so frequently as to provide a 
virtually continuous record. An input or an output is said to be discrete if the 
value is only known or can only be s!l.mpled at finite time intervals. An input 
or an output is said to be quantized when the value only changes at certain 
discrete intervals of time and holds a constant value between these intervals. 
Many records of rainfall, which are only known in terms of the volume during 
certain intervals of time, arf' in effect quantized records. 

"'Ne can talk of the input a.d output variables and the parameters of the 
system as being either lumped or distributed. A lumped variable or parameter 
is one whose variation in space is either nonexistent or has been ignored. Thus, 
the average rainfall over a watershed, which is used as the input in many 
hydrologir st.udies, is a lumped input. Where the variation in one or more 
space dimensions is taken into account, the parameter is a distributed one. 
Either the parameters of a system itself or the inputs or outputs can be lumped. 
The behavior of lumped systems is governed by ordinary differential equations 
with time as the independent variable. The behavior of distributed systems is 
governed by partial differential equations. 

A distinction is also made between deterministic and probabilistic systems. 
In a df'terministic system, the same input will always produce the same 
output. The input to a deterministic system may be either itself deterministic 
or stochastic. A probabilistic system is one which contains one or more ele­
ments in which the relationship between input and output is statistical rather 
than deterministic. The present lectures are mainly concerned with deter­
ministic systems. 

The distinction is sometimes made between natural systems and devised 
systems. The essential feature of natural systems is that though the inputs 
and outputs and other state variables are measurable, they are not controllable. 
In a devised system, for example, an electronic system, the input may be both 
controllable and measurable. 

Other descriptions of systems are that they are either simple or complex. 
Complex in this context usually means systems with feedback built into them. 
Some systems have negative feedbacks built into them to produce stability 
and others are designed for ultrastability, that is, to be stable even against 
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unanticipated changes in thE: external environment. Beyond feedback we have 
adaptive systems which learn from their past history and improve their 
performance. 

A causal system is one in which an output cannot occur earlier than the 
corresponding input. In other words, the effects cannot precede the cause. 
In E'lec·trical engineering, the limitation to causal systems 1::l sometimes 
abandoned to aehieve certain results. All of the systems dealt with in hy­
drology an' causal systems. Simulation systems arE' also referred to as being 
rE:alizablE'. This has much the same meaning as causal insofar as it means that 
th€' system is 1I0nanticipative in its operation. 

1\.. further important propE'rty of systf'ms is tht'ir stability. A stable system 
is OlH' in which if thE' iuput is bounded, thE:n the output is similarly bounded. 
In hyclrobgy, virtually all our systems ar€' stabll' and extremely stable. In 
Illost cases, "hen thl' inI. t to a hydrologic system is buunclecl, the bound on 
thl' output is considerably less than that OIl the input. 

Basic problems involving systems 

"\Ye haVE' already seen that a SystE'lll is essE'ntially something which inter­
.relates IUl input and an output. Thus, from an overall viewpoint there are 
thf('l' plplllcnts to be eonsid('ted-thl' input, thl' system operation, and the 
output. This gE:nl'ral relationship call bE: represented either by a rectangular 
box, in which the system H converts the input xCi) into the output y(t). 
Aiternativdy, it may be rppresented by the gfCneral mathematical relationship: 

yet) =h(t)..px(t) (1) 

whf'rt:' h(t) is a mathematical function characterizing the system operation 
and t/t is a symbol drnotiug that tht:' fU[lrtion h(t) and the input function x(t) 
are combined ill somr way to produce the output function y(t). If the opera­
tion of th£" system can be described in any way, then we are concerned with 
tht' interrelation of three fUl1rtions-the input function, the system operation 
function, and tht:' output function. 

If we have derived a mathematical representation of the operation of the 
system and we know the input, then the problem of finding the output is a 
problem of prediction. In terms of the unit hydro graph approach, the problem 
is to determine the storm runoff knowing the unit hydrograph and the given 
or assumed effective rainfall. 

If, however, we do not know the unit hydro graph, it is necessary to derive 
it from the past records. This is the problem of finding a function describing 
the system operation knowing the input and output; it may be described as 
the problem of system identification. The problem of system identification is 
much more difficult than the problem of output prediction. It is important to 
realize what we mean by system identification. We cannot identify the system 
uniquely ill the same way as we might identify someone from their fingerprints. 
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Rather can we identify the behav;or of the system much the same way as a 
criminal might be identified by his modus operandi. All that system identifica­
tion tells us is the overall nature of the systems operation and not any details 
of the nature of the system itself. 

The various problems that can arise are shown on figure 1-3. If we have 
a given system, then the problem is one of analysis, as in the case of the 
structural engineer who is faced with the analysis of a given design. There are 
three elements in the system relationship; hence there are three types of 
problems in analysis wHh which we must concern ourselves. In each of these 
situations, the problem is to find one of the elements when given the other two. 

The third prGl11em of analysis is detection. This occurs when, knowing how 
our system operates and knowing the output, we wish to know what is the 
input. This is tht' problem of signal detection and the problem inherent in all 
instrumentation. In hydrology, as in many other fields of engineering, this 
partieular problem has been widely ignored. The engineer has been too content 
to assume that his instruments are perfect, that is to assume that the input 
to an instrument is correctly given by the output recorded by the instrument. 
It is only in recent years that there has been an;\~ study of hydrologic instru­
ments from a systems viewpoint. The problem of signal detection, or signal 
identification, is mathematically the same as the problem of system identifica­
tion and, therefore, also substantially more difficult than the problem of 
output prediction. 

The problem of prediction is that of working out the interrelationship of the 
two functions h(l) and x(l) shown on the right-hand side in equation 1. The 

PROBLEMS ARISING WITH SYSTEMS 

.J ~ ?
{prediction 

.j ? .JAnalysis Identification 

? ~ ,JIdentification 

Synthesis (Simulation) ?? ../ 

FIGURE 1-3.-CIllSSification of systems problems. 
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problem of system identification or signal detection is that of unscrambling 
one of the components on the right-hand side of the equation. This involves a 
problem of inversion, which is inherently difficult. 

Besides the problems of analysis, we have also the problems of synthesis. 
This corresponds to the problem of the structural engineer who has to design 
a structure as well as know how to analyze it. In hydrology, we do not design 
watersheds, except possibly in urban hydrology, but even here we do not design 
them from a hydrologic viewpoi.nt. We do, however, attempt to simulate 
complex hydrologic systems by simpler models, and this is essentially a 
problem of syuthesis. The problem of synthesis is to devise a system which 
will convert a known input to a known output within certain limits of accu­
racy. It involves the selection of a model and the testing of the operation of 
this model by analysis. This is even more difficult than the problem of iden­
tification, and hence the double question mark in figure 1-3. 

A scientific tl.pproach to the analysis and synthesis of systems must rest on 
a firm mathematical foundation. In the following lrctures, the mathematical 
techniques used at present in parametric hydrology are introduced and their 
application described. Those interested in stlldying more deeply the mathe­
matics of system behavior can do so in books by Aseltine (5), Zadeh and 
deSoer (46), DeRusso and others (1S), Gupta (2.!3), and Wymore (45). 

Hydrologic systems 

Although we have already referred to certain isolated problems in hy­
drology, it is well to consider the hydrologic cycle as a whole before considering 
the various hydrologic subsystems. Figure 1--4 shows a diagram of the hy­
drologic cycle by Ackerman and others (1). 

Similar diagrams can be found in any standard textbook. These diagrams 
can be compa-,-ed for such qualities as artistic merit and draftsmanship, but 
what do they mean from a systems point of view? Those who use the systems 
approach are known to have an aversion to such diagrams and to insist on 
drawing everything in terms of neat rectangles. These austere rectangular 
boxes do not even have the color of modern abstract art to save them from 
criticism. From their appearance one would deduce that they show much less 
information than thefigurp.s such as that shown in figure 1--4. Actually, this 
is not so. Figure 1-5 is a systems representation or block diagram of the 
hydrologic cycle and is based on figure 1--4. Actually there are less assump­
tions in the block diagram of figure 1-5 than in the representation in figure 1-4. 

The whole hydrologic cycle is a closed system in the sense that the water 
circulating in the system always remains within the system. The whole system 
is driven by the excess of incoming radiation over outgoing radiation, and the 
movement of water through the hydrologic cycle is only possible because of 
this source of energy. In figure 1-5, the system represented by the hydrologic 
cycle has been divided into subsystems. Thus we have the atmospheric sub­

http:viewpoi.nt
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system, the subsystem represented by the surface of the ground, the sub­
surface subsystem or unsaturated phase, the ground water subsystem or 
saturated phase, the channel network subsystem, and the ocean subsystem. 
Each of these subsystems will contain individual components, but for the 
purpose of an overall analysis and overall discussion, these components have 
aU been lumped into one subsystem. The hydrologic cycle shown in figure 1-5 
is a system in which the inputs and outputs are material. Water in one of its 

percolation 

FIG. 1-4.-Represcntatic.'ll of the hydrologic cycle. 
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FIGUnE 1-5.-Block diagram of the hydrologic cycle. 

phases either moves through the cyrIe or is stored in some part of the cycle at 
all times. Figure 1-6 shows a representation of the hydrologic cycle developed 
by Kulandaiswamy.3 The latter figure is similar to the systems representation 
used by electrical engineers. 

Neither classical hydrology nor systems hydrology deals with the hydrologic 
eyrIe as a whole. Hydrology leaves the atmosphere to the meteorologists, the 
lithosphere to the geologists, and the seas to the oceanographer. The resulting 
subsystem is shown in figure I-i. In outlining this subsystem we have cut 
across certain lines of water transport and, consequently, the system is no 
longer a closed onE:'. These lines of water transport-precipitation, evapora­
tion, transpiration, and runoff-are now either inputs or outputs to Our new 

3 KULANDAISWAUY, V. C. A !lASIC STUDY OF THE RAINFALL EXCESS-SURFACE RUNOFF 

nELA'l;roNsIUP IN A !lASIN SYSTEl!. Ph.D. thesis, Univ. of Illinois. 1964 [Available as Publi­
cation No. 64-12535.} .from University l\<Iicrofil!",p, Inc. P.O. Box 1346, Ann !rbor, Mich. 
48106 



15 LINEAR THEORY OF HYDROLOGIC SYSTEMS 

system. Whereas precipitation is clearly an input and runoff an output, it is 
not always easy to decide whether evaporation and transpiration are inputs 
or outputs. One reasohable standpoint is to consider potential evaporation as 
an input and actual evaporation as an output. 

The systenl shown in figure 1-7 is clearly a lumped system. But this doe~ 
not involve any more assumptions than are made by classical hydrologists 
when they consider the individual basin, whether it be a pal king lot, an 
experimental plot, or a natural watershed. These are all basins-they are all 
systems, which convert a certain hydrologic input into a hydrologic output. 
It is possible to divide up the system and subsystems shown in figure 1-7 
into components. Thus, we could divide the soil into various layers, or divide 
the ground water into two grcuuci water components, one of which is shallow 
and subject to transpiration, il.~,d the other of which is so deep that no ground 
water loss can occur through transpiration. 

The distinction shown in figure 1-7 between overland flow, interflow, and 
ground water flow is not generally made in applied hydrology because it is 
virtually impossible to separate the three types. Instead, applied hydrologists 
distinguish between surface fluw and base flow and use a model of the hy­
drologk cycle something like that shown in figure 1-8. The precipitation is 
divided into (1) precipitation excess and (2) infiitJration and other losses. 
The precipitation excess produces direct storm runoff. The infiltration re­
plenishes soil storage which is drawn down upon by transpiration. Any excess 
infiltratioll after soil moisture storage is satisfied forms recharge to ground 
water, which eventually emerges as base flow. The presence of the threshold 
in the soil storage phase of the system makes it impossible t.o treat the whole 
system as linear, even wlH're the evaporation and transpiration are completely 
known. The development of the unit hydrograph theory as a linear relation­
ship between preeipitation execs, and storm runoff avoided this difficulty by 

Subsurface inflow 
Q to chanrltll 

RL 
Rainfall loss 

Roinfoll<R) Q 
Surface Inflow 

excess ID channel 

FIGURE 1-6.-Kulandaiswamy's block diagram. 
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the elimination of the basf.' flow and the inftltration. It is the existence of this 
threshold-rather than the difference in response time between the surface 
response and the ground water responsf.'-that necessitates the separation. 

In applied hydrology, the full model shown in figure 1-8 is not used. In 
practice, the base flow is separated from the total hyt1rograph in some arbi­
trary fashion, and the precipitation excess is then taken so as to be equal in 
v!tluf.' to the storm runoff. On the other hand, in soil moisture accounting the 
threshold effect inherent in soil moisture storage is taken into account. It is 
only recently that studies have taken both phases into account. Also, it is only 
recently that the systems techniques developed for surface water have been 
applied to the problems of ground water response, notably by Kraijenhoff 
van de Leur (25). 

If we wish to consider the whole system shown in either figure 1-7 or figure 
1-8, then we are of necessity dealing with a nonlinear system. This brings in 
all the difficulties of nonlinear mathematics. It is not surprising, therefore, 
that the concentration has been on the individual elements shown in figure 
1-8. Over the past 35 years, unit hydrograph techniques have been developed 
for dealing with the direct response in runoff and these techniques are all 
based on the assumption of linear behavior. Similarly, drainage engineers 
dealing with the saturated zone have used linearized equations, though it was 
not until very recently that it was realized this would enable systems methods 
to be USE'd without further loss of generality (25). The unsaturated phase 
involving soil moisture storage remains the most difficult part of the hy­
drologic cycle to handle. Not only does a threshold exist, but there is a feed­
back mechanism because the state of the soil moisture determines the amount 
of infiltration. It is in the unsaturated phase that the greatest difficulties will 
be rncountered and that the greatest amount of work needs to be done. 

The systf.'ms approach has been fruitful in many other disciplines. Such 
work as has been donr on parts of the hydrologir. cycle has been encouraging. 
Thrre is every reason to believe that the application of the systems approach 
to the whole hydrologic cycle will produce a coherent theory of hydrologic 
systems, which can form the basis for an applied hydrology with a sc)er..~ific 
basis. The devE'lopment over the past 15 years can be followed in the references 
cited at the end of this lecture. General surveys of the problem irom varying 
points of view have been given by Paynter (36), Amorocho and Hart (3), 
Kraijellhoff van de Leur (26), Kaah (33L and Dooge (17). 

Linear Tillle-Invariant Systellls 

The essence of linearity is the principle of superposition, which may be 
describtxl as follows (an arrow signifies that a particular input to the system 
results in a particular output) : 
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then the syst£'m is said to be linear if: 

This principle includes the principle of homogeneity in the special case in 
",hieh Xl =X2. 

The prinC'ipl(' of superposition, of courst', is not confined to the addition of 
only two inputs. Any numbt'r of inputs can be added together as long as the 
principle holds; the output will be the sum of the individual corresponding 
outputs. Since intrgration is a limiting form of summation, if the input to the 
system can be expressed as the integral of any function f(i), then the corre­
sponding output can be obtained by inte-grating the output due to an input 
f~t) . 

The systrm linrarity dt'fined by tht' prineiple of superposition must be dis­
tinguished from the t'xistence of a gE'lwral lint'ar (that is, a straight line) 
fUlletionall'('lationship bt'tw('t'll input and output. It can easily be vt'rified that 
if the input to a system is x and the output is y = a:r+b, the system is not linear. 

1\. systt'm is said to br timp-invariant whE'n its paranwtrrs do not change 
with time. For sueh a syst('m, the form of the output depends only on the form 
of tlw input and not on the time at which the input is applied. Thus, if 

thpn for a time-invariant system: 

where T is a time shift which may be eith('r positive or negative. 
In hydrology, the assumptions of linearity and time-invariance are not 

valid, but nevertheless havt' bt'en used for tl long time in applied hydrology 
brcause of the simplification thry introduce. The ability to predict the output 
from a hydrologic system is based on past records of input and output. By the 
assumption of time-invariance, it is possible to predict an output for a given 
input if that particular input has already occurred at some time during the 
period of record. ,Yithout the assumption of time-invariance this would not 
be possible. The further assumption of linearity allows the prediction to be 
made eVE'Il though the shape of input in which we are interested has not 
occ-urred in the past. This is done by (1) breaking down the past input and 
thE' input being considered into basic elements of standard shape but varying 
volume, (2) decomposing the past output so as to obtain the output due to a 
charadNistie input dement of standard volume, (3) using the latter result to 
predict the output due to the individual characteristic elements of the input 
being considered, and (4) superimposing the output,,> from these individual 
characteristic elements to obtain the total output. This is the basis of the 
unit hydrograph procedure, which deals with the storm runoff for a unit 
period. 
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The problems of systems analysis and synthesis are also greatly simplified 
if the input and output of a system are assumed to be lumped. In a lumped 
system with a single input and a single output, the behavior of the system 
would b(' governed by an ordinary differential equation. For the system with 
several inputs and several outputs, the behavior of the system would be 
described by a set of diff('rential equations. If the inputs !l.nd outputs are nut 
lumped, then the system behavior must be described by partial differential 
equations. Sinc(' partial differential equations are much more difficult to 
handle than ordinary differential equations, there are distinct advantages in 
using lumped inputs and outputs in the first attempt to formulate a theory 
of system b('havior. 

The assumptions of linearity and timr-invariance are also reflected in the 
type of differential equations which would describe the behavior of the system. 
Thus a lumped Linear system would correspond to an ordinary linear differ­
ential equation. If the system were also timr-invariant, then the differential 
equation would br an ordinary differential rquation with constant coefficients. 
The fart that ordinary differential equations with constant coefficients are 
far easier to handlr than any othrr type indicates the advantages of making 
the assumptions of lumping linearity and time-invariance in the handling 
of systrm oprrations. 

The assumption of linearity helps us greatly with the problem of pre­
direction. If a complex input can be described in terms of a set of simple 
characteristic functions and the output corresponding to each of these char­
acteristic functions is known, then the output due to the complex input can be 
obtained by superposition. This question has been well discussed by Sievert 
(40). It is, of course, possible to expand an arbitrary function in a great 
vari(,ty of ways. Thus, we could expand the function in terms ofa power 
series: 

(2) 

or in trrms of an ('xponrntial series: 

(3) 

Th(' trouble with such series is that in the case of a function which is given 
numerically, it is difficult to drterminr the values of the coefficients in the 
expansion with good accuracy. If, however, we expand x(t) in terms of a set 
of functions !.(t) : 

xCi) =co!o(t) +Cdl(t) +l:2h(t) + ..... (4) 

wh('n' th(' functions !i(t) are orthogonal (see "Orthogonal Polynomials and 
Functions," lecture 3) then the property of orthogonality can be used to nnd 
thr cO('fficiruts c, rrlativrly easily and with good accuracy. 

In ('hoosing between the orthogonal functions available it is, of course, 
conv('nient if the orthogonal series used to fit a given xet) .is as short as 
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possible. Consequently, one set of orthogonal functions may be preferable 
to another set because of the nature of the input. If the input is expanded in 
terms of a set of orthogonal functions f,(t) in accordance with equation 4 and 
the output corresponding to each of these orthogonal functions is given by: 

(5) 

then the output from the system due to the input x(t) is given by: 

(6) 

where the values of the respective coefficients in equations 4 and 6 are equal' 
It is also convenient if the output I;orresponding to the typical orthogonal 
function is simple in form. Thus, the choice of a convenient set of orthogonal 
functions for representing the input, output, and response function depends 
both on the nature of the input and the nature of ·the system. 

Electrical engineers deal with lightly damped systems in which the inputs 
are usually sinusoidal. Consequently, Fourier methods of analysis are of great 
utility in electrical engineering, since the sine and cosine functions are or­
thogonal to one another and are of the same general form as the inputs and 
outputs. Consequently, the Fourier methods were the first to be developed in 
systems analysis. The various developments of Fourier methods-the Fourier 
-integral for dealing with transients and the Laplace transfonn for dealing with 
unstable systems-are natural developments. These well-established tech­
niques can be found in standard texts such as Gardner and Barnes (22). 

In hydrology, however, the systems are not lightly damped and the re­
sponses are not oscillatory in nature. Instead, we have systems that are very 
heavily damped. It would, therefore, be foolish to take over from the electrical 
engineer the techniques he has developed for his particular problems without 
close examinatiou of their relevance to hydrologic systems. 

Continuous forms of the convolution equation 

The derivation of the fundamental equation for system operation of a linear 
system depends on the use of the concepts of an impuls~ function and the 
impulse response. The impulse function-or Dirac delta function-is really 
a pseudofunction or distribution which is usually defined as having the 
properties: 

oCt-to) =0, when t;6.to (7) 

f~ oCt-to) dt=l (8) 
-00 

The delta function is usually visualized as the limiting' form of a pulse of some 
particular shape as the duration of the pulse goes to zero. The more correct 
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mathematical definition of the delta function: 

x(t) = foo O(t-T)X(T) dT (9) 
-00 

is actually more directly useful for our purpose here. Siebert (40) has pointed 
out that equation 9 is a special limiting form of equation 4, in which !i(l) is 
replaced by the orthogonal delta function oCt-Ti) and the orthogonal coeffi­
cients Ci are given by x (Ti). 

The impulse response of a system, h (t), is defined as the output from the 
system when the input takes the form of an impulse or delta function, that is, 
if x(t) =o(t), then y(t) =h(t). If the system is linear, the impulse response 
gives as complete a description of the system behavior as is needed. In surface 
water hydrology, the lUll is the impulse response of the catchment. 

The two concepts givun above can be used to derive a convenient mathe­
matical formulation of system operation for a lumped linear time-invariant 
system. If the impulse response of the system is h(t), then we have: 

o(t)~h(t) 

For a time-invariant system 

For a linear system 
X(T) (t-T)~X(T)h(t-T) 

Any arbitrary input xCt) can be considered as being made up from an 
infinite number of delta functions as indicated by equation 9 above. Since the 
operation of integration is linear, the output from such an input xCt) will be 
given by integrating the weighted output x(T)h(t-T) corresponding to the 
individual delta functions jj (t-T) : 

X(t)~ foo h(t-T)X(T) dT 
-0(> 

(10) 

Thus for an input x(i,) and an output yet), we have the relationship: 

yet) = fOO h(t-T)X(T) dT 
-00 

(lla) 

The right-hand side of this equation represents the well-known mathematical 
operation of convolution, which is often represented by an asterisk so that 
we can write: 

yet) =h(t)*x(t) (llb) 

Thus, the completely general relationship indicated in equation 1 has been 
replac('d by the definite convolution relationship represented by equation 11 
for a lumped linear time-invariant system. As long as \ve confine our attention 
to such systems, we will be concerned with the solution of equation 11. The 
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problem of prediction now becomes the solution of equation 11 for known 
values of x(t) and h(t) and, hence, represents only the operations of multi­
plication and summation which are inherent in cOllVolution. 

The t\\'in problems of system identification-the determination of h(t)­
and of signal identification-the determination of x(t)-are now seen to 
involve the solution of an integral equation which is, of necessity, a much more 
difficult mathematical problem than that of convoluting two known functions. 
The problem of synthesis is now seen to be that of devising a simulation 
system whose impulse response will, to a sufficient degree of approximation, 
represent the function h( t) which is required. The impulse response in equation 
11 is the IUH used in hydrology. In other disciplines, it is variously referred to as 
an impulse response or a characteristic response or a weighting function; in 
mathematics it is referred to as a kernel junction, a Green's junction, or an 
influence junction. 

Though we are largely concerned with lumped linear time-invariant systems, 
it is instructive to consider briefly the more general forms of the mathematical 
relationship between input and output when these assumptions are relaxed. 
If instead of a single input, we had a number of lumped inputs, then the 
relationship would be as follows: 

(12) 

An equation of the above type would apply to the case where the rainfall was 
measured at several points in the catchment and the values of Xi(t) represented 
the individual rainfall records. In such a case, hi(t) would represent the 
contribution from the portion of the catchment area corresponding to the 
-ith rain gage to the flow not at the outlet from that subcatchment but at the 
outlet from the whole catchment. The solution of the identification problem 
in this case would involve the solution of a set of simultaneous integral equa­
tions. If the rainfall were taken as completely distributed over the catchment 
area, then the equation for the outflow at the end of the area would be given 
by: 

yet) = fa Jot> x(r,cx)h(t-r,a-cx)dr dcx (13) 
o -to 

In a system which has a lumped input and is linear but time varying, then 
the impulse response h(t,r) is a function of both the elapsed time t and the 
time r at which the impulse of input is applied to the system. Thus we have 
the relationships: 

o(t) --'>h (t,O) 

o(t-r)--'>h(t,r) 

x(r) 0(t-r )--,>x(r)h(t,r) 
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Using the property of linearity, we would have for an input x(t), the output 
given by: 

x(t)~ foo x(r)h(l,r) dr (14) 
-00 

so that· the system operation is defined by: 

(00 

y(l) = j_ x(r)h(t,r) dr (15) 

Since equations 11, 12, 13, and 15 are superposition integrals, they apply 
only to linear systems. There is no corresponding general formulas for the case 
where the system is nonlinear, but special formulas can be developed when the 
system is assumed to belong to tt particular class of nonlinear systems. 

If we make the assumptions of lumped inputs and outputs, linearity, and 
time-invariance, we have the genern.l superposition integral given by equation 
lla. Since in this equation, r is a dummy variable of integration, we can 
replace it by l-r in which case the superpobition integral becomes: 

yel) = foo h(r)x(t-.) dr (11c) 
-00 

Equations lla and 11c are equally valid formulations of the relationship 
among the input, the system op€:7ation, and the output. 

The limits of the superposition integral can be modified if we make the 
further assumption that the systems being considered are causal, that is, that 
til(' output cannot occur before the input. Since the impulse response h(t) is 
the responst' to a delta function at time l=O, the impulse response function 
will be zero for a negative argument. Thus for causal systems, equation 11a 
can be written as: 

yet) = / x(r)h(t-r) dr (16a) 
-OJ 

and equation 11e can be written as: 

oo 
yet) = l h(r)x(t-r) dr (16b) 

o 

If the system has a finite memory, or if the input has existed ror only a 
finite time, then the limits will be further modified. If the length of the memory 
is n, then the impulse response will be zero for arguments greater than nand 
equation 16a may be modified to read: 

yet) = t x(r)h(t-r) dr (17a) 
t-n 
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and equation 16b will be modified to read: 

yet) = in h(T)X(t-T) dT (17b) 
o 

The equations given above will hold for the case where the input has oc­
curred for an infillite timl' in thl' past. For an isolate:': input, it is convenient 
to take the time zero at the start of input. In this case, thl' value of the input 
x(O will be zero for negative argument. For an isolated input to a system with 
infinite memory, l'quation16a will be modified to: 

yet) = [x(r)h(l-r) dT (lSa) 
o 

and equation l6b to: 

y(t) = (h(T)X(I-r) dT (ISb) 
JO 

For an isolated input to a system with finitl' memory the limits of integration 
in equation 17 will also b(' modified so that th(' range of integration will not 
exceed t, but in practice, it is more convenient in this case to retain the limits 
and record the zero values. Equation 18 is the normal form of the convolution 
equation which is dealt with in parametric hydrology. Except in special 
circumstances, which will be noted, it is the form used in the present lectures. 

Classical systems analysis as developed by electrical engineers has grown 
up around frequency analysis, which is essentially the analysis of periodic 
phenomena. Cure must be taken if these techniques are to be used in the anal­
ysis of hydrologic systems. Such techniques can nnly be used if the system 
under review has a finite memory. In such a case, if the input is of length M 
and the memory of length N, then the length of the output will be P where: 

P=j"I+N 

In hydrologic terms, M is the duration of rainfall excess; ]V is the base length 
of the IUR, and P .is the duration of surface runoff. Since, in the case of a 
single storm event, everything that we are interested in is contained between 
zero time and P, we ('ould assume the whole phenomena as periodic with a 
period T, provided that T is equal to or greater than P. This would mean 
that both the input and the output would be assumed to be repeated at the 
chosen intervl1.1 T. Since these would be repeated inputs and not isolated 
inputs, we would not be entitled to set the limits of the convolution integral 
at zero and t as in equation 18. If the memory were finite and equal to N, 
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the convolution equation would then become: 

y(t±kT)= ft x(r±kT)h(t-r) dr (19a) 
t-N 

N1 x(t-r=FkT)h(r) dry(t±kT) = 
o 

(19b) 

wheft' 

and 
x(l±kT) =0 for J11<t<T (19c) 

(19d) 

Discrete lorn}!; of convolution (.'qulltion 

Th(' form of the.' ('onvolution equation given aoovl' as equation 18 is for the 
('ast' whert' both the.' input and the output are continuously defined. If either 
tht, input or the.' output is given in quantized or discrete form ruther than 
rontinuous form, the.' convolution equation must be modified accordingly. 

III th(' dassical unit hydrograph procedures, the rainfall is frequently given 
as a histogram, that is, in quantized form. In such a case, we deal not with an 
ItcH, but with the finite period unit hydrograph introduced in 1932 by 
Sherman (39). A hist.ogram input with an interval D can be defined either in 
te.'rms of thl' histogram ordinates x(i), where t is the actual time elapsed, or 
in terms of th(' histogram areas X(oDL where u is the number of interval;; 
elaps('d before the beginning of the.' interval in question. The latt.er is more 
convenient and is used below. The histogram of input can be expressed in 
terms of the volumes of input X(uD) in successive standard periods as follows: 

... 
xCi) = L: XlCTD)PD(t-uD) (20) 

where 

1 
PD(L-uD) = D for CTD<t< (u+1)D e21a) 

and 
PD(t-oD) =0 for other values of L (21b) 

Equation 21 is in effed the equation for a rectangular pulse of duration D and 
unit volume.'. N'ote that the volume of such a pulse is D and not unity. 

Having replaced the delta function by the square pulse, we now replace 
the impulse response h(t) by the pulse response hD(t) which is defined as 
being the output from the system when the input is given by the rectangular 
pulse de.'fined in equation 21. Thus, we have: 

PD (t)---+hD (t) 
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For a time-invariant system: 

PD(t-uD)~hDtt-uD) 

For a linear system: 

X(uD) ·hD(t-(JD)~X(uD) ·hD(t-uD) 

Since summation is a linear process, we can write the output due to the input 
dE'fined by equation 21 as: 

0-1-00 

X(t)~ L X(uD)hD(t-uD) (22) 

so that thr rriationship b('twren input and output for the system is given: 

00 

yti) = L X(uD)hD(t-uD) (23a) 

whiell corresponds to equation Ha for continuous input. As in equation Hc, 
this equatioll can be written in the alternativr form: 

00 

ytt) = L X(t-uD)hD(uD) (23b) 

As in the continuous case, the limits of summation will be affected by the 
further assumptions of causality, finite memory, or zero input for zero time. 
III particular, for a ('ausal system with an infinite memory, we have for 
iso:ated input: 

O'D_t 

yet) = L X(uD)hD(t-uD) (24a) 
O'D-O 

O'D_t 

yet) = L X(t-uD)hD(uD) (24b) 
O'D-fl 

Equation 24 is the ('ollvoiution equation for a finite period unit hydrograph. 
Both thE' unit hydrograph and the output are defined continuously even 
though the input is defmed in quantized form being constant over each interval 
of length D. 

In somE' of the early unit hydro graph work, both the input of rainfall excess 
and th(' output of storm runoff were represented by volumes over a fixed 
jntrrva!. The convolution equation for this case would be: 

Y(sD) = LX(uD)dD(sD-uD) (25) 
0'-<1 
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where both sand rr are discrete variables and tiD is the distribution graph for 
the interval length D for the particular catchment. The distribution graph 
dD represents the proportion of the inflow during a standard interval which 
runs off in successive standard intervals. 

In some cases, the input and output are only sampled and, thus, are only 
available in the form of functions known at discrete moments of time. In this 
case, the convolution equation would take the form: 

<XI 

y(sD) = L: X(rrD)hD(sD-rrD) (26a) 

which can be written without ambiguity as: 

<XI 

yes) = L: X(rr)hD(s-rr) (26b) 

Here again both sand rr an' discrete variables and hD is the finite period unit 
hydrograph. For a causal system with an isolated input this, of course, can 
be written as: 

a-.s 

y(sD) = L: X(rrD) hD (sD-rrD) (27a) 
a-Q 

or 

yes) = L: X(rr)hD(s-rr) (27b) 
a-Q 

",11I;'r(' y (s), X (rr), and I'D (.s- rr) represent the ordinates of the output, the 
input, and th(' finite pe..:iod unit hydro graph, respectively, at standard in­
h'rv!tlsD. 

Equation 27 can also b(' written in the alternative form: 

i-i 
Yi= L: X}~i_j (28a) 

j-O 

i-i 

Yi= L: xi--jhj (28b) 
j-fJ 

In th(' above equation, x has been used to represent the volumes of input which 
appear as X in equation 27. This is done in the interest of simplifying matrix 
equations which ar(, developed later. 

","hen written out in fuil, equation .28b has the familiar form given in text­
books on classical hydrology which is given below for an input lasting for five 
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units of t.imc and a systcm memory lcngth 01 three units of time: 

Yo=hoXo (29a) 

Yl = hlXo+hoXl (29b) 

Y2 = h2Xo+h l Xl +hoX2 (29c) 

Y3=h3XO+h2XI+hlX2+hoX3 (29d) 

'Y4 =haXl+h2x2+hlX3+hoX4 (2ge) 

Ys = h3X2+h2X3+hIX4 (29f) 

Y6=haX3+h3X4 (29g) 

Y7=h3X4 (29h) 

The Ilbov(' set of simultaneous equations can be written in the matrix form: 

(30) 

Where the matrix of inputs which has p+1 rows and '11.+1 columns is given 
bclow: 

Xo 0 o o 

Xl Xo 0 

x'" 

o Xm Xm_l X1XO 
(31) 

o 

Xo 

o 

An alternative matrix formulation of the discrete case is: 

(32) 

where the H matrix is In, de up from the h vector in the same way as matrix 
31 and has p+1 rows and tn+1 columns. 

Equations 27, 28, 29, and 30 are merely alternative ways of formulating the 
relationship between the volume of input and the rate of output. Where the 
input is defined strictly as a discrete function, it is necessary to adjust the 
equations. Thus equation 27b for the relation between input volume and 
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output rate would be replaced by: 
a_a 

yeS) = 1: x(u)hD(s-u)D (33) 
a-o 

Note that as D approaches zero, equation 33 approaches the form of the 
continuous convolution equation Ha. 

Identification and Shnulation 

Classical unit hydrograpb. Dletbods 

The problem of identification is the characterization of the system response 
from a given record of input and output. In hydrologic terms, the problem is 
to derive the unit hydrograph from a given record of precipitation excess and 
storm runoff. The classical method of solving this problem was by trial and 
error. Though it has nothing of the systems approach about it, this method 
has been illustrated in a systemsfnshion in figure I-I). In the classical approach, 
some form of the unit hydrograph, that is, the impulse response, or pulse 
response, is assumed and applied to the given rainfall excess. The prediction 
of tlll' output for this assumed unit hydrograph is merely a matter of simple 
multiplication and addition. The output based on the assumed unit hydrograph 
is th('11 t'~}mpared with the actual output and a decision made as to whether 
the fit is close enough. 

If tllt' fit is judged to be sufficiently close, then the assumed unit hydrograph 
is accepted. Otherwise, thE' assumed unit hydro graph is modified and the 
procedure repeated until an exception .fit is found. 

\Yhile the aboVl' procedure may be acceptable as an ad hoc method of 
gl'tting a sperific answer to one particular problem, it cannot be accepted as 
descrving of the name of scientific hydrology unless both the criterion of 
H('ceptab\(> fit and the rule for modifying the trial unit hydrograph are objec­
tively def:ned. The technique of optimization by eye has been widely used, 

modify hi 

Q1 1
J---'--~:/T"~--QP--~f$' 

accept hi 

FIGl'RE i-9.-Identification by trial nnd error. 
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not only in unit hydrograph studies but also in many other branches of 
hydrology. Th(' supposedly lcarn('d journals on scirntific hydrology abound 
with papPI's in which two curves arc said to b(' a sufficiently aceurat(' approxi­
mation of OUt:' anoth('r or in which a curv€' is said to represent sotnr plotted 
data to a reasonable degree of arcuracy. In a rati~/l1al science, it should be 
possiblp for a second worker to us(' another scientist's data and reach exactly 
til(' samp eonelusion. Thr systems approach in hydrology attempts to achipve 
this lattN objPclivity inst(lad of tll(' subjPctivity inhcrrnt ill many of the 
mpthods in USf' today. 

Figure 1-10 is a. systems rpprcsentation of the Collins (10) method of de­
rh·ing til(' unit hydrograph. This is an itprativr method and one which is a 
distinrt improvpmpnt on thp trial-and-prror approadl. In Collins' mpthod the 
assull1('(l unit hydrogmph is not applipd to thp wholr precipitation excess 
r('('ord, but only to all thp rainfall vo\umps othpr than thp maximum. The 
rl'sultillg l'stimatl'ci runoff. tlwrpforp, rppresl'nts tht, runoff dup to rainfall in 
all pPt'iocis C'X('('pt til(' p€'riod of maximum rainfall. 'Vhen this estimatl' is 
subtmct('d from til(' aetual runoff, thp difft'r(,llce gives an estimate of the 
runoff ciue' to til(' rainfall in the unit pt'riod of maximum precipitation excess. 
'YIH'll divid('d by til(' appropriate volunlf' of prf.'eipitation excess in the period, 
this runoff du(' to maximum raiIlfalL gives a new estimate of the unit hy­
drogmph, and til(' ",holt' proct'ss is thl'rl n'pl'atl'd. Except for unusual condi­
tions. til(' itl'mtiv(' prm'l'dure is convergent. If the unit hydrograph is con­
stminl'd to 1)(' eausal, that is, to haw Zl'ro ordinat('s for nf.'gative time, then 
til(' plTprt of th(' Collins' pro(!('durp is to eoncentrate any error in the matching 
of til(' runoff bydrograph into the portion of that hydrograph due to rainfall 
b('fur(' the pt'riod of maximum rainfall. 

Transformmt·thods of system identification 

Pamn:H'trir hydrology has concerned itsC'lf with the development of such 
obketi ve nwthods ns til(' impulst' r('Sponse or thl' rectangular pulse response 
for d<'tt't'mining tll(' unit h~'dr()grl1ph, Thrse methods will be discussed in 

P-Pmax 
hi 

FIOl'"RE 1-10.-Identifi('ntion by iteration (Collins' method). 
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detail in later lectures, but a brief preview is in order at this point. The 
methods used can be grouped into two general classes, one of which may be 
l'eferred to as transform methods and the second as correlation methods. 

Figure 1-11 shows the general approach of the transform methods to the 
problem. In these methods, the known input and the known output are trans­
formed in some i'a::;hion. These transformed inputs and transformed output.s 
are then used to determine the transform of the impulse response or the 
rectangular pulse response. If the transformed response can be inverted, the 
actual impulse response or pulse response will then be known in the original 
time domain. A complpte transform method of identification therefore, con­
tains three elements: (1) The transformation of the input and the output; 
(2) the use of a linkagp equation, which defines the transform of the system 
respons(' in tt'rms of the transform of the input and the output; and (3) an 
invl'rsion of thl' transformed system response to get the system response as a 
function of time. 

The most widely used transform method in systems analysis is the Laplace 
transform. In this m('thod, the Laplace transform of the input and the output 
are found. The Laplace transform of the impulse response-which is given 
the special name of the system function-is then found by dividing the 
Laplace transform of the output by the Laplace transform of the input. The 
system opl'ration is thus described in the transform plane, but most hy­
drologic situations will be described numerically rather" than functionally. To 
detcrmin(' the impulse rl'sponse us a function of time involves the difficult 
problem of thl' numerical invl'rsion of tht, Laplace transform. 

In 1952, Paynter (36) applied th£' method of systems analysis based on the 
Laplace transform to various problems in hydraulic engmeering. He was 
lnrgely concl'rned with problems of water hammer and tu,.bine governing, 
but ill part III of his paper, 11£' dl'alt with the problem of flood routing. Un­
fortuuat('ly, for the d£'velopml'nt of systems hydrology, Paynter's ideas were 
llot followed up at th€' timl'. 

In 1959, Xush (31). thl'n working in the Hydraulic Research Station in 
Great Britltlll, n,ttempted to describl' th€' IUH in terms of its statistical 
moments. Hl' show('d that for a linear tim('-invariant system, the moment of 
thl' input, the impulse r('sponsE', and the output are connected by the 
equation­

(33) 

wher€' MR(y) is the Rlh mon1l'nt of th€' function y(t). :\'loments may be taken 
eith('r about the tim(' origin or about the respE'ctive centers of the individual 
functions. This is essentially a transform apprl)ach since the moments of a 
function are II transform of it, and Nash's th(,OfPm of moments, given above 
as equation 33, is the linkag(' equation betw('en the transformed input, the 
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r 

T(P)-- -----.~T(H) •..------T(Q) 

FIoUREl 1-11.-Id(:ntification by transformation. 

transformed output, and the transformed systems response. The problem of 
inversion (finding the form of a function given its moments) is again an 
extremely difficult one and can be shown to be equivalent to the problem of 
numerically inverting a Laplace transform. 

NE'xt, O'Donnell (34) applied harmonic analysis to the problem discussed 
by Nash. O'DOlltlell's approach was to find the Fourier coefficient.s of the 
system response. The method depends on the fact that the terms of a Fourier 
series) arE' orthogonal. The response function is known (to a degree of .accuracy 
depending on t.hl.' length of the series) Qnce the Fourier coefficients for the 
function are known. Thus, the harmonic analysis method used by O'Donnell 
does not encounter any difficulty in the inversion procedure. Because Fourier 
analysis is concerned with periodic functions, the method can, however, only 
be applied to systems with finite memory. 

In 1964, Le\'i and Valdes (28), working in Mexico, applied the Fourier 
transform to the problem of systems identification in hydrology. In the same 
year, Diskin4 took up Paynter's work and applied the Laplace transform in 
more detail to the study of unit hydrographs. 

In 1965, Dooge (16) suggested the use of Laguerre coefficient.s ra.ther than 
harmonic coefficients for the analysis of heavily damped systems, such as are 
encountered in hydrology. This method was developed because Dooge felt 
the method of harmonic analysis, which depends on sine curves as it.s basic 
elements, was not entirely suitable in hydrology where many functions were 
of a dead beat type rat.her than an oscillatory one. It was thought that if an 
orthogonal method could be derived .in which the element.s of the series were 
of much the same form as the gamma distribution (which had proved so useful 

~ DISHKIN, M.. A BASIC STUD, OF THE LINE.ARITY OF TIlE RAINFALL-RUNOFF PROCESS 

IN WATElHSIlElDS. Ph.D. Thesis, rniv. Ill. Urbana. 1964. [Xerox copy available by purchase 
from University Microflims, Inc., ,P.O. Box 1346. Ann Arbor, Mich. 48106 as Publication 
No. 64-8375.) 
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in applied hydrology), that the number of terms required to represent a given 
response function would be less than in the harmonic method. 

The above methods of systems identification will be discussed in greater 
detail in lecture 5. Meanwhile, it is only necessary to note that they are all 
objective methods of system identification. 

Correlation ntethods of systent identification 

The second group of objective methods of system identification consists of 
methods based on least squares correlation. The method of least squares was 
applied to the derivation of unit hydrographs by Snyder (41) in 1955 and also 
developed independently in Australia by Body (8) in 1959 Body published 
in dE-tail the matrix operations involved and the adaption of the method for 
digital computers. S,nyder (42) published the matrix formulation of the 
method in 1961. 

The set of equations represented in equation 29 comprises (p+1) equations 
in (n+ 1) unknown values of h and, consequently, is overdetermined. In 
theory. any group of (n+l) equations could be selected from the (p+1) 
equations available to solve the equations for the values of the unknown 
ordinates (hi) of the unit hydrograph. In practice, of ('ourse, the data are not 
exac:t, and, consequently, no unique mathematical solution exist.s which would 
br valid for all inputs. If the first (n+ 1) equations are chosen and the equa­
tions solved by forward substitution, the ordinates of the unit hydrograph 
may become unstable and unrealistic. The procedure introduced by Snyder 
and Body is to use all the equations and the least squares criterion to produce 
the optimum values of the unknown ordinates of the unit hydrograph. The 
matrix form of the unit hydrograph equations is given by equation 30: 

{y Ir+l = ["Y]p+l.n+dh In+l.1 (30) 

The least squares formulation of the problem is given by: 

[X]Tn+l.P+l[Y]"';.l.l = [X]Tn+1.J>t l[X]p+l,n+l [h In+l,l (34) 

Since the product of the transposed matrix XT and the original matrix X is 
necessarily square, this product can be inverted, and the vector of unknown 
unit hydrograph ordinates can be written as, 

(35) 

This procedure is shown diagrammatically in figure 1-12. The record of input 
is used to determine the input matrb:, and this is then multiplied by its 
transpose. The output vector is also multiplied by the transpose of the input 
matrix, and these two products are used to determine the optimum unit 
hydrograph, which is then accepted as an estimate of the true unithydrograph. 

The method of time-series analysis, also shown in figure 1-12, can be classed 
as a correlation method. If the record is a continuous one, or a discrete record 
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SYSTEM[p ]-- --- ---
H ---{Q} 

cppp(K)---.... {hopt } "'~----cf> PQ (K) 

FIGt:RE 1-12.-Identification by correlation. 

existing for iufinite time, it is not possil~ to apply the least squares method, 
sin('e th(' matrices become extremely large and impossible to invert. In the 
case of an inflow which is not isolated, it is also impossible to use the method of 
Laplace transforms or Fourier transforms since the function may not behave 
at infinity in accordance with the requirements of mathematical theory. 
Ho\\,('ver, a long-time s('ries can be transformed and described in terms of its 
autoeorrelatioll fuuction. The autocorrelation function of a time series is 
defined as the limit: 

(36) 

where n=2p+l is the number of data points as p tends to infinity. 
Where two time series are known (for example, an input and an output), 

we can d('termin(' their cross-correlation coefficient which is defined as the 
Limit: 

(37) 

as p tends to infinity. If we have a causal, linear, time-invariant system, it 
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can be shown that the optimum impulse response in the least squares sense 
is given by: 

J='" 
CPJ!u(k) = L: hopt(j)CPrr.(k-j); when k>O (38) 

j-O 

which iR a discrete Wiener-Hopf equation. We started otT with the ordinary 
convolution eqnation (equation 26) and ended up with another convolution 
equation. However, equation 38 connects the cross correlation of x and y. 

If the input. is isolated, no advantage has been gained, and it can be shown 
that equation 38 is equivuJent to the least squares procedure of Snyder and 
Body, though more complicated. If, on the other hand, we have an infinitely 
long time series which we are continuously sampling, then the problem has 
been reduced to manageable form. The time series approach is currently being 
developed at the :\iassaehusetts Institute of Technology under Eagleson (20), 
and work is also beiug done by BayazitS of the University of Ankara. 

Methods of simulation 

Ewn if we could completely solve the problem of identification, this would 
only enable us to predict t.he future outputs from an individual system. Com­
plete identification would not help us in any way to predict the output from a 
system of the same class for which records of input and output were not 
available, or to study the t:'ffect of variations in the parameters of similar 
systems on their outputs. Furthermore, the identification of nonlinear systems 
is extremely difficult, and, ill such cases, it is natural to turn to simulation 
ratht:'r than idt:'nt.ification as the basis of a prediction. It is important to remem­
ber that we art:' still interested in thr. overall pt:'rformance of the system rather 
than the dt:'tails. We are looking for a reliable predictor rather than a pho­
tographic rrproduction when we seek a model to simulate our system. The 
model systt:'m used to simulate an actual system may be either abstract or 
real. According to ChonlJas (9), "SimUlation is simply a working analogy. 
Analogy means similarity of properties or relations without identity." A 
modrl may be defined as being a system which can reproduce some, but not 
all of the propt'rties of the prototype. 

Figure 1-13 shows the division of methods of simulation into three broad 
groups. It is intended as a basis for discussion rather than a strict classification. 
In this tentative classificatioll, the problrffi of simulation is looked upon as 

5 BAYAZI'l', M. INST.-\NTANECUS UNIT HYDROGRAPH DERIVATION BY SPECTRAL ANALYSIS 

AND ITS Nl'~IERI(,AL APPLIC'ATION. CENTO Symposium ou Hydrology and Water Resource 
Devlpmt. Ankara. ,1,966. 
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SCALE MODEL NETWORK ANALYZER DESK CALCULATOR 
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DIFFERENTIAL 
ANALYZER 

FIGURE I-I3.-Methods of simulation. 

being t1 two-stage problem. First, we take the actual field problem and abstract 
from it a conceptual model of the problem. This conceptual model might be 
very simple or it might be extremely complex. In other words, we might. do a 
lot of the work at this stage or very little. The next step is to attempt to derive 
quantitative results from the conceptual model. The method in which this is 
done often depends on the extent, to which the conceptual model has been 
developed. The two stages shown on the figure represent the two problems of 
abstraction and of completion. 

If the conceptual model has not b .j;:" developed to any great extent, it will 
probnbly be necessary to use a direct method of simulation to get quantitative 
answers. An example from hydraulic engineering may be used to illustrate 
this. 

In the design of a hydraulic structure, the conditions may be so complex 
that all we can say of our conceptual model is that we believe gravity forces to 
be dominant in the problem. We could then decide to build a model which was 
geometrically similar in soml'> .respect to the prototype and which would be 
designed acc'.1rding to model laws based on the Froude number. Such a 
hydraulic model would be a direct simulation of the problem and would be a 
close imitation of the prototype. It would be possible to recognize the different 
r..:As of the prototype in the model. On the other hand, a problem in the 
'i t~\·."';ics of open channels might be solved by developing a much more 
f ..·;>~· .. ·!te conceptual model. This model would be based on the geometry of 
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the situation; the equation of continuity, and the dynamic equation of un­
steady open channel flow. 

The finite differenl~e equations incorporating physical assumptions and the 
geometry of prototype would constitute an abstract model of the actual 
problem. If it were completely specified, the actual computations could be 
done on a general purpose computer of some type; thus, we might use a desk 
calculator, a digital computer, or a differential analyzer. In this type of 
indirect simulation, it would not be possible to identify visually any part of 
the prototype in the model. The physical model can only solve one particular 
ad hoc problem, but does not require a great deal of work at the conceptual 
phase. On the other hand, the indirect simulation on a computer of some type 
can solve a very wide variety of problems, but the amount of work done in 
setting up the problem, i.e., constructing the conceptual model is often very 
great. In between these two we have methods of semidirect simulation in which 
we can construct a model which will solve particular types of problems. 
Examples of these are network analyzers and Hele-Shaw models. 

Simulation in hydrology 

Figure 1-14 shows the Stanford Watershed ~Iodel ~Iark II used to simulate 
the land phase of the hydrologic cycle. Though the :Mark II model is shown 
here, the Stanford model has since been developed to the l\'Iark IV (11) and 
l\Jark V stage in which the performance f)f the model has been improved at a 

RUNOFF FROM IMPERVIOUS AREASIEVAPORATION I IPRECIPITATION 

UPPER ZONE STORAGE 
DEPLETION INTERCEPTION AND 

DEPRESSION STORAGE 

f-_--!:D~IR~E~CT!.-R~U!!:N~O!_'FF~---_II SURFACE RUNOFF I 
1

DEPLETION LOWER ZONE I INTERFLOW1 

STORtGE 1 


DEPLETION GROUND WATER i-lITRANSLATION a I ITRANSLATION a I 
STORAGE I- ROUTING STORAGEI IROUTING STORAGE 

I 

SUBSURFACE ~I IHOURLY OR 'I
GROUND WATER DAILY STREAMFLOW 

FLOW 

FrouRE 1-14.-Stanford Watershed Model Mark II. 
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cost of extra complexity. Figure 1-14, however, shows the main features of 
the Stanford model. The model as shown is essentially 11. conceptual model and 
represents the first, or conceptual phase, of the simulation process as described 
above. It is a flow diagram representing the main features of the simulation 
model, nnd it must be supplemented by operational rules for determining the 
nmount of moisture movement from one component to another. 

TIl(' computation, which is the second part of th{' simuiation process, is 
carried out on a digital computer. The model shown in figure 1-14 could, of 
eours(', be computed by any other means, but the digital computer is the most 
convenient method. There have been many other instances of the simulation 
of subsystems or components in th{' hydrologic cye!{' and the solution on a 
digital computer. 

Dawdy and O'Donnell (12) pioneered th£' systematic study of objective 
techniques fOr tIl(' optimization of parameters of simulation models. This key 
question is diseusaed in lat('r leetures. 

Numerous attempts haY(' been made to simulate the direct storm runoff 
from a watershed by a conceptual model, ",hieh would be simple in form but 
would hav!' essentially thp sam!' operation as the watershed under study. 
:\Jany of these coneeptual modl'ls inyolve some simple arrangement of linear 
stomge elements only, or else a simplE' arrangement of linear storage element.s 
and linear channels U5)' In most cases, the behavior of t.hese conceptual 
models is predicted by analytical methods; however, any method for final 
eomputntion may b£' uSl'd. 

Figure 1-15 shows til(' analog simulation of a linear storage clement as given 
by Shen lSS). In this ease, thE' analog p.lement is not a direct analog of a 
catehmcnt ('lement, but all analog simulation of a conceptual element for use 
\\"11('rE' an arrangE'ment of t'onceptual elements has been synthesized to simulate 
th{' aetion of thE' watershed. FigurE' 1-15 shows the simulation of a linear 
channel also by Shen. A linear channel is purely a conceptual clement because 
no ont' has ('yer seen one and no one ever will. The analog units shown in 
figures 1-15 and I-Hi are dired analog simulations of the conceptual elements, 
but it is also possiblE' to hav(' indirect analog simulations in which the mathe­
matical equation for the conceptual element is written down and then an 

El R E2 
o----~~-c-~~----~C>~------~---~ 


.I 

FIGURE 1-15.-Direct allalog of linear reservoir. 
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2/3R 1/6R R 

I3.6CI 3.SCi 

FwtTU£ I-lB.--Direct unalog of linear channel. 

analog unit assembled in which each of the mathematical operators is simu­
lated and appropriately conneeted. 

This is the end of a review of the development of parametric hydrology and 
a preview of the material to be covered in the present course. The development 
of the subjeet has been going in many scattered directions since 1932, but in 
recent years it has gathered pace and is beginning to settle into a consistent 
body of knowledge. 1\0 matter what our problem, no matter what types of 
models we st'ek to use, \\"f' face essentially the two difficult problems of system 
identification and system simulation. Our present knowledge is such that 
ideutifieation ean only be carried out with some degree of success if we make 
tIl(' nssumptiolls of linenrity and time-invariance. 'Ve need not be restricted in 
simulntion because' w(' can build in the nonlinearity and time-variance into 
our mod"l and prediet thr operation of the resulting no'\linear system in some 
fashion. 1\('vprtheless. if we ",ish to simulate objectively, or indeed efficiently, 
it is desirablp that til(' nonlinearitics be reduced to a minimum and that if 
possiblt' the nonlinearity be confined to one part of the model, while the 
remnlning subsystems and their components are linear in action. 

ProbleIlls on Hydrologic System.s 

1. The following terms are commonly used in hydrology: 

Unlt hyclrograph 

S-hydrograph 

Instantaneous unit hydrograph (mE) 


In each case, write down the corresponding terms used in other disciplines to 
denote the same concept. 
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? The Muskingum method is commonly used in flood routing. Describe 
this method and distinguish between the separate problems of prediction, 
identification, and simulation. 

3. Describe a part of the hydrologic rycle with ·which you are familiar; use 
the nomenclature of the systems approach. Show the relationship of this part 
of the hydrologic rycle to the other parts of the cycle by means of a simple 
sketch. By means of a second sketch indicate how this part of the cycle might 
be considered !1S consisting of a number of subsystems. 

4. For the part of the hydrologic cycle described in question 3, list one or 
more classical methods used in applied hydrology. Do these methods make the 
assumptions of linearity or time-in variance'? Describe the methods using 
systems nomenclature. 

5. For some particular purt of the hydrologic cycle, give examples of the 
usc of simulation in hydrologic forecasting. 
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LECTURE 2: 
REVIEW OF PHYSICAL HYDROLOGY 

Lecture 2 is a review of physical hydrology. It might be wondered why we 
bother with a rE-view of physical hydrology since it has already been stated 
that the essence of the systems approach is to ignore the details of the physics 
involved. The systems approach was described as being an attempt to get 
around tht~ complex geometry and the complex physics of the hydrologic 
system. If we were solely concerned with problems of identification, this atti­
t\lde of ignoring the details of the system would be a reasonablu one. We can 
identify a system (that is, find an expression for its impulse response) without 
any knowledge of physical hydrology at all. In 1965, Dooge (12) developed 
a method of system identification based on the use of Laguerre functions, 
which he thought might be appropriate in hydrologic problems. However, the 
first application of the new method was in the problem of determining resi­
dence times in cllemical engineering. Tllls was possible because the method 
was merely a method of system identification, and such methods are not by 
any means tied to the hardware of the particular system being analyzed. 

If, on the other hand, we are going to S'Z:-m'ulate a hydrologic system, our 
knowledge of physical hydrology will be of greater importance. Such a knowl­
edge is use1ul in model building because the closer we simulate the physical 
reality, the better our model will be. If we build a model that is in conflict 
with the physical realities, then we can hardly expect to get very good results 
from such a model. The present review, therefore, will be a brief summary 
of physic!\l hydrology from the point of view of its possible use in the simula­
tion of hydrologic systems by models of various types. 

Our quantitative knowledge of physical hydrology is summarized in the 
various formulas which arc available in the literature. These formulas are 
themselves models of the physical process which they are taken to represent. 
The f!\ctors that are included in a formula and the relation between them all 
involve simplifying assumptions concerning the relevant physical processes. 
TIllS lecture deals with the various parts of the hydrologic cycle in turn and 
discusses some typical concepts and formulas. These are dealt with in more 
detail in general reference works such as those by Linsley, Kohler, and Paulhus 
(32); Chc..r (6); Soil Conservation Service (50); and Eagleson (13). The 
problem of measuring the various hydrologic quantities is discussed in publi­
cations by the World Meteorological Organization (58), the International 
Association of Scientific Hydrology (25), and by Corbett (9). Some important 
books and papers contairllng further infm'mation on physical hydrology are 
included among those listed at the end of this lecture. 
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PrecipitaHon 

In most of our work on hydrologic systems, precipitation is taken as an 
input. Consequently, we are usually not worried about the processes of hydro­
meteorology (13,15,41). Our main problems are those concerned with meas­
urem('nt and with the sampling that is inherent in any system of measure­
ment. However, the question of snowmelt, which is on the borderline between 
meteorology and the land phase oJ hydrology, is of interest to us. If we wish 
to include snowmelt in a simulation model, then we must either know some­
thing or assume something concerning the physical processes involved (14-, 
52). If some of the components of our simulation models seem somewhat 
crude, we may take some consolation from the fact that most of the physical 
equations and formulns used in applied hydrology are equaUy crude. Thus the 
daily snowmelt in inches is frequently computed by a formula like the fol­
lowing: 

M =0.06 (Tmean -24) (1) 

where the daily snowmelt in inches (M") is related only to the mean daily 
temperttture in degrees Farenheit (T). The additional effects of wind velocity 
and prec:pitation can be aUowed for by using a formula of the following type: 

.Jv! = (0.029+0.0084 kr+0.007 Fr) (Trnean -32)+0.09 (2) 

In the first equation, the snowmelt is related only to the mean temperature, 
which is a crude way of relating the energy required to melt the snow to the 
energy availn.ble from radiation. In the second formula, radiat~on, convection, 
and condu(;tion have all been taken into account. A more compleJl. equation 
proposed by Light (31) is derived from an eddy-conductivity equation based 
on the analysis of atmospheric turbulence, and expresses the rate of snowmelt 
Das: 

D pk0 
2 

[U cpT+ (e-611)
SO log. (a/zo) log.(b/zo) 

423J-
p 

(3) 

where 

D = snowmelt in centimeters per second 
p= density of air 

ko=von Karman's coefficient (0.38) 
a=elevation of anemometer in centimeters 
zo=roughness parameter (0.25 em.) 
b= elevation of hygrothermograph in centimeters 
1l=wind velocity at anemometer level in centimeters per second 
Cp =specific heat of air (0.24) 
T = air temperature, in degrees Centigrade, at hygrothermograph level 
e=vapor pressure of air in millibars 
p = atmospheric pressure in millibars 

http:32)+0.09
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When we recall the nonhomogeneous nature of a watershed and the variations 
in Uw factors involved, we become somewhat doubtful of the advantage of 
using very complex equations. 

Evaporation and Transpiration 

Total evaporation has been defined as including water lost by evaporation 
from water surfaces, moist soil and snow, together with water lost by tran­
spinttioll from vegetatiun, in the building of plant tissue and through inter­
ception (30). The concepts involved and formulas used have been reviewed 
elsewhere (13,17,44,45,53,57). 

The classical formula for evaporation from open waters was that given by 
Dalton (10) : 

(4) 

which related the ntte of evaporation Eo from a waLer surface to the vapor 
pressure deficit (cw-ca). Since then, many more complex formulas have been 
derived. Tll(' Dalton formula is the simplest formula based on the mass trans­
port approach to evaporation. If allowance is made for the windspeed, V, we 
get an empirical formula of the form: 

Eo= (a+bV) (e..-ea) (5) 

If the variation of wind with height is taken into account, more complex 
formulas are obtained. Typical of these is the equation by Thoruthwaite and 
Holzman (46), which is based on the logarithmic wind law and is: 

E _ 133.3 (V2 -1T
1 ) (el-C2) (6) 

0- (T-459.4) log.(h2/h1)2 

Still more complex formulas have been derived, and these were evaluated 
in the comprehensive Lake Hefner study (17). The study of the evaporation 
of Lake Hefner was a comprehensive operation lasting several years, but 
after a detailed study of the various formulas and a most careful measurement 
of conditions, it was concluded that the best equation for predicting evapora­
tion from Lake Hefner would be of the form: 

Eo =0.00177 Y (c..-ea) (7) 

which is of the same form as the empirical formulas used 50 years ago and 
only one step better than Dalton's original formula of 150 years ago. 

An alternative approach to the subject of evaporation is the use of the 
energy budget. This can be summarized in the formula: 

E _ Q.+Qa-Qr-Qb-Q.. (8) 
0- pL(l+R) 

The numerator in equation 8 gives the amount of energy available for the 



46 TECHNICAL BULLETIN NO. 1468, U.S. DEPT. OF AGRICULTURE 

transfer of both moisture and sensible heat from the water to the air in contact 
with it. It is given by the incoming shortwave radiation from the sun (Q.) 
plus the energy advected into the body of water (Qo) minus the total energy 
losses due to the combination of reflected shortwave radiation (Qr), longwave 
back radiation (Qb), and increased energy storage in the body of water (Q.. ). 
To express the evaporation in terms of the amount of moisture transported, 
it is necessary to divide this net energy by the product of the density (p) 
and the latent heat of vaporization (L) corrected by means of the Bowen's 
(4) ratio (R) to allow for the transfer of sensible heat. 

In 1948, Penman (39) combined the two ideas of mass transport and energy 
budget t.o produce a combination formula which enables us to estimate the 
evapomtioll from readily aVB.ilable climatic elata. His basic formula is: 

E _Ea+(!i.j-y)H 
(9)

0- 1+ (!i.j-y) 

where Ea is a measure of the aerodynamic evaporation or the evaporation 
from a mass tmnsport point of view and H is a measure of the net energy 
required for evapol'!Ltion. Penman and others have refined this approach in 
the past 20 years (54). 

In the case of transpirat.ion, .ve also have a wide variety of formulas of 
different degrees of complexity. In mallY of them, a figure for cumulative 
degree-days above a certain base temperature is used as a crude estimate of 
the energy. Thus, we have the Hedke formula (18), which was developed for 
use in irrigation work: 

ET=!.k (T-To) (10) 

where the cumulative vn.lue of degree-days is used as a measure of the energy 
Tequired for total tmnspiration. Blaney and Criddle (3) developed a number 
of formulas of the same general type. In 1948, 'rhornthwaite (47) developed 
the following empirical formula: 

10T)o
ET=1.6 ( T (11) 

which enables the monthly transpiration (E7·) to bb calculated from climatic 
data. In the formula, T is the monthly mean temperature and I is a tempera­
tUre efficiency index which depends on the 12 monthly mean values of tem­
perature. The exponent a is a fUIlction of I. The Tesult obtained must be cor­
rected for latitude and season to allow for the variation in the hours of 
sunshine. Penman (40) derived a formula for transpiration similar to his 
evaporation formula; it is wTit.ten as: 

E _ Eo+(!i.j-y)HT 
(12)

T- 1+ (!i.j-y) 

In the above equatiOll, the aerodynamic evaporatioll Eo is modified because 
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of change in the roughness factor of vegetation compared with open water 
aud the enE'rgy term H T is slightly changed because of the modification in the 
heat excluLUge occurring between the vegetation and the air. Penman found 
that in practice an extremely good estimate could be obtained by applying 
a copfficient to the estimatp for open water evaporation: 

(13) 

The following formula by Turc (49) has bpen widely used in studies of WItter 
b!11ancp in Africa by .French hydrologists: 

(14) 

where P is prrcipitMion !tnd L is a temperature index. 
"Wr hn.v(', thus, a variE'ty of formulas for pvaporation and transpiratioll, all 

of which hav(' a physical foundn.tion to a l€'sser or greater extent. The fill'a/. 
formulns arE', how('\'('r, n,ll empirical and represent a simplification of the ve,'y 
eomplt'x physies itlYolvt'd, In incorporating them into a simulation of the 
hydrologic eyelt' or part of it, we are at liberty to choose the particular formula 
th!l.t suits our purpose best. 

Infiltration and Percolation 

The soil phase in tht, hydrologic cycle involves the phenomena of infiltra­
tion or the t'ntry of water through tht' surface of the soil, its downward perco­
IlLlion through the unsaturated zone and its storage in that zone. 

Information on infiltration may be obtained from the results of tests with 
infiltrollwtprs, from the IlImlysis of hydrographs from plot experiments and 
from tiw derivation of basin indices for complete watersheds. As in the case 
of othc'r plH'IlOll1eUa in the hydrologic cycle, a number of empirical formulas 
for infiltrMion art' !waihtblf'. Kostiakov (29) proposed as an empirical formula 
for the amount of infiltration (F) during the period of hi.gh-rate infiltration: 

F=btll2 (lSa) 

which is equiYalE'nt to an infiltrati.on rate (f) of: 

b 
(ISb)f= 2t1/ 2 

Horton (.:P.p pn)poscd an exponential formula for infiltration which has 
been widely used: 

(16a) 

http:infiltrati.on
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The corre$ponding formula for the amount of infiltration is: 

, (fo-fe) (JI =fc-t+ -k- 1-e-,,1L) (16b) 

Philip (42) analyzed the problem of infiltration using the principles of soil 
physics and dE'veloped a series solution which can b(' approximated by: 

F=S·ll/2+1it (17a) 

or in term$ of th(' inHltrn.tion rate: 

(17b) 

TIl(' first l('fm of l)hilip's equation is seen to bl' identical with the KosLin,kov 

('quatiOll drrived ('mpit'ieully 25 years earlirr. 

Holtan (21) used lh(' relationship: 


j-je=u(S-F)" (18a) 

,For a value of 'it == 2 th(' equation for the infiltrn.tion rate can be written as: 

(ISb) 

All of tlwsr fOl'llmlns nr(' empirical or have ('mpirical coefficients and thus 
mny br considprcd ns nttempts to simulMr th(' actual phenomena. Even if one 
tl1k('s til(' full rquntion due to Philip, to which equation 17 is an approxima­
tion, it is st.ill It simulation of thr process taking part in nature. This is because 
Philip's full ('quation is busrd OIl thr assumption that there is a perfectly 
uniform soil, perfectiy graded with no roots or root holes and no worms living 
in the soil. For such Itll idealized CHS(" Philip's full equation is the most ac­
('urate of all til(' formulns given (except for very long elapsed times), but the 
question itrises whrthl'r, in view of the uncertainties in the field, it is worth 
",::ling anything mOrt' than a simpll' equation. 'We can never get away from 
simulation, ttud it is quite fruitless to argue about one equation being approxi­
mate and anoth('r oue accurate. They all involve various degrees of approxi­
mMiou, and our choice :is a free one. 'rhe balance is one between the need for 
simplicity 011 the one hand and for accuracy on the other. 

Ground Water Flow 

'rhe physical !t...Q$umptious underlying thes" formulas are given in such 
rd'C'reuces ns (2, 7,11, 33, 4-8, and 56). For one-dimensioualflow in the satu­
rated zone (that .is, for th(' Dupuit assumptions), Darcy's Law takes the 
form: 

ah
q=-kh­ (19)ax 

where q is the flow p('r unit aren, k is the hydraulic conductivity, and h is 
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the depth of saturated flow. The equation of continuity for the same condi­
tions takes the form: 

aq ah . 
-+f-='t(x t) (20)
ax at ' 

where f is the specific yield and i(x,t) is the rate of recharge at the watertable 
surface. CombimtUon of these two equations gives: 

a [ ah] ah .-- kh - +f-=2(X,t) (21)
ax ax at 

Equation 21 is nonlinear, but in elnssical ground wa.ter hydraulics the equation 
is linearized in one of two ways. Either we write: 

_ a2h alL 
-kh-+f-=i(xt) (22)ax2 at J 

or else we write: 

(23) 

Ground water hydrologists have generally solved their problems on the 
basis of such linear equMiolls, which suggests that the application of linear 
systems theory might be fruitful in this particular field. In view of the long 
use of linear ml'thods in hydrology, it is remarkabll' that a general linear ap­
proach hns not been used in ground water hydraulics except recently and then 
to a limited l'xtl'nt. Once thl' original nonlinear equations have been linearized, 
all of linear matlH'matics and all of linear systems theory are available for the 
solution of our probll'ms. 

Hydrologists frequently assume that the recession curve for base flow is 
given by: 

(24) 

This represents a more restrictive assumption than the simple one of linearity. 
Equation 24 not only assumes that the gr9und water action is linear, but that 
it acts as a single linear reservoir. Having made this assumption with regard 
to the rl'ccssion, there is no reason why the same assumption should not be 
made in regard to the recharge of ground water and the whole ground water 
system modded by a single linear reservoir. In general, however, one can 
assume linearity without restricting oneself to a single linear reservoir. If the 
system is assumed to be linear, it is perfectly possible to derive a ground water 
unit hydrograph just as is done for direct storm runoff. 
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Overland Flow and Channel Flow 

In the case of overland flow and open channel flow, we can write down the 
equation of continuity (including lateral inflow if necessary) and the dynamic 
equation. By using the classical methods of open channel hydraulics, we can, 
in theory at uny rate, solve these equations for any partiCUlar case. Even 
with high-speed digital computers, the solution of such cases, even for simple 
geometry, is by no means an easy matter. "Whether we use a characteristic 
solution or some method of finite differences based on a rectangular network, 
the computational problems are quite severe. In hydrology, the complexity of 
these problems has been avoided by using approximate methods of solution, 
mo~l of which retain the continuity equation but replace the dynamic equa­
tion by somr approximate relationship. This j<; to Stl,y that an applied hy­
drologist, when faced with the problem of overland flow or flood movement 
in rivers, has replaced the field situation by a simplified model (20, 59). 

Thr fundamental problem of overland flow can be quite simply stated. 
Hain falls vertically on thr plane surface at the upstream end of which is 
either [1 divide or a vertical boundary as shown in figure 2-1. If the supply 
ratr is constant, then for equilibrium conditiolls there will be a definite profile 
of steady uverland flow. Even this steady flow problem is not an :,asy one to 
solvp precisrly. W r do not know the friction laws operating in such a flow, or 
th(' dTccts of lateral inflow on the velocity distribution, or what the effect 
would b(' if infiltration wer(' occurring simultaneously. 

In tackling the hydrology of overland flow, we wish to know far more than 
the profil(' of steady state flow. What is required is the hydrograph of non­
steady flow, which occurs due to any change in input conditions (for example, 
tIlE' relatively simplr casp of a steady input of rain starting from initially dry 
conditions) and also the nature of the recession from t},~ steady state after the 

Lateral inflow, r (x, t) 
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FIGURE 2-1.-0verlund flow. 
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cessation of input. If tht:' process were linear, one of these results would be 
sufficient to determine the hydrograph for any pattern of rail.lfall input. How­
ever, the phenomenon is nonlinear, and, thus, the principle of superposition 
cannot be used. Every shape of input becomes 1:. separate case and must be 
handled on its own. Our interest is concentrated on three cases: (1) the rising 
hydrograph for a constant input and initially dry conditions, (2) the recession 
from steady outflow conditions after the cessation of input, and (3) the transi­
tion from one steady state to another when there are two different constant 
supply rates in successive intervals of time. 

Ont:' approximation to the overland flow problem assumes that there is, at 
all times, a definite power relationship between the outflow at the downstream 
end and tIl(' avcrage detention on the surface. A large number of experiments 
during th!' 1930's indicated that if thl' equilibrium runoff were plotted against 
til(' avl'rage equilibrium detention (that is, the storage at equilibrium divided 
by the surfacl' area) for a given experimental plot, the relationship could be 
approximated by a straight line on log-log paper. This relationship applied to 
tIl(' condition when stcady flow had been attained and storage was no longer 
changing, that is, to the steady state solution. Horton (23) assumed that this 
pOWE'r relationship would hold throughout the unsteady flow phase and used 
this assumption as the basis of the solution for the particular case where the 
discharge was proportional to the square of the average detention. 

TIl(' gl'neralassumption of a power relationship between discharge pel' unit 
arNl (q) and detention or storage per unit area may be written as: 

q=aSC (25) 

This equation in fact replaces the full dynamic equation and is combined with 
the' continuity equation: 

ds 
q.-q= dt ~26) 

to solve' tlu:' problem. Equations 25 and 26 can be combined to give: 

1 rd(qq.)l/c 
t= al/cq/-;l Jl-q/q. 

(27) 

Thl' integral on tht:' right-hand side of equation 27 c,,-n be solved explicitly 
for c= 1 (tht:' line'ar cast:') and also for c=2, 3, and 4. By suitable transforma­
tions, it can also be solvt:'d for c=} and for c=i. Horton solved the equation 
for c=.2, obtaining the result: 

2.= tan h2(al /2q.I/2t) (28) 
q. 

This e'quation has since bel'n used for solving the overland flow problem and 
dt'signing airport installations (51). Izzard (26) carried out a series of notable 
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e..xperiments on overland flow and proposed the use of a dimensionless rising 
hydrograph and dimensionless recession hydrograph, corresponding to the 
solution of equation 27 for c=3. Because the integral in equation 27 is of 
e..xactly the same form as the Bgkhmeteff (1) varied flow function, tables of 
the latter function can be used to solve equation 27 and hence the problem 
of the overland flow hydrograph for any value of c which is tabulated. The 
above class of solutions may be referred to as the Horton-Izzard solution. It 
is not the only solution to the problem of overland flo\\" and is given here only 
as an example. The kinematic wave method has also been applied to the prob­
lem of overland flow. Both approaches are discussed in more detail in lecture 9. 

Hydrologic flood routing represents an early application of the systems ap­
pronch to a hydrologic problem. The full problem of flood movement in rivers 
is complex, and in any casE.' th(' details of thE.' flow bE.'tween the upstream and 
downstrenm ends of thE.' reach under examination are not of great interest. 
\\ hen conditions in thp wholE.' rench are lumped, the continuity equation 
becomes: 

dS
I-Q=­ (29)

dl 

This equation is used in all flood routing methods and is combined with some 
sp('cial equntion, which replaces the dynamic equation. 

Among th(' weU-estnblished flood routing methods is the lag and route 
m('thod which assumes: 

(30) 

that is, that the storngp in the reach is proportional to the outflow taken at 
flt)m(' fix('d timp lat('r thnn the time at which the storage is measured. In 
!l.lw"her well-cstablished ,"outing method, the ~Iuskingum method, the storage 
is taken as being proportional to weighted values of the inflow and the outflow: 

S(t) =K[xI(t) +(l-x)Q(t) ] (31) 

Among other important flood routing methods is the use of the diffusion 
aunlngy, which was introduced by Hayami about 1950 (19). This approach 
was dealt with by Henderson (20). More recently, we have had the Kalinin­
~Iilyukov t281 method which is now widely used in Eastern Europe. This 
latter method is based on the division of the reach into a number of charac­
teristic lengths and the treatment of each of these lengths as a linear storage 
element. Routing through the whole reach thus consists of routing through a 
cascade of linear storage elements, and the impulse response function is the 
gamma distribution. Though the gamma distribution was used by Nash (36), 
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Gray (16) I Reich (43) J and a number of others to represent the unit hydro­
graph, it was not applied to flood routing until this was proposed by Kalinin 
and ~Iilyukov. 

It is of interest that the above methods of routing floods through Illl open 
channel an' all linear methods, thus all are linear models of the actual process. 
The whol£' subjeet of linear routing in open channels is discussed in lecture 9. 

This brid r£'vi£'w of physical hydrology is intended to give examples of the 
formulas which summarize our quantitativ£' knowl£'dg£' of physical hydrology 
l\nd whieh ar(' used in practice. In our best t'fforts fI,t physical hydrology, we 
still makt' mallY assumptions that ar(', in truth, simulations. In many of these 
cases, the assumption of linearity has already been mad£'. When such an as­
sumption has b(>Cll madl', the attitude in pammetric hydrology is to make the 
most of th(' assumption. 

pJ'oblems on Physical Hydrology 

L List a number of alternative definitions given for the physical phe­
nomena involved in on(' particular part of the hydrologic cycle. Discuss these 
definitions rritically, and then list them in what you would consider to be 
their order of merit. 

2. Briefly dl'scrib£' the methods used for measuring the physical phe­
nomena involved in sonU' particular part of th£' hydrologic cycle. Discuss these 
tl'chniqul's critically, stating their advantages, disadvantages, and possible 
improvements. How does the m£'thod of measurement used affect the defini­
tion of tilE' physical phenomenon involved? What criteria could be used to 
d<'termin(' a t;uitnblt' observation network for the particular phenomena 
involved? 

3. Statl' wlmt physical principles are involved in one particular part of 
th(' hydrologic eycl£'. What physical formulas can be written down describing 
tll(\ physical ph<'llOml'lU1 of this part of the cycle? What physical phenomena 
art' ignored in tht' formulas cited? 

4. i\lhat t'mpirical formulas are used in hydrology in connection with the 
phenomena discussed in question 3? What is the relationship between these 
('mpiricnl formulas and any physical formulas available? What is the range of 
vt1.lidity of th(' empirical formula? What is the accuracy of the empiriJal 
formull1.S? 

5. 'Yhat in your opinion are the most serious gaps in our knowledge of 
physical hydrology? How important are these gaps from the point of view of 
applied hydrology? Outline a research program which you think might help 
to bridg£' an important gnp in our knowledge of this subject, and give a rough 
estimate of tht' cost and manpower involved. 



54 TECHNICAL BULLETIN NO. 1468, l".S. DEPT. OF AGRICULTURE 

Literature Cited 

(1) 	BAKHMETEFF, B. A. 

1932. HYDRAULICS OF OPEN CHANNELS. 329 pp., ilIus. Nel\' York. 


(2) BEAll, J., ZASLAVSKY, D., and IRMAY, S. 
1968. 	 PHYSICAL PIlINCIPL'ES OF WATER PERCOLATION AND SEEPAGE. l'NESCO 

Arid Zone Res. X.XIX. Paris. 465 pp., ilIus. 
(3) 	BLANEY, H. S., and CRIDDLE, W. D. 

1950. DETERlllNING WATER UEQUUU;;l\1ElIo'TS IN lRUlGATED AUEAS FUOM CLIlIATO­
LOGICAL AND lHIUG.-I.TIONAL DATA. r.s. Dept. Agr. SCS-TP-96, 4S pp. 
August. 

e4) Bowen. 1. S. 
1926. 	 TilE UATIO m' IIEAT LOSSES IlY CONDUCTION AND IIY EVAI'OI!ATION FUOM 

ANY WATEU SUitFACB. Phys. Rev•• Ser. 2, 2i: ii9-iSi. 
(5) CHILDS, E. C. 

195i. 	 TilE PHYSICS m' LAND DltAINAGE. In J. N. Luthin, ed., Drninnge of Agri­
cultuml Lands. Agronomy i: I-iS. 

(6) 	CilOW, VEN Tt;, ed. 

1964. IIANDBOOK m' API'I.IED IIYDI!OLOGY. 1418 pp., ilIus. Nell' York. 


(7) COLOUADO STATE (TNIVt;nSITY. 

1963. 	 SYMPOSIUM ON THANSIBNT GUOUNDWATEU IlYDI!AULICS. Civ. Engin. Sect. 
Fort Collins. 

(8) COMMITTm; t'OH HYDROLOGIC RESEAIlCH, TNO. 
1964. 	 HYDIlAPLICS OF STEADY FLOW TO WELLS. TNO Proc. and Inform. Note 10. 

The Hague. 
(9) COUIl~'TT, D. M., and PUlCE, C. H. 

1943. 	 STUEAll·GAl'GING pUOCtmUUE. F.S. Geol. Survey Water-Supply Paper 888, 
243 pp. (Reprinted 1962.) 

(10) 	DALTON, Jom~. 
1802. EXPEIUM.ENTAI. ESSAYS ON THE CONSTITUTION OF MIXED GASES; ON THE 

FORCE m' Sl'l!BAM OU VAPOU FUOl! WATEU. Manchester (England) Lit. & 
Phil. Soc. Mem., v. 5, pt. 2: 536-602. 

(ll) 	DE\VIEST, J. M. R. 
1966. GEOIlYI>HOLOGY. 366 PP .. iIlus. New York. 

(12) DOOGE. J. C. L 
1965. 	 ANALYSIS OF LINEAU SYSTEMS Ill' MEANS OF LAGUERUE FUNCTIONS. Soc. 

Indus. and Appl. Math.• Jour. Control 2(3): 396-408. 
(l:l) 	EAGLESON, p, S. 

1969. DYNAlllC IIYDROLOGY. 462 pp. New York. 
(14) GAUSTKA. W. e. 

1964.. 	 SNOW AND SNOW SURVEY. In Ven Te Chow, ed., Handbook of Applied 
Hydrology. Sec. 10, 5i pp., ilIus. New York, 

(15) GII~MAN, C. S. 
1964. 	 RAINFALL. In Ven Te Chow, ed., Handbook of AppJ:ed Hydrology. Sec. 

9,69 pp., illus. New York. 
(16) GHAY, D. M. 

1962. 	 DERIYATION OF UYDHOGHAPHS FOR SMAI,L WATERSHEDS FHO?! MEASUUABLE 
PHYSICAL CHARACTERISTICS. Iowa State Univ., Agr. and Home Econ. 
Expt. Sta. Res. Bul. 506, pp. 514-5iO. Ames. 

(17) HARBECK, G. E., DENNIS, P. E., KENNON, F. W., and others. 
1954. 	 WAT.ER .LOSS INVESTIGATIONS: LAKE HEFNEH STUDIES. U.R Geol. Survey 

Water Supply Paper 269. [Previously published as U.S. Geol. Survey 
Cire. 229, 1952, as part oi U.S. Navy Electron. Lab. Rpt. 23i.] 



55 LINEAR THEORY OF UYDllOLOGIC SYSTEMS 

(18) HARDINO, S. '1'., chaimmn. 
1930. 	 CONSUlwrlVE USE OF WA'l'EU IN lURIGATlON: }'UOOUESS UEPORT OF TilE 

DCT¥ O~' WATER COMlllTTtJE O~' 'l'IlE lUlUGATION DIVISION. Amer. SOC. 
Oiy-. Engin. TI't\IlS. 94: 1349-1399. 

(19) 1:Lu:~lII,S. 
I 	">1. ON TilE I'UOI'AOATIQI'." Q~' ~'LOOD W..WES. Bul. 1: 1-16. Disuster Prevo 

Res. Inst" Kyoto Fniversity. Japan. 
(20) 	HENOEUSON, F. M. 

1966. OPEN CHANNEL t'LOW. 522 pp., illus. Xew York. 
(21) HOW'AN, H. N. 

llltH 	 A CONOm"r t'OU INt'ILTUA'I'ION }JSTllIATES II'." WATEUSHEIl ENOINEEllING. 
1:.8. Dept. Agr. Agr. He;;. l:;erv. ARS -11-51, 25 pp, 

(22) HOUTON, H. E. 
1935. 	 St'HFACE Hl'Nm't' PHENOMENA: PAU'!' I, ANAI,YSIS OF THE HYDUOOUAPH. 

,Horton Hydrol. Lab. Pub. 101, 73 pp. Aun Arbor, Mieh. 
(23) 

19as. 	 Tin; INnml'llm'A'1'I0N ANIl AI'I'I,ICATION OF UUNon' I'L01' }JXI'.EHllIENTS 
WITI! IUWEltEN('E '1'0 tiOIL EIIOSION' 1'1I011UllIS. Soil Sci. Soc. Amer. Proc. 
3: 3·1O-3·I9, 

(2·1) 
tIl·tO, ,\1'1 Al'l'HOACn 'row,uw A PHYSICAL INTEHI'IU.'TATJON OF INt'ILTHATION CA­

I'A('I:1'\:. l::loil Hci. Amer. Proe. 5: 3\l9""! 17 
(251 II\~rtmNA'rIQNAL ASSOC(A'l'ION m' SeUlN'l'n'lc HYDROLOG¥. 

1965. SY.\(I'OSll'M ON DESIGN OF ll¥IlHOLOGICAL NETWOUKS (QmmEc). Pubs. 67 
nnd uS, Gentbrugge. 

(2(i) IzZAUO, C. F. 
HJ.l6. ITYDIlAU(,(('S m' RCNOFF FHOl( DEVl-]LOI'ED St'IU'ACES. Highway Res. Bd. 

(Wtlshington, D.C.) Pro('.26: 129-146. 

1\l50. TENT"'Tln: m:St'LTS ON C'AI'AC':LTY Ot' CUUB OI'~;NING INLETS. In Surface 
J)rninnge. Higltwny Res. Bd Ill·s. Hpt. ll-B, WtlShington, D.C. 

(2S) KALININ, u. p .. and :\Iu,t'YKOv. P. 1. 
19;i7. On UAS{'IIE'rE NECSTANOvlYSm]OOSYAIl\'IZIlENlYA VOOY v OTKItYTYKH 

ItPSL.\KlI [on the computntion of unsteady floI" in open channels.) Met. 
i. Gidrulogiyn Zhuzurtlnl, 10: 1O-1S. Leningmd. 

(2\l) l(OS'l'IAKO\', A. N, 
1\l32. [on tho dynnmics of the t'ocfficients of wfiter percolation in soils.] 6th 

Comn•• Inlernatl. Soc. for Soil Sci. Pt. A, pp. 15-21. Groningen and 
:\loscow. 

(3n) LANGUEII'.", W. B., and ISERr, K. T. 
1960. GENFlHAL INTIIOlltTC'rIOI'." ANIl HYDnOLOOlr DEFINITIONS. MANUAL OF lIY­

DHOLOGY: PART 1. m:NEHA(, SUUFA(,F. "''''TEIt TECIlNIQIJES. U.S. Geol. 
SUrvl'y Wtlter-Supply Pnpcr IM1-A, 29 pp. 

(3 n Ll(JIIT, P. 
1\)4t. 	 ANALYS(S OF UlOIl 1t.....TES OF SNOWlIELTINO. Amer. Geophys. Union Truns., 

pt. 1: 195-2f}5. 

(32) 	LINS(,El'. R. K .. Km:LElt, M. A,. and PAUWUS, J. L. H. 
1949. API'LIED HYIlHOLOGY. US\l pp., illus. New' York. 

(aa) LtftflltN, J. X.• l>d. 
1\l57. 	 l)ltAIN'AOE OP AOUTC't'LTl'UAL LANIlS. Agronomy 7,620 pp.) illus, Madison, 

Wis. 

http:Pro('.26


56 TECHNICAL BULLETIN NO. 1468, 1.".S. DEPT. OF AGRICULTURE 

(34) 	MEYEU,O H. 
1940. ANALYSIS OF UUNOFF CHAUACTERISTICS. Amer. SOC. Civ. Engin. Trans. 

105: 86. 
(35) MasoHAVE, G. W., and HOLTAN, H. N. 

1064. 	 IN.'ILTHATION. In Ven Te Chow, ed., Hlllldbook of applied hydrology. 
Sec. 12: 30 pp., illus. New York 

(36) NASH, J. E. 
1958. 	 TilE .'OH.\I OF 'ruE INSTAN'l'ANEOUS 1!NI'I' UYDUOOHAI'II. General Assembly 

of Toronto, Internatl. Pub 42, Compt Rend 3: 114-118. Gentbrugge. 
(37) 

1959. 	 A NOTE ON THE MUSKINOUM FLOOD HOUTING METHODS. Jour. Geophys. 
Res. 1I4(8): 1053. 

(38) o,'.m'l'ON, D. E. 
1064. 	 MA1'IIE~IA1'I('AL IU1FINEMENT OF AN INFILTUATION .•JQUA.'rION .'011 WATEHSHED 

ENGINEElllNG. r.s. Dept. Agr. Agr. Res. Servo ARS 41-99. 11 pp. 
(39) PEN~IAN. H. L. 

W4R. 	 NA'l't'UAI, EVAPOIIATION .'lIml OPEN WATEII, DARE SOIL AND GUASS. Roy. 
Soc. London Proc., Ser. A 193( 1032): 120-145. 

(40) 

1963 	 VEGETATION AND IIYDIIOLOGY. Commonwealth Bur. Soils Tech. Comm. 53, 
12·l pp. Commonwealth Agr, Bur., Farnluun Royal, England. 

(41) 	PETI'EIISSEN. S"EIIHE. 
1958. IN1'1I0DlTCTI0:-:' TO METEOUOLOGY. Ed. 2, 327 pp. New York. 

(·l2) P IIlLI1', J. R. 
1957. 	 TilE 'l'IIEOltY OF INFILTUATION: I-THE INFILTUATION EQUATION AND ITS 

SOLUTION. Soil Sci. 83(5): 345-357. 
(43) RmcH, B. M. 

1062. 	 DESIGN HYDIWGltAPHS FOU YEIIY SMALL WATEHSHEDS FUOM RAINFALL. 
CER1I2BMR41, Civ. Engin. Sec., Colo. State lTniv., 57 pp. Fort Collins. 

(44) 	SEI,LEIIS, w. D. 
t965. PHYSICAl, CLI~IATOLOGY. 272 pp. Chicago. 

(45) 	SLATYEH, R. O. 
1967.PLANT-WATEn HELATIONSIllP. 366 pp., mus. New York. 

(<Ill) THOIlNTIlWAITE, C. W., nnd HOLlmAN, B. 
1939. TUE OETElL\lINATION OF EYAPOHATION FHOM LAND AND WATEH SURFACES. 

Monthly Wenther Rev. 67(1): 4-11. 
V17) 

1948. 	 AN APPHOAClI TOWAUD A UATIONAL CLASSIFICATION OF CLIMATE. Geog. 
Rev. 38: 55-94. 

(48) TODD, D. K. 
19(H. 	 GUOt:'NDWA.'l'EH. In Ven Te Chow, ed., Handbook of Applied Hydrology. 

Sec. 13, 55 pp., illus. 

(49) Tellc, L. 
1954. 	 hE I1ILAN D'EAU SOLS. HELAT.lONS ENTUE LES PUECIPITATIONS, L'EVAP ET 

I.'ECOULEMENT (THE DISTUIBUTION OF WATEH IN SOILS. RELATIONSHIPS 
BETWEEN PRECIPITATIONS, EVAPOUATION AND FLowl. Ann, Agron. 5: 491­
596. 

(50) 	t.'.S. DEPAR'l'~[ENT OF AGUICULTURE. 
1964. HYDROLOGY. Sec. IV, SCS Natl. Engin. Handhook. Washington, D,C. 

(51) r.s. DEPAUTMENT OF THE ARMY, CouP OF ENGINEEUS. 
1955. 	 (A) SURFACE AND (Il) SUllSUUFACE DUAINAGE FACILITIES .FOR AIUFIELDS. 

Part 13, eh. 1 and 2. In Engineering Manual. Washington, D.C. 



57 LINEAR THEORY OF HYDROLOGIC SYSTEMS 

(52) 
1.956. 	 SNOW In'UlIOLOGY: SCMMARY HEPORT OF TllE SNOW INVESTIGATIONS. 437 

pp., illus. Portland, Oreg, 
(53) rNI\'ElIS1'rY OF WAOENINOEN. 

1956. 	 IN .. OIUl.... L MI::i:!'rlNG ON I'IIY81CS AND AGlUCUl.TUllE. Netherlands Jour. 

Agr. 8ci. '1( 1 ,. 
(54) YAN BAYEL, C. H. M. 

1966. 	 'rHIi: 'rIUlI::t:-I'HASE DO~IArN IN UYDHOLOOY. Symposium on water in the 
ummturaled zone. Internatl. Fnion OeocI. and OeophYli. Proe. \Vagenin­

gen. 
(55) 

HI6li. 	 1'0Tt:NTIAL t:Y,\I'OItA'rION: Till:: C'OMIllNA'rlON CONC't:I'1'AND ITS ElCI'EIUMJ::NTAL 
\,l::llU'ICA'rlON. "'IlLer ResourcCli Res. 2(3); 455-467. 

(56) VAN 1::kU1L"(1AAUUl:, JAN 
1\)65. 	 'rllANsa:N'l' DESIGN OF nItAINAOJ:: SYSTJ::MS. Amer. Soc. Ci\,. Engin. Proe., 

lrrig. IIl1d Drain. l)iy, Jour. 9l(IR3): !)-22. 

(57) 	Vmmll:~nm, F. J, 
1964. m'Al'OTJtANSI'IHA'rlON. In Yen Te Cho\\', ed., Handbook of Applied Hy­

drology. tlec. 11, 38 pp., HIus. NeI\' York. 
t5~) WonLU l\h:n!ottQLo(Jt('AL OllGANIZA'rIOl'.'. 

19G5. 	 GelDl:: '1'0 IIYDIlOMI::T1-:0nOLOOlCAL I'HAC'TICES. WMO-No. 168, TP 82. 
Sec. of the World MQt. Orglln. Geneva. 

(59) YEYDJI::YICH. V. 1\1. 
l\)G.!. 	 ut1\LlOOUAl'lIY AND DISCUSSIOl'.' OF nOOD HOUTIl'.'(1 MJ::TIlODS AND UNS'rJ::ADY 

nOW IN CIlANNJ::LS. P.S. Ceo!. Survey Water-Supply Pllper 1690, 235 pp. 



LECTURE 3: 

REVIEW OF MATHEMATICS 


If WE' nrr to develop ,)bjrctiv{' m{'thods for the identification and simulation 
of hydrologic systrms, SOOl1E'r or lat{'r we find oursplvE's involved in mathe­
matics !lI1d somptimes unfamiliar mathematics at that. Thr purpose of lecture 
3 is to fPvipw somr topics in. mathematics that have bN'u found useful in 
paramptric hydrology. Thr individual topics will appear again in subsequent 
lecturps when th('s(' mathematiC!l.i t{'chniques are drawll On as required. There 
is no nt'('{'ssity to att{'mpt to mastrr complpteiy the mathematics rpviewcd 
in tlIt' pr('sent I('cture. 

In paramptric hydrology, !l.S in all enginE'E'ring, thE' bE'st strategy for the 
applipd seiPlltist is to ll1!l.kp himself gp[ler!l.lly aware of what mathematical 
tools arC' IW!l.il!l.bll' but not to allE'mpt to master them until he needs Il particu­
lar piee(' of m/tthE'maties to solve a partieular problem. 80mr of you may be 
more intprl'stpd than others in particular Ilspects of tll(' mathematical found!l.­
tions of paramNric hydrology or in its computational aspects. Those interested 
ill sueh topics might find it usrful to go through thr references at thr end of 
this lpcturp in regard to t lw particul!l.r topic of interest and to work steadily 
through tht' problE'I11S refprring to th!l.t particl1lar topic. Those who are not 
inU'f('stec! in pitlwr UlHllytical or computational mathrmatics need not worry 
unduly !l.bout this aspect of our subj(·et, but can accept the pragmatic view 
that tlH' t('chniqups diseusspd hrrp are \\'pll-foundpd and practic!l.ble. Books 
whieh til(' author has found uspful in rrsppct of more than one mathematical 
topic of intprE'st in syst('ms analysis are those by Gullemin (8), Raven (20), 
Kurn and I\:orn 112), and Abramowitz and Stegun (1). 

Orthogonal Polynon1ials and Functions 

Thp following srt of fUllctions­

UI}(i) , gl(t) , ..... gm(t), ..... gn(t), ..... 

is srJd to bt' orthogon!l.l OIl the intrrval a. <t <b with respect to the positive 
wrigilting function lL' ~ t) if: 

j 
b 

tc(l)g", (t)gn (l)dt=O, -mr=n CIa) 
" 

b 

jll'(t)gn(t)gn(t} =Tn (lb) 
a 

wh('re the standardization factor (Til) is a constant depending only on the 
58 
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valu£' of It. These two equations can be combined as follows: 

/ 'W(t)gm(l}Yn(t) =1',.'0",,, 	 (lc) 
d 

whert' 0'"1 is thC' KronC'cker dC'lta, which is equal to 1 when In equals n, but 
zero olhrrwlse. 

If a function is ('xpanded in lC'rms of a complNC' set of orthogonal functions 
as defined abovt': 

k-oo 

J(t) = 	 L c"g.(l) (2) 
k-o 

tht'n lht' prop('rly of orthogonality cau b(' used to show that the coefficient 
(ek) in Hlt' ('xptulslon is lllliqut'ly dt'irrmint'd by: 

1 fb
Ck=- 1l,(t){j,.(L)J(l) dt 	 (3) 

1'1c d 

If N\('h of tilt' functions gk(ll is so writtrn that tilt' factor of standardization 
1'k is incorporMrd into thr fuuction its('lf, th(' set of functions is said to be 
normruizpcl us \\'t'11 as orthogonal. In a similar fashion, the weighting functioll 
WI t I can [or cotlv('ni('ncl' bt, incorporatpd into til(' function gk(l). 

At somr tin1£' or oth('r, most ('ngin(,prs comr in cQntact \\~ith Fourier series, 
which ar!' thp basic elassiettl orthogonal flUletions in engineering mathematics. 
Thp vast m!ljority of funetlnIls in {'nginpC'ring analysis and synthesis can be 
rpprpspntNI by an ('xpansioll of tht' form: 

1<-00 

Jtt) =~ao+ L tak coskl+bk sinkO 	 (4) 
.-1 

It can 1){' ::;howu (8) tho,t sinps and cosines arp orthogonal over a range of 
It'ngth :!1r with [('speet to tht' wC'ighting function 1 and with a standardization 
factor 1r as follows: 

f·a+2r 

cos (mt) cos (nl) dt = 1r 05".,. (5a) 
a 

f
° 

d+2r 

sin(mO sin (Ill) dl= ±1ro Omn 	 (5b) 

f
O+2r 

cos (mt) sin (nO dt = 0 	 (5c) 

° 

Bt'causp t lw H'rms of tht' Fourier sC'ries have this property of orthogonality, 
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the coefliciruts ClJ; and bk.in equatiOIl4 can be evaluated from; 

1 fr
a,\:=­ J(t) cos(kt) dt 

11' -r 
(6a) 

1 fr
bk =­ J(t) sin{kt) dt 

11' -Jr 
(6b) 

From a systrms vi€'wpoint, the significance of equation 4 is that the func­
tion is de'composed into a number of elementary signals, each of which is 
sinusoidal in form. For mathematical manipulation, it is frequently more 
convt'niput to write the €'xpansion given in equation 4 as a complex Fourier 
series: 

.. 

J(t) = L: (\ exp (ikl) (7)

k--.::c 

For this ('xpo[l('ntial form of the Fourier series, tht:' property of orthogonality 
is t'xpressed as: 

f u+2.­

exp[i(m-nH]o·dl=211'·o",,, (8) 
a 

where 0"," is the Kroncckt:'r delta, lhat is, is equal to 1 when 'm=n, but zero 
otll('rwist:'. 

\\ e can dt't('rmine the complex coefficients in equation 7 as: 

(\=;-1 fT exp( -ikt)J(t) dt (9)
_1r -r 

If the function hf'ing expanded is a real function, then the coefficients ak and 
bJ; in {'qllatioIlS 4 and 6 will be' real, whereas the coefficient Ck in equations 7 
and 9 will be complex. The relationships between the coefficients are given by: 

(lOa) 

(lOb) 

Though Fouripr st:'ries ar€, widely llsed in systems engineering, they are not 
the' only tYPt'S of orthogonal functions which are of use. There are three 
classical cascs of orthogonal polynomials. These are (1) the Legelldre poly­
nomials, whirh an' orthogonal on a finite int€'rval with respect to a unit 
w€'ighting function; (2) the Laguerre polynomials, which are orthogonal on a 
semi-infinite interval with respect to the weighting function e:'Cp ( - t); and 
(3) the H{'rmii(' polynomials, which are orthogonal on an interval infinite in 
both directions with respect to a weighting function exp ( - t2). Of these/ only 
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the Laguerre functions huve been used in parametric hydrology. Their defini­
tion can be written as: 

[0 exp( -t)Lm(t)Ln(t)dt=omn (lla) 
o 

It can b{' shown that the polynomials satisfying the above relationship are 
given by: 

(12) 

By incorporating the weighting factor in the Laguerre polynomial, we can 
define a Lagu('rre function CPn as: 

(13a)cpn (t) = exp( -DLII (t) 
(13b) 

which will obey the simple relationship: 

(lIb) 

which is au alternative form of equation Ha. 
lt can be seen from equation l3b that a Laguerre function can be expressed 

as a series of gamma distributions with integral e.'''ponents. Therefore, any 
function can conveni{'utly be expanded through the medium of Laguerre 
functions in terms of a series of gamma distributions with integral exponents. 
This is of interest b{'cause of th{' use of the gamma distribution (not neces­
sarily with an int{'gral exponent) to simulate system responses in hydrology. 

So far w{' have been talking about functions whose arguments are continu­
()Us and which are orthogonal under the operation of integration. In hydrology, 
our data are frequently defined only at certain discrete points or as averages 
Qv{'r c('rtain int{'rvrus so that the dau~ are not available in continuous form. 
Under these circumstances, it is necessarj' to use discrete rather than continu­
ous mathematics. Unfortunately, most ew~ineers are trained in continuous 
mathematics and find some difficulty in goi.ng over to the discrete analogs of 
the continuous formulas and methods. Instead of defining orthogonal func­
tions as in equation 1, we can define discrete functions to be orthogonal if: 

(14) 

wh{'r(' S is a discrete variable. 
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Tllt' FOUI'iN appl'Oa('h ('an bE' appli('d to a dis('l'('t(' s('t of equally spaced 
data us wC'1I as to ('ontinl1()us data (8(>P "Time' SNips Analysis of Disrretc 
Data," Ipc( til'£' (i l. 1'11(' llwthoel of hnr(llollir an!lJysis or lrigonomrtricnl int('l'­
polation is baspd on the orthogonality ullde'r summation of Ihe' siu('s anel 
eosine's of (2Il .v ,ks\, Apart from thC' sp('eial euse of harmouir analysis, dis­
e'I'Nt' ort hogoual fuuetiolls an' not elisew;sf'el to any great {'xU'nt in tIl(' mnt.ht'­
mlttieullitPrlLt UI'('. 

If an att('mpt is mndp to apply Lagu('rrt' fUlletioI1s to discr('lC' data, it is 
[ound t1l11.( til(' Lagu('rl'(' rUtl('tiom, arC' not orthogonal under summation. It 
was found t hat ttl(' ditWI'{'( (' analog of til(' LaguPl'!'p fnuc-lion d('fill('d by ('qua­
I ion lab was: 

k_n 

/"Uil",,(1:!il'fn+I>2 L ~-llkt,J:I(,P (15)
k-() 

TIll' polynomial ill pqtmt iou L> is a slw('ial ('a:;p of t h(' Jlcl:rncr polynomials, 
('ompnri;.;ou of <,qUll.t iOll 1.> wi th t11(' l'orl'C'spondiug ('quat ion 13 for til(' con­
I inuou~ eas(' !'('\'I'als n numlH'r of signifiennt ditT('!'(,llC'PS. 1'11(' \\'(lighting func­
tion pxp I -I 2) in ('quat ion l:~ has b(,Pll f('plul'pd by tll(' \\,(lip;hting function 
,1 :!l' ~ in ('qullIion .l.i, and til(' polynomial «'I'm lk k! in ('quation 18 has b('('u 
I'l'piu('l'd hy !;l, If allml'!t[lC'P is madC' f()r til!' ditTeJ'{'lIc(' in tll(' opl'mtions in 
thl' ('ontilluotiS !tnd dis('!'P!!' l'!lSPS, thps(' tprms an' S(,PIl to eorrl'spond. Thus, 
('xp ill mny h(' dplitwd as Ill!' fltl1et iOll whieh diffpr('ntia\('s into itself; simi­
larly, tlw flllH't iOll :!' is a fuuetioll whieh forward ditTert'lIc('s into itself. The 
dHTprputilltioll of lk k! giyps l" 1/;-1.) ~ whilp tIl(' forward difft'r(,Dcing of WI 

givps (k.·l)' 

FurtlH'r informal ion rOlH'l'1'llillg Fouripr s('ri(,8 and ort hogonal polynomials 
NUl II(' found in thl' rpf('/'('I\('('8 at thp ('Dd of the lcrlul'('; notably in Guillcmin 
18 i, Hamming ! 9i, Hild('brand (j()), Lanrzos (14), and Hainville (17). 

Fourier and Laplace Transfornls 

Fuuripr and Laplnep transforms havr a numl)!'r of applications in Ih€' linear 
tlw(l/'Y of hydl'Ologie systc'ms. TIH'Y I),rp uSf'ful in till' solution of linear equa­
I ions in dpaling with til<' opl'mt ion of linl'ar Elystrms and particularly in ana­
lyzing t hl' t l'n,nsi('ut bpilavior of systrms. In addition, when the moments of 
funrtiolls ar!' uSt'd to ('barnelpriz(' thl' functional relations bl'tween thE' input 
and output of a systrl11, Fouri('r and Laplac(' transforms can b(' used to dcter­
miu(' the' mon1('lH8 of giv('u funrtiol1s. 

Transformation of th(' original fUlll'tion is madp to simplify the matllC'mati­
('a! pro(,pdure'. On first at [pmpting to mastl'r tht' teehlliqu('s of Fourkr and 
Laplnel' trnns[orllls, tht' (>ngiurl'r may think that very littll' simplification is 
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achieved. However, once mastered, the techniques are extremely useful, 
particularly since the Laplace transforms and, to a lesser e.xtent, the Fourier 
transforms are tabulated like logarithms or trigonometrical functions. By 
using the Laplace transform, it is possible to transform an ordinary linear 
differential equation with constant coefficients into an algebraic equation 
which is far easier to solve. It is also possible to convert a partial differential 
equation into an ordinary differential equation, again achieving a tremendous 
simplification in the type of problem to be solved. Of course, these simplifica­
tions are made at the cost of having to understand Laplace transforms. 

The Fourier transform is particularly useful in the analysis of the transient 
behavior of stable systems. From one point of view, the Fourier transform 
may be looked on u,s a limiting form of a Fourier series. The latter apply to 
functions that are ppriodic outside thE' interval of integration and consist of 
an infinite series in which each term refers to a definite discrete frequency. If 
tl1(' int('rvu.l of intE'gration is increased indefinitely, the series will be replaced 
by an integral as follows: 

f(o=LI: F(w) E'xp(iwt) dw (16) 

which cOITPsponds to equation 7 with F(w) corresponding to Ck, with integra­
tion replacing summation, and with th€' term arising from the standardization 
('onstant C~II) appeal·jng in the equation of the series instead of appearing in 
tlw equation for calculating the coefficients. Just as the coefficients Ck in 
('quatioll 7 can be obtained from equation 9, so the function Few) can be 
obtain('cl from: 

F(w) = Jcc f(t) exp( -iwt) dt (17) 
-00 

It would be equally permissible to introduce the standardization constant 2II 
in ('quat ion 17 and omit it from equation 16, or even to introduce the square 
root of the factor into each of the equations. 

Instead of looking on equation 17 as a limiting form of equation 9, it is 
possible to consider it merE'ly as the equation defining the transformation of 
ft t) from the tim€' domain to the frequency domain. Equations 16 and 17 
havE' the advantage that, unlikE' equations 7, 8, and 9, t.hey are not confined 
to periodic ph(,llomE'na. This advantage, however, is offset by the fact that 
when'Hs equation 7 ('nables us to evaluate the function to a high degree of 
accuracy by knowing th(' values of Ck, equation 16, which represents the in­
vf'rsion of the Fourier transform, is not by any means as easy to handle. 

If the systf'm we arf' E'xamiuing is not stablE', or if the functions involved 
do not fulfill cf'rtain other conditions, thf'n the Fourier transform not of f(t) 
itsf'lf, but of hOe-ct , w111;'re cis 1\ real numbE'r. ~1aking this change gives us 
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the bilateral Laplace transform of the function: 

Fnes) =An[f(t)] 	 (lSa) 

=F[e-c1(t)] (lSb) 

= foo e-c1(t)e-i",t.dt 	 (ISc) 
-00 

= foo J(t)e-· t dt 	 (lSd) 
-00 

As ordinarily used, the Laplace transform is only defined between zero and 
plus infinity, and virtually all tables are for this unilateral Laplace trans­
form. In this form we have: 

F(s) = A[f(t) ] (19a) 

00 

= 1 J(t)e-· t dt 	 (19b) 
o 

Equation 19b is the Laplace transform equivalent of equation 17 above. 
The Laplace transform can be inverted to give the original function in the 

same way as equation 16 by using the expression: 

1 jC+iOO
J(t) =;;-: F(s)els ds 	 (20)

,w7r~ c-ico 

Again equation 20 is difficult to solve, but must be used unless the function 
F(s) can be found in a set of Laplace transform tables. Numerical inversion 
of the Laplace transform is quite difficult and involves the use of orthogonal 
functions to represent the Laplace transform and the inversion of these func­
tions term by term. 

For discrete functions, the Laplace transform must be replaced by the 
Z-transform. TIllS can be written as: 

Z[f(nT)]= A[J(nT)oCt-nT)] 	 (21a) 
n=oo 

= 	 L: J(nT)e-nT8 (21b) 
n-o 

n=oo 

LJ(nT)Z-n (21c) 
"-0 

where 
eT·=Z (21d) 

This discrete transform has properties similar to those of the Laplace trans­
form and has been tabulated. 

Further information on transforms and their use in systems analysis can be 

http:e-c1(t)e-i",t.dt
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found in the following. Aseltine (2) Doetsch (4), Jury (11), and Papoulis 
(16). Extensive tables of transforms are available in Erdelyi (5) and Roberts 
and Kaufman (21). 

Differential Equations 

Ordinary differential equati\H1S are differential equations in a single vari­
able. If we are dealing with !1lumped system, with lumped inputs and outputs, 
then we will have only ordinary differential equations to handle in which the 
single variable will be time. Ordim1.ry differential equations are classified in 
respect to their order and degree. The order of a differential equation is the 
order of thE' hight'st derivativ(' present in the equation. The degree of the 
E'quation is the power to which the highest derivative is raised. A linear equa­
tion must of IH'cessity be of the first degree because otherwise there would be 
a.n essential nonlinearity and the principle of superposition would not apply. 

In a linea.r differential equation, all the derivatives in the equation must be 
to the first power and their coefficients must not be functions of the dependent 
variable. Thus, if we have an ordinr.ry differential equation-or system of 
ordinary ditIerential equations-which describes the dependent variable (y) 
and its derivatives with respect to the independent variable (t) as functions 
of the independent variable (I.), then there is no restriction on the order of the 
derivatives but each derivative must appear only to the first power, and, in 
addition, the coefficients of the derivatives cannot be functions of y but may 
be functions of t. The general form of such an equation is: 

dny dky I 

o.o(t) dtn+.··· .o.,,_k dtk•..•.. an (t)lI=X(t) (22) 

If the coefficients are neither functions of y nor of t but are constants, then we 
have an ordinary differential equation with constant coefficients given by: 

dny dky 
dt + .... .an-k dtk + .... .any=x(t) (23a)

n 

Equation 22 could represent the operation of a lumped linear system, but for 
equation 23 to represent the operation of a system, the system would have to 
be both linear and time-invariant. 

Since our starting point in systems analysis is the study of lumped, linear, 
time-invariant systems, we will first be concerned in our analyses with the 
solution of linear ordinary differential equations with constant coefficients 
such as equation 23a. An alternative form for the latter equation is: 

D"-y+a1Dn-ly+ ... .. . aiDn-iy+ .... .any=x(t) (23b) 

where D is the differential operator. This may also be written as: 

p(D) =x(t) (23c) 

http:ordinr.ry
http:Ordim1.ry
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An equation such as 23 with a function of t on the right-hand side is said 
to be nonhomogetieous and is more difficult to solve than a homogeneous 
equation where the right-hand side is zero. 

In accord!Ulce with the principle of solving simple problems first, the first 
step is to look at the homogeneous equation: 

p(D)y=O (24) 

and postpone solution of the full nonhomogeneous equatiotl until 11 solution 
of the homogeneous equation has been found. The classical method of solving 
this equation is to nssume that the solution is mUde up of terms of the form: 

y=c' exp(st} (25a) 

Any vulu(' of s which satisfies: 

pes) =0 (25b) 

where p(s) is the same polynomial as p(D) ill equation 24, will give a solution 
of equation 24. If the original equation is of the nth order, then there will be 
n roots, real or complex, for equation 250.. Consequently, the general solution 
of equlttion 24, which is known as the complementary function, is given by: 

y= L 
n 

Ck exp(skt) (25c) 
k-I 

RNll values of Sk give rise to exponential terms and complex values of Sk to 
sinusoidal terms. In hydrologic systems which are heavily damped, the roots 
are usually negative and real so that the solution consists of a series of expo­
nentials with negntive arguments. The n unknown constants Ck are obtained 
from the boundary conditions. 

Having solved the homogeneous equation, we now move on to the problem 
of solving the nonhomogeneous equation. 1£ a particular solution of the non­
homoge!l0n us equation cun be found: 

y=yp(t) (26) 

then the comph,te solution of the nonhomogeneous equation is given by: 

y=Yp(t)+ I: 
71 

Ck exp(skt) (27) 
k-I 

in which the first term of a particular integral will satisfy the right-hand side 
of the equation, and the second term or complementary function will satisfy 
the boundary conditions. 

The solution of ordinary differential equations, such as equation 23, can be 
greatly facilitated by the use of the Laplace transform. By taking the Laplace 
transform of thE' equation and using the rules for the Laplace transform of a 
d('rivative, we obtain an algebraic equation for the variable 8 in which the 
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boundary conditions fLre' automaticolly incorporated. If the functioll OIl the 
right-hand sid(' of tbr ('quat ion is simple, its Laplac(' transform mtty be in­
cludf'd. If not, it may bf' r('placed by a delta function and tilt' solution for this 
cltsr obtaiIlt'd. Th(' solution for the actual right-hand side is then obtained by 
convolutin~ the function on the right-hand side of th(' original cquMion with 
tht' solution obtained by using a delta function. If the system is a complex 
one, tlwre mny b(' derivative's on the right-hand side' of tlw equatioli. and the 
us(' of the delttt fUlletion may r('quire some caution and a mastery of its 
mnnipulatio[L 

If the syst<'m has distributed rather than lumped characteristics, then its 
op('mtion will \)(' d('scribpd by a partial cliff('rential ('quation. :'.Iost of the 
partial clitTerenlinl equations cncounter('d ill enginpering nnnlysis nrc of the 
s('('ond or([('r. For OIl(' spae(' dimension, the genernl second order homogeneous 
linenr ('<Iuntion with constant coefficients is given by: 

(28) 

Th(' first thing to determine about n. partial differential equation is whether 
it l..'{ hyperboli(', pMaiJolic, or elliptic in form. This depends on whether the 
di!;criminnlc b2 -'-lac is respectively greater than, equnl to, or less than zero. 
HYJ)erholk and parabolic partial differential equations correspond to prob­
I('ms of propagation tin both dir('ctions respectively), whereas elliptic differ­
ential ('quations represent the way in which til(' condition nround the boundary 
('tTpels the inl<'rior of a spncp. Tilt' appropriatp typps of boundary conditions 
arc diff('rent for thl' thret' c1iffprent types of equations. 

Further dptails on the subjPct of differential equations and their solution 
cnn bp found in t'l'fPrcnces by Lnmbp and Trtlnter (IS), Fox (7), and Sneddon 
(i2). 

lVlatrices 

:\In.tri('Ps an' ('ssentilllly mntlwmMicnl shorthand for rcprpsenting arrays of 
element!;. A matrLx is an array or table of numbers. Thus, we defin(' thE' mn.trix 
-tt n.,,; 

au al2 ..... aln] 
a21 a!!'2 ••••• a2n 

-tl= ............ .. 
[ ... . . . . . . ... .. ­~ 

amI am:!· '" •• arnll 

This matrix, which h!l$ In rOWR and n columns, is referred to as an 1n by n 

matrix. 
:'.Iatrix algl'1Jnl. tPlls us what rules should be used to munipulate such arrays 
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of numbers. If a mt.trLx C is composed of clements each of which is given by
adding the corresponding clements of matrLx A and matrLx B, that is: 

(290.) 
then matrix C is said to be the sum of the two matrices A and B, and we write: 

(29b) 
:\IutrLx multiplication is defined as the result of the operation: 

(300.) 
wher(' the clements of C are defined as: 

(30b) 

lhnt is to say, the element at thr intersection of the rth row and the tth column
in tlI(' C nu~trix is obtained by multiplying, term by term, the rth row of the
11 matrix by the llh column of tll(' B ml\trh: and summing these products.
This definition implirs that matrix 11 lu\S the same number of columns as
matrix B has rows. It must be remembered that matrix multiplication is in
general noncommutative, that is: 

(30c) 
.A certain amount of nomenclaturr must be learned in order to be able to

use mMrix t\lgebrn.. A squarE' matrix with thE' number 1 on all points of the
principal diagonal (that is, the onE' from top left to bottom right) and zero
OIl all the off-diagonal points 1s known as the unit matrix. It serves the same
function !\S the number 1 in ordinary algebra; it can be verified that multi­
plication of a matrix by the unit matrix gives thE' original matrix. A diagonal
matrix is 011(1 in which the elements on the main diagonal are nonzero, but all
tlw other elements are zero. An upper triangular matrix may have nonzero
elements on thr principal diagonal and above, but only zero elements below
the main diagonal; similarly, a lower triangular matrix has nonzero clements
elements .in the principal diagonal and below it, but only zeros above the
diagonal. The transpose AT of a matrix A is the matrix which is obtained
from it by replacing each rOw by the corresponding column and vice versa.
The inverse of a matrLx 11-1 is the matrix which when multiplied by the origi­
nal matrix 11 gives the unit matrix I, that is: 

(31) 
A matrix will only possess an inverse if it is square and nonsingular, that is,

if its determinant is not equal to zero. The transpose of the inverse of a matrix
is referred to as the reciprocal matrix. A matrix is said to be orthogonal if its
inverse is equal to its transpose, that is: 

(320.) 
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which is equivalent to: 

(32b) 

and to: 
Cij= L aikajk=Oij (32c) 

k 

The individual rows and columns of a matri.x may be considered as row 
vectors. Thus, the row vector which consists of a single row is really a matrix 
of size 1 by 11" whereas the column vector which consists of a single column is 
a matrix of size m by 1. Two compatible vectors can be combined to give 
eitlwr an inurr product or an outer product. Tius is illustrated next for a 
ve('tor and its transpose. 

Th(' transpose of a row vector will be a column vector and vice versa. Con­
sider a V(>(~tor (L which has n rows and one column; its transpose aT will have 
()!ll' row and n columns. If we premultiply a by aT we obtain: 

(330.) 

(33b) 

(33c) 

S(l that the re:-lult of the multiplicMion is a one by one matrix, that is, a scalar. 
This is knowu llS til(' inlier prodUct. The ouler product is obtained by post­
multiplying (t by aT: 

(340.) 

Sincp this is thp product of an nX 1 matrix and a 1 Xn matrix, the result is 
tln I! X n matr:ix n..,,, follows: 

0.1
2 

alaZ .....alan]
a2al a22 ••••• 02an 

Q.·aT = .............. . (34b) 


................... ..
[ 

a"a1 anaz . ...• a,,2 
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'l'he comparison of (·quations 33 and 34 is a good illustration of the fact that 
the multiplication of vectors is not commutative. 

A set of simultaneous equations is representE'd in matrix form by: 

Ax=b (35) 

wherE' A is th€' matrix of coefficients, x is tlw vector of unknowns, and b is the 
vector of th(' right-hand sidl's of the simultancous equations. If it is required 
to solve the problem for different SE'ts of values on the [·ight-hn.Ild sidc, the 
roost couvenient method is to obtain tlH' inverse of th(' coeflicient matrix and 
write the solution tLS: 

(36) 

A matrix only has un invers(' if it is squarr and nonsingulur; therefore, 
t'quution 34 can only b(' written if til(' coefficient matrix is square. This is 
nothing IllO!,(' than thl' old eritcrion that the number of equat.ions must be 
equal to tIl(' numbl'r of unknowns in order to obtain a direct solution. If, 
howevpr, only (JIll' sN of t''Iuations is bping solved, thl'rl' arl' mon' efficient 
computational routinps. From til(' point of vipw of actual computlLtion, a 
matrix may br llotlsingular but may still givl' rise' to difficulty beclLus(' the 
equations ar(' lll-eonditiOlH'd and till' matrix is almost singuln,r so that the 
l1uIllPrical rNlUlts may 1)(' unreliabl<'. Sp('cial computeI' programs ar(' available 
for til(' inversion of lllatri('('S and for thl' solution of simultaneous equations. 

FurtiH'J' information on ruatric(ls and thpir uSP is to bl' found in publica­
tions by Guillpmin (8), Hav(,11 (EOl, Bieklpy and Thompson (3), and 'Vaele 
(.23 J. 

NUlTIerica:1 Methods 

Bp('nus(' Wp clpal with data and numb('rs rather than functions, tlw systems 
hydrologist must havp it finn grnsp or nUllwricll.l mpthods. Because' of thl' 
eOlnpj('xit,\' of til(' systPI11S with which lw (lpals, most of his problems will rc­
quirp !l solution OIl a digital ('omputPr. TIll' various stnges of tll(' solution of 
n problpIn using n. eomput('r may 1)(' groupl'd as follows: 

( 1 ) lJroblem identification 
(2) :\1i\l1H'matical dcscrip tion 
(a I X ullwrical analysis 
(>1 ) Comput('r progrnm 
(,i) Program chE'ckout 
((j I Production runs 
(7) In tprpretation 

It is outside' till' 15(,OP(, of th('sp lectufl's to discuss thesE' various stages. Ncver­
t1wless, thos(' int('rest('d will bl' llblt' to folio", up any particular topic in thp 
refprPlH'f'S by Hn.llunillg (9), Hildebrand (10 l J :\IeCrncken and Dorn (15), 
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Ralston (18), and Ralston and Wilf (19). In addition, a number of the prob­
lems at the end of this lecture and at the end of other lectures in the series 
will giv(' practice in the solution of problems involving numerical methods. 

ProhleIllS on MatheIllatics 

Orthogonal polynomials and functions 

l. Find the Fourier cosin{' and Fourier sine coefficients for the expansion 
of a number of thr functions of a continuous variable given in Appendix 
table l. From thes{' determine thr Fourier exponential. 

2. I"ind th{' cOE'fficients for the expansion of a number of the functions 
shown in Appendix table 1 in tE'rms of Laguerre functions. Compare the re-· 
suits with those obtained in question 1 !lnd comment on the difference. 

3. Find the harmonic coefficients for the expansion of a number of the 
functions of a discrete variable shown in Appendix table 2. What is the differ­
enc(' between the expansion of a function of a continuous variable by means 
of a truncated Fourier series and the expansion of the same function by the 
harmonic analysis of th(' function of a discrete variable obtained by sampling 
the funetioll of a eontinuous variable at the same number of points? 

4. Det('rmin(' the harmonic eoefiicipnts for the discrete set of values ob­
tained by sampling one or mOTe of the functions of a continuous variable 
given in Appendix tablr l. 'Vhat is thl' effect of the frequency? 

D. In tht' casC' of a fum'tion which is zero outside a certain limited range, 
what is the rrl!1tionship bet\n>en the Fourier exponential coefficient and the 
moments of thp function about thp time origin? 

Fourier and Laplace Transfornls 

n. Find the Fourier transform or Laplace transform of a number of the 
functions given in Appenclix in tablp l. 

7. Show that thE' explicit form givpn in eithpr the Laguerre or Hermite 
polynomials is idpntical to thC' Rodriguez form. 

<'\. The impulsE' response of a given system may be represented by function 
11 in Appendi..'{ table 1 and the input to the system may be represented by 
funetioll 12 in Appendix table l. Find the output from the system (1) by a 
dirpct convolution and (2) by means of the Laplace transform. 

9. If the ,.tll moment of a function about the origin is given by 

['l=Kr(n+r-l)! 
T (n-l)! 

and the functi~'11 is zero for llPgative time, find th€' function. 
10. "Cst' thE Z-transform to fiud th(;' function obtained when a :Meixner 

polynomial of d,'~~re(' II! is convoluted with a ~\Ieixner polynomial of degree n. 
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Differential equations 

11. A numlwr of unequallit\ear reservoirs arc cascaded, that is, the out­
flow from OIl(' is the inflow to thE.' next. Write thE.' differential equation for tbe 
outflow from tht, last resC'rvoir in terms of thE' inflow to the first reservoir 
nnd the storagE' constants of the individual reservoirs. W hat is thC' form of 
tlll" solution to this general equltlion? What is thC' form of the result if the 
linear r('servoirs aI'£' all equal? 

12. Th(' following C'quation is tlH' impuls(' response of a giVC'll linear 
system. 

li(O = (C\t+(W+C3l3 ) ·exp( -t) 

Draw two altf'rtlative arrangC'mNlts of ('qual linear storage cl('mcllts of unit 
stOrtlgP clelay tinl!' whic'h would luwp tht' stl,mp impulsp response as the given 
SystC'lll. TlwtI dC'rivp tilE' diITprC'ntial (·quMion for th(' rC'sponse yet) of the 
giv011 systpm to any giVPll inflow .ttL). 

13. Find tIl(' solution of til(' follo\\'ing f'quatiou 

dy (l )l-+ --It 1/=0
ell k 

DoC's til(' rl'slllt hold for all vallH'S of It? What is the rC'lationship between 
this r('sult and tl)(' rpsult obtained in question 11 for n equal linear reservoirs? 

14. ~olvp thE' liuN!.!' \nwp ('quation for tl semi-infinite channel for zero 
initial condition:; aud it givpn ('ol1ciitiol1 at thE' upstream end. What w0uld be 
tlw solution if only tlU' fir:;t-orckr tf'rms on the right-hand side of the equation 
wert' rC'talrll'd? What would bE' thl' solution if only the second-order terms OIl 

tlw ll'ft-Imnd sidl' of thp (''lulllinu were 'f'tained? What type of flow is repre­
sf'llted by t1l.('s(' two solutions? 

1:>. If in thl' linpar wav(' equation tilt' valul' tlf band c arc zero or of such 
IUngnituup thitt tl)(' s('cond flnd third t('rms call bt' n('glected, what form does 
thE' !'quntioll tah, [tnd what is th(' solution for 1;;:le boundary conditions given 
in pl'OlMm 14? How do('s th(' form of this solu.tion differ from the solutions 
fouud in problem 14? 

1\'1n trix lllCthods 

HI. Writ(, out th(' S('t of simultaneous ('quations relating the ordinates of 
tht' outflow hydl'Ogrnph to {h(' ordinates of tht' input hydrograph and the unit 
hydrogrnph. ExprE'ss this SE't of t'quations in mMrix form in two alternative 
ways. (ii,,!' tht' matrix formulation of tIl(' dirC'ct s(ll.ution and the least squares 
solution for tht' tUlit hydrograph ordinates. 

17. If the volUmE'S of E'fi'ectivE' rainfall arE' givell by function 6 in Appendi.x 
table .~ and th(' ordinatE'S of the unit hydrogrnph by function 8 in Appendix 
tn.blt' 2, uSP the matru: formulation to write down 1he ordinates of the outflow 
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hydrograph. Rework the problem with the volume of the unit hydrograph 
made equal to unity. 

18. What maximum runoff would be predicted for the effective rain and 
the lmit hydrograph shown in Appendix table 3. 

19. Th€.' input to a linear system is given by function 3 Oil AppendLx table 
.3 and th€.' output from tht' system is given by function 4 in Appendix table 2. 
find th(' pulse respons£' of the systpm by means of matrLx inversion. 

20. If the output of the system in probl('m 19 was taken as fUllction 5 in 
Appendix tabl(' 2, find thE' puIs£' r(,5ponse indicated by this output both by 
lh(' ordinttry matrix method and by thE' least squares method. 

NUlllcrieul.ll1cthods 

21. List 5t'vt'rnl mt'lhods for Ilum{'ric!tl quadraturp of a given function. 
Draw n. flow diagmnl for thE' applicMion of on£' of tht'sc methods to the quad­
rature of OnE' of the continuous functions on Appendix table I, using either a 
desk calculator Or a digital comput{'r. Give r{'a50ns for chosing the particular 
quadrature method. 

22. Develop a flt~W chart for a gent'ral computer program for determining 
tilt' coefficit'nts in any orthogonal {'xpansion of any given function. 'Write the 
compulPI' progmnl for a st'ction of tht' flow chart. 

23. Writt' a computt'r program for matrix inversion and apply it to the 
solution of probl('m 19. 

24. Dpvt'lop It flow ehart for the derivation of a unit hydrograph from 
records of total mlnfall and total runoff. 'Write one section of the computer 
program. 

2;J. Discuss tht' mplhods available for the numerical solution of the linear 
w(we t'quatiol\. \Yrit(' out tll(' finite difference scheme for solving the equation 
by 011(' of thrl:l(' nwthocls and discuss how th(· boundary conditions would be 
lUl.ndled. What prnblpms would you ('xpect to encounter in computing accord­
ing to th(> rhoS{'\1 Illt'thocl? 
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LECTURE 4: 

CLASSICAL METHODS OF RUNOFF PREDICTION 

The Outflow Hydrograph 

TIlE' purpose of lE'cturE' 4 is to review thE' classical mE'thods of runoff predic­
tion us uSi'd by n.ppli(ld hydrologists und to reformulate these methods in 
SYSlNllS tprms. ~lost of thE' mrtilods werE' dNiwd during the goldt'n age of 
elussicul hydrology bE'twe(\ll 1930 and 1945. WhE'll SOme of these methods are 
lookPd at from It systematic point of vit'w, thc assumptions stand out more 
clNtrly, Mel both thl' limitations and th" full rangE' of applicability of the 
mpthods an' n'veall'd. In many cflses, tht' scope of thp methods is considerably 
widl'r tlnHl would appe!~r from tIl(' classical formulation of tilt' method. 

Classical hydrology paid a grt'at dt'al of attt'ntion to th€' runoff hydrograph 
in an ('ffort to dt'tprminp how it could be prE'dieted. Figure 4-1 is taken from 
a contribution by Hoyt USL Hp talks of fiv(' phases in the runoff cycle; 
four of thpsp art' illustrated in figures 4-1 to 4-4. Th(> first phase relates to the 
('lld of !l dry p,'riod when thE' streamflow is relatively low, most of it being 
supplh~d by bast' flow tQb) from ground watE'r storage. During this phase, 
thE' soil moisturE' will have beE'n rE'duced by E'vaporation (E) and transpira­
tion {Tl so that a substantial fiE'ld moisturE' dE'ficit will exist. If the dry period 
hus bt'pn vt'ry long, tIlE' rate' of transpiration mp~t b€' severely reduced below 
thf' potrntial rut£' dut, to tIl(' drying out of th€' soil and thE' lowering of the 
watf'f tabh,. Phast' .2 of Hoyt's runoff <,ydr relates to an initial period of rain 
and is showu onfigurt' 4-2. If thE' initial rain (P) is light, the amount in­
(iltnttt'd IP) will not bE' sufficipnt to makE' up the field moisture deficit and 
IH'llrf', no r('('harg(' to ground watrr (R) will occur. During this second phase, 
a portion of tlw min will b(' intcrcrptl'd by vegetation en or stored in de­
pr('<;sion storage t.D "J. 

T. .'-:, ....:. 
--~" .. ~ ... .. : .......\::....:. :'F.: :: . 
. . .. ,,':":,. :.. +...+ .... : ..... ".". 

FlOt'liE 4-L-Phlll!e of 10\\' streamflow. 

i5 
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FWl'1U1 4-2. - Phnae of initial rainfall. 

I'll(' third phas(', shown in figurC' 4~3, is !lssoeiittC'd with thC' cont inuittion of 
min for Sonl<' timC'. If this oecurs, the storag<' .in thC' surfuc(' df'pr('ssions CD) 
will b(' satisfipd n,nd ov('r1and flow (Q.) will occur: similarly, if th(' infiltration 
into til(' soil is suflkirnt to fill till' soil moisturC' storage tS) I t hen recharge 
(R) to thC' ground watrr will oeC'ur. TIll' strNl.mflow will ris(' r('lativ('ly mpidly 
dm' to ov('rland flo", (Q.) and ltny r('turn of int('rflow to.) to the stream. 
Subsl'qU('ntly, tlH'rp ,rill bc a more gradual incr('as(' in streamflow due to 
outflow from the gl'Ound watE'r 1'{'s('rvoir l Qb), which is b(,ing r('charged by 
gmvitat iOIliti soil watrr I R1. \\'h(\11 t Iw g('Iwml conditions are favombl(, to 
minfaU, tlU'rt, is IL high r('lati\'(\ humidity ILnd both ('vaporation and tmnspira­
tion U'nd to l)(' reducpd. In tlll' analysis of conditions during prolonged rain­
fall. t'vnpor!tlion and tmnspiratioIl art' fn'quenti'y Ilrgieclcd. In this third 

'plOt'HE '!-3.-·Phllse of prolonged minfnll. 
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phase, the rapid rise of the level in the stream channels due to overland flow 
and interflow may result in increased bank storage, that is, a recharge of the 
ground water close to the stream as a result of the increased streamflow. 

Hoyt characterized the fourth phase as a period when rainfall has continued 
sufficiently long and with sufficient intNlsity so that all available natural 
storage has been satisfied. This condition rarely occurs in natural watersheds 
of !ltly Ilppreci!lbh' sizE'. In thE' case of small watersheds, both urban and rural, 
the storagE' may be satisfiedl1.nd the condition reached where the rate of runoff 
is equal to t1l(' supply rat<'. This phase is not separately illustrated but is 
similar to the third phasE' shown infigurr 4-3. 

The fifth phase describpd by Hoyt is illustriLted in figure 4-4. It is the condi­
tion w1H'11 the rain hn.s cpn.sed, but suffici('nt time has 110t ('lapsed for channel 
stomg<' and surfut'P rpt<'ution to be d<,pl<'ted to thE' kVE'1 at which they were 
during thE' first I;hasp. Dl,lring this fifth phase, evaporation (E) and tran­
spiral ion tT) mny be considerable because the plentiful supply of moisture 
allows evaporation to t!tkE' plat'E' at almost the pot('ntil1J rate. Streamflow 
will dt'('lilH' but only gradually as surface storage, clul.Ilnel storage, and ground 
W!tiN storage arc' dmwn upon in turn. This fifth phase is illustrated on the 
1n.st linE' of figure 4-4. "P might argl1(' about the details of this particular picture of the runoff 
cycle, but not ~~bout its gpneral nature. How does this picture compare with 
tht:' systems view of the same phenomena? Can Hoyt's approach interpreted 
from n syst('ms point of view? At first glaIlce there seems little in common be­
tWN'I1 tIll' classical picturt, of figurl:' 4-1 to 4-4 and the' systems diagram shown 
in figure 1-8 (p. 16), On closer examination, however, we realize that the two 
can be relatpd to Olle !LIlolh('r. III figures 4-1 to 4-4, th€'channel storage and 
Ih<' stor!lge in the soil abov£' tIl(' water tabl(' are shown pictorially; in figure 
I-I:! tll€' samr storages are represelltrd by rectangular boxcs. Hoyt's classifica­
tion and illustration of the phnses of thl;' runoff cycle are based on two inputs, 

E, 

E 
i T, 

FIGl"RE H.-Phase of declining streamflow. 
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one of precipitation and the other of potential evaporation and transpiration; 
these are also the essential inputs of figure 1-8. 

Classical hydrology, as exemplified by Hoyt's analysis of the runoff cycle, 
makes the assumption that there is either rainfall and no transpiration, or 
else transpiration and no rainfall. If this assumption is permitted in systems 
hydrology, as in classical hydrology, then the task of the systems hydrologist 
is greatly simplified. Instead of dealing with multiple inputs, it is possible to 
deal with alternating inputs; thus we might consider the precipitation and 
the potential evaporation for a given catchment as analogous to controls on 
a storage tank operated in such a way that when one valve is open, the other 
is shut and vice versa. \\ hile v, complete model would have to take care of 
simultaneous multiple inputs, the first approximation could follow the classifi­
cation of Hoyt. 

In the systems formulation, it is only necessary to use two phases. The first 
phase would be the rainless period. The initial storage in the different parts 
of the watp.rshed would be determined by the previous history of the system. 
The variation in that storage would be determined by the natural recession 
of storage plus the effect of potential evapotranspiration on the soH mnisture. 
The second phase would be the rainy period. The initial conditiOl~ v. ould be 
set by the history of the system during the previous rainless period in which 
evaporation and transpirarion would be neglected leaving precipitation as the 
only input. 

The decomposition of the total hydrograph into components is shown in 
figure 4-5, which is based on a figure by Linsley, Koh!.er, and Paulhus (25). 
In figure 4-5, the total hydrographhas been drawn on semilog papcr. The 
ground water recession is taken to be exponential, thus giving a straight line 
on this plot. The exponential recession is continued back from A to B, and 
B is then joined to the start of the rise of the hydrograph. When the assumed 
ground water flow is subtracted from the total hydro;5raph, the hydrograph 
of surface runoff plus interflow plotted in figure 4-6 is obtained. 

Again the straight line recession may be extended back from C to D, and 
the interflow separated out leaving the surface runoff. Thus, the total hydro­
graph has been divided into three elements-ground water flow, interflow, 
and surface runoff-each of which is plotted as a triangle on semilog paper. 
This figure is reproduced here as an illustration of a particular concept of the 
components of the hydrograph without any comment on the extent to which 
it.reflects the position in most natural hydrographs. W'lether we approach the 
problem of runoff prediction from a classical or a e?stems viewpoint, it is 
necessary to make some assumptions as a basis for the runoff prediction. The 
division of the runoff cycle into phases and the division of the runoff hydro­
graph into the three components described above are examples of such 
assumptions. 
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The Rational Method 

During the latter part of the 19th century and earlier part of the 20th 
century runoff was predicted in one of two ways. :Most engineers used em­
pirical formulas which were derived for particular cases and then applied to 
other cases on the assumption that conditions were similar enough for the 
predictions to be of some value. The second method used was that which has 
come' to be known as the Irrational mpthod." In this review there is little need 
to e'xamine the empirical formulas as they were ad hoc models whose param­
eters 'Nl're derived for one particular case and then used in a wider context. 
The rational method, however, 'va~ essentially a procedure and, as its name 
implies, was an attempt to approach the problem of runoff prediction ration­
ally. The assumptions which it made were unduly restrictive but, nevertheless, 
it is interesting to discuss this 1l.pproach here as it was the one which lead 
ultimately to the development of some important methods in classical and 
modern hydrology. 

Though the rational method is often dated from the papers of Kuichling 
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(23) and Lloyd-Davies (26) J the method is clearly outlined in a paper by 
:;\lulvaney (28) presentrd to the Institution of Civil Engineers of Ireland in 
1851. In this paper, :;\Iulvany gives a clear exposition of the concept of the 
tinlC' of concentration and its relation to the maximum runoff in the following 
terms: 

The first matter of importance to be llScertained in the CllSe of (l. small or mountainy 
Clttchment is the time which a flood requires to attain its maximum height, during the 
continuance of allnifofm rate of fall of rain. This may be llSsumed to be the time neces­
sary for the rain which falls on the most remote portion of the catcnment to travel to 
the outlet, for it appears to me that the discharge must be greatest when the supply 
from every portion of the catchment arrives simultaneously at the point of discharge 
l''.lpposing, tl.S above premised, the rale of supply to remain constant, and this length of 
time being ascertnined, we may assume that the discharge will be the greatest possible 
under the circumstances of a fall of rain occurring, of the maximum uniform rate of 
fnll for that time.. 

Mulvany then cites the example of a catchment with a time of concentra­
tion of 3 hours. He points out that 1 inch of rain falling in 3 hours on such a 
catchment would give a greater flow than 2 inches of rain falling in 24 hours. 
He goes on to discuss the factors which affect the time of concentration as 
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follows: 

This question of time us regnrds any catchment, must depend chiefly on the extent, 
form and rute or inclinntion of its surfacej und therefore one greut object for investi­
gution is the rc\tltion uetween these causes und their effect; so thut, havillg ascertained 
the extent, form und avcrage inclination of any catchment, we mtty be able to determine 
in the first p!tlce, the durn lion of COllstaut min required to produce It mll..ximum dis­
chnrgc. and consequently to fix: upon the maximum rale of rainfnll npplicltble to the 
elISe. It is evident thnt, as u spuco of timo is reduced, the rate of mnximum rute of rrun 
is increased . 

.:YlulvlUlY was concerned with the maximum rate of runoff and that he 
assumrd a COllsti\llt ratr of rainfalL The circumstances of the development of 
thr rational mt·thod have been described elsewhere by Dooge (11). 

Thl' original rational mcthod which was used to predict the maximum run­
otT was modified in the 1920's to allow for nonuniform intensities of rninfall 
during thl' storm and also to allow fur irrrgularities in the shape of the catch­
ment. The first proposal for adapting the classical rational method to take 
account of variations of rainfall within the storm period appears to have been 
that by Hawken and Ross (15, 37), A few years later, a second variation was 
introduced to overcome the defect in the original rational method that-in 
certain irrrgular shapes of catchment encountered in the design (if sewerage 
schemes-the predicted discharge from a part of the catchment could be 
greater than the predicted discharge from the whole of the catchment. The 
first modification of this type appears to br that due to Reid (34) in 1926. 

:\Iethods of handling the nonuniform rainfall can also be studied in papers 
by Rousculp (38), Coleman and Johnson (8), Judson (21), Ormsby (33), 
Harte (14), and Laurenson (25). The method of allowing for a higher runoff 
from lL partial area drpends on the type of rainfall formula used. The methods 
arr described ill papers by Riky (35), Escritt (13), and ?lJunro (29). Some 
of thre(' methods for allowing for thr nonunllormity of rainfall and irregu­
larity of areH. art' discussed in somewhat more detail in lecture 8, (see "Time­
Arra Mrthods"), whrrc they ttrc related to the process of deriving synthetic 
unit hydrogmphs. In both of these lines of development, usc was made of a 
time-area diagram, which indicates the distribution of the time of travel from 
difl'errnt parts of thr catchment. 

Figure 4-7 lop shows a watershed on which have been drawn isochrones of 
equal travel time. Thus, each point on the isochrone labeled T=4 has a travel 
timt' of '1 hours, that is, it takes 4 hours for water to travel from any point on 
that isochro11t' to tht' outlet. If a detailed survey of the catchment is available, 
thr position of the isochrones can be estimated by making allowance for the 
time of overland flow to a channel and then calculating the time of flow in the 
chnnnel by :Manning's formula or by some similar method. 

If th€' area of that part of the ca.tchmcnt "whose time of travel is less than 
or rqual to n given value of T, is plotted against that value of T, we obtain a 
time-area diagram as shown in figure 4-7, bottom left. According to the rational 
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method, this diagram shows for any value of T, the area which will contribute 
to the maximum flow at the outlet due to rainfall with a duration equal to T. 

Often it i~ more convenient to use the time-area-concentration curve shown 
on figure 4-7, bottom right. The latter is the derivative of the time-area curve, 
and :"s base length is equal to the time of concentration (tc). The time-area­
concentration curve in the modified rational method corresponds to the 
instantaneous unit hydrograph (IUH) in the unit hydro graph method (30). 

In applying the modified rational method, the maximum rate of runoff was 
obtained by superimposing the cumulative rainfall pattern (or the rainfall in­
tensity pattern) and the time-area diagram (or the time-area-concentration 
curve). To facilitate comparison, the time scales on the two diagrams were 
made the sam. but with the time scale on the time-area diagram reading from 
left to right and the time scale of the storm rainfall curve reading from right 
to left. \Yhen the time-are-concentration curve and the rainfall intensity 
curves were used, the maximum runoff was obtained by superimposing the 
ma.'dmum rainfall intensity over the maximum of the time-area-concentration 
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curv!;', then multiplying corresponding ordinates of the two curves, and, finally, 
summing thesr products to obtain the maximum runoff. It is easy, in the 
hindsight of the systems approach, to interpret and describ(' this graphical 
and num('rical procedure as a convolution of rainfall intensity and th(' time­
area-concentration curve. By sliding onr curv!;' laterally over the other, it was 
possible, in the modifi!;'d rational method, to obtain ordinates other than the 
maximum and, with patience, to obtain sufficient points to define a complete 
hydrograph or runoff (12). 

In fact, wr now l'rll.liz(' that thpsp mrthocls developed in the 1920's use the 
tinw-arpa conccntration curvp as a syuthrtic unit hydrograph. Before the unit 
hydrograph had brcn invented, engineE'rs were deriving synthetic unit hydro­
graphs (or synthetic S-hydrographs) iu th!;' form of timE'-area-concentration 
('UrvN; (or time-area diagrams) hy using Manning's formula to estimate the 
timp of tnwpl, Bpcause sueh syntlH'tie unit hydrographs were based purely on 
translation !Lnd did not take account of storage e!Tects (either in the sewerage 
syslpm or on thr ground, in thp soil, and in thp channel network), it is not 
surprising that wllPn combinrd with thr true rainfall intensity pattern, they 
tended to ovprpredict the pea.k rate of runoff. It is worthwhile noting that in 
tIl{' original ratio.nal method in which a uniform minfall intensity is assumed, 
tIl(' E'ITor du(' to assuming uniform rainfall intensit.y and the error due to 
nrgIpcting storagp wer(' opposite in sign. Thus, th!;' predicted peak would not 
1)(' us gI'('at as in the modified rati.onal method and might in fact be closer to 
thr truE' peak. 

Thosr who used E'mpirical formulas for thE' time of concentration were also 
using a synthetic method; this timE' one based on empirical relationships be­
twren this particular parameter and the watershed characteristics. The ra­
tional method is still quih' properly used in certain routine design problems 
such as small roadway culverts. 

Thp mtional method mlly be considered as a parametric method in which 
a si.mple model is used. ThE' basic formula of the rational method is given by: 

(1) 

in which Qml\.'( is thE' estimated peak discharge, C is a coefficient whose value 
must l)l' detprmined in some way, i(tc) is the intensity of minfall of the chosen 
frequency for a duration equal to the time of concentration (tc), and A is the 
area of the catchment. In a recent publication, Nash (31) pointed out that 
the rational method might have been· developed on the basis of parameter 
optimization. In this casc, th!;' data would have been examined to determine 
thp values of C and tc which gave the optimum fit in some defined sense. To 
do so for !l. reliable spt of data would be an interesting exercise. 

BE'causr thes€' l€'ctures arc concerned with parametric hydrology, we have 
only discuss€'d thE' application of the rational method to the prediction of 
individual storm events. Equation 1 can also be taken in a statistical sense 
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in which (' represents the ratio of the peak rate of runoff of a given frequency 
to the rainfall of the same frequency and a duration equal to the time of con­
centration. The use of the rational method in this way is outside the scope of 
the present lectures, in which we are largely concerned with the rational 
method as a forerunner of unit hydrograph procedures. 

Unit Hydrograph Concepts 

The unit hydrograph concept and its devciopment was one of the high­
lights of the classical period of hydrology. Figure 4-8 reproduces figure 1 of 
Sherman's basic paper (40) published in 1932. In this figure, Sherman illus­
trated for the cuse of a triangular unit hydrograph the effect of rain during 
succ('ssive standard periods in building up the shape of the surface runoff 
hydrograph through the sup<'rposition of displaced triangular unit hydro­
gmphs, which combine to give the total runoff hydrograph. If the duration 
of (~tTective precipitn.tioll is greater than the buse of the unit hydrograph, the 
runoff becomes constant. For about 25 years, unit hydrograph methods were 
widl'ly used in applied hydrology without a recognition of the essential us­
sumption involved, namely that the relationship between rainfall excess and 
surfacl' runoff was that of a linear tim('-invariant system. 

It is instructive to quote a classical formulation of unit hydrograph pro­
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cedures lmd to compare this with the systems formulation of the same basic 
idea. On(' of the best clussit.'ul discussions of unit hydrograph procedures is 
that given in "Elements of Applied Hydrology" by Johnstone and Cross (20). 
They state the basic propositions of the unit hydrograph as follows: 

"re are no\\' in a position to statn the three basic propositions of unitgraph theory, all 
of which refer solely to the sUrf!\(le-runoff hydrograph: 

1. 	For n given drninage bnsin. the durntion of surface runoff is essentially constant 
for aU uniform-intensity storms of the same length, regardless of differences in the 
totul volume of the surfacp runoff. 

II. 	For a given drainage bnsin two uniform-intensity storms of the same length produce 
different total volumes of ~lurface runoff, then the rates of surface runoff at corre­
sponding times t, after thE' beginning of two storms, are in the same proportion 
to ea('\l other liS the total volumes of the surface runoff. 

HI. 	The time distribution of surfat'c runoff from a given storm period is independent 
of concurrent rUIloff from antecedent storm periods. 

The classical statement of unit hydrograph theory quoted above can be 
summnriz('d in six words: The system is linenr and time-invariant.. Proposition 
I and proposition II logl'tlwr make up thl' property of proportionality. If, 
the INlgth of input remains eonstnnt but the volume of input increases, then 
th£' bUM l£'ngth of the outflow is not altered, but the ordinates of the outflow 
are rais£'d in proportion to th£' volume of input. Proposition III is the principle 
of superposition, which allows us to decompose the input into separate parts 
and th£'n superimpos(' on one another the separate outputs to obtain the total 
output. 

TIl(' classical mann£'r of stating th£' unit hydro graph concepts and proper­
ties was not question£'d until about 1955. Nowadays, we make the assumption 
that th£' watershed, in convl'rting prf'cipitntion excess to direct storm runoff, 
acts as a linear time-invariant system. It is interesting to note the comments 
which Johnstone and Cross (20) make following their outlining of the three 
basic propositions: 

All these propositions nrc empiricnl. It is not possible to prove them mathematicnlly. 
In fnct. it is 1\ rather simple mntter to demonstrate by rational hydraulic analysis thnt 
not n singh' onc of them is mathematically nccurnte. Fortunately, nature is not aware 
of this. 

In this regard our position has not changed. W f' are aware that the assump­
tions of linearity and time-invariance for a catchment system are not strictly 
correct, but we ar£' conte-nt to adopt them as long as they are useful. vVe can 
look at the' fundamf'ntal equations of open channel flow and show that they 
are nonlinear; we can look at laboratory results which show that the runoff 
from model watersheds is nonlinear; we can look at field results and demon­
strate' tlll'ir nonlinearity. Ne'vertheless, we cling to the assumption of linear 
ope'ration. 1'hf' rf'asons are that linear methods are relatively simple, are by 
far the best-developed nwthods we have, and that the results obtained by 
using these luwl\r rn('thods arc acccptabll' for engineering purposes. We will 
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continue to use them until such time lts workable nonlinear methods are de­
veloped and thM are morc accurMe without being unduly complex or 
costly. 

'rh(' original unit hydrograph d('veloped by Sherman was a continuous 
hydrograph of runoff due to uniform rainfall in unit period. Later, Bernard 
(..p introducpd the idpa of a distribution graph in which runoff is expressed, 
uSU!Llly as It percpntagt" in terms of volumes of runoff in standard periods. 
\Vhorp thl' flow is subsequently routed through reservoir storage or channel 
storagp, it may 1)(' convenient to use a distribution gmph mther than a unit 
hydrogl'!tph. 

Tlw S-hydrograph, or S-curve, is defined as th€' hydrograph of surface 
runofY produced by a continuous ptTectiv(' rainfall of 1 inch pCI' hour. If the 
unit bydrograph has bt'pn normalized to Ullit volumE', then the D-hour unit 
hydrograph ('olTPsponds to rain falling at a rat(' of liD inches per hour for 
D hours. For a mtl' of 1 inch p('r holl!' lasting for D hours, the ordinates of 
tilt' f)-hour unit hydrograpb havp to bl' mUltiplied by D. In thE' S-hydrograph, 
thl'rl' ar!' 1) inche's in til(' first unit pnriod of D hours, D inches in the second 
unit ppriod, D in('hl's in thl' third unit period, and so on. The l'quation of the 
S-hydrograph is, then'fore givPIl by: 

Btl) =D L 
n 

hD(t-iD) for nD<t< (n+l)D (2) 
i-a 

(hw of thE' big advan('l's in rlassical unit hydl'ograph theory was the dis­
('ovpry that tll(' 8-hydrograph eould b£' used to convert a unit hydrograph 
from OIl£' unit duration to fJ.notl1l'r. B€'forl' this, it was necessary to find a 
storm of tl1(' appropriatt' durn,tion to d£'rive the required unit hydrograph 
from the elata. If you wantl'd a 6-hour unit hydrograph, you had to find a 
{)-hour storm, or a storm whos(' duration was an even submultiple of 6 hours 
so that thp shorter unit hydrograph could be developed and then shifted and 
8up€'rimposed to giv£' a {i-hour unit hydrograph. Figure 4-9 shows the classical 
diagram of tht' relationship between the S-hydrograph and the unit hydro­
graph. Onc(' thl' S-hydrograph has been obtained from any unit hydrograph, 
a unit hydrograph of a IH'W given period can be derived from it by displacing 
the S-curve by thl' required amount, subtracting the ordinates of the two 
B-curvcs, and normalizing the' valump. This process can be represented by 
th£' equation: 

(3) 

As D b('comes smaller and smalh>r, the process represented by the above 
PquatiOll ('omes clospr and closer to the definition of differentiation, and in 
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thE'limit W(' havp: 

ho {l) = 
ddt [S (t) ] (4) 

ThE' hydrogrnph ckfiut:'d by equation 4 is known as tht:' instantaneous unit 
hydl'ograph (IPH). It was dpvdoped in hydrology from hydrologic concepts 
ratlH'r than from systems analysis wllPrp it was already known undpr 11 variety 
of namps, but most r.ommOlJy as the impulsp response (se(\ pages 20 and 25, 
IpcturE' 1). TIll' main motivation for its derivation in hydrology appears to 
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hav(' bern th(' uC'cd to simplify th(' treatment of synthetic unit hydrographs. 
}I'or a finit(' p(·riod unit hydrograph, the shape naturally dept'uds on the unit 
prriod (D)! and it was discovered thM for very short durations the changrs 
in shape WCrE' quitt' slight. Somt' workE'rs in tht' fidd suggpsted going to the 
limit and using till IUH, thus getting rid of the variablE' D. 

OncE' til(' IUB is accuratE'ly known, ally other finitE' period unit hydrograph 
can bl' obtainl'd through the S-hydrograph. Indeed, tlu' time-to-peak of a 
finitl' pC'riod unit hydrogmph of any givrn dmMion C!"l,n be found directly 
from tll(' IUI:L Thr prak of thl' finitc pl'riod unit hydrognLph, given by equa­
tion 3, is tll{' tim<' for whieh thr aboyC' ('xprrssion is a maximum. Since the 
d('fiYativE' of til(' S-hydrograph is thE' IrB ho(t), Own the condition for the 
maximum o1'di11atC' of till' finite pE'riod unit hydrograph hJ)(t) is: 

hoU) -Iz"tt-D) =0 	 (5) 

thltt is, thr p('ak of thr finitt' p('riod unit hydrogr!)'ph occurs M thr time when 
til(' ordinal!' of tlu· IUH is equal to lh(' ordinatl' at a timC' D earlier. The 
orditutl(' of till' finite pl'riod unit hydrograph at any timE' is given by the 
int€'gral ('xpression: 

IzD(t) =~	1 11 ho(t) ell (6)
D /-D 

Look€'d at from tlH' yiC'wpoint of c1assieal hydrology, lill of these rl'sults have 
to b<' prov€'d bC'fof(' w(' arf' convine('d that the lUH can be used to derive any 
otlwr ('xpr('ssion which w£' wish. From a systC'ms vklYpoint, we know from 
our basic t h('ory t hat for a linear tin1C'-invariant system, the impulse response 
contains all tIl{' n€'eessary information about the behavior of the system. 

1'h(' proc€'ss of d£'riying finitt' pNiod unit hydrographs from an S-hydro­
graph is not as NiSy ill prtletice as it appears on first sil~ht. This is because the 
S-hydrograph may not be known continuously, but only at certain intervals 
of lime .. If we stltrt off with a unit hydrograph which is d€'fin€'d only for 6-hour 
inlprvals, th€' d('riy£'d S-cury€, will be defined for the same interyals. 'Ve can 
crrtainly try to dprive th£' unit hydrograph for a period of ]. hour, 2 hours, 
or 3 hours from this S-curv€', but the rl'sults may not have. much meaning. 
If there ar(> iuae('UrtlCies in tllt' original unit hydrograph, then there will 
probably br oscillations in whM would bc a smooth S-hydrograph. These 
oseillations may lead to grossly erroneous ordinates in a second unit hydro­
gTiLph dprivpd from the S-hydrograph. Though a smooth lUH will always 
produce a smooth S-hydrograph, there is no guarantee that the S-hydrograph 
derived from a smooth .finite period unit hydrograph will itself be smooth. 
Some of the problems at the C'ud of tills lccture are designed to show the pit­
falls in this partieular connection. Though hydrologists attribute oscillations 
in S-curycs to mNlsur('ment and other errors in the data, it is quite possible 
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for oscillations to arisl' in S-hydrographs dE'rivM from synthetic finite period 
unit hydrographs which appt'ar physically reasonabll'. 

Separation of Base Flow 

Til(' first step in analyzing an actual hydrograph is to separate tIl!.' base 
flow from th<' din'ct storm runotI. Hydrologic litt'ratme aboundl:. with methods 
for making this s('paration. Th<' pfi'l'ct of diffprpnt typps of storm eVl'ut on the 
hydrogmph arp shown schpmH.ti(,!l11y in figmp 4--10 which arE' due to Horton. 
Figurt' 4-10A shows thp pffrct of all int<'nSl' rainfall of short duration. Be­
('awl(' of tIlt' high int('l1sity therc would be smfacE' runoff) but due to thc short 
dUl'Mioll and cons('qupnt Sm!lll volunw, t h(' fidd moisturl' dt'ficit might not 
bl' satisfied, and, thus, til('l't' would be no recha,rge to ground water. Under 
tlws<' ronditions, tl1(' base flow rE'c<'ssion bt'fore and aftpr thl' storm event 
would follow thl' saml' genertll curvE', and the rt'sponse of th(' hydrograph 
wNlld consist of a sharp rise and sharp 1'l'cpssion back to the same master 
Clll'VP of bas(' flow r('cession. 

On thl' other hand, if Wl' havl' prolonged rainfall of small intensity, we get 
tIl(' (,ondition shown in figurp 4-10B. In this casp, the intensity does not exceed 
thl' potential infiltration rat(', and, thus, there is no surfaeC' runoff. However, 
tIll' rainfall is sufikiPlltly prolonged to makC' up the field moisture • .::ficiency 
and to givp a n'('hargl' to ground wat('r shortage. Th(' ('ffect of this rCl:harge is 
to iU<.'reasp tlU' amount of ground water outflow or basefio',,-, and the recession 
('Ul'VP is shifted n.,<; shown in a styliz{'d fashion on figme 4-10B. In this case, 
the reeessioll eurve n;[t('r tIlt' rnJnstorm has the same shape as the recession 
bl'forp the rn.illstorm but is shiftpd in time. ~Iore usually, however, in storms 
whirh art' of ('onsNluencp in hydrologir analysis, both of th!.' above effects are 
romhiupcl so that WP g('t both t11p distinct ppak and a measurable amount of 
surfa('{' rtU10tT on tl1P one hand and a recharge (If ground water giving a shift 
in tl1(' ma~t('r r('('Pssion ('urvp on the oth('r. Th.h\ mixed ('ondition is shown in 
figurf' 4-10C. One of til(' first st('ps nl'cessary in milt hydrogmph analysis is 
to sf'paratp out thest' two effects. 

If during the Rnalysis of a discharge hydrograph, we encounter a storm 
('vpnt of the first typ(', as shown on figm(' 4-1004., when' there is no recharge 
to ground watf'r, then tilrre is no problem in sC'parating the surface runoff 
from tll(' basf'fiow. All that has to bp done is to join up the line of recession 
before and aftf'r th(' storm ('VE'ut and treat all flow above this single master 
recession curve as surface runoff. In the second case, as shown on figme 
4-10(" wher€' all th('fiow is base flow, no difficulty arises because this is not 
a storm event from the point of view of surface runoff. 

For a storm event giving risE' to both surfac(' runoff and ground water re­
chargE', tionw m~'thod of sl'parating the two must be applied if the unit hydro­
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A 

High intenSity, short duration 

B 

-- .... 


Low intensity, long duration 


c 

Mixed response 

FlGC\lE 4-lO.-Hydrograph response to different types of storm events: A, Surface water 
response; B, base flow response; C, combined .response. 
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graph of direct runoff is to be d€'riv€'d. Th€' applied hydrologist has quite a 
wid€' choice of such separation techniques to draw from in the technical litera­
tur€', but f€'w of th€'m aI'€' soundly based. In these m€'thods, the base flow is 
separat€'d in som€' arbitrary fashion fLnd th€'n thE:' total precipitation is ad­
justed so that the volume of efTective precipitation is equal to the volume of 
direct storm runotY. TherE:' is no attempt to link infiltrating rainfall with 
ground wat('r recharge and hencE:', with ground watE:'r outflow. Transition from 
the recession curve bdore the storm ('vent to the recession curve after the 
:;ltorm ev('nt is usm.lly ULk(,[l as bring of relatively little interest in applied 
hyclrology, bllt this is a gnwt' E'I'l'or. In fact, the form of this recession gives us 
tilt' shapE' of tilP ground water unit hydrogmph, a eoncept which has been 
studiously ignol't'd by appli!'d hydrologists ov€'r the past 35 J'NLrs. If a block 
diagl'H,m is drawn of tIl(' procC'dul'P dl'scribed above, it would show an open 
loop b€'tweNl Ih(' infiltration into th€' soil and th0 ground water outflow. This 
would indiCi1t(' that th('s(' two quantitiE's would have to b€' either separately 
measured or ('lse eonncct('d by a subsystem. In the systems formulation of 
catchment n'sponse, this OP('1l loop is closed as shown in figure 1-8 (p. 16) . 

.Most work('\,s in applied hydrology are ready to accept that a good repre­
s('nhttion of thr l'cc('ssion cW've can be got by fitting a straight line to the 
recession purt of the hydl'ograph plotted on semilog paper. This is equivalent 
to nssUI)ling that the grolUld watrr res('rvoir acts as a single linear reservoir. 
Onc(' this assumption lu\s been mad(', th(' maximum benefit should be obtained 
from it I1nd thE' fUrth('r assumption made that the ground wat€'r reservoir acts 
as a singl(' linral' reservoir during the recharge as well as during recession. 
Figur(' 4-11 shows the application of this approach. The total precipitation 
is tak(,11 !\S being divided into precipitation exc€'ss and a constant rate of in­
.filtration; this r<'pres<'nts a ¢-ind€'x approach rath€'r than the use of a more 
sophisticated infiltration equation.. The first part of the in.filtration will re­
charg(' ground water at a coustant rn,t(-'. The grouud water hydrograph will be 
l\S shown in figur(' 4-13. From A to B during the r€'pl€'nishment of field mois­
ture defi<-it, the base flow will continue to decline as before and we will 
have: 

(7) 

From B to C, th(' ground 'water reservoir will operate as a linear reservoir 
being recharg€'d at.a uniform rate CRo) and the outflow will be: 

-Ct-tB)J
Q= (QB-Ro) exp K +Ro (8)[ 

Aft!'r the ress!'lion of rainfall and an allowance for time of travel through 
the soil, the r('charge to ground water will cease and the recession will be ex­
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ponential as before: 

(t-ta) ]
Q=Qa exp[---x- (9) 

The above approach to ground water separation is rational insofar as it is 
based on a definite model of ground water behavior. As such, it is superior 
to purely empirical rules usually quoted. 

There is little doubt that the actual separation of base flow made in practice 
in ad hoc hydrologic studies is superior to the separation that would be ob­
tained by a blind application of the rules of thumb and empirical procedures 
quoted in the textbooks. This is so because the hydrologist is usually familiar 
with the particular watershed under examination. He modifies these empirical 
rules to get a commonspnse result based on his own sensitivity to hydrologic 
behavior and his knowledge of the watershed. The trouble is, however, that 
though the individual separation in ad hoc studies may be reasonably correct, 
it makes the comparison of results between one watershed and another very 
difficult when there is a large subjective element in the manner of separating 
base flow from surface runoff. 

In his study of 90 storm events on 48 British catchments, Nash (32) pro­
posed a method of base flow separation which, though not founded on any 
physical principle or model, had the great advantage of both being objective 

A-8 rechargeoi 
soli moisture 

B-C recharge of 
groundwater 

Q 


t 

FIGURE 4-11.-Separation of base Bow. 
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and of affording some scope for investigating the effect of the assumption on 
the rtsults obtained. He proposed separating the base flow by drawing a 
straight line from the start. of the rising portion of the flood hydi'Ograph to a 
point on the recession such that the time between the end of the effective 
rain and the point on the recession was equal to three times the lag between 
the centpr of effective rain and the center of storm runoff. The point on the 
recession to which the separation line was drawn could .Jllly be determined 
by trial and error. In effect, Nash's method of separation gives an IUH whose 
base length is three times its lag. 

Analysis of COInplex Storm.s 

L('aving aside for the moment the difficulty of elu,,;ring that the base flow 
separation has been correctly made, we turn to a consideration of the problem 
of deriving the shape of tIlt, unit hydrograph from the surfac(' runoff hydro­
graph due to a complex pattern of effective precipitation. In the early unit 
hydrograph studies in the 1930's, the procedure was essentially one of trial 
and ('rror. This approach h['.s already been referred to in le"ture 1 and illus­
trated on figure 1-9. Without an objective criterion for the acceptance or 
rej('ction of a trial unit hydrograph, the subjectivity of such an approach was 
necessarily very high. 

At the end of the 1930's, some less subjective methods were developed, 
but these still did not have the objectivity required of a really scientific 
method. In 1939, Collins (9) suggested an iterative method in which a trial 
unit hydrograph is assumed and applied to all periods of rainfall except the 
maximum. The trial surface runoff hydrograph thus generated is subtracted 
from the total measured hydrograph to give fl, net runoff hydrograph, which 
can be taken as the runoff du(' to the ignored ma..'0.:cum rainfall in a unit 
period but which will also contain the errors in outflow due to errors in the 
trial unit hydrograph. If this net hydrograph is then assumed to be the outflow 
due only to the maximum rainfall in a unit period and ordinates are adjusted 
by dividing by the volum(' of the maximum rainfall, we obtain a second ap­
proximation to the shape of the finite period unit hydrograph. This process is 
repeated until there is no appreciable change in the ordinates of the trial unit 
hydrograph. Another sp('cial method for determining the shape of the unit 
hydrograph from a compl('x runoff unit hydrograph is the graphical method 
described by Sherman (41). If consistently applied without modification, 
methods such as these could be ranked as objective methods of hydrograph 
derivation since strict application of the method would always give the 
same result. In practice, they were rarely objective since any anomalies in the 
derived hydrographs were arbitrarily corrected by the investigator. 

In the 1940's, the derivation of the unit hydrograph from complex storms 
was based on th(' solution of the set of simultaneous equations giving the 
ordinates of the finite period unit hydrograph (or volumes of the distribution 
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graph) and till' rainfall volumE'S in each unit period. These equations, which 
have' already bE'e'n given in lecture 1 may be written as: 

Yo=xoho (lOa.) 

YI =:r.lho+xohl (lOb) 

Y2=X2ho+xh,+xoh2 (lOc) 

(10m) 

Ym+1 = xmh l + ..... 	 (IOn) 

......................... . 

(lOp) 

This Sl't of pC/uations can, f'f course', be' summtlrize'd as: 

k=,' 

y.= 	L xkh i_ k (11)
k-O 

In the' above' Se't of e'quations, tIl(' value'S of Yo, YI, ..... yp are assumed to be 
known, the' valul's of xo, Xl, ..... xm arC' known, and the problem is to find 
the value'S of ho, hi, ..... hp _ m • From a muthe'maticul vie'wpoint, this can be 
dOlle' by solving the first e'C/uation for ho; substituting this value in the second 
equation und solving for hi; substituting for the valu!' of flo und hi in the third 
e'quatioll und solving for fl 2 ; and so on until all the' unknown values of hare 
d('[('rmilwd. In practice', til(' e'xiste'nce' of E'rrors in the vulues of the effective 
pr('eipitation X, or tIl(' dire'cl runoff y, will produce errors in the ordinates of 
til(' unit hydrogmph h. Th<, substitution of an in<,xact vulue of ho in the second 
equation will produce' an e'rror in hi, and the' substitution of these two errone­
ous value'S in the' third ('quation will produc(' an ('rror in h2• Under c('rtuin 
circumstanc<'s, th(' e'rror in til(' values of h, that is, in the orclinat('s of the 
unit hydrograph, can grow rapidly and quite unr('ul vulues arc obtain('d in 
thl' solution for the' late'r ordinate'S of the unit hydrograph. 

S('v('ral mrthods have' be'en proposed to oVe'rcome this disadvantage of the 
above dire'ct algl'bmic solution by forward substitution. One of these was the 
mC'thod of le'ast squar('s, whose' use is mentioned by Linsle'Y, Kohler, and 
Paulhus (25). ThE' method was develop<.'d by Snyder (,1/2) in the United 
StatE'S and Body (5) in Australia and programed for the digital computer. 
The' Ie'ast square's nwthod of unit hydrograph de'rivation will be discussed in 
gre'ate'r drtail in lC'cture 6. Anothe'r approach to this problem was that of 
Bame's (3). In his approaeh, any oscillations occurring.in the unit hydrograph 
we're' e'liminated by deriving the' unit hydrograph in the reverse order. This is 

http:occurring.in
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in line with general e.."Xperience in numerical methods-a calculation which is 
unstable in one direction is us..;:\lly stable if taken in the reverse direction. 
Barnes further suggested that the estimated effective precipitation should be 
adjusted until the unit hydrograph obtained in the forward and reverse direc­
tions wr.s substantially the sa: leo 

Although the derivation of the unit hydrograph from the (mtflow hydro­
graph due to a complcx storm (that is, the problem of identific&tion) is a 
difficult one to solv(', the prediction of the flow hydrograph due to a complex 
storm Will'll the unit hydrograph is known is r('\ativ('\y easy. All that is re­
quired is the application of each of the volumes of effective precipitation in 
a unit period to the known finite period unit hydrograph. To obtain the out­
flow hydrograph, carefully locate cach volume of effective precipitation in 
time and then sum thr rrsults. In termi; of the set of simultaneous equations 
lOa to lOp, the problem is simply to determine the left-hand side knowing all 
the values of x and all the values of h. 

Classical hydrology nearly always made use of a finite period unit hydro­
graph and, then'fore, of the superposition of a finite (and usually small) 
number of block rainfall events. Research workers who are interested in plac­
ing the classical unit hydrograph approach on a sounder theoretical basis 
hmded to use the IUH rather than a finite period unit hydrograph. The pro­
cedure for prediction is similar in this case except that summation is replaced 
by integration. The relationship is shown on figure 4-12. In the upper part of 
thr figure, the rainfall falling between the time T+dT has been shown as 
shaded. Tl1r volum~ of precipitation represented by this shaded area is x(T)dT. 
If h(t) is the IUH producrd by a unit volume of precipitation excess falling in 
an iufinit0simal short timr at t= 0, then the shape of the hydrograph due to 
the shaded arra of prrcipitation will be the Sl".me as the shape of this IUH, 
but the ordinn.t(" must be multiplied by x (r) dT, and the whole hydrograph 
must b0 displaced along thr timr axis by an amount T. Each element of pre­
cipitation excesS will produ('(' a similar hydrograph. 

Instead of concentrating on th(' effect of all times in the future of a given 
01t'mf'nt of prrcipitation excess, w(' can concentrat(' on the outflow at a given 
time and examin(' how this is madf' up from contributions from precipitation 
rxcess at all times in the past. As seen from figure 4-12, the contribution of the 
shaded ar(,'u of t'ffective pr('cipitation to the outflow at u time, t, will be: 

oy(t) =x(T)h(t-T) dT (12) 

Becaus(' all el('mentary areas of precipitation excess whose value of T is less 
than l will contribute to the outflow at a time t, we get for the outflow the 
relati.onship: 

yet) = / x(T)h(t-T) d1' (13) 
-00 

which is the familiar convolution relationship for a lumped linear time-invari­
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~lt-"')dT 

t-'I 

~-t-~, 

FIGURE 4-12.-Convolution of inflow with rUR. 

ant causal system. The above derivation is inherent in the time-area version 
of the rational method, or isochrone method, as this method is sometimes 
known. The above physical demonstration parallels the purely mathematical 
derivation of the convolution relatioIl:'1hip given in lecture 1. 

In the 1950's, a number of research workers in hydrology, working inde­
pendently of one another, began to grasp that unit hydrograph methods 
represeuted the application in hydrology of systems techniques used in other 
disciplines. An essential step forward here was the recognition that the unit 
hydrograph method was merely the assumption that the watershed under 
examination was converting effective precipitation to storm runoff in a lineal' 
time-invariant fashion. The gradual development of the systems formulation 
of hydrologic problems can be traced in publications by Larriev (24), Nash 
(SO) I Dooge (10), Amorocho and Urlob (2), Kuchment (22), and Roche 
(36). The changes brought about by this new viewpoint can be appreciated 
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if the references given are compared with the treatment of the corresponding 
topics given in the number of textbooks on hydrology published in the 1940's 
by ~reinzt'r (27), Foster (13), Johnstone and Cross (20), Wisler and Brater 
(45), Linsley, Kohler, and Paulhus (25), and the American Societ.y of Civil 
EnginE'ers (1). 

All of the concepts and methods of the classical unit hydrograph approach 
can be nt'atly formulated in systems nomenclature. The only necessary as­
sumptions in the unit hydrograph approach are those of linearit.y and time­
invarianc(.' (10). Once these assumptions are made, the relation between the 
input, tllt' output, ar.d the system response are given by the convolution 
equation. \\ here the inputs and outputs ate defined continuously, the con­
volution t'quation takes one of the continuous forms discussed on pages 28 to 
3:) of lecture 1. The vP.rious methods available for the i;olution of the continu­
ous convolution cqut1.tion are discussed in detail in lecture 5. If the input and 
output data are only defined as discrete points, then the unit hydrograph 
approach can be formulated in terms of the discrete forms of the convolution 
equation discusst'd on pages 35 to 40 of lecture 1, and the methods of solution 
used in these cases are discussed in detail in lecture 6. 

Problems on Classical Methods 

1. Tht' time-area variations of the rational method enable the complete 
hydrograph to be predicted for a given storm. What is the relationship be­
tween this method and the unit hydrograph method? 

2. Table 3 in the Appendix shows the effective rainfall in inches and the 
.runoff in cubic feet per second for the Big :Muddy River at Plumfield, Ill., 
for April and ~Iay 1927. Derive the 24-hour unit hydrograph from these 
figures. 

3. Tht' figures defined by function 9 in Appendi:\': table 2 when reduced to 
unit volun1<.' reprt'sent the ordinates at hourly intervals of a 2-hour unit hy­
drograph. (1) Det('rmine th(' runoff if the volume of effective rain in succes­
sive 2-hour periods is giV(,I~by function 6 in Appendi.x table 2. (2) Calculate 
the ordinates of th(' S-curvy.)nd from these derive the ordinates of the 8-hour 
unit hydrogn\ph. (3) \\ hat would b; the effect of ignoring the variation of 
the intE'nsity of E'ffeetive rainfalb:..:>?t!~.he given storm? (4) Derive the I-hour 
unit hydrograph. 

4. Carry out the calculations indicl1ted in question 3 for the case where 
the 2-hour unit hydrograph is defined by a triangle of unit volume whose 
ordinates at hourly intE'rvals are in the proportion indicated by function 8 in 
Appendix table 2. Comment on the results obtained. 

;). Assume that the hydrograph of effective precipitation is given by func­
tion I:? on Apprndix table 1 and the hydrograph of storm runoff by function 
13 on Appendix table 1. Determine as accurately as possible the form of the 
IUH. 
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6. List a Ilumb('l' of conventional mrthods usrd for separating the base 
flow und tht' storm runoff. Comparr thrst' methods critically, and give your 
opinicn as to thr probable ordrr of merit. 

7. An rffrctivc rainfall lasting 2 days producrs an outflow lasting (j days. 
If tht' daily volumes of outflow art:' distributrd according to function 11 in 
Apprndix tablP 2, tlPply Barnrs method to detrrminr the distribution graph 
for tbr catchment. 

H. For tllt' outflow given in probl('m 7, show that a second unit hydrograph 
can br drrivrd from tht' same outflow hydrograph. Is it possible to prove tlltH 
t11rr(' art' no furtht'r rxact solutions exc('pt tht'se two? 

9. t1) For til(' output obtaiIlrd in t'itht'r qut'stion 3 or qut'stion -1-, make a 
smnll altNation in OIlr or more ordiniltrs of the output and tht'n sC'rk to drrive 
tll(' unit hydrograph for thr original input and th(' adjusted output. Compare 
tht' resulting unit hydrograph with thr original unit hydrograph. (2) For the 
samr exampl<', makr nn adjustment in an ordinatt' of tilt' input kaving til(' 
output unRlt0rC'd tll1d again procC'rd to derivt' R unit hydrograph. Contrast 
thr dT('('ts of prrors in thr input and thr output. 

10. D('riv(' n matrix formulation for the Collins' mrthod of deriving l1 unit 
hydrograph. 
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LECTURE 5: 

IDENTIFICATION BASED ON CONTINUOUS DATA 


Transform :Methods of Identification 

Lecture 5 deals with the identification of linear time-invariant systems 
where the data arc givE'n ill continuous form, that is, by functions of a con­
tinuous variable. Historically, unit hydrograph procedures were first developed 
for disCf('te or quantizE'd data and only later adapted to continuous data. 
In a systcmatic approach, one can start eithE'r with continuous inputs and 
outputs or with discrete inputs or outputs. Since most hydrologists are more 
familiar with continuous mathematics than with discrete mathematics, the 
present Iexturcs dE'al with continuous data bE'forc going on to discrete datu. 
In lectures 5 and 6, we will bE' dealing enly with the question of identification; 
the problem of simulation will be dealt with inlcctures 7, 8, 9, and 10. 

In tackling the problem of system identification, we are trying to dE'velop 
objective methods for describing the way in which a particular system operates 
on inputs in order to produce outputs. This description-which may be 
expressE'd in graphical, IlumE'rical, or functional form-will reflect the general 
operation of til(' system but will tell us nothing about the nature of the ~j:'tcm, 
about the nature of any of its components, or the way in which these com­
poncnts arC' put togetll(:·r. If we can obtain a dE'scription of the operation of the 
systE'm for somE' gCIlE'ral class of inputs (and if our assumptions of linearity and 
time-invariance arc reasonable) 1 then we will have little difficulty in pre­
dicting the output from the system due to p.ny input belonging to this general 
class. If linearity holds, then we can use the principle of superposition to 
predict the output from any shape of input; if time-invariance holds, we can 
apply the description of the operation of the system obtained from past 
. ecords to a future time. These assumptions may appear unduly restrictive, 
but the strategy of parametric hydrology is to master the special case of linear 
time-invariant systems before relaxing these assumptions. 

It was shown in lecture 1 that the assumptions of linearity and time­
Invar.iancp allow us to relate the input and output of a particular system by 
the convolution relationship: 

yet) = foo x(r)h(t-r) dr 
-00 

(Ia) 

or 

y(t) = foo x(t-r)h(r) dr 
-00 

(lb) 

where h(t) is the impulse response of the system and provides a complete 
102 
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description of the operation of the system. If the system is a causal system, 
then the relationship between input and output is given by: 

yet) = / x(r)h(t-T) dT (2a) 
-00 

or 

yet) = {X(t-r)h(r) dT (2b) 
DC 

Jr, in addition to the system being causal, the input is isolated, then we can 
write: 

Yti) = t x(T)h(t-r) dT (3a) 
o 

or 

y(I,) = t x(t-r)h(T) dr (3b) 
o 

providrd thr time origin is takrn to be not latr)" than the start of the input. 
In thrse circum~tances, the problrm of system identification reduces to the 
mathrmatical problE'm of determining the function h(t) when given the 
fund ions x(i.) and yet) and the relationship indicated by equations I, 2, or 3. 

1'hr approach to the solution of the identification problem by transform 
mE'thods was mrlltioned in lE'cture 1. In thE'sE' methods, 'the input, output, and 
impulsr response, 'which are connected by the convolution relationship: 

y(t) =x(t)*h(t) (4) 

arr raeh subjeeted to the same transformation so that: 

T(x) =T[x(t)] (5a) 

T(y) = T[y(t) ] (5b) 

and 
T(h) =T[h(t)] (5c) 

These transformed functions are then connected by the relationship: 

T(y) = T(x) 'AT(h) (6) 

when' X is the operation in the transform domain, which corresponds to con­
volution in the time domain. 

If E'quation 6-whieh may be described as a linkage equation (18)-is 
simple in form, then the transform of the system response may be expressed 
in terms of the transforms of the input and the output. This transform of the 
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impulse rrsponse can then be inverted, though somrtimrs only with great 
difficulty, to obtain the system response in the time domain: 

h(t) =T-l[T(h)] (7) 

The' g(llH'rnl procedure is illustrated in figure ,1-11. Thl're are thrre separate 
stagrs in the idrntification process: (1) the transformation of the input and 
the output (equation 5), (2) the solution of the linkage rquation (equation 
6), and (3) the inve'rsion to obtain the impulse r('sponse ill the time domain 
(equation 7). Th(' ('ffieacy of any transform method depends on the ('ase with 
which th('se thr('e operations may be earried out. X('arly all of the methods 
propospd for the identifieation of hydrologic systems "ith continuous input 
and output, wh('re the input ean be isolat('d, may be considered as transform 
methods. These methods are discussed in d('taillatl'r in this lecture, but at the 
momcnt, it is only nccess~uy to eommend briefly on their rciationship to 
one another. 

System id(lutification based on Fourier series involves the expansion of both 
the input and th(' output into a series of sine and cosine terms. In each case, 
til(' eoeffici('nts in the Fourier series represent the transformation of the 
resp('ctiv(' fUlletion, and the determinntion of these Fourier coefficients 
rrpn'sE'nts th" step COITe-sponding to equation 5 above. Because the sines and 
cosin('s arc orthogonal to one another, the Fourier coefficients for the input 
and output can E'usily be obtaillE'd by integration. If a linkage equation can 
be obtained correspouding to equation 6, then the Fourier coefficients of the 
impulse respons(' can be determined from the Fourier coefficients of the input 
and the output (18). The solution of equation 7, that is, the inversion of the 
transform, offrrs no difficulty bl'cause the impulse response in the time domain 
can bE' reconstitutrd from its Fourier elements. Though the Fourier method is 
larg{'!y applied to periodic data, it can be applied, in the case of an isolated 
input, to n system with a finite memory by basing the analysis on the assump­
tion that the input and the- output are periodic with a period ','..hich is equal 
to or grcnter than the length of the output. 

The- r('striction to isolated inputs and finite memories can be relaxed by 
using thr Fourier int('gral or Fourier transform instead of Fourier series (20). 
This was the line of development adopted by electrical engineers in dealing 
with transiE'llt phenomena. The use of the Fourier transform, however, has the 
disr.dvtlntage that the problem of inversion is much more difficult than in 
Fourirr serie-s. If the Fourier ccefficients of the impulse response are known, 
then the impulse r('sponse itself is known in the time domain to an accuracy 
dt'pending on the llumbrr of Fourier terms. In contrast, the Fourier integral is 
difficult to invert) particularly if it is only known numerically, In systems 
analysis, the Fouri('l' integral is usually replaced by the Laplace transform to 
enabk us to handl(' unstable systems or systems whose stability is in doubt. 
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The numerical inversion of the Laplace transform (6) is even more difficult 
than numerical inversion of the Fourier integral. 

The first transformation method used to analyze hydrologic data was the 
method of moments proposed by Nash (17) in 1959. From a theoretical point 
of view, the moments (and the cumulants which will be discussed later) can 
be derived from the Fourier integral or the Laplace transform. l\tloments and 
cumulants share with the Fourier integral and the Laplace transform the 
advantage of a simple linkage equation coupled with the disadvantage of 
difficulty of inversion. 

Dooge (9) has proposed the use of Laguerre functions in place of Fourier 
analysis. Laguerre analysis shares with the Fourier series the advantage of 
orthogonality and with the Fourier transform the property of covering the 
range from zero to infinity. However, Laguerre analysis has the disadvantage 
of requiring a more complicated linkage equation, which makes the deter­
mination of the coefficients of the impulse response numerically less stable 
than where tlw linkage equation consists of a single term. 

Analysis by Fourier Series 

The definition and prop('rties of Fouril'r series and other orthogonal func­
tions were discussed in lecture 3 (see pp. 86-93). In the present s('ction, we are 
concerned with the application of Fourier series to the identification of linear 
time-invariant systems. For such a system, the input, impulse response, and 
output are connected by the convolution relationship: 

yet) = fOO x(T)h(t-T) dT (7a) 
-00 

If the system is causal, this relationship can be written as: 

yet) = / x(T)h(t-r) dT (7b) 
-co 

and if the system is causal and has a finite memory M, then we have: 

h(t) = J
.1 

x(T)h(t-T) dT (7c) 
/-,1£ 

Where the input is periodic with a period T, the output will be given by: 

y(t+kT) = { x(T+kT)h(t-T) dT (8) 
/-,1£ 

If thC' pC'riod of the input CT) is greater than the sum of the duration of 
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input (N) plus the memory length of the system (M), that is, if­

T~ (M+N) (9a) 

then the value of the output y will return to zero during each period. Equation 
8 can be replaced by the equation for an isolated output due to an isolated 
input: 

yet) = / x(T)h(t-T) dT (9b)
I-M 

which is seen to be identical with equation 7c. An isolated storm event can be 
analyzed by Fourier methods provided the assumed period T is greater than 
the duration of output, which is the condition given by equation 9a. 

In the Fourier analysis of systems, we need to obtain the Fourier coefficients 
of the output as a function of the Fourier coefficipnts of the input and the 
Fourier coefficients of the impulse response. Thpsc {'o('fficients appear in the 
Fourier series expansion of the three functions: 

'" ( m,27rt)x(l)= L c".exp iT (lOa) 
m-oa 

'" ( n27rt)h(t) = n Loa 'Yn exp iT (lOb) 

'" (27rt)yet) = p~oo c p exp ip T (lOc) 

The exponential or complex form of the Fourier series has been used in the 
above equations because the linkage equation between the respective coeffi­
cients and other properties take a particularly simple form in the complex 
coefficients. Since h(t) is zero for values of t between t=M and t= T, equation 
9b can also be written as: 

yet) = fl x(T)h(t-T) dT (9c) 
I-T 

By the property of orthogonality we have: 

Cp = T1 iT
0 yet) exp (.-1-. TP27rt) dt (11) 

Substitution from equation 9c into equation 11 gives: 

Cp = T1iT exp (-i· TP27rt) fl x(T)h(t-T)dT dt (12) 
o I-T 
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Heversing the order of integration gives: 

Cp = 1T ft X(T) fT exp (-i TP27rt) h(t-T)dt dT (13) 
t-T 0 

which can also be written as: 

Cp = ~ !~T X(T) exp ( -i P~t) ~T exp ( -i P27r;-T) h(t-T)dt.dT (14) 

Performing the inner integration with respect to (t- T) gives: 

(15a) 

or 

(15b) 

so that on intE'gration with respect to T we obtain: 

Cp= T·"{p·cp (16) 

which is the required linkage equation between the Fourier coefficients of the 
output Cp, the Fourier coefficients of the input Cp , and the Fourier coefficients 
of the impulse responsE' "{p. 

In practice, the linkage is not quite this simple, because for a real function 
the exponential Fourier coefficients will be complex. Accordingly, it is pre­
ferable to write the output in terms of cosine coefficients (Ak) and sine coeffi­
cients (Bk), the input in terms of cosine coefficients (ak) and sine coefficients 
(b k )) and the' impulse re::;ponse in terms of cosine coefficients ak and sine 
coefficients 13k. Because we have: 

Ck =}2(Ak -1:Bk ) (17a) 

Ck= Y2(ak-ibk ) (17b) 

"{k = Y2 (ak- i{3k) (17c) 

equation 16 can be written as: 

Y2(A k-iBk) = T· Y2(ak-ibk)Y2(ak-i{3k) (18a) 

which the real part gives: 

(18b) 

and the imaginary part: 

(18c) 

http:h(t-T)dt.dT


108 TECHNICAL BULLETIN NO. 1468, U.S. DEPT. OF AGRICULTURE 

In system identification, we need to express the coefficients of the impulse 
response (a and (J) in terms of the coefficients of the input (a and b) and the 
coefficients of the output (A and B). These are obtained by solving equations 
ISb and lSc for al: and {31:, getting: 

2 al:AI: +bl:Bk 
(19a)ak= T' ak2+bk2 

2 al:Bk-bl:Ak
{3k= -. ---- (19b)

T al:2+bk
2 

Once the values of ak and {31: have been obtained, the form of the impulse 
re$ponse is easily determined since it is given by: 

'" ( k21f't k21f't)
h (t) = Yzao+ L al: COS T+{31: sin T (20) 

1:-1 

If only a limited number of coefficients are determined, the effect is that the 
high frequency components neglected by the truncation are not included in 
the impulse response. Because hydrologic systems are heavily damped, the 
neglect of high frequency components does not give rise to appreciable error. 

The linkage equation derived above is for Fourier coefficients defined in 
terms of a continuous function. If the data were defined continuously, it 
would be possible to compute these coefficients either by Gaussian quadrature 
formula based on a very large number of equally spaced sample points. In 
lecture 6, the same linkage equation is obtained for the pulse response where 
the input and the output are defined discretely. In the latter case, the linkage 
equation was derived and applied by O'Donnell (18) to actual data of surface 
runoff. 

Analysis by Fourier and Laplace Transforms 

As mentioned in lecture 3, the Fourier and Laplace transform techniques 
have been "idely used in the analysis of nonperiodic phenomena (12,20). In 
these cases, a simple linkage equation can also be found. :Most hydrologic 
systems are inherently stable and, thus, could be analyzed by Fourier trans­
forms; however, Laplace transforms are more "idely treated in the engineering 
and mathematical literature, and the tables of transforms are more extensive 
(12, 23). In lecture 3, both techniques were mentioned and both ,\ill be dis­
cussed in this lecture. 

The Fourier transforms of the input, output, and impulse response are 
given by: 

X(w) = feo x(t) exp( -iwt) dt (21a) 
-'" 
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Y(w) = j'''' yCt) exp( -iwt) dt (21b) 
-00 

H(w) = foo h(t) exp( -iwt) dt (21c) 
-00 

For a linear time-invariant system, we have the relationship: 

yet) = f"" x(T)h(t-T) dT (22) 
-"" 

It is necessary to find the linkage equation between the Fourier transform 
of the output and the Fourier transforms of the input and the impulse response. 
Substituting from equation 21 into equation 22, we obtain: 

Y(w) = f"" exp( -'iwt) f"" x(T)h(t-T)dT dt (23) 
-00 -00 

Heversing the order of integration gives: 

Yew) = f"" X(T) f"" exp( -iwt)h(t-T)dt dT (24) 
_00 _00 

Heplacing t by (t-T) as a variable of integration in the inner integration and 
rearranging cxp( -iwt) gives: 

Yew) = f"" X(T) exp( -'iWT) f"" exp[-iW(t-T)]h(t-T)d(t-T) dT (25) 
-00 -co 

and performing the inner integration gives: 

Yew) = f"" X(T) exp( -iwt) ·H(w) dT (26a) 
-"" 

=H(w) f"" xC,) exp( -iWT) dT (26b) 
-00 

Performing the remaining integration then gives the required relationship: "i 
Y(w) =H(w) ·X(w) (27) 

As compared with analysis by Fourier series, the coefficients of the Fourier 
series analysis are replaced by the continuous functions of the Fourier trans­
form. If we ,pllow for this difference, the linkage equation given by equation 27 
is seen to be of the same form as the linkage equation for Fourier analysis given 
by equation 16 above. 

While the form of the relationship shown in equation 26 is suitable for 
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analytical purposes, it is necessary for the purposes of calculation J,) separate 
the r{'al and imaginary part of the Fourier transform. Thus, we need to write: 

X(w) =XR(W) +iXr(w) (28a) 
Yew) = YR(w) +iYI(w) (28b) 
H(w) =HR(W) +iHI(w) (28c) 

Substituting the expressions from equation 28 into ('quat ion 27 and equating 
the real and imagilHU'Y parts, w{, obtain: 

YR(W) =lIR(W)XR(W) -Hr(w)Xr(w) (29a) 
Yr(w) = HR(w)Xr(w) +llr(w)XR(w) (29b) 

In the iltentification problem, we I1l'ed to express the real and imaginary 
pal'ls of the Fouripr transform of th(' impulse- response- in tprms of the renl and 
imaginary parts of the Fourie-r transforms of the input and the output. These 
are given by: 

(30a) 

(30b) 

In plectrical engineering, it is unusual to express the Fourier transform of 
the system in terms of th(' amplitude and the phase angle. In hydrologic 
systems, the formulation of equation 30 is probably more convenient. 

The determinntion of HR(W) and HI(W) only specifies the impulse response 
in the frequency domain. To find the description of the impulse response in 
the time domain, it is necpssary to invert the Fourier transform H(w). This 
is givl'n by: 

h(t) =-..!.. f"" [HR(W) coSWt-HI(W) sinwt] dw (3Ia)2IT _"" 

Because h{t) is real, we have: 

and 
HR( -w) =HR(W) (3Ib) 

H I ( -w) = -Hr(w) (3Ic) 
so that we can write: 

1 1""h(t) =­ [HR(W) cos(wt) -Hr(w) sinwt] dw 
II 0 

(3Id) 

If h (t) is causal, that is, if it is identically zero for all negative values of t, 
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we can also write: 

2 fah(t) =-.:.. IIR(w) cos(wt) dw (3le) 
II 0 

or 

? fah(t) =::... l-Ir(w) sin(wt) dw (3lf) 
II 0 

Equation 30 may b(' compared with ('quation 19. Again, the Fourier integral 
approach is similar to the Fouri('r s('ries approach except for the replacement 
of summation by int('gration. The necessity to integrate suggests the possible 
US(\ of vl1.lues of w determirl('d by the rrquirements of Gaussian quadrature. 

For the bilateral Laplac(' transform. ddin('d by: 

= f'" J(t) exp( -st) dt (32) 
-oe 

th(' d('wlopnwnt of th(' linkage follows ('xactly the same steps as in the Fourier 
transform. How('ver, in the more usual unilateral Laplace transform defined 
by: 

FCs) =~[J(t)] 

= f"'f(t) exp(-st) dt (33) 
o 

('Me must b(' taken with the limits of integration, 
For a linear timr-invariaut system for which the input is zero for negative 

time, we have the relationship: 

yet) = L" x(r)h(t-r) dr (34) 
o 

The Laplace transform of the output is given by: 

Yes) = foe yet) exp( -st) dt (35a) 
o 

= foe exp( -st) foe x(r)h(t-r)dr dt (35b) 
o 0 
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Reversal of the order of integration gives: 

YeS) = 1"" X(T) 1"" exp( -st)h(t-T)dt dT (36a) 
o n 

= 1'" x(r) exp(-ST) 1"" exp[-s(t-T)]h(t-T)dtdT (36b) 
o 0 

Because the system is causal, h(t- T ) will be zero for any value of t less than T, 
and, cons<.:qu('ntIy, the lower limit of integration for the right-hand integral 
can be set equal to T, thus giving us: 

Y (s) = 1"" X(T) exp( -ST) j"" exp[-S(t-T) Jh (t-T )dt dT (37) 
o r 

Changing the variable in the inner integration from t to 1l = t-T, we obtain: 

YeS) = 1"" X(T) ('xp( -ST) 1"" exp( -su)h(u)du dT (38a) 
o 0 

YeS) = 1"" X(T) exp( -ST) ·H(s) dT (38b) 
o 

yeS) =H(s) 1"" X(T) exp( -ST) dT (38c) 
o 

yeS) =H(s) ·X(s) (38d) 

Once again, the linkage equation has the same general form as in the case 
of Fourier series and Fourier transform. Equation 38d only gives us the 
Laplace transform of the impulse response or the system function as it is 
sometimes called. The numerical inversion of a Laplace transform is extremely 
difficult. One of the most efficient ways of doing it is to expand the Laplace 
transform in terms of a series of orthogonal polynomials and then invert this 
series term by term (6). It would appear, however, that if the orthogonals 
are going to be used for inversion, then we cught as well start and base our 
whole analysis on the use of orthogonals. 

Both the Fourier transform method and the Laplace transform method 
have been used for the identification of hydrologic systems. In 1952, Paynter 
(21) suggested the use of Laplace transform methods for the study of both 
hydraulic and hydrologic systems. Diskin' determined the Laplace transforms 
for a large number of storm events. The watersheds examined were between 

I DISKIN, M. H. ... B."SIC STUDY OF THE LINEARITY OF THE RAINFALL-RUNOFF PROCESS 

IN WATERSHEDS. Ph.D. thesis, Univ. Ill. 1964. [University Microfilms Pub!. No. 
64-8375.} 
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30 square miles and 1,420 square miles in area and between four and 10 storms 
were examined Jor each watershed. In the same year, Levi and Valdes (16) 
discussed the application of Fourier transform techniques to the determination 
of the IUH and applied the method to the Tuxpan Hiver in :\Iexico. :More 
recently, Blank and Delleur (7) used the Fouri.er transform. approach in a 
study of 1,059 hydrographs from 55 watersheds in. Indiana.' 

l\ioments and Cumulants 

The first transform n1('thod of identification applied to hydrologic nata was 
based on moments used by Kash (17) in 1959. In systems analysis, moments 
are used in the same sense as in statistics. Thus, the Rth moment of a function, 
which has be(·it normalized to unit area, about the point a, is defined as: 

MR(J) = fCC J(t). (t-a)R dt (39) 
-00 

In particular, moments about the timc origin are defined as: 

Un'(f) = foo .f(t) -tn-dt (40) 
-00 

and moments about the center of area are defined as: 

UR(f) = fCC Jet) (t- U/)R dt (41) 
-00 

The moments are re'lat('d to the Fourier transform and the Laplace trans­
form; in the' thC'ory of statistics, the' Fourier transform is used in the form of a 
characteristic function or a moment generating function. If we are dealing 
with functions that are zero for negative time and are only interested in 
moments about til(' origin, it is possible to perform all the operations necessary 
with the ordinary Laplace transform. If, however, we wish to deal with the 
moments about the center of area (or with functions which are not zero for 
negativ(' time), then it is ne,~essary to use either the Fourier transform or the 
bilateral Laplace transform. The following development is in terms of the 
bilateral Laplace transform, which is defined by: 

FB(s) = fCC J(t) exp( -st) dt (42) 
-cc 

If the above expression is differentiated with respect to s, we obtain: 

-[FB(s)J=d - f'" J(t) ·t-exp( -st) dt (43) 
ds _'" 

http:Fouri.er
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and if the differentiation is carried out R times: 

R 
d-[F8(S) ] = (--l)R f'" J(t) ·tR·exp( -st) dt (44)dsR _00 

By setting s = 0 on both sides of the equation, we obtain: 

(4511.) 

= (-l)R. Un'(j) 	 (45b) 

so that the Wh moment about tht:' origin can bt:' obtained from the Laplace 
transform provided that the transform exists and can be differentiated R 
tinws at 8=0. 

T}l(> relationship between the moments of the input and the output and the 
impuls(' ('an be obtained as follows. For a linear time-invariant system, 
we have: 

y 8(S) =X8(8)·H8(S) 	 (46) 

The Rth moment of the output about the origin t=O is given by: 

(47) 

Substitution from equation 46 into equation 47 gives: 

(48) 

rsing L('ibnitz's formula for the continued differentiation of a product, we 
luwl.': 

which gives the relationship between the moments about the origin as: 

k_R 

UR'(y) = 	L (:) U/(x) Ur_I:'(h) (50)
k-o 

It can be shown that if the moments of the normalized output are taken 
around the point t=a, the moments of the normalized input around t=b, and 
the moments of the normalized response about the point t=c, and if a=b+c, 
then the relationships between the moments is the same form as equation 50. 
In particular, if the moments are taken about the respective centers of area, 
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'we have: 
k-R 

UR(y) = 	L (~)[h(X)UR_k(h) (51) 
k-o 

which was the form of the theorem of moments for a linear time-invariant 
syst('m published by l\ash (17). For the special case of R = 1, equation 50 
b('com('s: 

ut' (y) = Ut' (s) +U/ (h) 	 (52) 

\\ hirh ('xpr('ss('s the faet that the lag of the output is equal to the lag of the 
input plus till' lag of the impulse r('sponse. For R=2 and R=3 in equation 51, 
b('raus(' UI ( ) =0, we have the special cases: 

U2(y) = U2(X) +U2(h) 	 (53a) 

Ua(y) = U3 (x) +U3(h) 	 (53b) 

This sp('ciul additiv(' relationship does not hold for any higher moments. 
Equations 50 and 51 represent linkage equations between the moments of 

the output, the input, and the impulse response. Once the moments of the 
input and the output havl' been determined, the corresponding moments of the 
impulse response can also bp determined. The final inversion of the latter can 
only be made via. the Fourier transform or Laplace transform. The problem of 
moment invprsion is to dptermine the nature of the function given the moments 
of that function. If the Laplace transform of the function is consistent when 
nl'ar Z('fO, it may be expressed in terms of a Maclaurin series: 

F(s) = 
Ie_co dl: sic 
L d ,kCF(s) ].-o·k l1:-0 S • 

(54) 

whirh ran be- writt('n as: 

F(s) = 
Ie-co sk
L (-l)kU/(J)­
1:-0 k! 

(55) 

Ev('n if only a few moments arc known, they give a certain amount of in­
formation about the Laplace transform near the origin and, therefore, of the 
original function at relatively large values of time. 

:'Ilonwnts are not the only set of parameters which may be used to describe 
the response function; in some cases they are not the most convenient set. 
Another set of useful parameters used in statistics are the cumulants or so­
called SE'mivariants (14). These are defined as the set of parameters for which 
tIl(' logarithm of the characteristic function (or Fourier transform) is the 
gpnerating function. All the cumulants except the first are unaffected by a 
rhangl' of origin. In a similar mann(,r to the moments, the cumulants can be 
d('rived by continuous differentiation of the logarithm of the Fourier transform 
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or the Laplace transform. Thus, the cumulants may be defined by: 

dR 

KR(f) = (-1 )Rdll-R[logFb(s) J.-o (56) 

For a linear time-invariant system we have: 

Y(s) = ';\'"(s) ·R(s) (38a) 

and therefore: 

logY(s) = Iog;X(s) +logH(s) (57) 

DilT<.'rentiating both sides of equation 57 R-times, and s(·tting s= 0, we obtain: 

~ ~ ~ 
dsii[lOgY(s)J.-o= d..,-R[logX(s)],-o+ dsR[logH(s)J.-o (58) 

which is clearly equivalent to: 

(5g) 

thus, indieating t.hat in th{' case of cumulants we get the simple additive 
relationship of equation 59 for all orders of cumulant. 

The simple form of the moments relationship in equation 52 and equation 53 
is due to the fact that the first cumulant is equal to the first moment about the 
origin and the second and third cumulants arc equal to the second and third 
moments about the center of area, respectively. The fourth cumulant is equal 
to the fourth moment about the center of area minus three times the square 
of the second moment about the center of area and is known in statistics as 
excess kurtosis. The Gaussian distribution has a first cumulant which deter­
mines the position of the mean and a second cumulant which determines the 
variation about the mean, but all cumulants above the second llre zero. In 
the gamma distribution, which is widely used in hydrology, the Rth cumulant 
take~ the form 

(60) 

where 7L and K are the parameters of the gamma distribution. 
Nash (17) also introduced the idea of plotting dimensionless shape factors 

derived from moments in order to compare the shape of derived unit hy­
drographs. He dE.'fined a dimensionless moment of order R as the Rth moment 
about the center of area divided by the first moment about the origin raised 
to the power of R, that is, 

(61) 
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In dealing with the linear theory of op.:n channel flow, Dooge2 found it more 
convenient to define dimensionless shape factors in terms of the cumulants 
rather than the moments. These are defined as: 

KR 
(62)SR= (K.)R 

and can be plotted against one another to compare different functions or 
models with oue another or to compare a model with the data which it is 
attempting to simulate. 

In the above discussion of moments and cumulants, it has been assumed, 
as indicated earlier, that all the distributions involved have been normalized 
to uuit area. The use of normalized distributions is convenient both in theo­
retical investigations and in actual computations. If required, however, 
corresponding r('lationships can be derived for the case where the input and 
output have not been normalized. 

Laguerre Analysis of Systems 

It was noted previously that a Fourier analysis of systems had the advan­
tage of orthogonality but the disadvantage that the method could only be used 
for an isolated input to a system \\;th finite memory. The success of the 
method, howev('r, would suggest that in systems ,dth infinite memory an 
alternative method of analysis which might be useful would be one based on 
functions which are orthogonal over the whole range from zero to infinity 
instead of only over a finite range. Because Laguerre polynomials are or­
thogonal ov('r th(' range 0 to with respect to the weighting factor exp( -t),00 

this suggests the use of Laguerre functions defined by: 

( t) k-n 
J,.(t) =exp -- :E (-l)knWk! (63)

2 .1:-0 

as the basis of the systems analysis. Dooge (9) has suggested that these 
functions may be more convenient than Fourier methods for heavily damped 
systems because the Laguerre functions can be seen to be made up of gamma 
distributions, a function which has been widely used to represent the damped 
response typical of na.tural watersheds. 

If Laguerre functions are to be used as the basis of system identification, 
then it is necessary to express the input, output, and impulse respO!lSe in 

2 DOOGE, J. O. 1. LINEAR THEORY OF OPBN CHANNEL FLOW, III: MOMENTS AND CUMU­

LANTS. Dept. Civ. Engin., University College, Oork, Ireland. 1967. (Unpublished 
report.) 
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terms of Laguerre functions. Because the Laguerre functions are orthogonal 
to one another tills is easily done. There is no guarantee, however, that the 
Laguerre functions would be convenient functions to use in the analysis of the 
system. The first step necessary is to examine what the effect is of convoluting 
one Laguerre function with another, that is: 

(64) 

where f •• (t) and fn(t) are Laguerre functions as defined by equation 63. The 
right-hand side of equation 64 results from multiplying a power series of order 
m by a power series of order n and then integrating, thus producing a power 
s~ries of order (m+n+ 1). The resulting power series could therefore consist 
of (m+n+ 1) tt'rms, each of which is a Laguerre function. In practice, all but 
two of the terms drop out and only the last two terms remain, the result being: 

(65) 

For the Laguerre series analysis of a system, we proceed as before and 
expand the input, impulse response, and output in terms of Laguerre functions: 

m-oo 

x(t) = L amfm(t) (66a) 
m-o 

n-oo 
h(t) = E anfn(t) (66b) 

n-o 

p-oo 
yet) = L: Apfp(t) (66c) 

p-O 

Due to the property of orthogonality, these coefficients are given by: 

00 

Um = 1 X (t)fm(t) dt (67a) 
o 

00 

an=1 h(t)fn(t) dt (67b) 
o 

00 

Ap= 1 y(t)Jp(t) dt (67c) 
o 

The linkage equation can be derived as follows. SUbstituting for yet) in 
equation 67c, we obtain: 

00 

Ap= 1 fp(t) 11 x(T)hCt-T)dT dt (68) 
o 0 



119 LINEAR THEORY OF HYDROLOGIC SYSTEMS 

and substituting in this equation the expressions for x(t) and h(t) in equations 
66a and 66b, wo obtain: 

Heversing the order of the summations and the integrations, we have: 

Using the Tl'sult of equation 65, this becomes: 

Ap= "f am n~ a" joa fp(t) [fm+n(t) -fm+n+l(t)] dt (71) 
m-o n-o 0 

Integrating with respect to t and using the orthogonality relationship, we have: 

m-oo n-O) 

Ap= 2: am L: an[Op,m+n- Op,m+1I+1] (72) 
m-o ,,-0 

Performing the summation with respect to n results in: 

m-oo 

A,,= L am[Olp_m- a'p_m_1] (73a) 
m-o 

Since thl' Laguerre coefficients of the impulse response are only defined for 
nonnegative values of n, this can be written: 

m-p m-p-l 

A" = .E amap - m - L: aka p-1-m (73b) 

which can be readily shown to be equivalent to: 

k-p m-p

L: A. k = L: a".ap-m (74) 
k-o m-O 

The problem of identification is to determine the values of an given the 
values of Ap and am. This can be done by successive calculation of the values 
of a in accordance with: 

k_p m-p-1 

aOap = L: A k - L: amap-m (75) 
k-O m-o 

Once the values of an are determined, the impulse response is easily found in 
terms of equation 66b. 
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The main purpose of using orthogonal functions is to determine conveniently 
the coefficients in the expansions of the given input and output. It is possible 
by means of Laguerre analysis to express the linkage in terms of gamma dis­
tributions rather than coefficients of Laguerre functions. The input and other 
functions can be expanded in terms of gamma distribution as follows: 

r=oO e- I/2(t/2)r 
x(t) = 	 L dr--- - (76) 

r-O 2(r!) 

Brcause gamma distributions are not orthogonal to one another, it is not 
possible to obtain the values of the coefficients, d" directly, but they can be 
expressed in terms of the corresponding Laguerre coefficients obtained from 
equation (i7a, or corresponding equation. The relationship between the two 
sets of coefficients is giv('n by: 

m-oO 
dr= (_2)r+1 L (":)am (77) 

m=r 

The result obtaiIlC'd by convoluting two gamma distributions, onc of order 
m and the other of order 11, is a gamma distribution of order m+n+ 1 as 
indicated by equntion 78: 

11 e-rI2(T/2)m e-(/-T)/2(t-T/2)n 
(78a)get) = 0 2Crn!)' 2(n!) dT 

e- t12 tm+n+l 
?( ') (_ ') '-2-',BCm+l,n+l) (78b) 
.. ?n. 	 n. 

"here ,B(m+l, n+1) is a betn function. Expressing the beta function in terms 
of faetorials gives: 

e- 1I2 • Ct/2) m+n+1 
gCt) = 	 _ --'------'-- (78e)

2(rn+n+l) ! 

When the input function, output function, and impulse response functions 
are all expanded in terms of gamma distributions, we have the relationship: 

By comparing the terms on the two sides of this equation, we obtain the 
linkage relationship: 

k_p_l 

Dp = '2.. 	 2: d",Op-k_l (80) 
k=O 

Beeause, in the problem of identification, we need to express the values of 0 
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in terms of the values of D, and we need the linkage equation in the form: 

k_p 

doop=Dp-tI- ~ dko p _ k (SIn) 
k-l 

if the value of do is zero, then we can usc: 

k_p 

d1op-1=Dp-tl- ~ dkOp-k (SIb) 
k-2 

It is not known whether use of the linkage pquation in terms of gamma dis­
tributions is numprically more stable than direct usc of the Laguerre coeffi­
cients. 

If a function is to be expanded in terms of a Laguerre series, the length of 
st'rips rC'quil'pd to rC'producp the function to a given dC'grpp of accuracy will 
dC'pmd on thp timp scalC' chospn for thC' L(\guPfre functions. In any given 
fUllction, it is possiblp to dptermine the optimum time scale for Laguerre 
rC'prC'sentlltion. For a time scalC' other than the optimum to reproduce the 
function to thp same accuracy, II longer spriC's would be rcquired. In system 
identification, there would be difi'prC'nt optimum time scales for the input and 
the output. ThC' pl'oblC'm of ch00sing the optimum time scale in this case is 
currC'ntiy under inv('stigation. 

Though LaguprrC' analysis has been applic'd to some discrete hydrologic field 
data (for \\ hich it is not orthogonal and thC'l'eforC' not appropriate), it has only 
bC'ell tC'stC'd on synthC'tic hydrologic data of a continuous type (9, to). The 
m('thod has, ho\\,('vpr, be('n applied to thp analysis of cascaded systems in 
Chpmiral EnginC'pring by Andcrssen and White (1). 

Time-Series Analysis 

If thp intC'rval bC't\\"C'C'll nonzC'ro inputs is shortC'r than the memory of the 
syst('m, then til(' output will not rC'turn to zero and the tcchniques described 
abov(' will not be applicable. In sueh casps, the input and output can be 
viewpd as tin1(' sprips and can bp dC'scribpd in tprms of their autocorrelation 
and ('ross cOl'rt'iation as is dont' in thp casp of time series in communication 
theory (15). 

The autocorrC'iation function may be defined by the limit: 

1 T/2 

CP,,;r;(r) =1' f x(t)x(t+d dt as T-~ro (S2) 
-Tf2 

and thl' cross corrpiation function by: 

(S3) 

If thel'(' \\'('I'C' no (,I'rors in input or output, tllC'n any of the systems described 
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('arlipr in thi::; ic'('tUl"(, should. apart from ('rrors in ('omputation, pr('(ii('t th(' 
implIlsl' r('spOIIS(' pprfpctly. If hO\\'('\,('I', th('!"p Un' ('rrors in tIl(' data, that is, 
T10isp on th" :<,rst<'m, tlwn ~)('rrp("t pr<'CiirtiOTl is not possibl('. :.\ [('thods of tinl<' 
s<'ri('s analysil:l hnv(' b('PIl proJ)os('d by Eaglpson 111) and by Bayazit (8) as a 
nwthcd of handling this probl('m of 1l0i8(, in the sanl<' way as is dOIl(, in ('om­
ImmieatioTls ('lIh>1n('('rillg. 

For any nsslInl<'d ("uulial impul.:;(' r('spons(', th(' r('sidual ('fror in th(' output 
ordillul(' is gi\'C'n by: 

r(l) =yU)- j'" h(T)X(l-T) dT (84) 
o 

Thl' optimum lilwar r('spons(' is Ollt' whieh miuimiz('s tll<' r('$idllal gi\'t'n by the 
nbov(' <'qllHtion in SOI1l(' $('111'(', If til(' ('rit('riOll is takC'n as OTlt' of I('ast Sqlltlr('S, 
tlwn til(' prohh-rn is to minimizl' til(' ('xp:CC'l:lsion: 

(85) 

Ins('rtion of till' vniu(' of I'll) from ('quation 84 in <'quat ion 85 giv('s: 

1 T ~ [ '" . J2E[hlt)J=,;j !ltll-j hlr)x(l-T)dT ell as (86)1 -T 2 0 

Till' probh'm. thprpfol"(', rNitH'('S its('lf tn finding thC' optimum valu(' lzoPt(t), 
which. wlH'1I uspd in ('quat ion SU, millimiz('s tlH' ('xpr('ssion E[/t(I)]. Squaring 
ti1(' ('xprps:;ion bc,t \\('('11 squan' brn('kpts in <'quatioll 84 givC's rise to three 
te'rms as follows: 

(87a) 

(87b) 

Both tl1C' first and the' third tC'rms must b(' nonnegative because the'Y arc the 
r('sult of squaring the t('rms im:ide th(' square brac!.:('ts in equation 84. The 
first of the' tllr('(' t('rms, that is. that giv('n by equation 87a, is clearly equal to 
1>w\.()). TIlt' rey('rsal of till' ordrr of integration in equations 87b and 87c and 
us(' of the dpfinitions of th(' aut')corrdation and cross correlation function 
giv('n by rquutions 82 and 83 r('du('(' th(' srcone! te'rm to a singlf' integral and 
the third t('rm from u tripl(' to a doubk int('gral. TIlt' C'xpression to be mini­
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miz('t,l can now bt' writ trn ns: 

E[l! (l) ]=cf>w( ()) -2 fa:> It tT)cf>zvl T)dT+ foe h tTl)dTl foe h( T2)cf>u(rl-r2) dr2 
o 0 0 

(88) 

1'h(' minimization of th(' abovr ('xpr('ssion is obtained by a mallipulation of 
tll(' ordinatrs of the impuls(' r('spons(' h (l) until thr optimum rausal impulse 
r('spOIl;O;1' is obtaitwcl. If tht' optimum causal liu('ar rrsponsr is denotrd by 
hol,d n, tlwn al1~ nonoptimum linC'ar rC'sp0I18t' ran br dmot('d by: 

(89) 

\\'lwr(' f i;o; nn arbitrary r<'nl l1ol1n<'l.!;:ltiv(' l1umbrr and hi (I) is an nrbitrary 
rnul'aL fUl1diol1. If hol,,1 {) is a tnlt' optimal, tlWll \\'r must hnv(': 

(90) 

\\I1('rt' E[h;n] i8 til(' ('rror rrit('rion d('fiu('cl by ('quatiol1s 84 to 88. 
Substitution from C'quation 80 into ('quatioll 88 and st'gr('gatioll of the terms 

invoh-ing hopttl) and h'tI) r('sults in tIll' ('quat ion : 

E[h(l)]=E[h optln]-2E foe h'tr)cf>zv(r)dr (91) 
o 

\\hi(·h ('an 1w \\'rittl'Il us: 

(92) 

\\\l('r(' t\w 8('('ond tt'rm On th(' right-hand sidt' of t'quation 92 corr('spol1ds to 
till' sPcolld nnd third t('rms on til(' right-hand sid(' of ('quation (91), nnd the 
third t('rm on th<' right-hand sid(' of ('quat ion 102 corr('sponds to the fourth 
t('rn1 Olt tlu' right-hnnd sidp of ('quntiou 91. 

For hoptll) to b(' a trut' optimum, it is npc('ss:uy for the condition of equation 
90 to hold ancllwnc(' for: 

(93) 

for nny valu(' of h'! tl and any uOlllwgativ(' valu(' of E. Becaus/' the fourth t('rm 
on til(' ri~ht-hnnd skip of ('quat ion 91 is a p('rf('C't squnr(', tllC'Il I2 must also be a 
perf('ct squart" nnd thus for arbitrarily small Yalu('s ~ th(' condition for 



124 TECHXICAL lll'LLETIX XO. WiS, {'.s. DEPT, OF AGlUCtfurnm 

optimality rl'(lll(,p~ to: 

(04) 

1\ ran b{' Sl'('[\ from Illt insppetioll of thr s('rond and third t('rms on thr right­
hand l:)id(' of ('qllation !ll b to b(': 

If 1\ Its givl'n abov!' is ('itlwr z('ro or n('gativ(', thrn thr rondition of rquatioll 
04, Hnd 11<'11('(' of <'<Iuation 00, is satisfi<,d, If, ho\\'pwr, 11 is lH'glltiv(' for!l givrll 
funrtioll h' ll), tl1('11 it wiUa('('ording to (''Iuation 95 br positiv{' if til(' sign of 
h'lll is ehllng<,d. COlls('qupn tly, ulII('ss II is Z{,r<l, it is possible' to find a funetioll 
h' (l) \\ hieh I11llk('s 1\ positiv(' nnd t hrrrfor(' vioint('s t 11(' rondition of ('qun tion 
04 for ilIl arhitrarily small vlllul' of E. in tl1('s(' t'ir('utnstanC'('s, til(' fllll('tion 
hOl'lU) \\mild not b(' truly thl' optimum ('Ilusnl lillrnr rl'spons(', A('('ordingly, 
til(' ('onclition for tlw optimum rrsponsr is: 

(96) 

Sin('p til(' ('onditiOIl must hold for nlly arbitrary ('ausnl function h' (I), thm 
Wl' must hnvp! 

CP.rv(n) - 1"" hOl'ltT2)CP.r.r(Tl-T2) dT2=O (97) 
o 

13(,(,lIu8<' h'(l) was d('oll('d as a causal function, thr abovr rdlltionship nred 
only hold for lIol1lH'gativr vnlu('s of TI. 

TIl(' ('onelitioll r('pr('sl'lItpd by rquation 07 is fr('qtl('ntly rd('rrpd to as tlw 
Wiplwr-Hopf equation, IH1(1 the $olution of this rCjulltion g1VPS the optimal 
('flusallinPllr rt'$pons(' for il syst{'m whospinput and output arC' in the form of 
continuous timp s('ril's. It ('an 1)(' ::\('('n that det('rmination of the optimum 
line,lr r('l'lpons(' in til(' ll'tlst square's s('nsC' drpends not on the original functions 
but only on th" allto('orr('lation function of the input and thp cross corrPiation 
fundinll b('t"'r(,11 th(, input nnd tht' output. 

Problems on Identification Based on ContinU:ous Data 

1. Find tIl(' Fourirr copffiei('l1ts for thr functions givpn in table 1, of the 
AppC'nciix. 

2. Find th(' Fouri('r transform ilnd Laplacr transform for the functions 
ch08('n in problem 1. 

3. Find thr first 4 mom('nts and cumulants for tht:' functions chosen in 
problpm 1. 

4. Find thr LaguC'rr{' c()rffieients for th{' flllictiolls chos('1l ill problt'm 1. 
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5. 1'h(' input and output tO~l linC'ar timC'-illvariant systC'm arC' given on 
APP(,lldix tabk 1 by fUIlC'tiOIlS 12 and 13, r('spe('tivcly. Find the impulse 
rC'spons(' of tll(' systC'm by somt' mC'thod of system ideutification suitable for 

continuous data. 
6. Find til(' impuls(' rC'spons(' for til(' data of problem 5. Use a differ('nt 

nwthod of system identification. 
7. In Appendix tablP 1, thC' output from a linC'ar timC'-invariant system is 

giv('n by funt'tion 16 and th(' input, by ;unction 15. Find til(' impulse rC'sponse 
of th(' systt'm by somt' mC't\rod oJ 8v:; (,111 id('ntifiration. 

8. Find th(' impuls(' r('spons(' by a s('('ond n1<'thod of syst('m identification for 

til(' data of problC'IU 7. 
tl. Compare' thr r('sults of problrIUs 5 and 6 or problrms 7 ancl 8, ancl thr 

diftkultiC's of thr two nwthocls us('d and giV{' r('tlsons for thC' diffpf(\n('es found. 
10. \Yrit(' a g(\Jl('rtll C'omput<'r program for thr idpntifieation of linrar tim{'­

illVariil.llt syst!'ll1s for which tht' data [UC' availubl{' in ('ontinuous form. 
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LECTURE 6: 

IDENTIFICATION BASED ON DISCRETE DATA 


Basic Systcnl Equations 

B(,Cll\lS(' hydrologic sysll'ms ar(' continuous systt'ms with continuously de­
fitwd inputs <"tnt! outputs, it might hl' thought that the m('thods of systl'1l1 
it\t>ntifienti[)n d('serilwd in l('C'tun' :i would b(' til(' most llpproprin.t(' t('('hniqu('s 
to us!' initipntifyiJlg hydrologic "yst('ms. In many cas('s, ho\\'('v('r, hydrologic 
daltl lll'(, only uVllilablt' in discr!'t(' or quantiz!'d form. A good d('al of rainfall 
data is only I"P[lol"ll'(\ as hourly VOIUIlWS, and til(' input in t h('s(' cas('s is r('pr('­
SPl1tl'd by n, numlH'1" of sqUlLrp puls('s ht'caust' all that w(' know aT(, th(' volumes 
(or tlw nH'nn mIl'S) of minfall during Nteh itHPrval. :'Ilodt'rn l"('cording ('quip­
I1wnt is usually digital in form, but til(' fr<'<]tH'ncy of ::;ampling is so high that 
tli!' r('('ords ('ould, if 11 ('('('ssn1')" , h(' trratt'cl matlwmatieally ns a continuous 
!'I'('on! without npPI"('('inhlp ('rt"or, Ev('n wh('I"(' n, continuous or virtually con­
t inuous r('('ord is nvnilnhlp, it ma~' 1)(' ulI('conomic 10 proc('ss tlw complete 
rl'('ord. Jn this cast', (Iw J"('cOl"d will 11(' sampkd and t h(' sampl(' data proc('ssed 
in som!' W!t~·, TIl!' data, though actually r('('orc\{'d in ('ontinuous form, must be 
('ot\siciPlwl clis('I"l'Il' data for till' purpos(' of analysis. 

If nn at tpmp! is mac\p 10 analyz(' a squal'(' pul;:(' by a s('ri('s of continuously 
cil'finl'd orthogonal fUtH'lions, $('rious ciiffi('ulti(';: of r('pr('s('ntation arise. EV(,11 
jf n largp numbpr of tl'rm!4 is ttSp(\ in til(' SNips, tIl(' discontinuiti('s at the b('­
ginning and thp ('ncl of Ih(' puls(' will not 1)(' faithfully r('produc('cl and oscilla­
linns, known ns Uibbs' oscilllltions, will (l('(·ur. In hnrmoni(' analysis, cf'rtain 
mat hl'rnn ti('It! t('('h niqu('s nrC' n \'[\ilnIJlp for t h(' smoothing of these oscilln tions, 
It ;:p('ms prpfprabh'. hO\\"l'VN, to ac(,l'pt th(' discontinuous natul'(' of the data, 
nnd instr,nd of looking for thl' impuls(' rc'spons(' of til(' systt'm, to try and 
idpntif~' the I'pspons(' of tll(' syst('m to it squarp puls(' of stancinrd I('ngth. In 
('IT('('t, this nH'l1l1S :;('('king tl1<' finit(' ppl"ioci unit hydrograph ruth('r than the 
IrII lind, thus, r('tuming to tl1<' basic con('('pt used during th(' original de­
v('[opnwnt of unit hydrograph methods. 

If WI' dC'fiIH' thC' puls(' l"t'spons(' hD(l) as r('sponse of th(' syst('m to an input 
of unit volunw occurring ttt a uniform rat(' [01: a pC'riod D, tlll'n as ('xpresscd 
in ('quat ion 2-1a, lpctur(' 1, tht' relationship )wtwe('n input and output is giv(,11 
by: 

"D_t 

y(l) = L XtaD)hD(t-aD) (1) 
aD-O 
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whl'rl' X(uD) is th(' voluml' of input in thl' interval from timl' uD to (u+1)D 
and y(t) is thl' continuous output. In th(' above' cas(', both til(' finite puIsI' 
rl'sponsl' amI thl' output ar(' continuously dl'finl'd. 

If thl' puls(' rrsponsr is only d('fin('d at cl'rtain intervals; thl'n as ('xprrssrd 
in ll'ctur(' 1, ('quation 27a, thl' r('lationship bC'twrrn input, output, and puls(' 
r('spons(' is d('fin('d in t('rms of th(' discl'N(' variables sand u: 

y(sD) = 	 2: X(uD)hD(sD-uD) (2a).-0 
which can b(' writt('n as: 

y{s)::; 	
-
L
.. 

X{U)!lD{S-U) (2b)
.-0 

wl1('rl' tl1(' intl'rval \)e'l \\'('('n ordinat('s iR D. It is nl'ce'ssary for the intrrval at 
whi('h th(' impuls(' rl'spons(' Ilnd output arl' drt('rminrd to be' II sUbmultiple 
or :1 ll1ultipJp of th(' unit p('riod of input, D. Othrrwise', intt'rpolation will be 
n(,(,e'ssary b('for(' th(' ordinate'S making up til(' output arl' sumnwd together. 
If til(' output is tak('n in block form, as in Be'rnard's distribution graph, then 
we havr: 

y(s) =: 	L X(u)cl D s-u) (2c)
_-0 

where tiD r('pr('s('n(s the' distribution graph, that is, the distribution of volume 
of output for th(' unit p('riod of input. 

'I'll(' abov(' equations ar(' for the cuse where th(' input is defined in terms of 
volunl('s. [f t he input is drfin('d in terms of discrete ordinates, then the equa­
tion ('orresponding to ('quation 2b would be: 

_.. 
y{s) = 	 L x(u)hD(s-u)D (2d)_-0 

for th(' discrete input xes). 
Thl' convolution r('lationship of equation 2 cun be writtl'n in matrix form. 


(Sr(' I('cturl' 1.) 


(3) 

whl'rl' y is thl' ,,('ctor of outputs, X is the matrix of inputs, and h is the vretor 
of thl' pulse responsr. Th(' genl'ral structurl' of the matrix X formed from the 
input vrctor x is indicatrd in ll'cture 1. A typical matrix of inputs is formed as 
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follows: 

Xo 0 0 0 

Xl Xo 0 0 

X2 Xl ;to 0 

X= Xa X~ Xl Xu (40.) 

X~ Xa X2 Xl 

0 X~ Xa X:! 

0 0 X.I X3 

0 0 0 x~ 

Th(' nbov(' l'XIUl1pl(' shows th(' eas(' whet(' th(' input lasts for five unit periods 
and t1\(' puls(' r('spons(' has four ol'dinat('s; it illustrates the general method of 
forming thr matrix whieh might bC' called the convolution form of matrix. 
For til(' abovp casp, tl1(' output has eight ordinates in accordance with the 
grnrral rplationship p = 11+111, whpn' thprl' ar(' m blocks of input, n+1 ordi­
nate's of thr pulse' r('sponsr, and p+ 1 ordinatrs of output. It is equally pos­
sibl(' to iraV(' thr input as a v('etor and convert thl' impulse response into a 
matrix: 

{ul 1>+1,1 == [JIJp+I,m+1 (x) ",+1,1 (4b) 

TIll' form givPIl in equation 4a is most eOllvl'nient in the' idl'ntification of the 
puisp rrspons('; form -tb is most conV('ni('nt whrrp a d('riv('d pulse response 
has b('('n ndjustpd to I'liminatl' anomali('S and whl'rl' it is required to ascl'rtain 
wlutt rorr('sponding adjustmpnt in til(' input should be made. 

This Il'eturl' is conC('rt1rcl with thp various me'thods which might be em­
ploYl'd to solv(' ('(luations of til(' forms givrn nbovp. In contrast to th(' case of 
continuous data \\"h('r(' thr solution of an int('gral ('quat ion was called for, in 
discrt,t(' or quantiz('d data it is only n('c('ssaf)° to solve a set of simultaneous 
I'quations. Consequ('ntiy, w(' would expect that matrix ml'thods would be 
applicabl(' to thl' idrnlification problem for discrete data. We would also ex­
p('ct that discr('t(' v('rsions of the' various transform methods and of time 
Sl'l iN; analysis dr:5crib('d in lectur(' 5 would also be available. These arc dis­
russl'd ill tll(' remainder of th(' 1('("lurl'. 
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.;\Iatrix .1Iethods of Identification 

If thr available input and output were completrly frrc from error there 
would b(' no difficulty in detrrmining thr ordinatrs of thr pulse response or 
finite period unit hydrogrnph. The set of simultaneous ('qualions givrn in 
matrix form in rquation 4a can be writtrll out as: 

Yo=xoho (;')a) 

YI =xlho+xohl Co,)b) 

Y~= 1'2ho+.Tlhl+XOIt~ (5c) 

(:,)i) 

(;')m) 

(;')n) 

(op) 

Jf tilt' output ancl input an' known, t/H'n all the vaitlPs of thr v('ctor xo, XI, 

X2 . ... ..rm and of tl\(' output V('rtor V,), YI, y2 •••• 'Yp_I, yp ar(' known. The 
vnlw':,; of thC' unknowlI ordinal!'!' of til(' puis!' rrsponse or unit hyclrogruph, 
that is, Ito. hi, h2 • ••• • hl/_ I , hI! call br dNprminecl succ!'ssivrly from thr srt of 
('quntiolls ,J. Thus, <,((uatioll .in is us!'cI to obtain the' vaiur of h ; substitutiono
of this valliI' in ('<lllatioll .il> !'IHlblrs us to calculat(' thr valur of hI; and so 011 
until nil th(, unknown ordilUltrs of It have' br('11 c!ptrrmil1('c!. \\ hrrr tl1('r(' is no 
1'1'1'01' in til(' datn, tlIP vnlul'S obtnitH'd by til<' solution of til(' first Il ('quat ions 
ftutol1mticnlly snti:·;(\' til(' l'('nutinin~ ('C[ufllions. This llwthoc! of solution by 
forwHrd suiJstitution is ('quivtllpnt to solving it subsrt of the ('quations ;')a to 
,ip in til!' form: 

(6) 

whi('h ine!icntP;-l that only th(' firM (11+1) vnlu('s of output nne! the first 
(n+1 j ro\\'~ of til(' X mntrix a1'(' u~('cI. 1'h('r(' arr now thr same numbf'r of 
('quat ions us unknowns, so that din·(·t algrbraic so~u: ion is possible. \\'(' also 
notl' thlH th" matrix of inputs X is no\\' a squaf(' matrix nnd this can, th('rc­
for!', ill' inv('rt('d. Th('r(' is, of c'ours(', no ll('c('ssity to us(' th(' first (II. +1) rows 
to form til(' (1/+11 by (n+1) mntrix. Any (11+1) rows could br us('d, but 
if til<' first 111+11 ro\\'s or thp last (11+1) rows ar(' us('d, til(' matrix is tri­
nngul(l.r and (11('1'(·for(' mor(' rnsily inv!'rted. 

An altprnntiv!' way of ('quating lh(' numb!'r of ('quat ions and thr numbrr 
of unknowns is to tn'Ht (hr unit.hydl·ograph or puls(' response as if th(' num­
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b(,I' of its ordinnt<'s W('I'(, <'<llml to til(' numlwl' of ordinat('s of runoff. In this 
casp, til(' matrix ('quat ion h('comps: 

{v} />+1 = [X]/>+1 {hi p-rl (7) 

Again, thr rqualions can be' rradily solvC'd by dirrct algrbraic methods. In 
thr abs('tl('r of C'rrors in thr input or oulput data, only thr first n-ordinatrs 
will hnvp significant valurs, and thr ordinalC's of lht, unit hydrograph between 
hni"l and hp will ('onW out ItS idrntipally ZPI'O. 

TIll' rull' for ('a\('ul!lting llny ordinat(l of forward substitution (that is, the 
us('oftlwfirst (n+l) rqllationis; 

(Sa) 

for i~m (8b) 

whi('h ('all 1)(' solvl'd su('('rssivt'ly for i=cp, I, :2, •••.. n. 
For lla('kward sllhslit ution (that is, til(' us(' of tl1l' last (n+ I) f'quations), 

t 11(' rorn·sponding formulas 11rt': 

fot' l~m (Sc) 

(Sd) 

whieh can 1)(· solvpd HI('('('ssivply for i = cp, I, 2 .... . Il. 

In tlw nhs['I1('(' of !'frill'S in tIl!' datIL and of ('rrors of ('omputation, it is im­
m:t\t'rinl whil'h s('l of \ II + 1) <'qllttlions art' uSe'd to solv(l for the' (n+ 1) un­
known ordinall's of tltp unit hydl'ogrflph. TIl(' dil'(\ct solution hy forward 
substitution (or haekwfml substitution) is, howe'v!'r, unr!'liabl!' in practice 
dIU' til till' PI'I'SI'I1('(' of ('fror. It ('an r('adily bC' shown by tht' usC' of synthrtic 
datil that if (,IT()r~ ()('('U!' in tlw nwaSlll'pmC'nt of tIl(' input or the output, un­
I'CIlli,~(ir unit hydrogrnph ordinate's arC' obtailH'cl in thC' solution. \Yt' arr thus 
fnel'd with till' prob!C'll1 of finding an optimum l'olution for thr unit hydro­
graph using all til(' information nvnilablr. 

TIl!' ma.trix nll'thnd \)ns('d on Ipast squarrs solvrs thr problrm in tlw form 
of pqUfllion Ja. It ns.:.;um('s that the \(ongth of tlw unit hydrogrnph is known 
by subtracting tlw lpngth of tIl!' input from th(' lrngth of thr output and, 
t IWl'(.[or(', thnt the' ordinat!'s of thp unit hydrograph IwtW('('1l 1111+1 and hp are 
Z(·ro. In t11(' prl's('n('1' of (Il'ror, thpl'l'£ol'(', WC' must l'('strnin tht'sr particular 
ordinlltl'l' :lnd di~tr1but!' tlw ('rror on til<' (Jth!'r ordinatps. 

I'll(' nwthod of h,ast ~quar('s is based Oil minimizing the sum of the squares 
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of tllC'('c'siduuls IWl\\'('('n til(' actual output and thr output prC'dictcd by using 
any pnrtiC'ular vlllu(' of h. The r('siduals arC' given by the column vector: 

{1') ptl.l =:- {y} 1.+1,1- [X]p+I.n+l UI}"+I,I (9a) 

= {y-Xhlp+l" (9b) 

til(' SUIll of thp SqUilr<':; of the'sP rp:;iduals is most convpni('Jltiy got by uRing 
tht' il1lH'r produN, thnt is, by multiplying r by its trnnspO!-w 1'1', Taking thp 
inm'r procluc' (s('(' png(' 90, l('cturt' 1) nnd using til(' rul(' for til(' tmnsposc 
of It product, \1'(' obtain: 

(10) 

On multiplying out tlw t('rms, \\'(' gN: 

L 1'2,- yTy_yTXh-hTXTy+hTXTXh (11) 

~in('(' II and y nrc- column v('ctors, tiH'ir trnnspo::'('s will bt' ro\\' ,,('('tors, and, 
('ons('qumtly, [hp I'P('ond Hnd third t('rllls on til(' right-hand side' of ('quation 
11 are s('uIHl' in form. f:.in('(' a I'Cnlllr trnnspos('s into its('lf, til(' two tpl'ms must 
Ill' {'1Jual so that \\.(' ('an writl': 

(12) 

'1'11(\ pmblpm is to ('hoos!' thr ordina(rs of thl' rl'sponsr v('ctor It so as to 
minimizp t hI' l'xpr('ssiOIl giwn in ('quat ion 12. For ordinary function:;, this can 
Iw dOll(' hy taking ('ach ordinat!' ill turn nne! s{'tting th{' partial dC'rivativ('s, 
wi th n'spl'('( to I hat part i('ulnr orclina(l' ('qual to z('ro. Ho\\,('vpr, the compr{'s­
sion of vrrtor nO\fltion may 1)(' used, B('cuus(' tilp fir:;t ({'I'm \\'{' arp difip/'{'nti­
ating do!'s not involw h, til(' cit'l'ivntiv(' for this ('I'm will b{' zpro. Vrctop 
diffprpntintion of II\(' s('('ond t{'l'm on til(' right-hand sidr of C'quation 12 with 
I'('sl)('(' ( to It rps('mhlps th!' ()rdinnr~' c1ifi('rrntiation of tlw first po\\'rr of a 
fUll('tinll. ~imilnrI~', ,'('('tor diff('I'pntintion of till' third tt'rm on t!H' right-hand 
sid!' or I'quntiOll 12 with r('spl'('! to h r<'s!'mhlps th(> ordinar'y diff(>rrntiation of 
till's('('ond pow!'r of n fUlle(ion. TIl(' rp:mlt of difipr('ntiatioll with rpsp{'ct to h 
('llll IH' /'('fHlily vt'rifil'd. R('tting tIl(' n'sult <,qual to z('ro is giwn by: 

e13a) 
or 

(13b) 

TIl!' V!'('tOI' It whi('h sntisfips ('quation l~b makps L I' j 2 a minimum, It is 
tlwl'pfor(' til(' bpst IpHst squnr!'s solution to til!' originnl Sl't of pquations .ja to 
;ip. To so],,!' ('quatiol1 13b for h, it is 11('('('ssnry to invl'rt tl1(' mntrix givPIl by: 

(14a) 
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thus obtaining th(' solution 

(14b) 

Sinc(' the matrix forme-d by multiplying uny matrix by its transpose is neces­
sarily a square matrix, this inv('rsion can b(' carrird out. 

Xote- that the Rum of the i;quare-s of the- re-siduals for the- abov£' solution is 
not an absolut(' minimum. It is It minimum subjC'ct to til(' J"('stmint that h has 
a base kngth from z('ro to 11+1, that is, that the- vnltlC'S of the ordinate-s from 
h,,+l to lip ar£' ze-ro. The- dTe-ct of otlwr constraints and of errors ge-ncrally will 
br discui;se-d latc'r in the- lecturr. 

Discrcte Tl'ansform :Methods 

Transform nWlilods nre- available for huncHing discre-te- data which corre­
spond to llH' transform nwthods for continuous datu discussed in kcture 5, 
"Idenl ificat ion 13a:-lC'd on Cont inuous Data." Thus til(' classical Fourie-r se-rirs 
('mt 1)(' l'Ppln('pd by tit(' finite Fouri<'r se-ril's, which will rrproducl' e-xactly the 
funC'\ ions involwcl nt the- sampled points and can br used to interpolate 
lrigononwtric-ally l)('twl'~'n tiH'se points. In place- of tit!' Lnplucp transform, we 
hllY(' th(' Z-transform "which was dl'vl'loped for use with snmpkd-data systems. 
Doogl' (writt('n C'ommun., 19GO) has d('riVC'd a discrt'tt' ttnulog of the Laguerre 
nwthods of analysis, hut this hag not y('t \)('t'n fully dt'vdop('d or published. 

Th(' nw\hoC! of harmonic analysis has I)('e-n applie-d to hydrologic data by 
O'DoIlrl('ll (.9, 10). If nn output is spt'ciflt'd at a Ilumb('r of equidistant dis­
er('t(' points, thell it can bl' fltt('d ('Xtlctiy at (h('s(' points by a function of the 
form: 

(15) 

\l"h('r(' 11=2p+l is tll(' numlwl' of data points. Sillc(' (h(,I'(' Itl'(' only n-pi('c('s 
of information, it is impossible- to clC'riv(' mOl"(' thnn II-nwnnillgful codfleiC'nts 
.:lk fwd Ih for tll(' data. SinC'(' sitH'S llnd C'osin('s are orthogonal und('t, summa­
tion, th(' codlieiPnts can b(' d('tprminl'd from: 

(16a) 

(16b) 

where Ii ('nn tnk!' on tl1(' intpgrnl vnitws 0, 1, :2 ••• , . p-l, 7'. The above formu­
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lalion can also be expressed in the exponential form: 

p. (ik'2rrs)yes) = L Ck exp -- (I7a)
k--p n 

1 n-1 (-ik2rrs)Ck =	- L yes) exp (I7b)
n n.-0 

For it lilwm timr-invariant S,YSt<'nl which is causal and has an isolated in­
put, til(' discrrlp ordinatrs of t hr input, output, and pulsf' rC'sponsr are con­
nC'('tC'd by: 

u=. 
y(sD) = L X(a1))h D (sD-aD) (ISa)

u=o 

whl'rC' X l'('prC's('nts tIl(' volumr of input in succl'ssiv(' unit prriods of length, 
D j ltD r<'l)!'ps('nts t11(' fini l<' ppriod unit hydrograph for tll(' unit period (D) 
cldilH'd at intprvals l'qun.! to the unit Iwriod; and y r('prpsC'nts the output dr­
fhH'd at intc'rvals ('qual to til(' unit ppriod (D). For conv('niencc, th(' unit 
p('riod can ill' t:\I;:('n as tIl(' unit of time and tIl(' rplationship writtpn as: 

0'=8 

yes) = 	 L X(rr)hD(S-rr) (ISb)
u=o 

If th(' input is of finitp duration nnd thr nwmory of tIl(' system is finitc, then 
w(' ean us(' finite Fouric'r serif'S in the !'ianw way as infinite Fouri('r series were 
us('(! in h'ctul'(' 5. 1'h(' ckv('lopnwl1t is analogous and will not b(' rC'peated in 
d('tail. 1'1](' ciiscrC'tp functions rC'pr('s('nting the input and tIl(' output nrc as­
sunwcl to 1)(' ppriodie with a pC'riod ('qual to liD. Since the input is periodic, it 
h, lH'ees:mry to writp thp rrIationship betwe('n input pulse response and output 
ns: 

a=s 

y(s) = L X(rr)hD(s-rr) 	 (18c)
0'=.1-11+1 

'I'll(' Iinkng(' ('q lIa! ion ('an t Iwn 1)(' found in similar mann('r to that indicat('d 
by ('quations 1Lto Hi, leetuI'l' i). 

By sub;;!itllting pquation lSc in rquation 17e, reversing the order of sum­
mitt ion, nnd u;;ing tIl(' orthogonality J'('lationship twic(', it can be sho,Vn that 
in the cliscrpt(' ca;;p, we have the linkage relationship: 

(19) 

which is til(' ;;anw as th(' linkagr ('qlmtion givrn by equation 16 of l('cture 5, 
('xeept for tIl(' fact that th(' ;;ymbol 11. is us('d for the p(,J'iod in the discrete 
ca::(', th(' ::ymhol T for tIl(' p('riod in the f'ontinuous casE'. For the expansion 
in tri![onol1wtrical rath('r than ('xponentiul form, the linkage relationship 
tak('s the form: 
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(20a) 

(20b) 

which corrC'spond to C'quations ISh and lAc, rC'spC'ctivcly, in lC'cturc 5. 
'1'11(' fact that the trigonometrieul functions arc orthogonal under both intC'­

grati<;m and summation rC'sults in (he samp linkagp rC'lationship for continuous 
and discr('tp data. Tlw coC'fficients appearing in equations 19 or 20 of the 
prC's('IH lecture are frpquently r('ferrpd to as harmonic coefficiC'nts and the 
coefficients apPNuing in equation 18 of kcture 5 are refl'fred to as Fourier 
coeffieipnts. The difTC'r('ncl's h('twe'C'n the' two rasps should, howcvpr, be ckarly 
rpcognizl'ci. Firstly, tlH' eopffieiC'nts al< and (:3/< in l'qun(ion 20 of this lC'cturC', 
ddine t IH' finite- ppriod uni t hydrogrnph ltD (l) ; the corrpsponding coefficien ts 
in ('qlHLtion Us, Ipeturl' ii, dpfilW thl' instantan('ous unit hydrogrnph ho(t). 
8('condly, thp c()C'flici('nts of ('(jlw.tion 20 of this \Pcture arC' finite in numl)('r 
\.J('('!lUS(, only as many e()pffici('llts llS there' are' data points can bC' ciPterminrd 
nltogethC'r. 1"01" continuous functiong, th('r(' is no limit to the numbcl· of co­
('friC'i('nts which enn bp ealculat ('d if rl'quirl'd. Thirdly, th(' cocfI-ici('nts of 
('quatiOll 20 of this l('cturp, wl1('n substitul('cl into the finite Fourier expansion, 
c1dlnp the pulsp response' ltD at disrr('t(' points which arc ('qually spac('d at 
till' unit interval, D; wher('[l$, the eoetfieil'ntg derived in lecture ;) define the 
leH rontinuougly. 

If a fUllction only rxigts at disrrl'te points, or is only known at discrete 
points, it is not pog:-:ibll' to ohtain its Lapl:wc transform dirl'ctly. Such a func­
tion cnn be {,Olll'idl'r('d as \)l'ing dl'finl'd by: 

., 
!(t) = 'L!(t)5(l-nT) (21) 

11-Q 

whNe'/l is an int('gpr nnd T is the intNvallwtwl'l'n data points. If thp, Laplace 

transform is now takl'n, we have: 

., 
£[j(t)]= 'L!(nT)e-snT (22) 

n=O 

It is customary to writc': 

Z= l'xp(sT) (23) 

nnd IWllC(, to writc' what is known as thr Z-transform of t hl' discrrtc variable 

1\S: 
., 

F(Z) =Z[j(nT)]= 'L!(IIT)Z-n (24) 
n=O 

http:SYSTE:'.IS
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Th(' prop('rtips of til(' Z-frnnsform (.1) ar(' similar to thm,(' of til(> Laplac(' 
tram,form, in pm-lieulnr, for a linc-ar t imp-invariant ('aulinl :;y:;l<'m giypn by: 

.~. 

yes) = L: x\CT)h(s-CT) 
.-0 

W(' hay!' til(' following simpl(' rpiationlihip lwt\\'(,(,11 111<' Z-trflnlifOl'm of th(' 
input: 

If !I(s) Hnd .r(s) flf(' givpn nlll1wl'ically, if' is possiblp to rompu[C' }'tZ) and 
Xt.ll nIld, IWIlC(', to d<'tprmir)(' til(' Z-tl'l1!lsform of thl' pulse rpspOlHlP: 

y(Z)
f[IZ)=_­ (27)\ X(Z) 

1£ 11 (Z) call \)p ('XPillldpd ill illvpr:;p PO\\'PI'S of Z, til<' codl1eipnt:; of til(' ('x­
IHtllsioll will gi\'(' Ill(' Ol'dinll(\'x of hIs) xine(' by dl'finilion: 

In practiep, ho\\'('\'PI', it is likply thnt, ns in til(' Laplace transform l the Z­
tt'lll1sform will not b(' pnxily inv('rt('d in practical ca:;('!,; wl1('r(' w(' luw(' nunH'ri­
('nl data ratlwl' than n l11atlH'mntielll runNion. 

TIIP o( hpr t rtuu:;fol'lH I11Pt hod clisCllSS('d in this Irct me' eorrpsponcls to ihn 
LnglH'rl'(, analysis of ;;ystpms with eontinuoll;; inputl-i nnd outputl-i. If an nt­
tpmpt is l11:ulP to l'<,pn'sPllt n sqUHr(' puls(' by a. s('r'i('i') of Lagu('rrC' functions, 
tl1<' dis('olltinllily cannot hl' w<'ll rppl'('spnt('d ('vpn if th(' numlwr of t('rms in 
til(' l'xpllnsiol\ i:; ([Uill' high; [01' .)0 ('nns, th" oscillationb willlw of til(' ordC'r 
of ~.) ppr('('nt of til(' Iwight of (11<' PUlli('. Accordingly, if it il> wish"d to UH(' 

qunnl iZl'd dilla, til(' nWI hod of LaguPITl' analYHis d('sC'rib('d in ]('ct 1IrC' i) is no 
long!'!' ndpqu:tt(' without ll1odifit'ation. AI' fir~,(, it was hoppd that the LaguC'IT(, 
funetitllls might 1)(' orthogonal undl'r summa.tion al-i \\'('11 lU'; int('gratioll, as 
with t l'igononw(I'j" fUlletions. enfort unnl"l.", (his did not pmvp to b(' the 
easp, und it wax 11('('('ssnry to ciPrivp tIl(' cIil>('r('((' analog of the LnguNTl' 
funetiol1s. 

Though SonH' books on tlumprienlltll!llysis nH'ntion that disc,·(,tC' nnalogs of 
til(' d:l.'~sicnl ('on t inuous or! hOf.(onnl polynomials do ('xist, no cIt'scription of 
1hl'8(' 'I'll:; avnilllblc' in nny of til<' Ii t('r:1lur(' citpd. Evpntuall~', th(' form of 
th(' p()l~'n()minls ortht'~onnl uncl('r -:::;umrlHltion from zC'ro to infinity with rp­
slwet to n clamping faetor PXP\ -s) WllS clpriYl'd from firRt principlC's. It is 

1 Doom:. J. C. I. LISE.\(t THEORY OF 01'£N (,HASS~~L FLOW, Ill: llmn:STl'; AND cnn:­
u:-..,-". \)rpt. Civ. Engin .• rniversity ('olIrge. Cork, Trelnnd. H1G7. Wnpllblished re­
purL] 
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P:1siPl", howpV('I', in rNrospN't to dC'rivt' the> form of tilt' discI,(,t<' analog to the 
Laguprrp fUl1elion by an nnnlogy b('t\\'C'C'n cliser('tp and ('ontinuou$ op!'rations, 

lnll'grntioll in tlw t'ontinu()us rasp b('('ol11('s summation in tIl(' diserpU' casp 
and dHTC'r!'l1liatloll in tIl(' l'OntinllOlls ('as('s is rl'plac('d by forward difT('rcncing 
in tIl(' diserl'tc' en:w. TIl(' Laguc'ITl' polynomia12 is defin('d by: 

k=" tk 

L"lt)= L.: (-l)ktk)l.j (29n) 
k-O h·. 

In tlU' ahov(' ('«natioll, til<' ('ontilluous variabll' l occur's in th(' form tkk!. 
This rUlll·tion hilS tIl(' prnpC'rty that WI1('ll difl'l'!'l'ntiatl'd with r('spt'et to t, it 
nmilltuins thp snnw form but with til(' ordpr rt'du(,pd by on!' clc·gr('('. TIl<' 
annl()~()us (/is<'rptp polynomial might IH' ('xpl'et (Od to 1)(' t hat function of the 
dis(,/,(,tc' \':lriahl!' s whieh IlftS til(' analogous diserpt(' prop<'rty, that is, th!' 
funetion wlH'll forward difTprpl1('('d \\'ith r(';:;p('('t to 8 maintains tht' same form 
bllt with tIll' orcipr n'dll('pd hy om' dl'gr{'p. It ('ittl bp v('rifi('d that thp form of 
dis('rl'\C' fUllt'tioll rt'quin'd is tIl<' binomial ('odfiei('nt I;). Hrncr, w(' would 
('xPI'('1 Ilw dis('r!'!p unnl()~ to th!' LU~llPrr(' polynomial to bC' ()f til(' form: 

kQ" 
JI"t,~)= L.: (-ll~(k}(f) (29b) 

1;-0 

It ('an Iw showll (hat tIl(' abov(' ('xpn'ssinl1 is a ;"[(oixIH'l' polynomial with a 
valu(' of b= () and c= 1 2, 

'1'111' L:l~U!'IT(' polynomials dPli.nt'd by <'<[lIation ~9a nrc' orthogonal in thr 
r:ln~(' ZPW to infinity with l"('spC'('( to til(' w('ightin:.i!; fa('tor rxp( -I), that is, 

(300,) 

U til!' ;''It'ix!lI'r polynomials nrC' to h(' \\TittC'n in similar form, it is n('c('ssary 
not ouly to rppla('p t Iw in t<,gra t ion by It summa( ion bu t nlso to find tll(' discrrte 
analog of tl\(' \\'l'ighting factor pxpt -ll. Thp r('('ipro('al of tiw w('ighting func­
tion in tll!' ('ontinunus (,tl.,<:(', ('xp(li, di~l'('n'ntiat('s inlo its('lf. This SUggPilts n, 
fUlw\ion whic'h forward ciifT('rt'ntiat(,R into itRt'lf as a dis('rC't(' analog, It 
may \)(' fPadily shown that :?' htl...;; such a propprty and cons('(llH,ntly, Jz' may 
1)(' tripe! n..';; a w('ightinJ; fuetO!'. \\"h('n this is don(' OIl(' obtnins tilt' Qrthogonal 
rl'intionship! 

J=""

L.: {I z )·JJ.,lsIJI,,(s)=:?n.... lomn (30b) 

,-I! 

lOp. ('it. p. SH. Il'c'bln' 1. and p, 17:t Ic('turc 6. 



138 TECHX[CAL BeLLETIX XO. WiS, CS. DEPT. OF AGRICl:LTGRE 

Th£' normalilPd orthogonal function in the continuous case is: 

k=n tk 

f,Jtl =e- li2 L (-l,k! klk":j 	 (810.) 
k-O • 

and til(' normali~pd orthogonal function in til(' discrete case is: 

k=n 

fll(S) =<}Z)<H1I+1);2 	 L (-llk(k)W (81b) 
1.-0 

The fUl1rtioll Rivl'll in ('<luation 8lb may \)(' dN;cril)('d ns n :\[('ixn£'r function 
and its propprti!'s explof('cllJy til(' USP of til!' Z-tran:;form (6J. 

To (iPri\'P 11 nwthild of :.\[(·iXllf'r analysi,'i, it is n('CC'ssary to dpll'rminl' first 
of all [11(' ('ITI'(,( of pOllvoluting OIl(' :\[('ixl1('r funrtion \\-jth anotlH'r as follows: 

~=S 

y(.,()."!: Lfm 1crifll(S-cr) 	 (8:2) 
a-O 

It can b<, shown that: 

:\gain til(' rpsult is similar to that for Lagu!'rr!' functions ('xr('IH for the scale 
fartor :212

• 1'1)(' linkage' (·qulltion is clt'riv('d in a similar mltnn('r as for Lnguprrc 
funetiolls and is givPH by: 

k=p k=p-l 

.·t,,= L !:2;12CXkllJl_k- L CXk(tI'-I-i. 	 (34) 
k-il k-O 

whi('h ('(J[TPsponcls with ('(Iuation 7:3 of I('rlurp ;"i. For thp id('ntification prob­
!Pm, it is I1(,('pssnry to dl'tprmilH' sucrl'ssivdy til(' valu!'s of thl' :'.Il'ixner ('0­

pfli<'ipnts for tlw f('spons(' fUllrtions. 1'11('';(, are giVC'n by: 

k_p 	 k=p-l 

CXpl/l)=: L (12 l 'JI-k+l i '2...tk- L CXkClp-k 	 (3.3) 
k-O 	 k=O 

TIH' I1wthod of ).[pixIH'r !UHtlysis is still und£'r d('vPlopn1£'nt and so far has 
only 1>('('11 nppli!'r.i to synthptic datil. Thpr(' is SOIlW indication that it is not 
ll.'l llullwrienlly stub]£, as til!' Lugul'rrC' anal~'sis of rontinuous datu. In :'.[£'ixl1C'r 
atHtip;is, n;; in Laguprrp analysis, it is n('('!'ss(n~' to choosp an appropriatp time 
srttlp to rpprl'sl'nt til(' funrtions il1volv!'d by a rplMiVC'ly small number of 
('opfl1ri(·nts. 

Timc-Scdcs Analysis of Discrete Data 

TIH' Ill!'thod of timp spril's analysis clC'vC'loppcl b~- Wil'll('t" (n and wwd in 
till' tlwory of ('ommuniratioll has b('pn appli('d to disrt"C'jp hydrologil' datIL br 
tht' group working at th!' :\[ns':;ll('hus('tt,·; Institutp of Tprhllology undf'r 
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Englrson (3), The problrm is to determine for a given set of discrete inputs 
und outputs, tIl(' cumml lin('ar msponsp which is optimal in the least squares 
S(ln.s(I. It is n('('('s.sary to dpfin(' tl1<' discr<,tc' analogs of th(' autocorrrlation and 
t!rO/iS corr(llations dpfinpd by (''Iuation :-;2 and K:3 of kctur(' ii for the continu­
ous ca,lP. 1'11£1 uutocorrplation function for a diSCrt,tp variabl(' j(8) is defined 
as til(' limit: 

<Pl!U,) =-
1 

I:
p 

j(slj{s+kl as P-H>:J (36a)
II • __p 

wlwrp II "" ~p+ I is t11(' num\J('r of data points, 'I'll(' cross cOIT('lalioll func! ion 
lwt\l"£,(\11 t\l"O discf'P((, vaf'iablpsjl.,·) and gts) is (IPfinl'd ns th(' limit: 

1 p 

tPfu(k) =: I: j(.~lg{s+k) as ]l-'>ro (3Gb)n • __p 

For a CllwmllilWI\!' tinw-illvnriant syst(lm, Wt' havp: 
, 

y(s) = I: .\{cr)hD(s-crl (Silt) 

Of' 

'" 
y( 1:1) =: 	 I: .\(S-cr)/ID (cr) (3ib) 

,,-0 

\\'11('rl' J) is tl)(' intrrval \)ptw('('n tIl<' pqulllly spncpd discr('tp or quantizpd 
data I and ('ons<'qu(,l1tly also thl' unit IWriod of tll<' finitp l)('riod unit hydro­
~t'Hph Of' pul;;!' r(':;pon~H' 1I D (ld), which will I'nnblp us to prpdict the output 
with minimum ('I'mI', Thl' individual ('rl'OI' pr('diction for tIl(' .singk ordinate 
is givpl1 hy; 

"" )',=y,- I: X(i-crlhD(cr) 	 (38) 
.,-0 

whl'rp i is thp int('~('r dl'noting Ill!' ordinn.tp of output cOl1cprnrd. For a COI1­

tinuous rp('ord wbi('h bas \)('('11 sampll'cl or of di;;crC'tl' or quan!izrcl data, wr 
wish to minimizp tIl{' It'llst sqlltll'PS ('1'1'01', Ihat i:i, 

I P 

B[h(~)J=' I: ()',i!!=minimum (393,)
iI "__ p 

If thb: is to lw dnll!' by p'~~'nipulati()n of th(' ordinal(l:; of thr r('spons(' fUl1ction, 
Own WI' htl\,(' thp ('Ot1(Flion: 

o II /' 151' 
~- L ,.2"" I: '21' -~-=O (:3Hb)

oil! j I i- /,' .= _I' ' Oh (j I 

It is el('m' from <'qulttioll :~s that fol' (,VPI'~' valut' of j grPlltpr than 0: 

http:ordinn.tp
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ar,' 
-Xii-j) (·10)

ah(jl 

so that 

iJri ,-" ') . ') '-C' ') ~ I ( ) ,-' )-ri' I .-=A(,l-)·Y(! -~\. l-] L...t lD u AtL-u (41)
iJ!l]J a=O 

Th(' ('rit{'rioll of equation:m ean now 1)(' Wl'ittpll as: 

P I' ~ 

L: X{i-j)Ylii- L: Xli-j) L: hD(u)(i-u) =0 (·1:Z) 

'I'll(' ahov(' I'plu t ionshi p mllst hold for all valtll's of j gTPU t('1' than 0, Hl'VPl'sing 
tll!' Ol'tipl' of !'lum n1llt ion in tIlt' s('Pond tprm givps: 

" "" PL: X( 1:-jl yli) - l-: hD(u) L: X( i-jL\,"U-u) =0 (-1::3) 
.-0 

Csing tIl(' tlPfillitioll of twt ()('OIT(.Jat ion und er().;;s eOlT('lntion fol' dis(,l'ptp func­
tions givl'n by <''Illations :Hhl and :{Ilb above, <,quntion --t:3 enn be \\'rittc'n t1..>;: 

"" 
rh'lItjl = L: hD(ulc/Jutj-u) (-14) 

..-0 

prtlvidpd th,t tIll' vahl£' of j is ZI'ro or positivI', Thi.;; is thl' di.;;er('t(' form of 111(' 
Wh'[H'I'-Hopf "(JtUlt \on uw(i fly Eaglpson (.Jl in tl\(' nmtl,\'sis of hydrologie 
sys(!'l11s. 

WIH'r<' \\'P arp dl'aling with i.;;olat!'d inputs and sys(!'I11S of finitp mpmory \\,p 
also lut\'(' isolat('d output.;;, [n this ens(', tIl(' eorn'blinn nwthod of annlysis of 
(inw sPl'i('s ('all 1)(, ;;hown to 1)(' t'ql!j"nlt'nt to tIl(' ll'ast sqUtll'(';; I1wthod. A;; 
:,;hOWll in h,<'tul'(, ti, pngp 1.'17, tIl(' It'H.,,! :;({uurps I1wthod tllTl1llg('S thl' input 
and outpul data in till' form: 

(4,> ) 

WhPl'P tl)(' matrix X i;; of til(' form givPll by ('quutlou 41> of Ill(' pr('!wl1t Ipcturp, 
that is, tIl(' input V('('(or has lw('n u;;('(l to form a C"onvolution-typr mat['ix, 
.\C"('()rdin~ly, fol' tl1<' !'xflmplt' giYPH on page' :39, jpctUl'P 1, and pnge un, lrctur(' 
ti, tIl!' lpft-hand sidl' of ('quatiol1 --t.) will bc' of thr form: 

Yo 
1'0 Xl X2 ,<3 l'4 0 0 0 YI 

Y2 
XTy:=: 0 Xo Xl X2 1'3 X4 0 0 Y3 (46) 

Y4 
0 0 ,To XI X2 X3 x~ 0 Yo 

1/6 
0 0 0 ,ro '<I 1'2 X3 X4 Y7 
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In th(' al>o\'(' (':mmplc', tlw matrix X ha.-' four rows and eight ('olums, and 
the column \'('('tor y has eight rows. 1'11(' rt'sult of multiplying them together 
will be to produce a column \'('dor with four rows, If wC' follow the rules of 
,,('ctor multiplieation, tlwl'i(' four rows will be gi\'('n by: 

(47a) 

(471)) 

(47c) 

(47d) 

Till' Il'fl-hand sid(' of <,quilt ion -1.1 is Ihprpfo['(' S(,(,11 to 1)(' of tlw sanH' form as 
tl1(' ll'fl-hnnd sid(' of (,«uation 4-t 
:::-imil!lrV, it can 1)(' shown that: 

CPu (0) CPu! -1) CPr.A -:2) CPu! -3) 

CPu! 1 ) cfJ:rr( 0 \ CPu! -ll CP.r;r( -:2 ) 
};7'X= (48) 

CP.r.r \:? 1 CPu! 1) CP.rr(O) cfJr.r{-l) 

CPr.r (:3 ) cP.r.z: (:?) CPrr( l) CP.r.r( 0) 

whil'll ('nn Iw s{,pn to Iw a ('o/l\'OIUlioll-typ<' matrix fornwd from tht' auto­
('IHTPialiol1 ('()('fIicil'llts of t1w input \'PC'lor. B('('aus(' tlH' multiplicatioll of this 
('onvolution-tY(l(' v('('tor by till' optimum rpspolls(' v('ctor h is ('quivaknt to 
titt' ('(]ll\'olutioll oi tl\(' input tlU\O('Ol'l'('l:uioll ('o('ffiei(,llt v('e\or and the re­
spon;;(' v('('\or, II\(' right-hand sid!' of ('quatioll 4.1 is f'quivaknt to the right­
hand silil' of l'([tuttio!l -H. 

In tiIll(' s!'rips nnalysis and til(' USP of !'quatioll -14, \ll(' number of ('quations 
is not limit!'d a:; in equation 47. If till' systpm \1C'ing inv('stigntpd \\'('1'(' it, truly 
li[H'ttl' :;YS\PIH with a [init(' nwm()['~' and tIl(' input and output data W('I'(' fre(' 
from (,I'mr, th!' ('ross ('orrt'ln(ion ('(w{fiei('llts for vnlul's of j grl'atl'r than the 
1l1l'I1H)ry of t IH' syst pm would 1)(' ZP[,(), and til(' n uml)('[' of ('q nat ions would b(' 
tIl!' sal11<' in hoth llwthods. H, hO\\'('\,('[', the systc'm is not truly linpnr, 01' if 
[111'1'(' an' pr['ol'S in tIll' tlata, tIl(' timp s('['ips ('urrC'lation nwthod giv('s addi­
donal ('quntions which ('an 1)(' indudpd in th!' spt of f'quntiolls to be solv('d. In 
tIll' Int\p[' ('tls<', tht' num\wr (\f pquntions to he solvC'd will be gr('atpr than the 
numl)('r of ordinal!'s rt'C[uir('d in til(' puls(' rpspollsp and, hpnc(', restrflints can 
\)(' intrnciucc'd intn til(' solution. 

Computational ~Iethods 

[n n truly lirwtlr system in which the> input and output flrc gi\'l'n in the dis­
('rl'tl' form t\nd ('an Iw dl'tl'l'mi[I('cl without ('rror, all of thl' methods of system 
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id('ntificntion dp~cril)('d abov\' will giv(' thp saul(' answc'r within tIl(' limits of 
computational (,rt'or. For this eas(' of prt'or-frc't' data, tIl(' choic(' hNw(,(,1l 
m('thod~ is I1wrply onp of th!' ('asp of computation, and thrr(' is no r('((son to go 
Iwyond the' dirpct solution of tlH' simultanrous ('C}uations involv('d by thp 
method of forward substitution. For tlwse idpal conditions, onc'(' th(' numbpr 
of ('quat ions solvC'd corrrsponcls to thr lrngth of n10mory of thr systrm, all 
tlw rrmaining <,quat ions will bel automatically satisfi<'Ci by till' valu<'s for thr 
ordinHt<'~ of tIl(' output rC'sponsp lllr<'1ldy found. If, ho\\,('vpr, II\('rp ar<' ('ITOrS 
in til(' dllta, or if tlw RYRll'm is not truly lilH'Ul', tlwn tIt(' val ups of th!' ordinatps 
oi>tnilwd for thp optimum lilJ('ar rPRpOnS(' may vary ac(,ording to Ill(> nwthocl 
uspd. fIl this mol'(' gl'TH'ral e1\S(', tlH' choir!' I)('t w('(ln til<' m!'t hods dpl)('nds not 
only Oil tIl(' ('ollvC'nipn('p of ('oll1putnt iOlt hut also on tIt(' m(UlltPr ill whieh til(' 
Vltrious l1H'tho(js hand!!' I'lTOl'S in thl' data and lilH'tlrizp any nonlilH'ar prop<'r­
tic·s of til<' syslpm ulld('r icl('ntili('ation. Ex('('pt for thp hasic casC' of solution 
by fOl"wnrd sulJ:-Ilitution, all of tl\(' 1lH'lhodR r('quin' tl\(' usC' of t~ high-sp('pd 
digital ('ompu!!'!" un!Pss tIll' problem is trivially smnll. 'I'll(' t('chniquf's uspd in 
th(, l1('tunl ('omputalions involv('(l ill til<' diffprC'nt llwthods arl' d('s('!"ibrd in 
tlwlil('m(un' 61!'<I at til<' pnd of this I('('tur(l. 

Only tIl(' ('s:-lpntial f!'atur('s ll('('d 1)(, Il1pIItioll('d Iwrp. In til(' l('[tst squar('s 
nWlhod, Body (2) sugg!'Rtl'd that til!' data IH' load(·d into til<' compulpr as a 
singl!' unit in th!' form: 

(49) 

In tlw l!'nsl sqwu!'s nIPthod, tl\(' input ('onsists of (/11.+1) ordinate'S of the 
input nnd (p +1) ordinlll ('s of til(' out put. A ('onv('l1ie'l1t way of organizing 
til(' ('akulntions iR as follows. Th!' input data ('an ill' usc'd to ('ompute the 
!'lpm!'Il ts of: 

Z=.FX ( 49a) 

which W{' 1lI1\'P llirpady s('('n to 1)(' th!' dis('rp(r lluto('orrriat ion ('orfficient of 
tht' input. Jt is lIlso n('('('R::;ttry 10 calrulntl' thr ric'mC'llls of: 

(49b) 

whieh arp t hI' erosR corrplat ion ('odIieiC'nts of Ih(' input and out put. A standard 
routilHl for matrix inv!'rsion ('nn no\\" bl' us('d to 801v<' for tIl(' unknown finite 
l)('riod unit hydrograph ill' follows: 

(;")1) 

Z will hp a squltrp matrix of sizt, (p-m+ 1) and 11' will b(' a column vr('(or 
with (n+l) rows. TIl<' unknown pulse' f('::;ponsr It will also 1)(' lL ('olumn vpclor 
with tll+li rows. 

On('(' ngain, it must 1)(' pmphasiz('d that the' i('aR\ squar<'s nwthod involve's 
optimiztltion subjpet to til(' rp$\raint that til!' ]('ngth of tlIP r('sponsr function 



LIXE:\R THEORY OF HYDROLOGIC ::;YSTE}'IS 143 

do('s not i'xc(,pd the amount giYrn by the diffrrenc(' b('twe('n the I('ngth of the 
output and tl1(' length of til(' input. Th(' pr('diction of the output using the 
finit(' period unit hydrogmph, which is optimum in thr least squarrs sense, 
will not 1)(' as good as tllP prediction of th(' output by a unit bydrograph, 
which i" allowrd to be of the same Irngth as the output. Howevrr, the use of 
the mNhod of leaM "quarf'" r('duc('" thr trnd('ncy towards unrealistic nrgative 
or wildly o"cilIating ordinates whiC'h may oreur with the forward substitution 
nwthod wh('r(' tlH'r(' !trp PlTors in tl1(' data. If it \\'('r(' c('rtain that the systrm 
\\"(,I'P IinC'ar and that 111<'s(' 1I11)'('(llislic valups W('I'(' soll'ly dtl(' to C'rl'Ors in the 
dnta, tiWI1 tlwrp is n strong argllllwnt for introducing th(' r('straints inyolv('d 
in tl\(' l!'tlst sqUHI'('S ('stimatp, How!'v('r, if n('gntiv(1 ordinate's r('sult from the 
!lttpmpt to l'I'pr('spnt !l nnnlinNlr syst(lm in a linpltr fashion, tlwn th(' cas(' for 
rpj(,(,ting tlH' Iwgativ(' ordinatp;; is not IWllrly as strong, 

For ('ompulntioll, furtlH'r r('stmints nrC' sonwtimN; introduC'('d into the cal­
cu!atioJ1. Thu.;, Body (J) madp til<' assumption thM from a cc'rtain point 
ol\ward tl\(' finite' ppriod unit hycirogrnph (pul~(' rp~ponR(,) shows an pxpo­
lH'ntial dt'dilH' and muciC' usp of thi:,; aSRumptioIl to rpduC'l' lhr amount of 
('omputatiol1 "('quir('d. Similarly, ;\ ('\\'tOIl and Yinyard un, .in thrir descrip­
tion of til!' T(lnn(lss('(' Yall!',\" Authority nwthod, r('[('rrc'd to thr introduction 
of til<' rpstriction that til(' ordinal('l' of til(' puis!' rC'sponse may be rrplaced 
ov('r n numlH'r of intpl'\'als hy It strnight line, thus :;implifying the numerical 
('ompu\!tt ion at tlH' C'ost of this l'('strnint. 

1'11(1 S<'qU('lH'P of com put at ions is stnndnrcl for any trnnsform method based 
011 orthogonal polynomials 110 I. TIl(' Hrst ste'P is to rrad in the input and 
output data Hnd computp till' cllC'fliC'iC'nts of th£' input data (ell) and of the 
output data ((',,) for tlw particular orth()~onal £'xpansion assun1(ld, The cor­
r!'sponding c()C'flkipnts for til(' puisI' r('sponsc' or finite, pC'riod unit hydrogrnph 
i,), .. 1 arC' th('n ('akulntl'cl from til!' linka~£' ('quat ion, Th£'13{, coefficients in the 
(lXlmnsioll of tl\(' puisI' rpsponl'!' ('an tlwl1 1)(' us£'d to find thr actual ordinates 
of tIll' pulst' ,'('spon:':£'. Ln tlw harmonic analysi,; nwthod npplird to hydrologic 
(Jatn hy O'UOIlIH'Il "C)., til£' a('tunllWl'iod of runoff, whpn divici('d into standard 
intNnlis, providps n fillit(' nUlnlH'1' of pquidistant data pointl'. Th(' numh{'r of 
hnrmol1ir c'o!'fllrit'nts dC'rind is til(' l'nn1C' as thr Ilumlwl' of data points, In 
:.\[pixI1I'r amllysi:,:, how('\,!'!', tlw mngp is from zpro to infinity so that account 
i,,; tnkpll not only IIf th(' finitp ntllnlwr of data points in til(' isolnt('(l output 
"('C'ord hut abo of tIl!' infinitp ntllnlwr of points uflPr th(' conclusion of output. 
For 1)(,l'f('('t matching. it would hC' ll('cC',.:snry to tuke an infinit(' numl)('r of 
terms in til<' ('xpal1:;ioll of till' pulsl' r('spollsC'. Ho\\'C'vc'r, it is only nrcessnry 
to parry till' :~('rlP,; fur ('nough so thut til!' ordinnu,:; within the pprioci of output 
nrl' dptprminpd :;uflh'iPlltly a('('urat!'ly, tmd ('rror:; in tl1<' zpro ordintl\p:'i aft<.'r 
tlH' dos!' of output in \\'h1('h \\"(' Ufl' intpl'('stpcl may bt' ignor('d, 

In tinw ":('rip:,: unaly,,;is, tlH' UUw('OITC'lation unci cross ('orr('lation coefficients 
of tlIP input and OUtput mu:;( first 1)(' dC'tl'rmilH'd. If wp nr(' clC'aling with an 
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isolntpd input to a linNlr sys(('m of limitpu m('mory, tiwn the aulOCOITl'lation 
and cross cOlwlation fUllctions will bl'colll(' Zl'ro b('youd it c('rlnin point. If, 
on thp otiwrhnnd, wt' nrC' dt'tlling with u continuous timp sPri('s, it would be 
It Innttw of dPC'ision us to thc' point at which tlH'sP functions Bhould be tl'llU­
cat('d. Aft('r tht' nutocorrdntion und cross cOIT('lntion ('()('ffici('n\s have' bl'('n 
dp\prmilH'd, it is still uN'ps:mry to Bolv(' the' "il'IH'r-Hopf ('fIuntions giY('n by 
('f[wttion -~-!. Jf all of the' pquations arp uspd, tlwn it will bf' possibll' to pn'dict 
til(' output elOi';pjy but JlIll'ealislic ordinatl's may bC' ohtniue'd. Eagll'SOIl (3) 
introelu(,pcl II\(' id<'!l of :mlving tIll' pquations subjC'c\ to tht' r('strnint that no 
lH'gativp ordillat(ls OCC'ul'l'('d. ThiH Il('('('ssitntt's a computation of a linNu' pro­
graming solution to til(' \\ iClH'r-Hopf ('quations. 

TIl(' ",h(M suhj('ct of till' comparison h(ltW('C'll thl' variow; n1C'thods for sys­
\('In idc'lIlifi('!ttiol1 in tlw prPH('nc(' of noise' and of possiblc' uonlilll'arily is One 
rC'quiring Cfll'(Iful invC'stigation. Sc'v('rnl rpsl'ar('h workers arl' knowll to be 
working on tIl(' probkm at thl' monwllt, but nom' of tIl(' r(,Rults have so far 
b('l'll published. It may bp instruC'tiv(' to considl'r bri('fiy tIl!' l'fY('eL of an ('rror 
Oil R ::;implC' cuSP using synthNie data. Thc' data usc'd arc' thoRl' in problems 
1 ami 2 at: tll(' ('lld of th i ('clur('. If thl' valu!'s of til!' input and output from 
n. systc'm an' given ns: 

x=2, 5,1 (52a) 

y=< 0, -1, 1-1, .'1, 1, ° (:j2b) 

any of the' Ilwt hods d('Bl'l'il)('cl aboY(' can be usc'cl to show that the liul'ar pulse 
r('.\lpom;p for til(' sy::;tc'm is giVl'n by: 

II=O,~, 1, ° (;j3) 

If how('v('r, til(' output w('r(' mistak('nly giVC'Il us: 

y=o, 4,17, S, 1, ° (54) 

tll('ll, tIl(' ('::;timatl's of th!' optimum lilwar pul::;!' re'RponsC' would vary with 
tlw nwt hod u::;t'(1. In this ('as!', til(' nwthod of dir('et forward substitution 
would giVl' till' linc'ar I'('sponsl' as: 

h=O, 2, 2.5, --1.;3, 12.7;), -:35 

which is ('INlrly unstabl('. 
In using thp nWlhod of kast ::;quams, it is lWe('Ssary to d('ciciC' til(' kngth of 

til{' puls(' I'('::;pon::;(' to dl'twminl' thl' si:w of til{' input convolution matrix. The 
output is giwn at six point::; and tIll' input is giv('n for thr('1' standard inter­
vals. It ('ould, tlwr('fnrc', hl' a::;sullH'd that til{' puls(' rl'sponsC', which is til{' 
['('sponsl' dup to input in OIl<' sttmclard intPl'val, would not ('x('('('d four intc'rvnl::; 
in ll'ngth. Assuming tl\(' puls(' 1'l'spons(' (th!' finitC'lwriocl unit hydrogrnph) to 
be roul' int('rvnls IOllg, tIlt' IpHst ,;quarps m('lhocl giv('s as thC' optimum pulse 
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response' ; 

h= -O.l;i, 2.:31, O..~:!, 0,02 (,iG) 

This rpsul( is 8('('11 to giv(' nn IIlH'calistic IlI'gntiv(' ordinatl' at (11(' hC'ginning of 
til(' impuls(' rpspomw. If till' j'pstraint \\'('1'(' il1s('rtpd that this ordinull' should 
1)(' )1(11'0, t Iw rpsut t oi>tnill('d would 1)(': 

It =0, 2.2:~, O. in, 0.01 (ii7) 

I'll<' I!l(t('I' r('stllt is ."(,I'n to \)(' not too ciifl'l'rPl1t from tJ\(' (I'll(' pulse' I'('sponse 
givNI by <'quat ion .i:i. HO\\'PYI'I', ('v('n OI'dinat('s Us small as tlH' fOlll'th ordinate' 
of lUll h/lY(, !III ('fTpct on tltt' solution. If til<' fOlll'th ordinn(p WPI'l' ('onslrninpd 
to \)(' Zl'I'O, II\(' n'suit would 1)(': 

II ":l 0,2.1.';, O.S:!, 0 (:')8) 

It ('tUl \)(' S('('11 from IIH' aboy(' sl'ri('s of I'('slll Is t hnl I It(' llIorp information 
('OIH'Pl'lling t Iw rt'nlist Ie f01'1lI of t 1)(' puls(' rpspOI1S(' thn I is fC'el in to (h(' compu­
(al inn, t Iw ('Io;-l('r till' n'sult will hI' to II\(' t nil' puis!' rpspOI1S(', whieh has b(,(,ll 
mnshd by titP ('rror in til!' output. HimiIHr variations in till' r(';-lult nrC' obtainC'd 
in tlw ('orr('lalioll nwthod if n (,PI'lain nUmiH'r of \\ il'lwr-Hopf pqulltions nrC' 
eh(l;-lpn or if udditionall'('slminls m'p pJacC'd on thl' problt'm. 

Problem~ on Discrete Systems Identification 

L If til!' input in :t syslpl11 i::; ~iY('n in ;\ppl'ndix tnbll' ~ by function 3 nnd 
til!' output by funC'lioll .1, find til(' ullit pul~(' rl'$pom;p of thr RYRtrm hoth b,\' 
tl1(' dll'('(,1 alg<,ilrni(' nw(hod and by til(' Ipast squarC's solution, 

,) Fnr til(' dnt:t of pl'Obl{'m 1, liIld th(' lluto('orr('llltion function of thr input 
and tl1l' ('I'OSS ('ol'J'plntiml fUIl('tillll h('tw!'PIl tl1(' input nnd til(' output. Writl' 
down t11(' SP( of (li:;('I'(,\ I' \\ h'lH'r-Hopf ('quu t ion::; for t11('::;(' pnl'ticular dlltll, 
Y{'rify thnl til!' Rolution ohlail1pd in prohl!,111 1 iR :t solution to lh(' lattrr 
I'ql1utions. 

:3. rS(l tlw Z-trnn"rorm tn i(\pntify th!' pul~(' rpsponsp of tl1(' SYStC'1ll III 

pwblt'm I fOl' tilt' gin·n input ilnd OUlpUt. 
.1. :-;ol\'l'llrohlplll i hy I'itlll'r harmoniC' nnalysi~ or ~r('ixn('r RC'riPR, 
d, [Il prnhl1'll1s 1 to ·1, what is tIl<' ptTpcl on til<' solution if (Il(' output func­

tioll ('OlTI·(,tly givl'II hy ftllU'tion ·1 in Aplwndix tahlp 2 is miRttlkPnly tnkPn as 
fllnetioIl .i in ,AplH'll(lix whip:!? 

Ii. In Appr·ndix lahk ~, if tIl(' inpllt to :l linPllr tinw invariant systPIll is 
gin' l1 by Ill<' <1i:;(,1'1'11' fun{'tinn 1" and til(' output by till' c1i~{,I'('lp fUllction 19, 
find tIl(' pl1l~(' t'p,;pn!ls(' of til!' :;y~lpm hy u~ing ~I('ixl)('r ~l'ri('s, 

I. Find tl\(' pul~(' rpspons(' for til(' dnta of probl('m (j by u~ing harmonic 
nnnl,\'~is. 

,S, Aplwndix ttthll' .1. giYC's till' I'tTp{'ti\"\ rain and th(\ storm runofT for II 

rnillfnll ('YI'nt on tilt' ,Ashhrook C'atehnwnL Find tlil' unit hydrogrllph for til(' 
('t\tphnwn! hy n mntrix I1wthnd. 
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9. Find the unit hydrograph fOI' the data in ApPl'ndix tabll' 4 by using 
harmonic analysis. 

10. Find the unit hydrograph for th(' data in Appendix table' 4 by using 
';.\Ipixl1('f :;('ri('s. 

11. Find tIl(' harmonic codfiripnts or til<' :\IPixn('r codIiciC'nts of the func­
tions for It lIuml)('r of tIl<' discrNC' funetiolls giWll in AppC'ndix tahlC' 2. 

12. Find th(' Z-tmnsl'orm of tlH' function for It numhC'r of functions givC'1l 
in .:\p~)('nclix (ablp 2. 
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LECTURE 7: 

SIMULATION OF HYDROLOGIC SYSTEMS 


Basic Ideas in SiInulation 

Having Hpc'nt thrN' lrcturl's on thr problrm of analysis, we now tUI'I1 to thr 
qUl'stion of syntlH'sis or simulation. It will be rrcallc'd from lrctur(' 1 (s('(' 
pagps 5-7, 24, and 27) that .simulation consists psspntially of synthesizing 
a syst<'m (abstrnrt or rNtl) whi('h will op('mt(' on Ill(' given inputs so as to 
produc(' nn output whieh will npproximntp th(' output of thr. prototyp(' syst('m 
within It giv(,11 dl'grt'<' of aeeuracy. C'hornfas (18) hns drfin('d simulation as: 
"Simulation is simply a working nnniogy. Analogy mrllns similarity of proper­
til'S as rl'latiolls without id('ntity." 

A modl'l OJ' a .simulation rl'produ('f's som(' but not all til(' ('harnct('ristics of 
thc' prototypl'. Idc'ally, Wl' might l'xppet thl' simulating syst('m to rpproduc(' 
til(' Iwluwior of til(' prototypP systl'm ('xaetl~", but to do this the simulating 
systc'm would hlw(' to bl' as compll'x as til(' prototyp('. It is necessary to fix 
til(' nC'('urnry rl'quirl'd and to choos(' til(' f('atur('s of the prototype system 
op('rIttioll whieh w(' hopp to imitat('. Any at(pmpt tlt simulation is intimately 
i il'd up with stnncittrds of acc'uracy and with a dC'finition of obj('ctiVC's. UnlrSs 
WC' nrC' <'x pliei t on thl'sr mat tl'rs, our simulation wi)~ not be sci('ntifically 
n'sp('ctnbll'. 

In I1Hmy parts of hydrology, as in many parts of ml'chanics, w(' simulat(' 
tllp action of ill(' systl'm in whieh wp arp intpr('stpd by a set of mathematical 
('([uatio'ls. Thu~, \\·r can simulatl' tll(' physical problem of open challlH'1 flow 
hy th(' (-{[lHttion of continuity and thl' dynamic ('quatiol1. Already, two suc­
('('ssive simulntiolls arC' illvolvpd. 'I'll(' fillite diffprellce nlgorithm may then bl' 
~itnul!tt('d Oil ll. digital computl'r so that thrrp is a furth('r d('grr(' of removal 
from til(' original physical probll'm. At e"eh Il've\ of simulation there is a 
dangl'r thnt til(' simulating systC'm \\"m ILOt l'orr('spond in some important r('­
~P('('t to til(' systpm it is lltt('mpting to simulate'. At ('llch lcvd, we must ensurp 
that our imitation is 8uffici0ntiy aceurat(' for our purpose. 

]11 OP('11 channel flow) w(' must be satisfiC'd with the validity of the equations 
of conI inuity and mOI11C'ntum; w(' must b(' satisfied that our finitp differenc(' 
sch('I11C' is stnbh', convcrgpnt nnd aecuratC'; we must be satisfied that our com­
puter program doC's not involve nil unduC' buildup of round-off error; nnd so on. 

In dl'vising n simUlating systl'm, it is n('cessary to compromise between 
simplicity in th(' model and accuracy of predietion of the prototype behavior. 
A simplp syst('m ma~' simulah' a prototype system to a high degree of accuracy 
without r('srmbling that system. In network theory, it is quite easy to show 
that e('rtain systC'ms ar(' equivalC'llt to onC' anoth('l' though quite diffC'l'C'nt in 
i'tructUrt'. It must 1)(' rC'l11l'mb('r('d that synthetic systems uSl·d in simulation 
aT(' nt bpst only opPrtltionally ('quival('I1t to the prototype system. 

],·18 
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Simulfll ion ha~ long \)('('11 u8t'd in hydrology to transfC'l' r(',;uHR from 011(' 

wu(prs]H'd to ItllotlH'r. This eun rpndily be dOll(' if we ('[tn find n l"C'inliom;hip 
l)('t\\'(,PH t h(' opprntiol1flllwh:\vlor of a watprslwd for whieh mpa . .'mr('mpnts an' 
llvtlilabl(' und Ih(' ('barnet prist ics of that w[t«'rshpd, Thus nil til(' nwthodH fOl" 
obtaining u synl]H't ie unit hydrogrnph USN] in npplil'd hydrology aI"(' mC'thocis 
of simulating ti\(' \whn.vior of an unga(:!.f'<i w:\t('J"~Il('d. SophiRlicn.t('d m('lhocis 
of simulat ion hay(' b('('n introdu('pd into hydrology in rpe('nt· ,\'<':1rs. Simulation 
is lls('d in sto('hnst i(' h~'d/"()I()g~', \\"Iwr(' long r('('or(\s of no\\' arc' syntlu'sizpci 
from a 1"(,ltttivl'ly short histori(,al I"('cord and uspcl to R(udy thp behavior of a 
n's('rvoir (If' n rps('rvoir s,rstC'J1). ('ompl('x walpr rpsour('(' SYHt(,Il1H hnvC' b('('n 
:;ill1ulat('(I nnd Ilw dp('isionmaking pro('('ss includC'd in th(' simulation (28, 
S8, .~31. 

[n t h<':,(' !Pettlr('s, hO\\"\'v('1', \\'(' ~\n' only ('on('l'l'lwd wit h \ 11(' us(' of simulat ion 
in IHU'anH'll'i(' hydrology. L{'('tur(' ~ dl'nlx \\"ilh tIl(' qup:-;tion of synthptic unit 
hydrograph:-; and It'clu!'PS nand 10 with tlw matlwmalical simulation of hy­
drologic' syst pms by nwans of mat IH'mllt ieul funct ions lind cOl1e('p! unl modC'!s. 
.;\('('ol'dingly, tlws(' two topi('s \\"ill not hI' d('alt with in tlw J"('Il111indC'r of this 
h·(' \U!'p, In:'\\t'ftd, nt\pntion wili 1)(' con('('ntra\<,d on tlw basi" prin('iplC's of 
sinmlntio!t nnd on tll(' l"l'll1nining typl'S of simul!ltion which ('an bl' tlsC'ful in 
Ilydrnlogy. 1'b('s(' rna)' bp p;roup<'d undl'r tIll' h('aclings of reyressioll models, 
digital :oinwllliioll, (ll/alog simulation, and phys£calmudeh, Sinc(' til(' diRcussion 
rnng('s ()vC'r so wkk a fidd, tlw conc('rn will \)(' with gPIH'rnl principl('s and 
ImRi(' id('tls mtiU'r than til(' (ktails of any partiC'ultlr l1lC'tho(1 of simulation, 
Ttl!' l'mphm.;i~ will \)(' on t11(' ('sspnt ial similariti('H bet\\'p('n tlw basic strps in­
volved in til£' ditT('rpnt nwthoc\s. 

:\0 ll1!lttl'r ",hat tIll' fidd of nppli(,tltion, tIl(' typ<, of probkm involved, 01' 

thl' tn)!' of simulation, thl' approach is l'sspntially similar. It if> npcC'ssary first 
of all to d<'cick whal typP of' modd if; to bt' us('d to simuiat(' til(' action of til(> 
prototyp<'. Having d('eicipd on th!s, it iH np(,(,SRary to choof;(, til(' compon(,llts 
fif thl' model and t lwir intl'l"ronn(,(,tion. 011('(' a trial modd has h('('n dctl'l'­
millNl in t hi:-- \\'ay, thp nbilit~, of til(' mockl to simulate the prototypl' must be 
v('rifh'd on tIl(' basis of n ('('cord of inputs and outputs m('aSUl'l'd 011 the proto­
type' sysh'm, For n physieal modd, this is donC' by vprifying that the mod('l 
('lU1 prt'dict tlw output of tll(' prototyp(' Systl'ffi to an acc('ptablp dpgr('(' of 
lweu!"!\('y for n. ptl:"t ('V('1\t for which 1'('cords [tr(' availablP. If it is unabll' to do 
so, tIll' modd must Ill' modifi('d until adl'quat(' simulation is obtailll'd. For a 
matlwmatienl modPl, th(' v('rification may consist of applying th(' mod('l to u 
Ct.!'>" for which tlH'rl' is a known solution, as a prl'ludc to applying it to a case 
in which no solution is known. For a matlH'matical mod('l, it may be npCl'ssary 
during tIl(' v('rifieatioll ph!lsP to modify til(' structure of thl' modPl or to chnnge 
t Iw value'S of som(' of til(' paraml'tl'rs of t hl' modpl to achipvl' a satisfactory 
l)('('('ision of p1'£'diet ion. In mockrn hydrology ('xt('nsiv(' use is madl' of pura­
I1wtrir s~'ntll(':-,is in \\"hieh fL form of math('matical or concrptuul modd is 
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n.$sttnwd and tl1P optimal valut' of til(' parnn1l'tpr I;; dl'tprminNl. Ptlnlnwtpr 
valtH'S in :t modl'1 ar!' said to hi' optimal wll('l1 lll('sP partirular valu(':i rp:mlt 
in u pr('dktion of tilt' output whieh is It rlos('r fit (in snnw clpfinpd S('I1S(,) to 
til(' output from til(' prototypc' (han c'luIIll' oh(ain('d wil h uny other parnnw(('r 
valu£'s for I h£' snnw mo(/(·l. 

'1'lwr(' is a widp e\wir(' nrnong typps of mod(>!s suit llbJp for simula! ing dp{pr­
ministic- hydrologir systt'ms. \\ (' may tit'('ici(' to usp a physienl moclPl or an 
lUUtlOg tnotipl; w(' ma.y (\('ci<ll' (0 us(' n eOlle('ptluti mo(h'l consisting of nn nr­
rnnLr,{'Jlwnt of lilH'ar rhnl1lwls, lilwur or llonlil1P:lr r('sprYoirs, thn'sholds or 
f{'pdhuC'k;;, and so furth; or WI' mny (IP('itip to usc' a mntlwmati('ul modd to 
rl'pn's('nt til(' hycirologi(' syst!'m hy n Sl't of mntiH'mntiral (·quations. Ev\'n 
aft('t dp('iding til(' g(,lH'rnl tYIlt' of modd to hI' usp(\, (Iwr(' an' still U lluml)('r of 
mnllNS to Ill' ci(,\prmilH'd. For ('xlImpl(', if w(' hun' cl('eiclPd to uSl' nil analog 
tl'('ilniqut', wp mnst d('('it!1' wlwtlwr ""(' an' ~oing to use (al fi dir!'ct analog 
mod('1 in \\'hieh various SP('t ions of t11(' prototyp(' will bp !l1o(!t·\Pd dirpctly and 
hl' mor(' or Ipss r<'eognizablp in til(' analog, or (hI a gPllPrnl-purposl' analog 
eOll1putpr in whieh til<' matl\!'mlltieall)('lm"rinr of tlw protypr is simulatt'cl h.'" 
tlll:tlog ('ompOlH'nts n'prl's('l1ting sp!'('iHc 11,uulH'mntiC'ul OIWJ"atiollS. If, on tht' 
()tlwr hand, W(' h:w!' d('('idl'd to US(' a rH:ttlwmatiral simulatiol1, thl'rt' is II 

('hoic'!' Iwt W(,1'1l n'grl'ssion ll1od!'ls, r<'pr('spntatioll of tlw systrm hy II sC't of 
(\ifTpl'pntial ('<Illations, or n'prp:;Pl1tat101l of tll(' sys({'rn op('ration by :1 mathr­
malic'al (,lIlTP 1H'longing to son1£' particular family. Inllw casp of a eonrpptual 
mod!'l, it is npc('ssnry to d('ritip whptllPr til(' mod!'l is to 1)(' liIwar 01' nonlinrar, 
\\"11('t l1('r t hr('sholcls arl' to 1)(' inclu(ku, whitt particular tyP(';; of rOmpOIH'nt 
arC' to hl' USN!, :Hld h(m" tllPY nr(' to 1)(' (,O!1lH'ctt'd togrrhrr. 

IT.1 snl1W tyP('s of hydrologic simulation, it is usual to dp(prminr paramrtN 
v:lhH'S on tlw basis of fi(·lt! !lll'n.:;;ur('mpnts or of Iwrsonal judgnwnt. Howrvrr, 
til<' 0Iwrat iOIl of this illi t ial v{'r,;ion of til(' modt'l shouldlw thoroughly Yt'rified 
and till' motipl Jlaranwtl'rs (uljustNI until satisfartory oprration is obtnined. 
Only tlwn ('nn till' mod(,1 Iw saf(>ly u~('d u;;; th(' ba;;;i:; of pn·diction. For most 
rnatllPmati('al and ('Ol1('pptunl mod!'I:,:, tIl(' valu('s of til(' parnmrtprs art' not prr­
dptprmilwd but arl' optimiz('d on tl1<' ba,is of known input and output. Thrre is 
son1(' ('XI'US(' for a luck of ohj('t'tivity in thr optimization procrss whpn facrd 
with ad hoe prohl(·ms in nppli('d hydrology. 1::v(,11 in this rasr, hOW0V('r, opti. 
mizution on an obj(,C'tiv(' bnsis has tllP aclvantagp that tht' rNmlts from this 
individual study ran IJP rornirwd with nth('rs in a mNUlingful fashion. In 
hsdro~()giC' rl's('Ilr('h, thl'rp is no l'x('usp for a\"oidablr :mbjertivity. :\l'YC'rth0­
It'ss, tl1<' hydrologic lit{'rntur(' is full of modpl:: justifif'd by a :-inglC' illustration 
whi('h :::ho\\"s that (11(' prC'clictpd output dosdy r<'spmblt's tIl(' actual output. 
:t\ueh "optimization by (,y(," is incnpablc> of bping intf'gratf'd into a genrrul 
hody of s('ipntifi(' knowkdg<' and is unworthy of th(' nanw of scipntific 
hydrology. 

\\ P ran borrow from statistiC's anclnumpriral analysis n numbrr of t'ritpria 
of 'lptimi1.(ttion. Thl's!' in('\uclp tll!' mNhods of mOl11l'nts, Il'ast square's, mini­
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max ('rror, and maximum likl'lihood. OOC' such tC'chniqu(' may h(' prC'frrablr in 
O1W ;:jtuution, and nnotlwr in !lllotiH'r :;ituatioll. \rhat is importnnt j::; that thr 
nwt hod 1)(' ohjP('tiv(', rppC'{uahl<'. ttnd t hat it 1)(' eh,ttrly d(ls('rib('d ill any re­
porting of tlw work. 

Rcgl'cssion ::\Iodels 

i{pgn'ssioll t!'('hniqlH's 12; J ,j:, (jij, 691 arf' p:-"pntially a mC'\hoel of ~imula­
tlo11, Tlll'ir main vahu' is in prplii{'lioll rndH'r tlmn in till' ilwPstigntion of 
(,:lllsal \inkn~('s. OIH'P Ill!' (l!'('ision has hl'Pl1 nutd(' to usc' [l rgpr('ssion nwthod, 
it i$ nl'('(';:;:11ry 10 dC'cidp what typ<, of rpgrp$sjol1 mode'l willll(' tlsC'cl. 

,,\n {'xampl/, ! III of n1ultipl!' lilwar rI'gr('ssion, [l hwthoel whieh has })(,(,11 

\dddy lls('d ill hydrology, is shown OIl fig-urI' 7-1. In this ('xamplt', thC' follow­
ing hl\:;i!' t('\ation;:hip is ussUlnl'd: 

(la) 

r11 t hi..; formulat ion, t lv, pNlk annual flooel lOT), whieh is takC'n as the cle­
pt'J1(I!·ot variable', is assunwd to 1)(1 rdatt'd to unknown powC'rs of thC' various 
w!ttl'r,,\wd pamml't('fS \~l. S, "I, I, l, and 0 I, which an' takrn as indl'pl'ndent 
varinhh':;. (21, is till' annual Iwak di:;rhtlrg<' in ('ubi(' f(,pt pC'r second for a re­
('utrpnel' intprvnl of T yNlrs; .-t i:; thr drninngl' nn'n in squnrC' mill's; S is the 
main ehalll1l'1 I'lop!' in fppt Iwr milt,; 8 1 is a mensurr of thC' surface storage 
Hr!,!\: [ is t Iw :.?4-hour rain fall in inelws fOl' n f('curre'nc(' pC'riod of T years; 
I is II lllPll:,Ul'(' of frN'zing condition:; in midwi:1t('r; nnd 0 is an orographicnl 
rue\Ol'. If till' relationship ginn by ('C)u,~,rioll In is ('xpressC'd in logarithmic 
form as follows: 

+c(\ogTl +J(\ogl) +g(logO) (lb) 

tlwn till' rl'll\tionship is lil1('nr both in til(' t1rw logarithmic variables and in 
til!' unknown paranwtt'ri\. ('ollsC'qul'ntly, tl1<' unknown paranwiC'rs (a, b, c, 
r/, f, j, :t11l1 !I j ('an \)(' tktprmitwd hy th(' stanc1nrd trchniquC's of multiple 
linPHr rpgrpl'l'inn. 

'I'lIt' u:;sl1mption of t11(' particular rC'\ationship givC'n by l'quation Ia or 
<'<luation Ib makl's this npproach just as much a modd as if the variables 
W('ff' fr'cl into nn analog eomput('r. TnelN'd, to the hydrologist dC'voted to the 
nnning npprnarh, til{' nwthod of multip\1.' Iinl.'ar rE'grC'ssion models would ap­
IW(lr sonwwh!lt (ts I'hown in figurl' 7-1. In t his diagram, each of the depc ndent 
vnrillhh'$ j" fpd into it funetiol1 gC'lwrator which raisrs it to the dC'signated 
powl'r. Tlll' r!'l'ulting outputs arl' tl1('n l11ultipliC'd togrther to give the de­
p!'ndl'llt yurinhl!'. For tlll' parnmptf'r::: to 1)(' optimized rithrr in the regression 
N1uHtion or in ~h(' [ll1alog, t1w value of til(' ('xpOll('nts of the independent vari­
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abies that give the best fit between the predi\~ted peak flows and the observed 
peak flows must be determined. The logarithmic transformation of the vari­
ables would be paralleled in the analog case by replacing the analog shown in 
figure i-I by on(, in which the function g('tlerators would transform the inde­
pl'ndl'nt variables logarithmically and the multiplier would b(' rl'piuced by an 
add('r. 

A 

d 

e 

9 
t 

o 

log QT = log 0+ b(log A) + c(log S) 

+ d(log St) + e(log I) + f(log t) 

+ 9(log 0) fib] 

FIGURE i-I.-Regression analysis. 
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Th(' stnndard I'('g!,p$sion t('chniquC' lnk('s flS n critNiolt thC' minimization of 
tIl!' 8ums of thC' litlUart's of d!'viatiolls of tIw pn·dictpd valm's of Qr from th(' 
nWfl8urpd vflluP8 of Qr, 'I'll(' modpl Cfln bp pvnluntpd by ('xnmil1ing thC' valuC' 
of tllP squfI!'!' of thC' multipl!' corrC'lfllion c(w{fici('l1t (/?2). For lL pC'rfrct mod!'I, 
1?2 would Iw ('qual to 1 and til{' riDS!'!' H2 approael1l's 1, til<' bptt<'r the' simula­
tion of (hl' Pl'ototypP s~'sll·m. A;; ill nil ca,'ps of simulntion, w(' must try to 
n'col1cik tl1(' ndvantngp.:: of inrr('as!'d l1('(,UI'tH'y nnd tIl(' ('ol1v('lliPI1(,(, of kC'Pping 
til!' mod('l ns simpl!' as possibk. If Ollt' of the' listt'd wnU'rs[wd pllntm('(C'I'S is 
droPlwd f!'Om ('quat ion l-which is I'quiYnlpltt to fixing th!' npPJ'Opl'iat(' ('x­
ponpnt [Is zt'ro-WI' ('un vi{'\\' this (t;; l'itlwl' simplifictttion of till' mociPl or lL 

('onsll'nint on tIl(' paranw\!'r. If 011(' or mo('(' pamnwtl'l's m'p Iwld Itt Zl'ro, tht' 
optimum valu('s of til<' rpmaining pal'amp!!'rs ("til hp tll'll'rminpd lind til!' ('01'­

rpspon(\ing val Ul' of HZ ('nlC'uln! pd. If, sllb~('qll<'n tly, OIl(' of thI' pr<'viou~ly 
('ollslrairwd parnnwtpIs is nllowl'ti to l'ilt('(' into tilt' optimizatiol\ proc('dur<', a 

IWW sp\ of pnranwtl'1' valu!'s \\ ill Ill' oiltailwd for all (1l(' Yariabl<'s, and th(' 
\'alll(' of H~ will IH' i !len'us('t! proyitipcl til(' variablC' whic'h no\\' ('n t('rB t 11<' rc'­

lntionship has an influ(,llcP Oil til!' dl'IWIHIl'nt vuriahlp not ll('('OtIll\pd for by 
till' otlH'r vnrinhl!'s in til(' rC'lationship. 

Tn tIl<' <,xamplp of multipll' Iinl'tU' r<'p;rl'ssion quo('d ahoY!', which is tak('n 
from Bl'llsol\ 's Iin sl udy of Hi·l stal iOli !'('('ords in XC'\\' Enp;lnncl, t hl' ('orI'pln­
lion of til<' IO-Yl'nr lwnk flo\\' Ql'\ with tlw ar('(t.t nlolH' gan' II vaiup of H2= 
n. 'i". This fip;ul'<' may 1)(' ('ruddy int('rprC'tPd ns indicating nn dficipn('y of 
:;imlllnlion of 'is IH'r('('nt. H, instpud of usinp; n "inp;lp input, tIl(' chnlllwl slope 
\8l is abo tak('n into (le('ount, the vnlu!' of H2 illerNts('s to a.SSg whi('h is a 
di"tin('( imprownwnt. 'I'll(' inrlusioll of til<' orographic factor (OJ "ith the' 
:trpa and slope· in('n'nsl'~ H2 to O.n:l~: till' fllrtlwr addition of til<' stncagr pn­
mnwtl'r i 8, \ ['('sults in a smail inrrt'(t..;p p;iving O.D·Li; inclusion of tIl(' tl'mpPl'll­
tlin' f:l<'tor 11 I hrinp;s thl' ":lItH' up to O,!.J,iO, fnC'lusion of tIl(' prl'cipitution 
factor! I', tlm's not p;iyl' any furt/wl' imprnvl'm('nt. The' rxact valuNl of thr 
I'XpOlH'nts W('r(' !'implilil'd, thus p;i\-ing :1 morp cOl1v!'ni('nt formula without 
nppn'('inhll' 10';'':: of :l('('urney, Th(' final l'Pp;r!':,,:;ion ('C[uation with simplified 
('xporU'nts wn,,: 

(2) 

This is nn in(l'r(',,( inp; nnd ;lom('\\'hnt slll'pri::inp; illu:-t l'lIt ion of what may hup­
!wn wlwll using n rl'gn's~i()p lllodl'l; though l'lIinfaU is an impoI'tnnt phy:-iclll 
(,llUs!' of til<' runo!)', till' in('\usioll of (ll(' rninfall furtor clop;; not improvC' thr 
nC'C'tll':l('Y of pn'diC'tion htt.,::(·d on tlw otlwr factor~ und rainfall is not included 
in tht' Hnnl <',(uation. TIH' fact ( t tIl(' l'lIinfall pUl'lInwt('r elor!; not improve:' 
Ih!' t\('('llrtll',\' of IH'Ptli('t ion would sup;p;p"t that it is hip;hly corrpln \pel with thr 
Wlt\l'rslwd pnr:mwtl'J's nlrpudy inrludl'C1 in till' mod!'l and lwl1c(', has no addi­
tional intl<'ppn(\t'llt informal ion t () ('olltrillutl', 
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If n lillPnr rl'g!'l'xxiol\ <lops not giv(' l\ goou wtJI'killg mo<i('I, t 11(' liSP of eurvi­
li!lPllr rpgr('!'xioll mny improv!' thl' sit ulttiol1. Th(' ('ommon!'sl modd u:-H'd in 
curvili!wlIl' !'l'gr!'ssiol1 ix polynomial rl'g!'PH):'ion, whieh ior tl1<' ('asp of simplp 
n'grl'ssiol\ lOnly onl' indl'(ll'nth'nt variablPl takl's (11(' fOim: 

This is ell'nrly ('quivltlpll t to tl1<' mul t i pIp Iin('ar n'grl'HHiol1 <'q ual ion 

Y"" tl +b,t'l+C.t'2+ rl1'3+ . , . , • 

if (,Ileh or (lIP POW!'!'S of ,r is ('mlsitil'('('d as a):'t'pant(l' vnrinhl<', Though !'qunlioll 
:~n I'XPI'PSS!'S n llollli!H'ar !,(·lntionship Iw(\\,p{,11 y nlld .r, til<' ('quat ion ix li!H'ar 
in tl\(' unknown pamn1l'\prs (II, h, c, el, alit! Ii() forthl allli tlH'stnndarcl nWlhocls 
for {'slim:uing thp:;!' pnranwtprH can Ill' us('d. Thl' abov\' npproaeh C:ln hI' px­
tpHdl'd to {,O\'P!' multiplp polynomial n'gn':::xion, whi('h is rppr(,H('II('(1 by tllP 
!'qun t ion: 

wlll'I'(, [lLt'j ([('not!'s It pulynomial of ,t'. 

If tl1l' factors an' th{)ught to comhill(' n."; prodUl'tH rntlH'!, than as Hums, 
111('1\ an I'q Ullt ion of t lIP rul\o"inl!; form i~ tI pproprin \I': 

Equation 1a Oil pagl' (Jon i::: :t sppeinl (':1:<(' of (,([lIation ·1, whieh is ncioptNj \)p_ 

CHtl:<(' it ('an ]H' I'C'Hdily tran:<fornwd to till' mul t iplp lilwur rpgr('ssion form 
shown ill ('<[UUtioll Ill. I.f thi" part ieular ll10dpl dol'S lIot !'('sult in sat isfact ory 
:<imllint ion, t1!I'lI anot hpr ll1odl'l must II(' t ril'd. A H10clpl which is ullotlwr 
;;Iw!'inl ('as!' of <,([uution -I j:-; d!';;('rilH'd hl'lo\\' for tlw {'aHt' ",11('1'(' tlwr(' are thrp(' 
incll'I)('ndpllt \'urial,i!'s . 
•\s:t first npP['(),imatiull, it may Ill' ll:<stlnH'ti that th!' individual Yarilltion of 
!I \\itlt 1'1 ('nn II!' rt'pn'sl'lltl'd lly tlw lilll':tr rl'lntion;;hip: 

(;jrt ) 

and n silllilm lilH'ar rpl:u iOllship is a:<sunwd for tlw 0\ hpl' l\\'o inclPIWncl(·nt 
Ynt'inhlps: 

(;jb) 

fa' ,t'3 I ,. 113 +baXJ"t- ..... (,jC') 

Thl' p:Plwrnl r('\ati()n;;hip for (11('';;(' [lH.;;umplions cun hp writ[('n: 

(;'ici) 
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TlI!, rl'illt iOllship hPl W(,1'1l i hI' df'Pf'IHiPIl t vtlriablp, y, till' tim'!' ol'ip;inai incl!'­
p\,ndl'nt vuriahlps I,r), ,1'2, ;('.!' ami til(' fOllr protiuC'L"; fOl'nwli from titPIH ('nn 
now hI' nnniyzl'd Ii),' I. 

If tilt' f:wtors do not :tet ind!'(H'lHi!'I1tly of IHlP nnotlwl', (1\('11 n. moci!'i of 
joint J'('gr!'ssion: 

«ia) 

mllst Ill' tis!'!!. 'I'll!' ,'pry gPll!'rnt form of ('qu:lt ion lin mn~' 1)(' modifipci by 
a~sllming tilal til!' Yllrinhll's apt in gmllps so that wp pun \\"I'it(' 1'01l1!' slieh 
I'qtl!ttion us: 

(liill 

l'nl!'s.:; tlwn' i" snllw :tpriori rPllson (0 suggpst n particutar I'ptnt iOllShip, joint 
n·grt·ssiol\ :lIHlty;;j:- i" 11m!"!' ('oIlY!'lliPlltty IttlndJl'd hy graphic IlInn b~' ntp;l'hrni(' 
I11l'thmls. Fur joinl rl'gl'Pssioll, it is fl'l'qllPlltly IH'lpful (0 tlssun1P Ill!' mod!'1 of 
multipl(·liJwHI· n'gl'I'~;;ion, tlll'll plot tl1(' n'sidual \':liu!'s of y np;ninsl lil(' inclp­
pI'll(h'nt vnriahtps and fit "\'OltlOtJrS" if tlH'rp is any intii('tltion of a joint 1'('11\­

lioll, til Ihis ('I\S(1, Ihl' joillt rp,!.:;n·ssion Iprill is addpd to Ih(' tilH'ar Ipl'ln;;, 
~[ultiplt' J'('gl'P"sion nnnly,.;i,.; 111Ukl's lit(' assumption tlult :lIl (itl' PITorS arC' 

('OIll'Ptl t I'll 1(>(1 iII II\(' (\PIWII(\(,Il! ya riahll' and also I ha ( I hI' "o-('allrci inciP(wncipn t 
\'arl:tblps ttl'p nol ('lllT!'inll'cl wilh IHlP tlllot\wr, \"iolation of tl)(' tatt!'r [l$HUmp­
lion dol''' nol 11l'('\'Pllt 1.lH' dl'ri,"atiol1 of:t I'Pgr(':,sioll rplaliollship \\'hieh ('nn br 
lI,,;('d :t,.; :l IH'pdi('lioll 1001, hUI it !,pndl'rs l11t'aningl('HH thl' tP,;ts of :,igniliraner 
USl'd in :1 J'(·gn·,.;"ion analysis, III hyd rolngy, <lUI' to til!' o1)(1 J'(lI ion of gpomorpho­
togi('nl fa(·to!'.;, till' \\'ulpr,.;hpd panlll1pt··I'S US('(/ n" in(\Plwnd!'nt v[lriabtps arr 
ofl!'ll YPI',\' hi,!!;hly C'orrl'lal!'d nrnollg Ihp!l1,.;plw,;, ~llllti,'arin.t(' n.nn.IYHi;; (33) 
>;(,ph 10 ayoid thp,;p I\\,() prohl['ms hy t rt'ul inp; all t 11[' val'iahlpR alikp and by 
Iwl'formillg ('OmpllllI'IlI nllnl~':,i" to dl'll'J'lllilll' :t:1Y truly illci('IWnciPllt grouping 
of y:triabtp,; whic,h may Ill' P!'!'';Plll. \\'Ilng 1 (j{j, applied ('ompoIH'nt IllHliYRi:; to 
til!' data for :\p\\, En,gland Hood,; 1'C'fl'/T!'d to on pag!'H 000 tn 000, Wong cip­
:'('l'ihC'd how til i";lllatl' Ilrl hogollnl ('ompflI1I'IlIS and sIHl\\'pd thai for t Iw nvpragp 
tUlIlU:lt flood it was pn,.:,.:iblp III pmdllC'l' a 1'£'latiollship has('d 011 t \\'{) pltranwtp!';;; 
\1 hiI'll \I'll'; a,; :t('(,Ur:l11' ns IIH' 11111Itipl('iilH'nr rpg!,p';sinn ('quulion haHPd on five' 
parnnwlprs. ~!lnw Dtll!'\' papPI's denting wilh till' nppliralioll of l11ulth'nrintp 
:lII:liy"is to hy(IJ'otogy :H'P illl'iudl'd among till' rr·fprpn('Ps at til!' (,l1ci of this 
Ipptnrp ~ ; L.''is.. /ilJ}. 

'I'll!' nll't!lo(] of ('ouxial ('nrrl'lalioll dl'sl'l'il,,'d ily 1.il1s1p.", Kohl!'!', and 
P:llllhllS .i!. has IH'1'1l \l'iddy uspd in ltppliNl hydJ'{Jlog-y, Coaxial (,OITdalioll 
iH es,';('iHially :l graphie nwthod or Illlnlil1!'ar l'pgrl'ssiol1 and is ;:;uitahlp for tl1{' 
Hulut iOIl of :lei hll(' prohh'l11s" Jn "Olll(' (':1:'1'8, (Iw "ha~w of rtJrvp" u,;pd rdh'('tpci 
('{'rlaiu :lHsumptioll:, ahout I Ill' soil l11ojsluJ'(' IH'!'(Junting invo\vl'ci, In its origi­
nnl form. ('o!txial ('(lrr(!ation \\tlH suiljP(,t 10 tht' tii"advantagp Ihat til!' prO(,(,HH 
wa,.; n "uhjP(·tiyl' on!' :wd di!Tl'rPllt Il'Cll'kC'['s would produ('(' dilYpl'l'nt diagrams 
from thl' "nnw ";1'1 of dntn. Thns<, I'xlwril'll('('d lath!' llS(, of till' llH'thocl t(,llci('d 
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to follow a lix('d pro('('(\Uf(' and to produ('(' f'otlxilll ('orrt'ltltion diagrtum; whif'h 
\\'('r(> similar in t)wir g('(wral rO!"!ll. 

If ('(juxial ('orr('lntion is to lw ll:;pd n.... a tool in paranwtrie hydrology, it 
:;hollld {'xpiieit iy involv(' till' n.-;sumpt ion /If tt giV(,1l mc}(\p1 or ,,'at('rRIH·d 1)('­
htwior. This uPIH·on(·h to ('olLxinl (. orrl'! ttl ion is rl'flprf<'d in t Ill' work or Bl'rk!'r 
i ~, S, lUI, FiguI'p 'i .~ is bas('d on hi" plllwr" tlnd NUl \)(' us(·d to illustmlP tlw 
HpprOHeh 10 ('ol\xial ('Ol'r('iat ion iH1SI'd III I phy:.;]C':!1 r(':tsoning and tIl(' liSP of :1 

particular Tnoc\P1. '1'111' dingram i" intpn<i!'d to lw lIsu(\ to (lstimat(' tlw ba::;in 
r('('htll'gP fllllmdllg rainfalL As indiculI·d hy arrows in flgllrl' 7 <l, pl'ogn'ssion 
is from A to n to (' qllndr:tnls. {~llndrunt .1 is intpntil'd to gin' tltt' rplatio!l­
"hi[1I)('\wl'l'n potl'ntbl basin ('(,('harg!' and initial !l10i::;tlll'(' ('o!ltt'nt, thl' lnttpr 
h!'ing t'('pt't'~l'nt('d by an lmtp('('t\!'nt pl'!'('ipitlUiu!l inr\l'x. Thl' :;I'IHU'il(1' lin!'s in 
quadrant A t'Pprl':'l'llt \\'I'!'k n\l!l)lH'l's und, r1H'rl'f()('l', difTI't'I'II! l'mso!\::; of til(' 
yt':lr. Quudt'!I!lt H nllow:; fot' Ih!' 1'11'(,I'( of rainfall durntiol1 (and hl'l1(,(' of til(' 
rat!' lIf infiltration lind n'p1('nishnw!lt of soil !lloislurp\ on tIl(' IHlsin t'Pchurg<'. 
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Quadrant (' n'fircls thr ('fTI'ct of til(' amount of rninfttll on the' actual basin 
rrchargl'. 

B('ek('r argups that 1)(,('llUSC' of til(' phYllical proC('$SC'S involv('(l, th('rc arc 
crrUtin ('onst min Is on t Iw shn,pc's of thr ('llI'VPS in til(' di tTprpn t quadrants. Hp 
invokl's !l simplilil'd moc1t'l of the' watPrsh('c1 bphavior to dptprmin(' th(' grll('rnl 
llnturl' of thps(' f('strltints. 'I'll!' higlH'r tll(' vnlup of til(' ant('('('cipnt pr('cipitn­
tion, til(' It·s:; storag(' will 1)(' nVllilablp in til(' watPrslwd for rp('hnrg(', If the 
!l11u'('Pcipnt pr('('ipitlltion ind('x npproaelH's an infinit(' vnllw, tlwn nll til(' rain­
full must run ofT, and thpl'(' ('an \)(' no fP('hnrgp to th(' basin no matt('r what 
thp v!llup of til(' volump of minfall or duration of rainfall. B('('k('r argup/; from 
this thnt all tl1(' lim's in quadrants B ftnd C must pass through til(' origin, 
wlwn'!1s in t hi' most of til(' publish('(llilPrllt un' 18(,P for pxampl(' 51), til(' Iin('s 
in quadrant B Ilrp drawn ns parnlld lim's, and thost' in quadrant C MP drawn 
as nH'l'ting Ht n point on tl\(' [Lxis b('t\\'(,Plt quadrants rl nnd D. 

Tlw IH'Xt gtC'p in B('('k('r'" pror('dun' is to tnk(' account of tlH' fart thnt most 
pr(>s('nt-ciay lll()dpis of total (,lltrhnwnt !,pspons(' nssum(' th(' pxis\pnc(' of It 

thrpshold l)('t \\,(,pn Roil moisturp nnd elin'rt runofT (S9, 54). A simpl£' thr£'shold 
opt'rnt('" as follows. If th£' storm rninfnll is It'sg than th" initirtl field moistur(' 
ddkit, t1wrp will 1)(' no dirt'e! runon', and all of til(' rainfall will h(' acconnt('d 
for n.'i bll."iu r('elmrgl', If, how('\'('!', til(' storm rainfall is grpatpr than til(' initial 
lipId moi;::turp el('ficit, tht'll thl' soil Illoi;::turp storag<' will !'('[t('h its thr('shold 
yahI(' and dir('('\ storm runofl' will o('('ur, For !l simpl(' thr('shold, til!' amount 
of dirp('t runon' will b(' ('qual to tl1<' volull1l' of minfall minus th(' volump of 
til(' initin.! liPid moist\ll'(' dl'fieit. 

[f tht' duration of til(' rninfnH is :-;uf!kil'ntly long, th(' intpnsilY of rainfall 
will 1)(' I('ss t1uln !lIly pr!'dptl'l'I)lill('(1 limit in/.!: infil tration rn.tP. B('rk('r Ilrgu('s 
thnt for l\ finitl' :unount of rain nnd It w!'y lon/.!: duration, til!' Iin(' in quadrant 
C Inust ('onsi:;t ot t\ limiting lill!' which makPs til(' ordinatp I)('tw('('n quadrants 
Band (' I'qual tll tilt' orciinatp bptwl'pn quadrants (' and D, tog('th('r with a 
v!'rti('al lill(', eorrpspondin/.!: In til(' amount of rainfnll, \\'lwl1 th£' d('fieit giv(,11 
on tlw ordinatp \)I'tw('('n quadrnntg Band (' is /.!:rpat('r than til(' nll1011nt of 
minfall, thN!' is no dir('('t runoff; tlH'n til!' I'('('harg<' is PCjllU1 to th(' amount of 
rnillfltll and is indl'pPll(iPnt of til(' valup of th£' initial d('fieit. In this ('as(', the 
valu(' of tP('hnrgp to hI' I'('ad 011 tlH' ordinalI' brtw(,pn quadrltnt (' and quad­
rant 1) i", gov('rtH'cl by til(' Yl'rticalline eorf('sponding to th£' rainfall amount. 
1'111' ItwlillPd ('qUill valliI' lilw-whi('h net8 a.~ an upppr limit to Ill(' s('ri('8 of 
vprtirul linp;::---gov('rIlS till' tiPtprmination of til(' basin r('('harg(' for th(' ('as(' 
wlU'rp til!' rainfall i:: grNltpr thnn tIl(' initial fidel moisturc' d('fieit; ill this eas(', 
tlH' hl\..<;in I'P('hargl' givl'll nil till' ordinate' b('t\\,ppn quadrants Band D, 

B('('kpr r('('ognizps that a qunelrnnt C pattpril of this typt' (a s('ri('s of v('rtienl 
Iint'R for di fTen'nt rainfall amounts and OIH' lint' at 4;)0 1 i8 ('ss(,lltially a simpli­
fkd mod!'l hm::pd on :l lumping of til!' charactpristies of tlw (,:ltehnwnt, which 
(\..-:sunw", that tlll' rainfall distribution and til(' distribution of field moisturC' 
({plil'it urI' uniform throughout thl' elttehnwnt. If nJlo\\'an('1' is mnde for th(' 
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variilliOIl of firld moiSlur(' deficit (or of rainfall) throughout the watrrshrd, 
tlH'n til(' rul'v(' in quadrant C for any giwlt rainfall amount will show a smooth 
tmnsitiOIl rathpr thun 11 sharp urruk from thr sloping 4;,)° linr to thr appropri­
!lt(> vl'rtiC'allitw. If (h(' rainfall is v('ry high rri:Uivr to thr initial fidd moisturr 
dpficit 111('11 thI' t hr('shold will probably br ('xCN'dpc! in IH'arly all parts of the 
eatC'hnwnt, and til(' bnsin r(>charg(> will clos(>ly approximatr th(' initial d('fieit. 
If, 011 thp otlU'r hand, thl' rainfall WPI'P vpry small r('lntivp to til<' initial d('fieit, 
tl1('ntl1(l thr('shold eupaeity would probably not b(' fl'at'hrd in My part of the 
entehnwllt, Ilnd thus til(' hu-'iin r('eharg(' \\ould b(' ('qUill to til(' amount of 
rainfall. Fol' illtPrtlH'uint(> ratio of rllinfall to moistur(' dpfi('it, !l smooth transi­
tionnl ('urvl' would 1)(> obtaiIH'd as shown in quadrant <', figurp i -2. The 
('UI'V('s shown on (hl' figurc' r('fl PC' t til(' assumption of varying thrpsholds 
through til(' wlltpr:;llPd, that is, of It multieapacity accounting sysl<'m (39, 
50, 6;; I. 

For VpI'Y long durt1(ions, tilt' low intpnsity of rainfall will pnsurp that all of 
til(> riLinfnll will infiltmtt' into til(' soil. For su('h C1L'lpS, thp duration will not 
alTp(,( til!' rp('harg(' to th,' basin, and he'n!'(' til(' linp in qundmnt B will bp an 
in('lillPd stmight 1i1H' giving C'qual vnlups OIl the' ordinatp bptwppn quadrant A 
nnd quadrant B and til<' ordinatl' b('(w('('1\ quadrants Band C. For the' same 
amount of rain and a short!'r duration, til(' mtC' of rainfall may I'xcN'd the 
infiltrlllinrl I'upu('ity of til(' I'oil nl somp timp during til(' storm, and Ihp full 
amount of polpn t inl IHlRin r('ehargp may not hp rpnlizpd; consrqupntly, \\'a(pr 
failing to infiltrn\l' til(' soil will ('ontributp to din'C't storm runoff. During a 
sttlrll1 (>,\,pnl, infiltration is limitpd to till' duration of rainfall (TR ) plus the 
I inl!' for whic'h ovC'rinnd flow Jwrsists aflpr tilp rainf[tll pnds (To). Bpckpr ns­
SUllH'S :t limiting rntp of infiltmtion inlo the' moist soil Urn), nnd hpncl' for a 
giy('u d tim t ion of I'a inf:tll til(' rp('hnrgp ('anl1ot pxcPl'd th(' produet of this in­
filtration raIl' plus tlw total duration of ovprland flow (thnt is, thp sum of th(' 
rninf:1l1 duration plus Ill!' tiIll!' of ovpriancl flow aft('r til(> ('('ssation of rain), 
"hit-h is l\ssllllH'd to 1>(' ('oustnnl. This limitation on infiltration is r('flpctpcl in 
thl' horizontnl lill!'s ill l(ulltirnnl B for low durations of rainfall; tll('s(' lilH's 
I'l'pr!'s!'llt til(> limiting' rp('hnrg(' 1m! TI/+ To I. 

\\ Iwl'P tllP l'llinfall intpnsity i~ Ipss than tl1P limiting infiltration mlp for a 
\\'('\ Stlrf~l'(', t1\(\ ltc't ual busin rC'charg(' dpppnds OIl th(' rat(' at which moisturl' 
in tl)(> soil profile' i~ rf'pll'lli:;lH'ti. If til(' watl'r infiltrnJing through thp surfncr 
is in I'X('('S:-l of thnt rC'quirt'd for soil l110iMurp rpC'harg(', then intprflow will 
O('('UI' and ('ontrihut(, (0 dirl'('t storm runoff. B('('kpr a:;sump:; that tl1P ratp of 
:<oil mOl:;! un' r('('hnrgl' i~ pr!lport ionnl to t 11(' soil tnoigt lIr(, d('fieit, varying from 
Z!'r!l w}wn til!' dpfi('it i:; Z!'I'O !that is, til(' .:-:oil i~ at fipld capacity) to th(' ratl' 
of maximum infiltratioll into :t dry ~()il ",11('n thp dpfi('it is rqual to th(' fipld 
moisturt, ('apacity. Thi~ n.:-:sumption gh'ps an !'xpOIwntinl dpeiinp with timp in 
tIll' rat!' of :<oil ll1oistut'(, I'l't'hnrg<', B('('kpr sho\\':; that for tl constant ratl' of 
infiltration into n dry soil tfma,,) nne! U ('on:<tnnl valup of fiplcl moisturp ca­
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pacity (XII') that th£' volume of rrcharg!.' for fL givrn duration (Tn) is pro­
portional to th!.' volumr of soil moiHlurr rechargp for til(' same amount of 
rainfall and nn infinitp duration. ConsrqtH'ntJy, for all cases where the re­
charg(' is not limiU'd by til(' I'alp of infiltration through a wpt surfacr, the lines 
in quadrant 13 (which r('He('t thp pfTp('t of duration on r('ehargp) will form a 
ray of lint's through thp (,pnll'r of thl' ('oaxilli systpm as shown in figure 7-2. 

Thp g(IJwral shapp of the rurv!.'s in quadrant 11 ('an 1)(' shown to b!.' plausible 
by means of argumpnts bnsNi on rplaliv('ly simple' llssumptions. If the catch­
mpnt WN(' homogelH'ous, (HlP would pxppct thl' linl's in quadmnt ;1 to be 
straight lines joining til(' valtH' of thp soil moisturl' drfieit und<'r wilting condi­
tions Oil til(' two ilxrs. If, howrvrr, the ('lttehmrnt is considrrpd as being made 
up of n numbrr of nrrllH with difT('ring maximum field moisture d('fi<'its, thrn 
til(' ('urv(' cOIHwcling tlw initial soilll1oistur£' (n'present('d by thr antc'cedent 
pr('C'ipilntion inch'x) on tlH' nxis betwr('1l qundrants .A and D with the maxi­
mum possiblp rr('harg(' on thp axis brtw('('n quadrants .tt and B would take It 
g('J1{'rtll hypC'rboli(' form. The ('xist(,lH'r of difT('rrnt ('urves for differrnt srasons 
of tIl(' yeilr would be rXI)('ctC'c1 dtl(' to til(' pffr('t on moisture accounting of 
pVltporation, trallflpiration, nnd ('ollslImptiVl' usr. Ik('kpr showrd that by 
drawing the' co!\xial eorrrlation diagram as drseril)('d abovp, results could be 
obtllillrd as good as (if not b('ltpr than) with tht' more convrntional form 
usually rN'Omm('IHh'd. His approaeh ha.-; th(' advantag(' thnt the pntt(,rtl of 
lint'S in his di!lgmm and thp position of SOnlP of thr linrs can be rdated to It 

clt'finit!' modPi !lnt! to physically r(,llsollal)\(> C'atrhllwnt pl1ramrtws. It would 
\)t' intl'rl'sting to link up B('('kPr's approu('h with somr of the modds which 
htwp br('n suggP,..,tPc! for simulating til(' ('l1tirl' wntC'rshC'd rrsponsr discussed 
latrr in this h'('t ur(', H('{'kpr i 9) nlso ineludes a quadrant frfiC'cting thl' ('ffeet 
of ground Wttt!'r l!'vpJ on tlw r('lut ion nInong nntc'cpnd('nt eonditions, rainfall, 
and bnsin rpchllrgl'. This quadrant is not shown in figur(' 7-'2. 

III all t)'pps of rl'grpssion nnalysis-lill('ar or llonlil1('ar, l1ul1wri('al or graphi­
cal, multiplp rpgr('ssioll, or multivnrintc'-it must bp r<'I1H'mbprpcl that thn 
('hoiep of it pnrtielllnr mod!'l and thnt tIH' ('omplitational pro('PclurC' nwrPly 
feprl's!'llt It Wity of optimizing tIll' pnranwtprs of this modI'\. By optimizing 
tl\(' parnnwl<'fs on tl1{' hasis of an netual r('C'ord, \\'(' ('nablp til(> particular modPi 
dmspn to simuln,{!' til(' OIWr:ttioll of thp prototype as nrnrly ns possible' in 
H('('nrtlane(' with SOIl1!' {'hosl'n rritprioll. Therp is no guarant('(', how('v!'r, tllfl.t 
WI' h[\\'!' ('hos('n WI'II in rhoo;;ing til(' pttr! iC'lllnr llH'thod or modpl uspd. Fm­
too littl!' 1m;; hl'{'n dOll(' in (Il(' ~y~tpmatic ('xplorntioll of thr probl('m of (lhoos­
in~ Iwt W{'PH mod!'ls. 

Rpgrl's;;ion ll1odd::: of all typ('~ sharp with mod!'ls in gpnrrnl thr fraturC' that 
tlH'Y may pn'di<'t tIl<' behaVior of (11(' prototyp<' without I'(,~pmhling or r('wal­
ing til(' nat un' of ilw proto l YI)(' l-ly:-:(!'m. HO\\'pvpr, it is (,OITPC't to :::ny that the 
mort' ('Io:o;ply tL IlHHl!·l is bf\~('d Oil tlH' physi(,1l1 natur(' of tl1{' prototypr sYfltpm 
tl\(' mol'(' likt'ly i;; it to prov(' it::: worth us a gl'n('rnl-purpo~p modl'l {(hnt is, to 
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pr!'die( th!' Iwhaviol' of Ih(' prototyp!' und!'r a wid(' variply of ('ondil ions) and 
fa('ilitntp tl1<' Ilwaningful ('omparisOIl of paranwt!'r vnlu('s c\privt'd from using 
thp sanw gf.'llPral model to simulate cliff('r('nt prototyp('s. 

Digital Simulation 

EXl'Ppt in tllP simpl!'st rasps, thp r('grl'$siC'n moc\!'IR pl'pviously cl('$('riiwcl 
and tl\l' mntllPmatiC'al ml'thocls of simulation clpsel'ilwcl in IPeturp !J I'('qui1'(' 
thl' UR{' of digital ('omputpI'S. In surh ra$('$, thp t1s(' of til!' ('omputpr iil not 
{'ompulsOl',\' in til(' simulation of the' hyclrologir sYRI!'m, but ratiH'1' it lR thl' 
1ll0$t ('ol1\Tpnipnt I1wthod of {'omputation. In th!' pr('$pnt s('('lion, WP are not 
('oJ1P(,l'Il('d wi t h tIw ll$(' of 11ll' ('ompu [('I' for t11('$(' purpmWR of ('ltiellint ion 
only but mllH'r with $ill111lntioll$ of hydl'Oiogi(' systt'Il1R involving tl'('itniqlH's 
\\'hieh ar!' only rpasibl!' on (l digital ('oml.HItpr, for l'xnmpl(', syst('mali(' SNtl'('h­
ing fnt, optimum valut'$ of rPluli\'dy large' nUmlll'ril of puram('t('rs. 

In thp (11'(,:-;(,llt s(,(,tioI1, n d!'s('ription will bc' givpll of Romp typi('nl simula­
tions on til(' digital ('omput('[' of the' hydrol()~i(' prnc'('$s('s involvpd in <'1rllwn(:; 
of II\(' hydl'Ologie eyelp and t IH' $imulnt ion of t IH' total I'PSPOIlS(' of tIH' (,:1trh­
1l1('1It, Th(' highly important suiJjp('t of til!' optimizution tl'ehlliquc's r('quil'('d 
to obtain obj(,(·tjV(' ('s(imatps of tl1(' bpst valUP$ of tIl(' paI'llmrtpl's to 1)(' us('d 
is Ipft until tilt' IH'Xt s(,('tion. 

Digital simulation ('nn Ill' used to rpprodue(' tl1(' \)('haviOl' of un)' eipnl('nt in 
till' hydrologie eyel!-. In Ipc't urp :.?, \\'p diseussecl til(' pmpiriC'al formulas used 
in applird hydrology for ('stimnting snoWllwlt. The simpl('st of tll('se formulus 
was: 

J[= O.OUt TIIl• an - 24) (Ga) 

whkh j'('lat('s thp daily snowllH'lt in OPPIl arpas in ineiwil J[ to the mpan daily 
tpmpl'rtltur(' l 1'm) in d('gr('('s Fllbr{'nphit. A complpx formula which has heen 
widdy quolpd is: 

(6b) 

"'hieh rt'lntl's till' sllowllwlt D to a numbpr of microm('(rOl'ological factors.l 
In (,CHltr[l"..;t to til(' abov(' formula:;, figurp 7-3 shows a digital simulation 

rnodPl for ilnownwlt ch'vdop('d by Amoro('ho and Espildom (1). It ('un be 
S(,(,11 that this simulation for tbe snowmplt procpss is much more compll'x 
('\'1'11 tban l'(llllltion Gb. In 111<' simulation proc('ss, til(' input:; to the system 
nrc' till' nH'tt'orologiral ('onditiom; and th(' initial condition of the sno\\". The 
$imulation mocl('l is shown in tlH' form of th(' flow chart which can b(' r('adily 
progranH'd for n digital ('ompu{('r. Ind('('d it would b(' difficult to apply the 
mod!'l shown in figure' 7-3 without tll(' usc of a digital computer due to the 

1 L!'durc 2, pp. 44 and 45. 
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FIGl'RE 7-3.-l:limulation of snowmelt. 
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large numbN of logical decisions as well as computations which are required. 
ThC'se logical deci1lions are represented by lozenge-shaped boxes on figure 7-3. 
ThC' first qu('stion is asked in decision box 0: Is there precipitation? If there is 
not precipitation, we travel by a route through box 1 and then consider the 
heat budget in box 15 which takes into account such vectors as incoming 
radiation. If thC'rC' has been precipitation in the form of rain, the amount of 
intC'rccption is allowed for, and a distribution of the precipitation is made 
betw('t'n bare soil and snow-covNed soil in box 5. The rain going directly to 
thC' soil is an output of the model and an input to the watPrshed. The rain 
falling on the sllowpack is taken into account in a heat budget. 

In lhi1l simulation, the snow cover is divid(O'd into layers which i.rc treated 
sC'paratC'iy. The dT('ct of h('at, rainfall, or new snow on the existing snow 
Iay('t"s arc all taken into accmmt. Each box in the flow chart represents a 
physieal proc('ss; som(' of these procC'ss('s are of a high complexity, and this is 
r('flect('d in th(' computational ('quations used in the step. Thus, box 16 in 
figure 7-3 has to bl' C'xpandE'ci into a flow chart as complex as figure 7-3 itself. 
Eqnations (ill. and 6b and the flo\y chart shown in the figure are simulations 
of certain phrsical processes. ''''c can r('cognize the empirical equationt; d 
classical physical hydrology as very simple models of these physical processes. 
Due to th(' advC'nt of th(' digital comput('r, we can now replace these simple 
physiclli equations by simulation modds involving both complex mathemati­
cal rrlatiol1ships and multiple decision processes. The simulation shown in 
outline' on figure 7-3 and described briefly above is only one possible model of 
the snowm('lt proc('ss, and other digital models have been developed and re­
portE'd in the literatur('. One such simulation model by Anderson and Craw­
ford forms part of the later v('rsions of the Stanford watershed model (3,23). 

Th(' othrr individual processes in the hydrologic cycle may also be simu­
In,t;:d in this way. The contrast between the classical empirical equations and 
more c(\mpl('x simulations bas('d on the digital computer can also be illustrated 
for transpiration. Thus we could l":3timate transpiration according to a com­
bination-type formula such as that of Penman (49) : 

E _Ea+fj,/y·HT 
(7)

T- 1+fj,/y 

when' th(' poh'utial transpiration ET is estimated as a weighted average of the 
aerodynamic factor Ea and of the heat budget factor H T , the weighting factor 
fj,h b('ing a function of temperature. This equation may be contrasted with 
the simulation of transpiration. shown in figure 7-4, taken from a recent p;lper 
in "WnJer Resources Research" (67). This represents the simulation of 
the action of a plant in removing moisture from the soil and transpiring it to 
the atmosphere. While it is not likely that such a detailed simulation would 
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be requir~ci in hydrology, it cio('s inciieate the compl('xity ullderlying the 
procei::":;('S with which the hydrologist is conc('rn('d. 

TIl(' full HimuIntion of the' proc('ss is mor(' complex ('v('n than shown 011 

figure 7·..·1. On til(' lowpr right-hand sid(' of figur(' 7-4, stomatal aperture con­
trol apP('[l.rs as an inpnt factor. Figur(' 7-5 shows that this factor, which is an 
input to til(' tmnspiration simulation; itsdf d('p('nds in a compl('x fashion on a 
num])('r of inputs, WIWll w(' look at simulations such as thesc, WC' r('alizc that 
til(' complC'xity of a formula such as P('nman's is ll('gligible compared with the 
('omp]('xity of th(' physic:).l prOC(,SS(,l:1 which it is intpnd('d to r('prcs('nt. It is 
int('['('sting, in til(' {'ase of tIl(' two simuliltions for transpiration and stomatal 
('ontrol, that tIl<' authors first show lh(' dingram from a botanical viewpoint, 
tlwn from a more' abstract :;;ystpm vi('wpoint, and finally in t('rms of sy~tcm 
functions of thp ciifTer('nt opc>rations involved. 
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Oth('r pj('nwnts of til!' hydrologic· eydC' ran 1)(' similarly trNlted. Tht' proc­
(',ssps involwd in flo,,"-wlH't 11('1' ()vC'rlnnd, in OPPtl ('htll1IlPls, through soils, or 
from ground "'ttt ('I' l'PS('I'voir::;-run 1)(' simulated by modds of varying com­
pll'''(ity. 1'1\(',;(' plwnonwntt IplHl thpmH(.JvC'H to r('lntiwly simple' simulatioIl by 
()VPrall nmtlwmnt i('al ('quat ions 01' by ('onrppt ual mockls. ThC'sC' nwthods will 
be dis('usspd in I('('tul'(' 9. If, hO\\,('VP1', WI' \\'('1'(' not satisfipd with thp usC! of 
bulk fl'i('[ioll formulaH and insist('(l on taking into Hrcoun( the fine details of 
Imbul(,l1(,p slruetur(' and visrous dissip!ltioll of (,Il('rgy, the simulation of 
tilt's!' pror('HS(,S would \)('eon1<' pxtrpnwly romplex. For flood ~'outing in natural 
rh!UllH'ls, OIl{' rna,\' ('hoos(' among th(' simpit' n1Pthods of flood routing us('d ill 
nppli{'d hydrology, t11(' rplativ<'iy ::;impl!' CoJl('('ptual methods which hnve bppn 
d('V('lol)('d r('('('nlly, and tl\(' ,:;olution of the' probl('m in its full eomplexity on 
II digital ('omput("r. 

In all tlw·"p ea,:;ps, WP Ilrp fae('d wit h the dil('mma of using pither !1 simple 
mocipl whi('h is PHSY to manipuint(' and eompreh('ncl but whieh may be too 
crudt' I. ,:;impli[ieation of tl1(' physical procpss or, on the other hand, a highly 
('omplt'x moclpl which may be' difficult to dtwrlop and ('xprnsive to op0ratc to 
obtain furt 11('1' HCCUrtLey. :'\0 ma\tC'r how eomplC'x our simulation model m!1y 
bpJ Ilw odds a['(' that it still will n'lt mirror t1w tru(' complC'xity of the physical 
proepss('s involv('d Ilnd henc(' not reflpct the physical rcality of the situation. 
\"hilp thi::; faituI'(' might worry thp purr sci('ntist sepking to detcrmine the 
natu!'(' of thing,:;, it is of littlp eonsequellce to the ('ngine('ring hydrologist 
who s(~('ks only for It t('ehniqup which willlw suffiCi('ntiy accurate for his im­
nwdi!lt(' purpos(', Thp l'(lseareh hydrologist COmes somewhere between these 
two ('xtrpml'::;. Ht' s('('ks !'('suits and mrthods that are grounded on a general 
body of knowlC'dgp and h('ne(' of wid(' application. 

Digital simulation ean also b(' uspd to model th0 total response of a water­
sIH'd. Ht'r(' again th('rp is n, choieC' bctw('('n a simple mod('i, which will of 
Il('C('S,:;ity bp rrudp, and a mor(' complex modt'l in which it may be difficult to 
optimiz(' th(' pamnwtt'rs O\\Ting to thpir number and th('ir intprtlction. The 
simple'st modpl of total wl1t('rshpd operation which gives any semblance of 
r('produCing th(' behavior of a. watNshrd was discussed earlier in lecture 1 
{s('(' fig. l-I-n. In its simplC'st form, such a model might attempt to simulate 
n watprshpd by assuming that (1) direct storm runoff could be obtained by 
routing pl'('eipitation ('xc('ss tilrough a single ('lpment of linear storage (Ki) i 
t~) bas(' flow, by routing rpcharg(' to ground water through another element 
of linNlr storagl' of Longpr stor!lge dpiay time (K2); (3) the division between 
pf('eipitation ('xc~'s;:, and infiltration, by use of a constant infiltration rate 
(jc) ; und (-1) tlw n'ehurg(' to ground wat('r, by assuming a thr('shold of field 
moisture' capacity tJ{).. Even in this highly simplified form, four parameters 
would llP r('quirpd to ckscribp the opC'rtltion of the ll1i)dc1, one for each of the 
four ('\('111('11 ts. 

H wp now s('('k to mnk(' the· modp\ more accurate or more realistic by a 
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Liptnilpci simulatioll of any of thp l'lpl1wnts, tt nllml)('r of nLicWiollttl parn:!l.l'tl'rs 
will 1)(' int rolill('('d, TIl(' numb!'l' of pnranw(Pl's ('PIi('kl~' inc'r('nsC's, and til(' 
pl'Obll'l1l of olJjp('[ivdy dpt!'nnining tlwir optimum V"LUPS (,Hn bC' hnndlC'd 
only Oil :t digital ('OmIHltC'r, TIr!' dC't('rminlltioll or til<' valuC's of tl1(>sP ptlram­
ptprs for: optimal rp(ll'PsPlltatioll of th!' prototyp<, is (h(' Iwy problpm in digital 
simulation of total elttchlllC'Tlt f('SPOllSP, \V<, may insC'l't valu('s of tlw pal'am­
('[['I'S llltspd on lipid I11Pusurl'nwnts madC' (·itlll'r in til(' wat(,l'slwd uncl('l' study 
or in n similar \\'lltC'l'shpd; hut it would \)(' foolish to lakC' such mC'ltsUl'l'd 
valups Cll' nny tC'xtiJook vulups as otlH'r than indielltol's of thl' ol'dC'r of magni­
I ud!' of til<' ptu·!tmPlprs l'PC[uil'pd for simulat iOll. 

OneC' all at(!'mpt is mUciC' to simulat!' till' opprutioll of n, \\'alprslwd by n 
slwcific modd, 11 modPi pnranw('l' wilieh is dl'sign('(1 10 eOlTC'spond to Some 
singh' physi{'ul pnranw{pr in tIl(' flt'ld may, in fact, tuin> on otlwl' fun('fions in 
(11(' simulation PI'OC'Pss. If our d('sil'(' is to unde'rsiand in (\Plail tlw physical 
pro('pss('s \l'hi('h Hl'P involv!'d, We' htlv(' no oplion but to s('pk th(' pnl'am('t('rR 
('orr!'spol1ding to th('s(' additional fUlI('(ions and synth('sizp It mol'(, eompli­
('nt<'d modd. If, on tht' otlwr hand, our only pU/'posl' is 10 r('construct the 
OllPnltion of (Il(' Pl'Olof.),!)(' llnd pn'diet til!' outputs, thpn \\'(' should sP('k the 
vaiup of thp pnl'Hnwtpl's of our modpl which optimizp its ppl'fol'mnnc!'. 

Th(' l)(,s! known work on til(' digital simulation of th(' total wfitprsl1('d is 
that dOll(' at Stanford Fniv('l'sity (21,22, 2B, 40, 45). 1'11(' Stanford modpl 
:'\ [urk [\' is showll on figure' i-G. TIl(' various v('rsions of thl' Stnnforcl model 
art' (,SSPllt ially ('ompromis('s 1)('(\I'PP11 t11<' o\,prsimplificntion of thl' four­
pnrtlnw('1' modPl shown on figur!' l-S and thp u11eontrollablp ('omplpxity of a 
modpl II'hie'll would nttt'mp( to inelud(· pVl'rything WI' know about physical 
hydrology. Tlw inputs to thl' mocIC'1 M(' pr('cipitation in the form of mean 
hourly rninfnll and C'vnpotrnnspiration in til(' form of daily mpnns. The out­
puts arC' strpumfio\\' in llw form of: (1) summary tablps of mpan daily flow; 
(:!) hydrogmphs of Itll sf orl11s grpatC'r f hnn !t givPI1 ba.<;<'; and (3) 80mp monthly 
data, I'uch ItS volunw of iute'rHo\\' and ae{ual ('vapotmnspiration and initial 
and flllal soil moist ure' conditions, Otlwr outputs ('un be obtninpd on an op­
tional bnsiH. A f('atul'(' of Ilw mod!'l is thp divL'5ion of soil moisturl' storage into 
upp('r zone' s(oragl' from whieh C'vapo(ran~pirati()n takrs place at til(' potpntinl 
ratl' llncI 100r<'r ZOlH' storage' from whieh pvnpotmnspimtion tnkps place at a 
rate' lpss (ban the' pO(Plltial mtt' wll('n tllP upppr zone storagl' is ('xhauste'd. 
I'll<' routing of til(' vurious flows-()VC'rln,nd flow, intprflo"" ground wntpr flow, 
and cbnl1lH'1 flow-is basl'd largpl~' on rpscrvoir routing. The :,\fnrk IV model, 
whic'h is mor(' cornplieat<'d than ('arli('r v('rsions, allows for such featurl's ns 
ovprlnlld flo", and sl1own1<'lt. Th('r(' nrp 19 pammptprs in the model (pxc1uding 
snowmelt paranwtprs) uncI four initial param('tl'rs for s('tting the values of the 
various storagl' eomporwnls. All but four of tl1('sP parametcrs are estimated 
from tl1<' r('cords or from maps. 
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An a1trrnativr mod('l of thr total watrrsh('d r('sponse is that Dawdy and 
O':Conn('lI (.:?p, which is shown on figur(' 7-7. This model is somrwhat simplrr 
than the' Stanford modrl and was ddibml.tdy drsignrd to b(' so. \Vhile the 
Stanford mod('l on figurr 7-0 is drawn in block diagram form, th(' Dawdy­
O'DollIwll moeld is drawn in t('rms of tanks and ovprflows aft('r the manner of 
8ugawara (GOl and oth('r Japan('sr workrrs in thr fidel. It would be a usrfd 
('xl'l'C'is(' to aW'mpt to rrdraw ('ach of tl1(' mod('Is in tll(' oth('r form. Dawdy 
and 0'1\>1111('11 wrl'(' primarily inter('st('d in iuv('stigating thr problrm of d('­
y('loping thp most ('fIieiPllt t('chniques for optimizing tIl(' parampt('rs of a 
modd, ralhrr thun in simUlating any particular watrl'sh('d. For this rpason, 
tl1(')' lirst fixpd "cOITrct" valu('s of th(' pnrnmC't('rs of the model shown on 
figul'(' 7-7, grll('nLtpd the output clue to a synthptic input and tl1('n, starting 
from ('rronpous initial panl.nwt('r valups, tl'ipcl to dis('ovpr from thr rrcord of 
input and out put the prrdt'tPrminrd "(,Ol'r('ct" values of thr nin(' param('tprs. 

TIlt' inputs to til(' Dawdy-O'Dol1lH'1l modpl are prrcipitation and pvn,po­
transpiration. Til!' output is tllt' l'vrntual total runoff in('luding surface run­
off and basp flow. Til!'!'(' an' nin(' pamnwtl'rs in the' modd whos(' value'S are to 
1)(' optimiz('d. R* is th(l d('pr!'Rsion sIOm!;!' whi(,h must be' slttisfi('d before 
Qvprland flow oct"Ul'S. 'I'll(' op<'ration of the' lillPar channel slorage is eharacter­
iZ!'d by It singh' s(orng!' d(lluy tin1!', K,. Th(' Horton equation is used to model 
tl1(' infiltl'!ttioll, thus accumulating thr('(' mor(' paral1l.etrrs fo, fe, and k. Field 

~~---jLQs 
~=------------=~ 

,---·8 . ~ 

FlGUIU; i-i.-Dnwdy-O'Donnell model. 
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moisture capacity is takPn al'i JI* and acts Il.S a threshold on recharge to 
ground water, Furthrr pamm('trrs introduced arr a ground water' capacity, 
G*, which enablrs the modrl to simuln.tr watrr logging under very wet condi­
tions and a maximum fatr of ('apiHary risr, ('max, to simulate the loss of water 
from the ground watt·1' by capillary rise during vrry dry periods, The ground 
water rrsrrvoir is Il.Ssumrd to act as a linear rrservoir, thus giving the ninth 
pflramrter, KG. This model will be used to illustratr the problem of parameter 
optimization lat('r in thr }rcture. 

A numbN of othrr modcls of the total catchmrnt rcspons!.' havc been de­
vrloprd for various pUl'posrs and from various points of vir\\'. Among those 
which are d('scrib('(1 in the litrratul'(' arr the TellnrssN' Valley Authority 
model (61, 62) and modt'ls drveloped in Australia (12) and Japan (46). 
BecaURr all modelR of this typr will be eompromi5es, thpj' will be different 
from OIW anotlwr. TIl(' only ,my in which thry can be judged is the efficiency 
with which they carry out tiwir sp(lcific purposp. If modds are constructed 
for dHTrrpnt purpos('s, tlwn it is impossible to compar(' them. We should be 
V('.ry eurrful of saying that one model is better than anotll('r unless we arc 
surp that the objrctivNl of both models arc thc same or can be exprrssed in 
common terms. 

Optimization 

Frequ('nt ref('r('l1ce has been made above to the optimization of the param­
etl'rs of a simulation model. The pr('srnt s('ction d('als with this problem of 
paramPlPr optimization. TIl(' output prl'dict('d by the simulation model will 
vary with the value of ea('h of the parn.meters in the model. If the efficiency 
of tht' modl'l in prl'dicting th(' output of thr prototype is defined in terms of 
all obj('ctivp critprion, th('n the optimal values of the model parameters are 
those valurs which giv(' Ih(' optimum value of this defined criterion of effi­
ci('ney. Til(' choicc bpI \\,pen mod<'ls and thp choice of synthesis must neces­
sarily he 1mbj('('{ive, but tll(' optimal valups of the parameters should be ob­
jN,tiv('\y detNmin('d. If this is dOl1P, w('- will know ,in tpgard to the applica­
tion of My partieular modrl to My particular set of data) that the model is 
nfH'rnting at its highest effi('irllcy and thus may b(' fairly compared with any 
otiwr model o~)(Irnting at its own pl'ak efficirncy for the same set of data. 

Optimizlltion is essentially a mntll('matical idea and is, in a sense, somewhat 
M vnrianep with human nntur('. In our ordinary decisions of life, we "satisfize" 
rathl'r than optimize. As soon Il.S a cl'rtainlcyel of satisfaction or performance 
is obtainrcl, humun judgmrnt is usually satisfied and docs not wish to go to 
complNe optimization. In this contrxt, til(' dccision is a correct one because 
tlH' rtTort ('xpendl'd in going from a satisfactory solution to an optimal one 
may IlP vpry grrat, and the rrsu\ting gain may bp vrry small. Indeed, we make 
tl\{' sam!' d(l('isioll in simulation wlwt1 wr drcidr to compromise on a model 
of !l ('('rt/tin drgrt'e of eompiexity. Howev('f, if wr are uring mathematical 

http:simuln.tr
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nwthods and it digital computl'r to find valUP':; of pnmllwters for our modd, 
tlwll the' ('ITort to optimize' may not 1)(, apprc'ciably grpatpr than that of 
nchi('ving n ('('rtain h'\'C'1 of Iwrfonnancl' alld thl' truly optimal Ilolutioll has 
til<' add{'(1 acivanlagl' of I)('ing unique' or virtually so, 1'11('1'(' art' many caSN; 
.in appli('ci hydmlogy and in hydrologie dl'sign in which tlw (,OIT('ct dl'ri~ioll 
is to halt till' procpss once> a c(,rtain 1(lvl'! of a('cmacy has I)('(ln oiJtnilwd. In 
sei(,lItilie ('('s('al'ch, Oil til(' oth!'r hand, optimization is 11('('('ssary to ('liminat(' 
n.'" IntW\t subjP('livity as possiblp fl'Om til(' r('su\t. 

If WI' tU'£, going to optimizp, WI' ('lin only optill1l;l(I with /,('l'ip('('t to SOIlW 
eritl'rioll, ('lIlt'.SS tt sl)('('ific ('rit('rion is invokPd, it is not ('V('I\ possiiJlp to say 
\\"Iwt 11('1' t IH' optimum hILS I)('PII obt nilwd. ~()IlW hycirologists nrC' ronvinr('d 
that llwy aI'(' sulfkipu t1y e:qH'ril'uc('d (() opt imil.(, by 1H'I':mnnl j udgllwll t 01' t() 
otpimizl' by P~'('; if th!'y an' I'xplieit in this rl'sl)('ct, nobody will 1)(' d('('Piv('d, 
hut VPl')' oftPll tllP :;uilj('('tiyity is implieiL Objpc,ti\'!' (,I'itpria nrC', ho\l'PYl'I', to 
b(, prpfpITI·(1. 

If WI' hayl' ehospn It srwcific' mod!'l, tlH'n tilp pn'dic,tl'ci pstimntl'd output is 
l\ funC'tion of t Ill' in put and of til!' pnranwt PI'S of thtlt modpl. Thus, ill t 11(' ('ns(' 
of a simp\(' llloth'l wi th thl'l'(, parttml'tpl's, w!' could \I'd tp: 

!iilJ =q{.t(/\ , 11, b, c] (S) 

",llPl'!' :ri/l is thl' input, (/, ii, and c art' till' parnnwtl'l'R of tIl(' mod(,I, an I yUI 
is tilt' output prptii('tpt\ by tIll' Il1mlpl. TIll' prohll'm of optimization is to find 
VUllll'S of ll, h, and (':;0 that t1w pn,diet('d valups of 0(1) art' as (,josc' as possiblp 
to till' IlW:lSUI'('ti val UP:; of lid I in sonw SPIIS£' to 1)(' ddi!H'ci. TIl<' mORt common 
eri t l'rilln is thn t till' sum of t IH' squltl'!'S of t11<' di ITprpl1cPs IJPl 1I'('('n t 11(' ])1'(1­

di(,tl'd outputs allli tile' il<'tunl outputs will hI' a minimum: 

(91 

.As nn tt\tPfll!ttivp to using a Ipllst sqUl\fl'S ('ri(l'rion, \\'1' pould ndop( til(' ('I1('by­
slwy crill'l'ion of minimizing tlw maximum ('rror: 

Eta, b, cl = max (O,-lId = miniinum ( 10) 

In this ('fIRp, WI' nvoid til<' O(,('UITPIH'P of m1(l or t \YO larp;<' cI('viat iOI1R ))('( W('pn 
prl'dirtf'd output and llH'll..... url'd output whosl' pr(,;<I'I1('(> might 1)(' (lr('('plpd in 
tll(' I!'!tst ~quilrps eritl'rion, sine!' tlwir I'lT!'ct could ill' Hl1100tlwcI out h~' n 
faithful rl'produetioll ill tl1l' rpmaind('r of til!' I'peorel, 

Anot\wr rritPrioll II'hieh (,Illl 1)(' l1S(,O i ..... mOllH'nl mttt('iling. ,\'!' ('[111 Ray 
!!Ult if a model hns thl' sanw first II ..... tnti..... tiC'1l1 mOllH'llt ..... as til<' prototyp<', 
tl)('1l Ih(' (WO Ryslpm..... ar!' C'cluivnl<'l1t in SOIlW :;pnR(,. i\rtunlly it ('HI) 1)(' prov('d 
that if til!' mompnts of til(' two impul ..... p m:;ponsps !u'p i(lt>ntirnlup to th(' 11th 

1ll0llwnt, thPll thE' ..... yst('ll1H will give' icIl'ntirnl output for any input whiC'h is 

http:lIlt'.SS
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Il polynomial of til(' dpg/'('(' II or Jp~i;' Com:('qupntly, [l modpl Rys(C'm with n 
giv('n numiwr of pnrallwt!'r:; will l"Pp!'oduc(' tlw b('havior of th(' prototyp(' for 
polynomial inputs if th(' yu\tH'S of thps!' part\llwtpr:; ar(' d('\('rrninpd by match­
ing thp tlpproprialP Humiwl' of mom!'nts of tl1<' mod!'1 with thos!' of thC' proto­
typP' 

1.111 

\\ hl'n' a !at',!!;!' Ilumiu'r of pnmm('t!'l's an' ilWO\Yl'd, til(' nwthod of mOllwnt 
matl'1ling is not .suitable' IlI'('uUS!' high!'1' orrh'r Il1nllwnts b('('nllw unl'('lial>l(' due' 
In til(' di-:lofling I'll!,(·t of (,ITorS ill Ih!' tail of till' fuu(,tion on tIl£' \'ttlU('S of til(' 
IlHl 1111 'II ts. Hnw!'YI'I', til!' llH't hod of 1l10llWIl (s ha:; tIl!' gn'n I val u(' that in ('asps 
\\ lIP!'!' t hI' mom!'nts of t lIP Illodl'l :;yst 1'111 ('nn bl' I'xpf(,:-;:;pd a:; a :-:impIp [un('1 ion 
of thl' p:u'nllll'tl't':; of til!' tnodd. tlll'n tl\{· pnrnllwt('l's ('an \)(' t'dativ!'ly I'll:;ily 
dl'rin'd. 

For (,fit('ria SU!'lI n:; Ipast sql111l'p:-: ot' minilmtx (,IT{)[" dil'(,(·t dl'l'ivnlion of til(' 
IHll':Ulll'tl't's may \)(' fn[' from ('asy. In ('('['tain ('US!':;, it is pos:;ihl(' to l'xpn'ss the' 
('l'll['l'i(ln to \)(' minimLwd a:; n flllwtiol\ of til!' parnn1l'll'l's, To dill('t'pntiaU' 
thi:; ftllwlioll with 1'(':;(1('('t til (':teh pamml'll'!' in turn, :-:l't all 111<' r!'su\t:-: ('qunl 
to Zl'ro ancl :-;oiyl' tilt' rp:-:ultin~ :;imuitnn('olls !'qtuttio[l:; to find til<' optimal 
"ahH' IIf till' pal'llIlwtl'l':-:, For nn:.' hut tl1(' :;implp:-;t mod!'l, it will probably b(' 
simpll'}, to optimizl' tlw 1HU'ttlllPt('t'S by using tt sysl!'malie s!'ut'rh t!'ehniqu!' to 
lind tito:-;(' parnnH'I('t' Yaitl!':; whir'l! ~i\'P til!' minimum yniu(' of tl1{' (,rI'Ot' fuue­
lion, :-;I\('h a ,,('ll['elt (('c'hniqu!' giy(,:; risC' In it:; own diJfiruitip:;, whirh will bC' 
dis('u~:-;l'd lalpr in thi:; ,;(,(,tion. 

it i" oftI'll Ill'('I'SS:u'y to dpc'idp \\'1H'tlwl' WI' wi:;h to put hound:; on Ill(' valu('s 
of tllt' pnl":UlWIl'l's, 1\ny mod!'1 with witi('h w(' a(t!'mpt to :;imulat<' tlw prolo­
tYPt' willlH' bnsl't\ to a g[,(,:1t<'1' or It'ss!'!' d<'gl'(,(, Oil our ns:;umptions about tl1<' 
lI,ltmp of tlH' physi!'ul pro('!'S';!'s ill til!' hydroio,gil' sy:;lpll1 und!'l' inv('stigation. 
\\(' lW' t1H'1l faC'('d \\ilh n dih'mma if thl' optimiz!'d valll!'s of til(' parnnwt('I' 
!If this nlOd!'1 turn mIt to IH' physieally unr('ali:;tic. For ('xnmp\(', w(' might 
:-;!'pk to silllllitUP din·(·t slorm runoff hy n ('uscati!' of <,qual lilH'tlr slol'l1gp d('­
nH'I1I", :-;u('h :t mudd Ita::: t\\() paral11('t!'r:-:, tIl<' st(Jrn~(' dplny tinl!' (}{) of til£' 
jlHih'iduai l'it'IllPl\ Is :lJld t hI' Ilumlwr or ('qual !'iPnwnts I n I . 

.\n Hnniy"j;:: of th(' data by mOIlH'nt matehin,g might indi('ute' that hoth 1/ 

uncI ]{ tt!'!' lH'~ul iv!', ~imilndy, WI' migilt in:-:!'r! in to n mo(h'l of a wat C'rsiH'ci 
thI' Horlon iufilt m t ion ('quat ion nne! tlwn Hnd on optimizing til(' parnm('t('rs 
thnt Ill!' "tlltH' (If / turn:; out to Ill' 1,000 f(,pl p<'r ;::('cond, E\'l'n though w(' nrf' 
in 11'1'1':;l!·d in pfl'dkt in~ tlH' (lUI pUI and t Iw unn'alistie' pm'nnw{p}, ynlue's ,giyC' 
a good IlI'l'<ii('tioll, WI' nrp itwlit1l'ci to rpjP!'t sueh valll(,;:: and put bound~ on th(' 
variation of ! hI' parnnw\ 1'1'. This is to bring a :-:ubjPC't iv!' ('1('n1l'I)t into our 
simulatinn nnd t(J impllrt kno\\'l!'dgl' fl'om phy:;iC'tll h~'drology into pUl'amrtric 
hydrllio,!!:y. 1t may Ill' may not h!' tl1I' rigll t Ihing t () do, 

ff til!' rl'sl ript ion (If t hI' parnnwtc'J' to n'ali:-:tiC' ynltH'l'l d()('l'l not in(,f(,Hs(' the 
l']'ror t'tIlle'! llllt 1111H'h ailo\'!, it;; minimum value', tlWIl it is (,(,I'tainly pC'rmissiblp 



172 TECH:\t('AL IH+LLETIX XO.. I-HiS, C8. DEPT. OF AGRlCrL'ITRE 

to usC' the mod('I with th(' r('stricted rang(' of paranwt('rs. If, ho\\,pv('r, th(' ('rror 
funelion is grNltly incrNls('d by r('fusing to allow thc paranwtprs to takp on 
unrpulisli(' vnLue's, tllC'n this muy b(l an indication that tIl(' mockl itRPlf is nt 
fnult and ~hould h(' modifipd or r<,phl('{'d. One' ('onSl'quel1('p of optimizing liub­
jp('( to r(·straint is that till' ma(lwm!lties (!lnd tIl(' computation) I)('('onw mort' 
difli('ult. 1n nil !lnnlytieal solution, partial derivative's must 1.)(' rl'pla(,pd by tilp 
usp of Lagrang(' mullipliprR. If th(' prror funl'tiul1 and r('straintR Mc' not Ii/war, 
Wl' m!ly lH' inYolv('d in l\onlilH'ar progrtlming whi('h nl<'tlIlS s('rious ('omputa­
tiOllal prohh·ms. 1Il U systpmatie sC'areh t('('hniqu(', thC' ('xtra dilIkulty erpatc'd 
by till' illtrodu('fiOI\ of hounds Oil til(' parllnwtprs is not /warly ns s('rious. It is 
importllllt, llO\\'('vc'r, to r('nwmb('r thl\t dl£' imposition of It rpstraint always 
r('sults in NOm(' loss of optimnlity. WIll'rp tl1(' prror fUIl('tioll doc's not vary 
sharply, tll('n tht' ('tTpct mllY not llP :wri<1tls. 

As in all ('ompulalions, our finnl task il'l to inte>rprpt OUI' n':,;ults. In Ill(' 
simulation of hydrologic systpms, it is difficult to know how mu(·h nwnning 
should 1)(' ntuH'lll'd to the' optimal vnlu('S of tIl(' paranwi<'rs found. It is prob­
ably ('orrC'ct 10 say that tIll' iHlswpr to this prollll'm d('ppnds on the modd 
us('d. If til(' /l1odPi iR nn ('xtrpnwly good rpprl'NPntat ion of tl1(l prototypp, tll('11 
tllPn' is it good ('hIlI1('(' that tht' parnml'tC'rs arC' of physieal sigllificancp, :tnd 
tlwr!' is likply to \)(' a rlOl'll' conll(lclion b('(\\'('('11 tIl(' valtl('s of thrs(' physical 
pnrnnwtl'l's und tlH' eorrC'sponciing HC'ld parnmrtrrs of tIl(' prototype'. If, how­
('WI', th(' modl'1 is much mor!' simpl!' than tllf' protot) pP, t}IPIl tll('rr is no 
guarnI\t('p thnt tIl(' parnn1('tprs will ('orrl'spond to thr rC'al physical pnntIl1pt<.'fs 
of tIl(' prnt{)tYJll'. It may \\'('11 bp that a particular panlm(,(pr in thp model is 
Ull U11Utlgam of s('yC'ral parlul1('ll'rs in tl1(' prototypP, but Ihrrp is no guarantpp 
of this. It nuty \)(' clangl'rous to try Hnd givr a dosp physical mraning to some 
of the parnnwtNs foulld by optimization. It is safer to cOllsidpr thesp pnram­
('tprs as tl)(' pnrullH'te'rs of \)('st fit nnd b(' satisfipd with n mod('l which doC's 
what w(' r('qulI'i' it to do, /ulmPly, prpdict the output within n giv('n margin 
of ('rror. 

TI\(' optimization of mod pI parfln1pt<:'rs by a systematic search techniqul' is 
a powt'rful approul.'h /111\(1(' possible by th(' ust' of digital comput('rs. It is, 
ho\\,('ypr, not quitp as ensy as it might at first appear. If you considrr thp 
almost triYinl casp of n two-parnmptPi model, Own the problem of optimizing 
thps(' parnnwtprs subj('ct to a l(.'ftst squarl'S ('rror ('ritl'rion can be rasily illus­
trated. W(' ear:. imagine Hi(' two pnranwters a and b as measurrd along co­
ordinntl' tlXPS and 111(' squar('s of the deviations bptwren the predicted and 
actual outputs as indicnt('d by contours in th(' plane dpfinrd by th('$e axrs. 
TIl(' problem of optimizing our pnramrters is thrn rquiyalcnt to srarching 
this r('/il'f map for th(' highrst peak or thp lowest yallry, d('p('nding on the 
way in whidl Wl' pOSC' t1H' probl('m. 'Y(' have to srarch until we grt, not m('rely 
n local optim\lm i maximum or minimum) I but IUl absolute optimum. To 
('xnmilH' evC'ry point of the plane would br prohibitiy(' rvell to this simple 
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('xnmplr, Tn \IRing a R('urrh t('chniqu(', we' hay(' no guarantee that we will 
find the' tru<, optimum, 

Tlw:;implpM nwthod of sNlrrhing is to start at som(' point on til(' boundary 
and traY!'i paralh·! 10 till' (Jlh!'r axis until tl1(' optimum lin that li11(' is ob­
tailH'd. 1'11(' tiir!'CI ion of sPtlrc'h NUl 1I1('n \lI' C'iulngl'd to n clin'c! ion at right 
!tuglt·s to that ju:;t trllVprs('(1 Ilnd til(' s(lareh ('ontinul'cl until thl' optimum 
along thai lil1!' is obt niIwd. Again t ht, ciir('('t ion ('an Iw ('hang('(l and till' proct'Ss 
n'pp!\tpd until a point has I)('('n nhtainpd, whi('h is tlw optimum in its im­
nwdhttt, lwighhorlHlod. Tlwf(' would hI' !lo guarant!'!', howI'v('r, thai it would 
hI' !Ul alls()lu\t' optimum. This simp\!' nH'thlld of .:;(Iarehing turns out on ('x­
tlminntioll III h(' quilt' ilH'flieil'nt ('\'('11 for n small ntlmlH'1' of pnranwlers, and 
morl' sophist il'llt I'd t('('hniq uc'S haYI' \)(I('n dpy!'lo[wd (6B j (14). Some of these 
urI' basNI Oil tIH' !'I ('('I)('st dl'sr('nt n1l'l hods, whi('h ar(' ('ousid('rabiy morr 
i'fih·ji·nl than tlw univarilt\(' (pdmiqtl<' dps('rilwd ttbov('. HO\\'('v('I', onc(' more 
thilll 1\ f(·\\' p:lranwtprs Hn' involved, ('v(ln Ill!' sophistirtlt('d gradi('nl mt'thods 
b('('onw indJiri('nl ('ompl\rpd wit h il dir(·C't SNlrrh t('(·hniqlH'. 

Wi' snw thnt tlw simpl('st tnodt'l for It total \\'tlt('rslH'd would involv£' Itt \t'tlst 
iour par:ul1l'\('rs and lhnt mod('l:; no\\' IlI'ing d('v!'ioppd and WiNi hav£' morc 
tllnn ~O p:lrntlll'!prs. Ev('u ('lIgin('('[s trnined in (ksC'ripliy(' g('ometry would 
find it hnrd to yisua\iz(' til(' ('omph'xity of tl\(, s('arching ('rhniqu(' in such a 
multidin1l'nsional prohlpm. 

"\ elir!'(,! s('ar('h t('C'hnique has(,d on Hospnhrcwk's nwthod (52) was us('d by 
Dawdy and O'l)ol1lwll for till' systpmntir optimization of the param<'t('rs of 
till' mod!'i !'IHlWI1 in figurp 7 -7 t 2.,,1. TIlt' s(>t\reh through th(' multidimension:tl 
pnrllnH'tl'r sP:l('(' was nm(\t' in a sPqu('I\('P of stnge's. In th(' first stag(', an initial 
:;('( of par:lnwtl'r vnhws Wit!' as:mnwd j nlld SNlrC}l('i; \\,prr madc along th{' 
purnnwtl'r :\XI':-:. At tlll'sb'lTt of (':l('h subsP!jul'nt sh1g<', a n{'w ::;('t of orthogonal 
:lXi'S was ehosf'll for til(' SPllf{'h, til(' lwst dirp('tioll for th{' n('w srarch bring 
li<'tl'nnilH'd from t IH' progn'ss mad(1 in t 11<' prpviolls stnge. During each stag{', 
nWVl'm('nts W('I'(' mttdl' along tllp IH'W axes subj('('t to th('ir' producing an im­
proYl'mPllt in til{' objH'tiv(' fun('tion and following a sppcific spt of rul<,s nbout 
11lt' SiZl' nnd dir('('\iol1 llr mOYI'I1ll'ut along tIl(' tLws. Th(,8(, rul{'s also sp{'('ificd 
",llI'l1 It !'lngP ;-;ho\11d pnd and a lH'W sN of orthogonal t1x('s brgin. Progress 
WIt!' uSll:llly rapid in the' first fiv(' or six ;o;tilgC'S but tailed off thereaftpr. Th(' 
",holt' pro('f'SS \\'I\S rpyitalizpd by st!lrting a Ill'\\' round of stngps \\-ith th{' latest 
pnrnnwtpr vnlu!'s from thp ('nd of thr previous round of stag<'s but starting 
np;ain with th(' paraml'ter axt's as til(' orthogonal s('arrh dircrtions, 

It \\'t1S pusit'r to ohtain rNlsonabl(' llpproximations to the values of somr of 
tlH' p:lrltm<'t('r:; than others. If Ih(' param('ters werp initinlly s!'t with a large 
('rror, $omp of thpm would \)(> within u. fe\\" pprc('l1tagr points of th{' trur value 
llftt'r a singh' round of stllgps, wh(lr('t1s 0111('r8 might show little improvement 
nftpl' 20 rounds, tmd 8om(' might ('nd up further from their true value. A 
pnr!lnH't!'l' Nll1 only bl' r('lldily optimized if it Rtrongly affects the output and 



Ihp I'/I!'('t ('llll Iw isolat('tl in Home' flt.'ihioll. ('Olls('qllPntly, if tIl<' partiC'u\ur 
input for whi(·1t tltp modp\ is t(,;;(l'd do(·.-: not ('all It particulal' pnrHlllP(pr into 
play, Ill!' ('IT('('( of this IHlranH't('r i'annot 1)(' j"lllal!'d or it..; vnlup d!'tprmin('tl 
from thnl parti!'ulal' I'('('ord. 'I'll!' pHmll1ptpr in qup;;\ion ('Ull tak!' any vallI(' 
ovpr It widl' rang!' \\'i thou t a 111'(' I illg (Ilt' objl'('1 i VI' fUIH'\ ion. Tbtl;;, t Iw opl'r-'l­

lion or ('vl'n til!' ('xistpn('p of lill' pnramptl'r for mllximum ('Ilpillary ri;;p ill ilIl' 
Da\\'dy-O'Donn('1I mod('[ ('ould only \)('('0111(' npJllll'('nt if n fl'c'rml was III mbl.l!' 
{'onl!tining It long dry ;';1)('11. ~in{'p Ill(' parnnwtpr;; diffi('ult to (Jptirni,'.(' 1.11' I iii ,~(' 
whieh do not afTI'(·t tbl' output for til(' pnrti('ulur input wwd, failUl'i (ll 1i'1d 
thpi!' valtH's will not llfT!'C'1 II\(' rnodd n;; n prpdi('tor provi(\l'd it is :t,.,·\1 "Illy 
for inputs whi('h (In', hy and In!'gp, of !l similar tYIH' to lhp inpul US(·rilil1· i hl' 
opt imi:mt ion of til(' pnrnnwtp!'s. 

Tllp!'(' is It gn'nl dp(llll1on' work to 1)(' dOll!' bl'fo!'1' tlip ('olllpariRo,: "f imll­
lat iOIl ll1o<i('J:; for hydrologiC' Ryst P/HS ('all 1)(' put on a proppr oi>jP('(; 'II' Im!'is. 
•\ modp\ RI /'lwt urI' 01' U ~('t of par:lnH't ('r vulu!'s that pn'di('1 pfli('i('nlly for 
{J]1(' typl' of input and Oll(' typl' of ('I'itl'rion of fit may prov!' quitl' illl'trieiPllt 
fO/' anotil!'r spt of in!lut datll or Illlotlwr r'ritl'rioll of IH'('di!'ti(Jn, \\,p must 1)(' 
pIpit!' at all tin\('R whut !'ritp!'ion \\'P arl' lI~inK and what typP of output \\'P nrC' 
trying to pn'die'!. Tnhlp 7 l is takPn from U JH1JlPI' by Dawdy alld Thompson 
,2iJi lind illustrntps thl' 1'I1'[,(,t of th!' liSP of <1iIT('I'I'II( critpria on thl' optimiza­
tion JlI'CJ('I'~S. An at tl'mpt wn~ madp to fit tlIP mml!'1 d!'\',,!opl'd by Duwdy and 
() 'DO/\Iwli t() cia tH fot' t Iw ,\rroyo ~('('(), lwar Pnsntll'l1!l. Th!' first obj (>(.( iy(' 
takp/I was to minimizl' tlw sumR of th!' squ:u'PS of tlIP l()ga!'ithm~ of thl' ratio 
{Jf('omputl'd to oi>sl'rvC'd mouthly dis('hnrw's, As shown in II\(' UPIH'r half of 
tabll' 7 1, .I.'...~ trials m~,ultpd in tlw vulu!'s of tlIP oi>jPC'ti\'C' fUlH'tion. 'I'll(' 
eritl'rioll was th('n ('hnngC'd to ()ll(' bn;;('d OIl daily disehnrgp:4 rntlH'!' than 

'1'A UI.E 7-1.- lhsl'lls of thrcr OpUIIl izillg rlll!.~ elurill{f U}.~,3-.i4 in Arro!Jo Srro 
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munthly di~('IUlrg(':;, TIH' IIPX! :300 trinl~ \\"I'r(' mati!' on this bnsis with til!' 
r('~ul t:; :;liowu in !itI' middlp of tah\(' i· 1. Thl' l:t:;t tili trial:; showll oil the 
bottom half of till' tnbl!' i-l WPI'(' hn~pd nn (l !'ritl'rion of Iwak disrharg(·:{. 
For (,:leh trial, nIP v:tlllP of till' obj(l(,tin' t'unctioll :l('('ol'lling to l':wh C'ritc'l'iol1 
WU:; I'Valullt('d though oul,\' till' objl'l'tivl' ('ritl'ri{Jtl irulir(ltpd wa;-; lls('d to >,l'hr('h 
for thl' optimal y:tltw:; of til!' paranwtpl':;, 

\\"(1 ('IUl SPl' f!'Om tubll' i .. l wllPtlll'r an optimizution Ims('d Oil months gop:=; 
anywhl'['p Ill'nr g!'t t ing t Iw dl'gn'p of opt imizat ion whil'h would \H' olJtnil1Nl 
if Wl' ('011('('nl rntl'd Oil daily disl'hargp:; or on lH'Hks. 1t ('all Ill'spm that opt imi­
z:ltioll hU:;l'd lin monthly di:;c'hnrgp,; giyl's valli!'''': of till' paranwt('r:; \\'iti('h IUP 

not too far from till' optimal for daily disehtu'gp:; and tltnl optimizlltion hnspd 
on daily di';('hnl'p:l's givps Valll(''s of tltl' ptlntll1l'tl'rS that :l['l' not ton far from 
t h" opt imal for !nont illy di,.whurgl's. TIll' diff('['('llrp,S, t hough Sl'riO\l~ ('n()u~h, 
0[' [lot PIHll'IlW\I,S, HllWPV('I', ",11('11 \\'(' ('OlHptU'[' tlH' \'a\\I!' of till' ohj i'et ivp flln<'­
lion \\1I('n tIl!' pnrnll1l'tl'r,; arp optimiz('d 011 thp hn,;i:; of Jll'nk.s with tIll' valliI' 
\\'11['11 till' pnmm!'(l'l's aJ'P optimizl'd 011 tIll' btbi.s of Ilwir d:tily or mOllthly 
di,,('h:ll'gl''';, WI' lind n t1'I'nW[HIou.s diITl'rp[lc'!', Thl' ('ritl'rioll for Iwnk mnt('hin~ 
('all IH' n'd\I('l'd to (Ull \l'1l!'1\ optimizatioll i" h:b!'d on tlIP IWllks lhl'm.splv('s 
but {lilly l'Ptwlll':; It valli!' Ill' nAn fo[' optimiztuilllt hnsl'd Oil months and 1.02 
fol' opt imiz:tt ion hasl'd on daily di.,,('\uu'gp's, 

TIIP';!' r!',;ult,.; un' I'xtl'l'llll'ly Intpl'l·,;ting Whl'll Wl' ('ol1sid(ll' (hut what i.s lll­
\'01\'1'<1 IlI'l'!' i,.; not a t'han~(> of mo(h,1 hut nlP['ply a ('hnn~p in ('hoi('p of the 
Jll'rimillf flll\\', whit·1t is til!' Im"i,; of tIll' optimizatiol1. TIl(' modpl is 11, J'(·latiV<'ly 
('ompll'x on!', and thl' ]Htr:tnWl!'['S u,.;pd nil ha\'\' dl'finitl' phy"ieal impli('nti()n~, 
);' I'v!'r!1Il'I!',;;;, it is lIot ('Iqmb\!' of Het il1~ ll~ a ~p[H'rn\-pul'p()s(, mod,,1 for ppnks, 
daily di;;('Il:ll'gp,.;, and monthly di~l'hal'g('s. If WI' urI' only in(I'['(':,\(pd in onl' of 
tIlI'sl' at It tinw \\'1' (·tllI tldju,;t our mod!'1 p:trnnwtl'l's tl('('ol'<iingly, It would 
nl>,tlln· po.'<:-;ib]l' to dplinp n \n'i~ht!'d {]hjpl'ti\'(' fun(,tion ",hieh would tnk!' into 
:W('O\Hlt ('twit (If tit!',.;!' ,;<'pal'at!' obj!'('tin''; in sonw fll~hi()Jl. TIl(' \\'I'i~htillg of 
tIll' <ii/TNI'Il! ohjp(·ti\·(',-1, !tmvp\,pl', would it,.;plf t('ud to 1)(' suhj('rtiv!', 

TIll'n' i" n. ~('()P(' ftlt' It ~l'('n t (!Pal of '\\,flI'k in! Ill' lipId of digi ttll ~imu\a t ion, 
.\ part !If thi,.; "hlluhl hI' d('\'otl'd to a ,.;y,.;t(lnutlie ('xplomtioll of llll' ;;uhjprt 
lI"ill~ hol!l lllli,;p-lt'l'l' sYlltlH'tie datn nnd ~yl\thptil' data with controllPd ('rl'Or, 
It should, fill' l'xnmph'. II(' po;;;;ihll' to dl'tl'nnint' fm[1l tIl(' il1put :lnd output 
r('I'lll'lIs of n ';Y"'tl'm \\'lwtlll'1' 0[' nllt OIl(' or mol'!' thl'('~h()lll,.; m'c'ul' in tlll" ,.;y~­
tl'ill. ,\\ tIl!' :-;anw tinH', anotIwl' part of tIll' work should 1)(' ('OI1('Pl'Ilpd with 
tht' simulatioll {If lipId data nnd tIll' fUl'till'r prohll'm.s il1vol\,('(1. 

Analogs and Physical )[odds 

Tltl' U:'l' lit" nllal{}.g,.; llnd ph)'~i(,lll moll!'ls ('()m('~ wi (hin t 11(' SCOjl!' of pnranwt ric 
hydJ'lllogy "in"!' th!',;!' analog,.; nIHl nUHl!'l" nl'(' u~('d to simulate' tllP t\rtion of 
t1\(' !ll'O!tl(y!'l' ;;),;;\('I)\S, .\n:tl{)~s may ilp diddpd into 1m) tYIl!'s-indirpct 
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analogs which solvr thC' matlwmatical equations thought to govern the phe­
nOmelU\, and dil'{,C't analogs which :lttrmpt to simulate the physic:lI brhavior 
of thr prototyprs by :In analogous physical system. Though physical mod('ls 
hav(' b('('n usC'd for a long time' in hydraulics, th('ir use in simulating hydrologic 
systems gives rise to a number of difficulti('s 'which have not as yet been 
ovrrcome. 

As m('ntioneci above, an indirect analog seeks to solve the mathematical 
f'qu!ttions which th('ms('lv('s simulate th(' action of thr prototype system. The 
mmit wid<,l,v ml('cl type' of indirrC't analog is the indirect electz'onic analog, 
also known as an tUUllog ('omput('r or t\ ditTC'r('ntial :ltl:llyzN'. TIl(' actual solu­
tion of the probh'lll involv('s the standard t('C'hniques common to tIl<' l:lrge 
varlPty of problc'ms for which the analog computPt' is suitable'. In the usc of 
an indil'C'Ct an:llog for hydrologic systPIl1S, tIl(' kC'y ('l('m('nt is the formul:ltion 
of th(' mn,tiwm[tt ieal ('quat ions to 1)(' solv('d, or the synthesis of conceptu:ll 
mod('ls whosp lllatJH'I11.tLlieul <'quat ions can l't"tsily be writtl'n down. This m:ly 
be' illuslrr.tf'd fol' tI\l' casp of n, vpry simpl(' ('onc('ptual modd consisting of two 
linNlr rt'sl'rvoin; in sl'l'i('s. Actually, as will be s('en luter, this particular model 
can b(' ('('adily rt'prps('nt('cl by a simple dirC'ct an:llog. 

For the first lizl('(u' rC'servoir, the inflow (1) und the outflow (Ql) arc con­
IH'CU'd by the relationship: 

(12) 

wlll'rp K is til{' storage delay lime of the rpsez·voir. If two such clrl11ents are 
caseadl'd, that is, ttl'(' plact'd in scrips so that the output from the first (Qt) 
is the inflow to tht' sl'cond, we havl' for the op('rntion of the second clement the 
l'elationship: 

(13) 

where Q2 is tll£' outflow from the s('cond resrl'vo;r. Substitution of the v:llue 
of <it from equMion 13 iI1~o l'qua.tion 12 giv('s: 

(14a) 

01' 

(14b) 

or 

(14e) 
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In setting up an indirect analog for any system, it is wise to follow a basic 
step-by-step procedure (4). The first step in the basic procedure is to draw a 
block diagram of the type shown in figure 7-8 for two linear reservoirs in 
series represented by E'quation 14. The highest derivative in the differential 
equation is assumed to be known, and blocks are inserted to integrate it to 
obtain the lower order derivatives and the unknown function itself, as shown 
in figure 7-8. The appropriate terms arc then combined by elementary arith­
emaHcal operations, also shown in the diagram by blocks, to construct the 
highest derivative in accordnnce with the equation which is being simulated. 
Thus, in our case, the first derivative is multiplied by 2K and both the derivate 
~md the unknown function Q arc reversed in sign before being added to the 
original inflow; the sum of these three components is then divided by K2 to 
produce th(' second derivative. 

Since tht' scalers, adders, nnd int<,grntors in an analog circuit reverse the 
sign of the voltage, the block diagram must next be modified to allow for the 
change in sign; at the same tim<', the individual symbols for the various opera­

a~ aQ 
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FlOCRE 7-S.-Block diagram for indirect analog. 

I 
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lions may be inserted as shown on figure 7-9. It may be possible at the same 
time to take advantage of the posi:iibility of combining several operations into 
one block. 

Aftl'r the block diagram has boen modified, an equation is written for l'ach 
block in the diagram, and the scale factor is detC'rmined for l'nch variable in 
thl' circuit. This scaling is necrssary to avoid ovl'rloading any dement in the 
computing circuit. To do this, it is necessary to have some estimate of the 
maximum value of ('ach of the val'iabl('s. Th(' analog of the system can now 
be redrawn as shown in figure 7-10 and is se<'n to require two int<'grators and 
one opt'rational amplifi('r togetll<'r with tht' nC'cessnry pot('ntiomNers. The 
indil'('ct anl~log hilS the advantage of allowing an extremely rapid adjustment 
of parampt('rs and visual pres('ntntion of the comparison of the simulated 
output and the actual output. It has great advantages for exploratory 'work 
and could be used with advantag<' in hydrologic investigations. A team at 
Utah Stall' Uniwrsity has piollrC'red the simulation of thr toUd watl'rshed 
I'(,SPOI1S(' on an el('ctl'onic comput('l'. TIl(' ~Iark I model contained 46 opera­
tional amplifiprs, thrC'e multipliprs, two fUllction gpnrrators, and 192 po­
tpntiompt('t's. Thp Jlark II mod('1 contains additions to the above compo­
IH'nts togetlwl' with Some nonlil1(,Rr eienwnts and arrangpment for grcRter 
flexibility of opmttion (51). 

Thrre al'p [t val'ipty of typps of dirpct dectl'ical Rnalog. Thpy may be classi­
Hpd us eontinuous dirpct analogs, discrete dirC'ct analogs, or combined direct 
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FIGUHE 7-LO.-Indirect analog for two linear reservoirs in series. 

analogs. 1'11<')' have b('('n us('d widdy in the field of ground water flow (5, 
20, iJ6), but thC'I'<' have also bC'C'n a numbC'r of applications to flow in the un­
saluratrcl zone (13,14,31) and to flow in open channels (32,38,55). Two 
wC'll-known forms of continuous dirpct elC'ctrical analog arE: the electrolytic 
tank and TdC'drltos r('sistance paper. These analogs are used in studying the 
flow thrvugh porous media by utilizing the similarity between the differential 
equations govC'rning flow through porous media and those governing the flow 
of {'[('ctrical purrpnts through conductive materials. For exploratory studies, 
a Rimpk ('lretrolytic tank or Telrddtos rC'sistance paper (or sheets of some 
other conductive material) mt\y he used. In the case of the electrolytic tank, 
more sophistiratrd and accurftte work is possible in both two and three di­
nwnsions. The l1H'thod can hr applied to anisotropic media by means of scale 
distortion. In the cnSl' of continuous analogs, every point in the analog simu­
lat('s thr com'sponding point in the prototype. 

Discrete dil'('ct analogs Imv(> been more widely used in hydrology than the 
continuous typ{'. Such disCl'C'te analogs are usually discretized only in respect 
of til(' space dimrllsion, and time is 10ft as a continuous variable when un­
strudy flow casrs arc studird. Such a discretization is subject to the same types 
of ('rror as arc involvE'd in thE' representation of a differential equation by its 

finitr diffrrE'llce form, 
For problems involving the steady flow of ground water, a complex proto­

type system can be simuln.ted by a direct analog made up from resistances 
(lIlly. Tlwse rrsistancE's may be set out in either a symmetrical or an asym­
m<'trical n('twork and may bE' applied to two-dimensional plane flow, axi­
symmetrical flow, or thrC'c-dimensioua,l flow. For other types of electrical 
analog, it is nre('ssary to drtPl'minc the scaling of the analog carefully. 

Unstrudy flow problems in porous media can be successfully studied by an 
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analog network containing both rl'sistanc€'s and capacitor.s (R-C network). 
In such analogs, the electrical rcsistances simulate the resistance to flow, and 
the capacitors simulate the storage properties of the aquifer. A discrete direct 
analog for the one-dimensional linrar diffusion equation used to solve land 
drainage problpms is shown in figure 7-11. Two types of R-C network analogs 
arc used. Slow analogs (time constants of the order of 10 minutes) record the 
solution of the problem on paper charts, while rapid Or repetitive analogs 
(time constants of the order of a tenth of a second) show the solution on an 
oscilloscope. 

Direct electrical analogs basrd 011 R-C networks have been applied h) 
oth('r phas('s of thr hydrologic cycle brsides thr ground water phase. Because 
the flow through unsaturated porous media elOm be represented by a diffusion 
type equation, it is possible to represent this phase of the hydrologic cycle by 
a similar annJog to that used for ground water flow. It can also be shown that 
a diffusion mockl gives a VI~!'y close approximation to the complete solution 
of the linearized equations fut' unsteady flow in oprn channels. Consequently, 
the same typr of R-C analog Ilrtwork could be used in this case t\lso. This 
suggrsts th(' possibility of simulating the various subsystems of the hydrologic 
cycle by the same type of nrtwork analog. 

~[any othrr typrs of dir('ct discrete electrical analogs have bepn applied to 
surfac{' watrr hydrology. Some of these were attempts to simulate specific 
models of the hydrologic process as in the case of the: electrical analog of the 
~ruskingum (41) and Kalinin-::\Iilyukov (37) methods of flood routing. Some 
parts of the hydrologic cycle can be simulated by conceptual models consisting 
of standard clements, such as distortionless linear channels and linear storage 
elements. 1'hrse elements can, in turn, br simulated by a direct electrical 
analog and the operation of the prototype system studied in this way. 

Figures 7-11 and 7-13 show three simple elemC'nts which could be used as 
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FIGURE 7-11.-Analog for unsteady ground water flow. 
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building blocks in a dirE'ct C'1f'ctrical analog of a hydrologic system or of a 
cOll('eptuul modP1 of that hydrologic system. The I?leml?nt in figure i-ll repre­
sents the typical cl('nlC'nt us('d to simulate a diffusion-type equation already 
rC'f('rred to. ThC'se elE'mrnts can br linhd as shown and as mentioned above, 
morC' than one phase of the' hydrologic cycle' might be simulatrd by the usc of 
such p!(>n1('nts. Figurr i-12 shows thr direct P1ectrical analog of a linear stor­
agr elPIllPnt and the connpction of two such r!(>mentb in sprips. The latter 
arrangrmrnt corrpsponds to the indirect analog for thp same system shown on 
figure i-IO. Comparison of the two analogs shows little similarity between 
them. FigurC' i-13 shows the direct analog circuit suggested by Shen (55) 
for i\ distortioniess linear chann!'l. Such an elrmcnt could be used as part of a 
lag ilnd route modrl 01' similar concl?ptual modrl. 

B('caus(' any function can br expanded in tC'rms of Lagurrre functions, it 
ean be shown thC'orC'tically that any linear system can be represented by an 
analog system eonsisting C'ntirC'ly of linC'ar storage rlC'mC'nts, though the analog 
systrm might nC'C'd to inc'lud(' a largC' numbrr of such elements connected in 
sC'ril'S and in pamllP1. If a particular systC'm can be rE'prcsrnted by a small 
numbC'r of sueh dements, thrn a direct analog with clements as shown on 
figure 7-12 run br constructE'd. 

The basic typC's of direct elrctrical analogs described above can be adapted 
to dpal with spl'cial problrms. It is possible to combine continuous and discrete 
('lrm('nts in thl' one analog. Whil(' the discussion given above is concentrated 
on th£' simulation of lincarizrd hydrologic systems, the techniques indicated 
can be adpated to include nonlinear elements, though this naturally introduces 
certain cvmplexities and difficulties, 

There are a number of other direct analogs besides electrical analogs, and 
some of thC'sp have potrlltial applications in simulating hydrologic systems. 
Thl' b('st known nonell'etrical direct analog is the Hcle-Shaw apparatus or 
viscous flow analog, which is widely used in two-dimensional ground water 
investign,tions. In this type of analog, a viscous liquid is allowed to flow be­
tWe('n parallel platr-s whose distanc(' apart is about 1 mm. Properly used, the 
HelP-Shaw model can be a powerful scientific instrument and not just a piece 
of demonstration apparatus. Vertical versions of the Hele-Shaw apparat.us 
can be used to study such problems as flow to a parallel drainage system, 

--II..------'W\I' 11> 
I 

FIGURE i-l?-Direct analog two linear reservoirs. 

http:apparat.us
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l~lGt'ln} 7-13.--Direct !l!utlog for distortionless linear channel. 

"'hill' horizontal Hdc-Shaw modds can br w,rd to study conditions in a large­
scalI' aquif('r. AnotlH'r analog with possiblc applications in thr study of 
ground walrr systems is t11(' mcmbrnnp analogy, which has been applied to 
somc problems of How towards wrUs. 

TIl(' fact that still oth!'r analogs arr available for hydrologic systems is 
illustratc·d by tlU' rpcrnt d('vplopmpnt by Diskin (26) of a salt-concrntration 
analogy for flow from a wll.trrshpd. It would br a gmvr pity if absorption with 
thr digital cornputrr was to lrad hydrologists to nrglrct thr many uscful tools 
avuilablr in thr form of analogs. 

If til(' spa('r bNwcrn a pair of parallrl platrs is fillrd with sll..nd, or glass 
bt'acls, WP haY(' not a HP!r-Shaw apparatus but a sandbox or granular modd. 
Su('h it drvi('(' is mort' ('orrretly describ('d as a physical modd than an analog. 
).[any problpms involving tl1(' flow in unsaturated and saturated porous media 
('an hr studipd on such a modrl (6). The effect of the capillary fringe is rda­
tiv('ly largpr on such a model than in the prototypP, and this may give rise 
to considrrablp difficulty. 

In tl1(' casr of unsaturatrd flow, therr arr difficultil's in the problem of model 
scaling, but rt:'cent work indicates that tll('.<;e problems are being overcome. 
In one particular version of the granular modd, the filling material is glass 
bt'ads or crushed glass, tht' walls are transparent, and the liquid used has the 
samr trfractive indt'x as that of tht' glass. This enables themovement of a dye 
tracer to be followrd with rasc. Columns of glass beads at used by soil 
physicists in thr study of the problems of infiltration and percolation of water 
in the unsaturatrd zonr. These represent idealization of the actual movement 
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in t h(' soil and as ~u('h an' at l!'mIlIs to simultlt!' thp prototyp(, soil sy:-ltt'm on 
:;1 mplifipd physi(':tl mlni!'ls. 

Prohll'nls Oil tIll' l!ound:u'Y IH'tw('PlI hydmlogy :lnd IJ~Wt1 rhaJUwl hydmulirs 
l'art hI' "I lldh'd b~' thI' U:-P of til!' hydraulic Illot\l'b, for whi('h sonw high':,­
dl'\'p}o(lf'd :tntl \\'idl'ly (('stl'd ('('hl1i([u('s an' nvailahll'. 'I'll!' mmlPl of til(' 
.:. Iissi:-sippi, oPl'i'U t f'd hy tIll' ( 'orps of Ellgin(,prs, halHlll's what is l'ss(' 11 tinlly 
:t hydrol()gi,' pl'Ilhh'm th(, !"!luting- of floods (Ill tIll' ':'lississippi and its (rillU­

taril's. TIll' rl'dlll'tiOJl in till' tinw seak of tIl!' 1110tipl ('OIllPlU'('d with tl\(' proto­
Iypl' ('nahl!'s this mod!'\ (0 \)[' uSl'd for making pr('tiiPtions. :-f:my propolH'nts 
of IlUlll('d('n\ ('llmpulation ohjp(,t tn till' ('('hniqul' of in(rmluC'ing ar(ifieial 
l'()\lp;llI\l'~S t() Pllsun' \'('rifi('at ion of :t hydratlli(' mocll'!. ~UI'II p('oplp s('('m (0 
forp;(·t that tit!' digital "imulntioll of tllp sanw prohl('m ll';I'S n so-('alkd rnllgh­
111'';S cOl'fli('it'nt whidl is mol'(, a I'ppositmy ofunkno\\'lll'ffp('ts than a t'Ou!;hlH'sS 
f:Wlnr. I n many (ligital "inHlhttiolls, till' \'UItH's of :-fanning's II ~t1.!, udju';(ld 
hot h wit It stag!' lIll(\ along I Ill' ('\UllllWI lIIlI il tIll' r!'quirpd tiowllstr('1l1ll c1i:;­
char)!;!' is ohlairH'd. \\ hl'tlu'r \\'(' "imulntp Oil Illp Il~'dl'aulic mod!'1 or Oil !t 

digit:tl I'Clllljlllt<'l', YPJ'irjc'atiClIl is n('('!'s,;ary if oUl' wClrk is to bp worth",hilp. 
In <,itlwl' ('asp, thl' {\(,\··jc'ps uSl,d to I'llsun' vl'rifieatioll arl' not alway,; logic-ally 
(iPfl'tlsihlC' . 

.\n unusual nwdl'l of till' hydrolo!;ie systPIl1 of Lak!' II!'fnpr was t(,:;(PCI in 
It wind tlltlll!'1 at ('"lorado ::-:>t:tt{· rnl\'l'l'sity I.liil. TIll' mod!'l laws w('r!' ill­
Y('';I ig-at I'd Hllll t 11<' ('\':lpoml ion from tlw Ink!' wn;; ;;tl('('('ssfully :;tuclipel on a 
:-mnil "(·all'. 

'I'll<' fillal tYIl(' of mod!'1 In \)(' ('onsid!'I'!'c\ i" a ph~'si('al mod!'1 of an (Intire 
w!tt!'l'slwd. If s\lt'h mod(;1s :tt\!'mpt to do morl' than soiv!' purdy hydraulic 
pl'Ohh'ms on a laboratory ;;('nl<" thl')' run into tt gn·nt nUllll)('r of diffieuiti('s2 
(I;, Jl1, .~II\, Hl'sl':l['eh is no\\' going OIl in a lIumb!'r of ('()untri(''; on tIl(' h!'haviOl' 
hot b of i:lhm·:ttol'y-"il.l' (':\l('!tmpnt,; and of highly in,;trumpnt(,cl outdoor 
"!\l(J(1pj" ('all'hIlWl1tS. \\ hnl has 1l('I'1l n'portpcl ;-in far t<'I1<1;; (0 UlulPrlil1f' th(' 
dilii<-ult jp,; ill\'olwd in tlli,; lilH' of rp,;('arl'h, 1 t may not ]H' po;;sihl(' to Uf;(' Ruch 
sm:tll-~('ajp Jlh~'sil'al l11!l(lpls a..; pn·di(·tion toois ulltil "uch tinw as wp unel('r­
stulld Ill!' inhl'l'l'nt "st'lf-similnriI il'';'' impo,;p(\ on hydro}ogie sy,;t<,m,; h~' g<,o­
Ilwrphnhlgil'tll prr)(,I·';s('s. Xl'\'{'rtIwll'';s, tlIP n'sults from suell pxp<'rin1l'nts on 
Inllf)mtmy l'n\<'hll1<'llt..; !'nrril'd out undl'r ('{HlI rolll'd and r<'jwtttnhlp ('ondilions 
will ",ie·ld ('xtl'l'!)1l'ly u-<<,!\ll dala whi(,1t shoultllmtl to a Iwttpr un(/('I':-;(nncling 
(If hytirnlll,gil' Pl'W'I'S"l'S and of 1hl' mamH'r in whil'll rp"pOllS!' ptll·am!'t('t·s vary 
\\ it it sy..;( Pill par:llllpll'r,;. I)at a from ,;ueh ;;mall-senl!' I [thorn,j my ell teh I1wnt:;, 

\\hil'h woultilH' intl'l'Ilwdint{· IH't\\'('('n synlilptie mallwmnti('nl dnta nnd fidel 
o\lsl'l'y:lt inn,;, should (H'llY!' ('xtn'l1wly lI,;pful for t[',;(ing ol[w1' n1l'thoc,; of 
,;illlUInI it)ll. 

l :.\[\ \U>'\(l,.1. P. l)En':LOI'~U::\T OF ,\:0: AGHI!Tl.TI·HA1. WATEU"IlI';D BY "1~nLTrDg, :.\r.::<, 
TIWsj". Iowa oSt:111' (,,,I.. .\IIlt'''. In;,~. 
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Problems on Simulation 

1. ()is('uss OIU' ptlrti('ular type' of simulatioll in \('rms of til(' phas(l>; of the 
:-:irnulat inl1 pro('Pss (\iSC'lN·;pd Oil p:l~P 1;')0. 

•) ('olltmst till' diIT('n'nt 1ll!'1 hods of simulation from til(' point of vic'\\' of 
1'()t\\'(,lli!'IH'P, 1l{'(,UI'H('y, and stability forsol1w part of tl\(' hydrologi(' t'yelp with 
whit-h you art' familiar. 

:t ·\PPI'ndix tahlt, ;; sho\n; slInw digital ('ompUlpr dala fol' Ill(' linPHr 1'('. 

-"1l(lll';P of till' 1Il1if()/'fll O(l1'1l dHtllnPl. Hopl'fully, this data will ht' lls('d to de'. 
v{'lop a nwt hod (If 11l'pdiC't illg t h(' tillll'-\o-pl'ak for v:t1u!'x of 1t'llgt Its of ii, ,>0, 
and JO() milt·s alld slop!'x of I, :W, and ;-;0 f('('t p('r milt', Whnt xort of rc'gn.ssioll 
un:t1ysis would hI' sttitahlp in this pnrti('ulm ('a,;p, and hoI\' would you go ahout 
:lpplying it to thi...: plll'til'ular probl('m? 

,I. I )(.."('['il>(' ho\\, thI' probll'n\ IHl';l'd in <[Upstioll ;{ mil.dl' Ill' solwd by 
umtlll.!; simulat iOll. 

d. I )('scrilw whnt ""CIltld Ill' nl'('I'S"IL Y if tht' snnw prohll'1l) IH'f'(' to 1)(' snlv('d 
hy a s('ril'S of 1I11IlW !'.''I lPrinH'IlI . ..:, 

Ii. \\'hal ('rit!'1 ia of Iii an' most {'ommonly tlspd in (Ic'riving C'mpiri('ltl ('x. 
pr!,,s.;iollS t() Ii t h;nll'lllop;i{' dn t a? Whal IItll!'r cd (pria ('ollld als!) })(I wwd? Dis­
('(1,;S tlw 1111'rits of lh!' diff!'l'l'l1t {,I'l!('ria, 

i. ('ompuI!' the' l'vapo/'lllion and potl'lltiul transpiration b~' a. ll11mlwr of 
formulas fo[' til!' data giV!'11 in .\PJl!'ndix 'ablp S. Cnd"r Wh:lt ('onciitions would 
you ("ll!'{'! ('H('h ('mpiri('nl formula to work bl;;(? ClUJ you draw a diagram 
ilIns!rn t ing thl' diITI'!'('llt tls,;umptiol\'; mad!' aboul til<' l'('in.tiol1ship hl't\\'{'!'n 
H('tua; and pot!'lltinl transpimlion? 

s Di,;('lI~s t hI' rl'llttionship }wtwPt'l1 a. ('ompll'x simulation of 111<' :;I\owmrlt 
pm!'!',.;:; and It formula I'l'latinp; !II(I ratl' of SIlOWl1wlt to d!'gl'(>(1 days. 

n. ('ollllHIl'P tt nnmlH'r of tIl!' total ('ltt('hl1wnt modpls whi('h havC' \)('('11 

pt'll(lo,.;pd in till' Hknltul·p. Whut ar!' t\lI'il' ('ommOll pknH'nts and hel\\' do tlH'Y 
!Ii IT!' I'? 

10. Dis('\Iss ttl!' I1wthod d('s('rilH'd in Ilw litC'ratur(' (0 o\)tain till' optimum 
ptlr:tnH't pr" for various mod!'ls of (:11 t Iw uni! hycIrograph, (b) ground \\,at ('r 
n''''pOJ1S(l, nud fe) totnl C'ttt('hnwnt r('sponx!'. DisC'll";S hO\\' tlws(' mC'thods might 
Ill' imprnvC'd, Il!lr! I'stimlttl' tIl(' optimum pltranwtC'l's for sOI1W ('xnmplC' in 
liIPrut Ul'1' "'hi('h, in your opinion, hwC' not b('(ln optimizl'd, 

11. Dprivp a din'c't nnd an indin'(,t annlog rrpl'('sentation for both the 
Horton tlud tIl<' Philip C'qulttiolls for infiltration. 

1:2. Draw lip n e]a""ifi(,Htiol1 of tIl(' variou,; t~'I)('s of analog and physical 
mudd" u:,('d in hydrology. 
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LECTURE 8: 

SYNTHETIC UNIT HYDROGRAPHS 


Ll'ctlll'(' 8 iR !rtl'gd~' (/pvotN] to a c!iHC'w;sion of s~'ntll('tiC' unit h~'drogruphs 
as dpV('loppd in elusHieal hydrology, und tiWll aH moc!ili('c! with thc' l'm(,I"gf'IH'P 
of tlw systf'ms appmtlC'h, 'I'll(' ]l'etUI'(' is intpnded to H('t'V(' til(' snnw purposp 
[01' silltu{a/ioll HH Ipetul'(' .~ Oil "Cla::;sic'nl~Jpth()d::; of RunofT PI'Niiction" was 
in t Plldl'd to RPrv!' 1'01' (llwiYliis, 

In both ('lasHieal hydl'ology nnd pn.ranwtric h~'dl'lJl()g,\', simulation tc,('hniqups 
\\'('1'(' firHt de'V('/OpN] fill' HurrlH'(' \\'at('r hydrology, ThuH, in thiH 1(,(,turC' w(' will 
1)(' primarily ('OIH'('l'Jlpd with til(, dirf'd HtOl'm runolI and itH rdatiolUihip to 
prl'eipitntion ('X('PSS, Thl' problem of syntiH'sis is to (kvis(' a system which will 
ol)('rat(' Oil. an input, ;1'(1), to rl'pl'Odu('(' til(' J'('quil'l'c! output, y(t), to a givC'1l 
dl'gl'e'e' of tH'eul'!U'Y, 'I'll(' dl'('am of thl' appli('(1 h:w\l'Ologist iR to 1)(' abk to 
fon'east dil'('C't storm l'U[lotT from a eatehnll'nt map; this mC'ans b('ing abl(' to 
pl'l'diet til(' unit hydrogl'llph from n, ('ontolll'l'd map (pl'('/'l'rably with in­
formation 011 soil type's) \\'h('l'(, no rN'Ol'ciH aI'(' a vailablp for thr derivation of 
n uuit hydrograph, 

Types of Synthetic Unit Hydrogl'aphs 

'I'll(' Htandnrc! syntll('tic' pro('('c1ur(' hUH bern to dpriv(' a Heries of unit hy­
dl'O~l'llphs in 1'0l1lr sysh'matic fashion for wnt('rS}l('ciH with ackquate recordH 
and tl\('1l to ('{)ITl'lnt<' thl's(' unit hycirogrnphs in somr way with tIl(' watershed 
ehnr'tH'll'riHti['s, Thl's(' ('OlT(']ationR 111'(' th(,11 us('cl to pr('ciict tIl{' scall' and shape 
of the' ullit hydrograph for sonw \\'atl'l'slwd whos(' chamctpl'isticr, arc' known 
hut for whieh 110 n'('ords of outflow arc' availabh', 

In ('ll1~Hi('nl hydl'O]ogy, H~'nthrtic unit h.\'cirogrnphs d('v('lopl'd along two 
main lill!'H, both of whieh ('onvrrg('d at thr tinw of til(' ('nwrgenc(' of parametric 
hydrology, Tl1<'s(' two lin('H of ci<'vl'lopm('nt aI'(' shown in figure 8-1. The 
nH'thoc!s at tlU' ll'ft-hnnci Hick mack tIl!' general assumption that each catch­
nwrd' hac! a uniqu(' unit hyclrogmph. and thos(' at the' right-hand side made thl' 
gC'IH'rnl assumption that all unit hydrograplu:; might b(' represented by a single 
('Orv(', or a fnmil,\' of (~urV('s, or [l singk ('quation, 

'I'll(' first lin!' of ci('v('lopment (16, 44, 45) derived from the rational method, 
(S(,f' l('cturr 4, pp, 75-101), About th(' year 1920 (54.), the rational method 
\\'n" mociifiN\ to inrluclp th(' efl'ret of nonuniform rainfall distribution by th(' 
usc' auci tin1C'-al'(\[l eurvl' or thl' tinw-aren-concentration curv(', This modifica­
tion \\'nR, in dT('et, an nttf'mpt to syntlwsiz(' tIl(' rpspollse of the watershed on 
tIll' basiR of th<, dml'l1etcristi('s which coulc! be read from a map, By using a 
('Oil tourl'ci map and tIll' :'IJanlling formula, it was possible to construct the 
tinll'-ar(,:H.'ollc('ntratiol1 curv(' or til(' tinw-arca-curve, This was assumed to be 

100 
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FIGUHE 8-1.-Type of synthetic unit hydrogr·\ph. 

the instantaneous unit hydrograph (IUH) (or the S-hydrograph) for the 
wn.tershed involved, though the unit hydrograph method was not to be 
ckveloped for another 10 years. Since, in each case, the time-area-concentra­
tion curve was built up from the information available for the particular 
catchment, each unit hydrograph was unique. In the 1930's, Zoch (r1)-and 
afterwards Turner and Bourdoin t65) and Clark (9)-assumed that the 
response of tll(' watershed would be given by routing the time-area-concen­
tration curvE' through an element of linear storage. In this case also, each unit 
hydrograph would be unique, but the variation bei .'teen them would be 
['t'duccd and differences in watershed characteristics smoothed out to a greater 
or lesser extent d!:'pending on thE' degr!:'e of damping introduced by the storage 
routing. 

On the otlwr hand, tht' second lint' of development tended to ignore varia­
tions in watershed characteristics and in the unit hydro graphs. Thus, we find 
in the hydrologic- literature a number of curves which are presented as giving 
the uniqu(' shape of thE' unit hydrograph. One, by Commons (12) was pub­
lished in 194~. Unique representations of unit hydro graph shape were also put 
for'ward by 'Villiams (69), thE'SOS (68) I and others. These assumed, in effect, 
that there' is 011(' shap!:' for the unit hydro graph, though in most cases the scale 
is still left fn'!:' and the specified shape is given in terms of dimensionless dis­
chargel'l (for example, qlqmax) and dimensionless time (for example, t/tpeak). 
Since the volume of tilE' unit hydrograph is conventionally taken as unity, 
ther£' is only on(' parameter to be fixed to cletermine the unit hydrograph. All 
that is r!:'qllirpd in this empirical curvE' approach is to know the time-to-peak! 
or the peak rate of discharge, and then to use the standard shape of unit 
hydro graph to determine the unit hydro graph for the watershed. This is in 
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dh;tin('t ('ontrnRl to til(' timr-!u'('a rurv(' nwthod whrr(' all the' \\'atenllwd 
information must l)(' used. 

AI' fu!'th,,!' studi('R \\'('re' mlldp of Ryntlll'tir unit hydrographs, it waR realized 
that tt onp-pnrnmetl'!' nH'thod \I'nR tlot suffieient!y fl('xibl<' and thnt t\\'o­
pnranwt('r nwtbods \\'('1'(' rNlulrpd for acl('<[Ultt<· !'('pl.'psC'ntation, TI1(>s(' would 
l'('quin' thl' 111'(' of a fnmily of rlll'VPR from whi('h thl' unit h~'dl'()gntph rouldlw 
tnk(,ll. Rin('l' it iR ('ilRiC'r to t'('pr('sl'nt a two-par'nnwt!'!' modd by an equation 
mtlH'r th::u: !. fnmily of (,UI'V('S. ttl!' nalural clt'v!'lopnwnt of thiR !lpprOlWh was 
towardR til(' suggl'Rtion of C'mpi.rienl <'<Illation:; whi('h wonld r('pI'pspnt all ullit 
hydl'Ogmphs, It i::; l'('mnrkabll' that lwoph· \\"Ol'king in many clifTer('llt ('ountz:ies 
all hll'lw(/ towards til(' s.\tnw l'mpiri('al l'quntiun for til(' r<'prC'R('ntati(jn of th!' 
unit hydl'O)!raph. 'I'll!' ind('pPlIdl'lu'(' of thi;' dl'vplnpnwllt is proypd by till' fnrt 
tim! th!'y PXlll'('SRl'd this singh' <'quation in diO'l'rl'n{ forms, TIll' equation in 
qUl':-,tion Will' til(' (\\"o-pnrnnwtpr gumma distribution or Pearson tYP(1 III 
pmpiriC'lt1 distribuliull. 

AIJOul I;") ,\'PItrs ago, thl's!' appHl'PlIt!j' quit(> s('parnt(' lin(ls of drvrlopnH'nt 
sturt('c/ to approlH'h (lIlP ,1;\ It!H'r, ()'l{plly, XURh, and Flu'!'l'1l workillg in til(' 
lrish OfIicl' of Public' \\'orks found that tll('I'(' \\'as l\o ('sR!,lItinlloss in n('C'Un1ey 

if tIl(' l'(Jut('d tinw-Ill'l'lt-eoll('pntration ('urv!' Was l'Pplacpd by a routNI isoseelps 
lrianglP q!Jl. In tlwir {'Itrl~' \\'Ol'k, this group had followed til(' appl'Oach of 
Clnrk i m /tnd laboriously d('v(llopl'd a tinw-lln'a-C'onrl'lItrntioll C'mv(' for each 
('nt('ilnH'nt and tlwn l'Outl'd through II lilH'nr stol'l1g(' in orcipr to obtain tlH' 
n:r·{. If til<' individunl tinH'-nl'pn-('on(,l'lItration cmvps for natmal waterslH'cis 
could lw r<'pluc'c'd by i::;os('('I('s tl'iangl(,s without seriousdistortioll of the 
rl'sultillg unit hydrogmph, this WHS an inclirlltioll that til(' smoothing of the 
lilWal' rPtwrvoil' wns sUeh that tl1(' individual variations in catchnwnt char­
llrtf'risti('s \\,pr!' rpll10vpd by routing. Thus. tlw lill(' dpv!'lopment which started 
(Jut by tl'(lat~lIg l'v('r~' unit hyclrograph as uniqUf' had bpcn modified so as to 
l'<'pI'C'$('nt ('neh unit hyclrogmph by n. two-parnnwter system, on!'-parameter 
lwing nl'C'dpd to fix til(' ba>;!' of t IH' triangle' tT) and thl' other tIl(' storage delay 
timp l K) of tlH' lilH'Hr r('s(,l'voir, A soml'wbat similar approach was adopted by 
till' ~C~ though. in this ('asp, the' triangJr was HonisoscelC's, In our modern 
tc'rminology. lind the' unit hydrogmph by routing a triangular inflo\\' through 
a linpar r!'servoir r!'pl'('sents using a ronceptunl model for thC' rUH, 

Whil(l this clt'v('lopnwnt was taking place among pxponents of the routed 
rill1C'-ar!'a ('ury(' apprOllch, there was a similar devplopment among those who 
[ollo\\'c\d tIl(' tradition bas('d on empirical curvcs and empirical equations, 
About 10 or Hi Yl'nrs ago, .rapunrse hydrologists (56, 61, (2) attempted to 
simulatp tlll' r('sponsr of riv('L's by models consi:;ting of one or t,,·o lineur storage 
('lc'nwnts. Following this lilll'. Xnsh (46) suggpsted the two-parameter gamma 
distribution as ha.ving thc gellPml shapl' requil'rd for tIl(' IUH nnd pointed out 
that thr gnmma distribution could bp considered as thr impulse response for a 
('us{'nde of equal linear reservoirs, Hp suggested that the number of reservoirs 
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('ould br takpn a:; llollintegrJ1I if lleC('SS!U'y, In this way, th(' Rr('ond trnditiol\ 
also arriv!,d ilt a ('onc<'ptulli modrl but in this case, a different onr, 1'11(' rout<,d 
trianglc' had two plH'nmpte'rH and grl\pmted a fBmily of CU1'VPS with a particular 
shapp dup to the· natlll'(, of HlP modP!, Similarly, the cmicndo model had two 
par!lnlPtprs-tlw numlwr of rrsrl'voirs n nnd thl' storagp cIt'illy tin1(' of each 
K-nnd gPlll'I'lltNI a fn.mily of shap('s s~)(>eific to thh, mocie\. 

In H,5\l, Doogp ath'mptpd to ci('vl'lop a genC'l'al l'epl'l'sentation of tllP unit 
hydrogmph basNI on the' :.\[uskingum mC'thoci of routing, When this did nnt 
Pl'OV!' sntisfurtOl'Y, till' nSHumplioll wus macip that til(' translation and stol'!lge 
P[PllWllts in till' watpl'slH'dH ('ould bc' s('parnted and the aetion of til(' wlLtrl'shrd 
r<,pl'l'l,wntpd by lill(>ul' ciislol'tionh,ss chn,lllwis and lilH'aT storag<, ('It'un'nts or 
l'('sC'I'voil's (171, This l'Ppl'rH('ntpci a mol'!' ~elH'l'll1 type' of ('Oll('pptual modl'l 
than til(' routed tl'illllgip or tlw enscacIp of l'l'srl'voil's and, in fnet, ill(!ludrd til(' 
two of t llPl\1 n~ HI)('('illi casps, 

On('(' this stllg(' had Iwell l'ea('\1('d, thr Wily was open for attemptH to rppt'r­
S('lIt tIl(' ullit hytil'Ogl'llph by all typ<'s of ('oncpptunl mocil'ls, It may h(' dnn­
ger()u~ to think of tll('s(' C'OlH'pptual tno(klH HS llnything mor<' than an attempt 
to simuitlt(' til(' \\'a((,1:Hh('(\. l)oogr \ 1/) WllS quit!' COllvincrd that th(' lineal' 
~t()rng(' ('I('m('nt~ wili('h \1"('1'(' part of til(' propos('d genel'lll model hlld II relll 
physieal llwaning. ~O\\' II(' is by no tn(,[tn~ so surp, It mny b(' that il break­
through ill un(\('l'Rtnllditlg til(' morphology of \\'ftt('rsl1('ds would in thp future, 
allow n dosC' link to 1w ('stllblish!'d lwt\\'('ell the naturr of the prototypr and 
til(' stl'urtul'(, of Ul(' optimum simulating systrm. :.\ [C'anwhile, it is safer to 
think of tll('sP mocipls l11('l'ply as attempts to simulate and to judge them by 
thPir prrfOrIrlllllC'C' in doing so, 

Time-AI'ea lVletbods 
It i~ instl'llC'tiw to rp\'ip\\, tIl(' subj('c.t of syntll('tir unit hydrographs from 

it~ origins in the' tinw-nn'll wrsions of th(' rational nwthod which \\"err ill use 
\'\,('11 lwfor(' tlw unit hydrogrnph method waR dis('ovcred, In this way, wc can 
('{)lnparp til(' IlPpl'oaC'hps of til(' l11odific,d rational method, classical empirical 
unit hydrograph nwthod:::, and modpl'll n1('thods of parametric hydrology to the 
snnw problpm llnd to th(' various l'lt'mrntR of that problem, ~With thC' hindsight 
a!Tordl'd to UR by our knowlecl~<, of unit h~'drograph methods and of thr ncwcr 
llwthods of pnranwtl'ie hydrolog~', we can recognize thc earlier methods us cd 
ng s~wdal easps of th(' Int('l' npproach, 

As llwntiollrd in Ie('turr 4, pagps 79-84, tIll' original rational method was 
intpndNI for predicting the maximum dischilrg<, from a catchment ilnd was 
not ponct'l'lwd with the prediction of thl' whok hydrograph (7,34, 40, 43), 
LatPl' d('velopmruts of tIl(' l11t'thod allowcd for vilriations in rainfall intensity 
during thp dE'sign storm and, in doing s\), enablC'd a full hydrograph of runoff 
to lw dl'v('lnppcl if required 1I J, 24, PH), 28, 30, 50, 54, 55), Othcr dcvelopments 
1l11()\\'('d ci<)tt'rminlltiolt of thl' question of whether tl storm centered ovcr part 
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of til(' tttl'a might not give' a, grelltel' penk (uno!! than one spread over the 
",holt- of til(' ('atchnwnt arl'il (21, 44, 52, 6JJ. Thl'se vnriations of the rational 
nH'thocl al'(' ::;ummariz('cl H::; follow::;: 

T!lP(' 	 AlIlhol's 

Clnssi<'tli rntiollnl method. , .... < full uniform 	 i\lulvuny (11'50) 

l(uiehling (IS1'O) 

Chnmicr (IS07) 

Lloyd-Davies (UlOG) 

•Time-urea .. , , < full hYJlothetit'tll 	 Hos~ (1021) 

Rouseulp ( Ul~7) 


Ormshy ( 10;32) 

Hnrt (l9:!2) 


l'ritictll 	 Hawkcn (1021) 
Judsoll (10:32) 

typical 	 Colemtln & Jnhn~()n (lO:H) 
Lalll'cnson (lOa2) 
.Tens (10·11') 

'Tllll~l'nt' ll1('tholiR. IHlrtinl lIniform 	 Reid (102Uj 
Riley (10:31) 
Escritt (1050) 
Munro (105G) 

Itl l\l:.! 1, HoI';:; (.'i.1) HUiJ;f!;pst(,cl that a hypothetical Rtorm be derived from the 
('lll'\'(, of rainfall inll'tlHity V('['HUS duration and tlH'n uHed in conjunction with 
thc' tinw-nn'n-('(JllC'l'ntrlltion diagram to pl'('dict the maximum ratl' of runoff 
and, if lWe'd b(', til(' whol(' hydl'Ograph. In nn appendix to Uoss' paper, Hawken 
! 2,1) sllgg('stl'cl introdw'ing n faetor of :;:ar('t~· b~' shufHing the unit pl'riods of 
ntinfnll into n ('ritil'nl pnth'l'll of storm, that is, 0lH' in which thl' most intense 
rainfall would hI' ('l'n(l'I'('(1 ()v('[' til(' rnaximllm ordinate' of the time-area­
('(Jll('l'lltration purv!', till' H('c'ond most intC'!1s(' rainfall over th(' second highest 
ordinatl' of thl' ('U l'\,(, , tlnd so on. While' til(' method::; proposed by Hoss and 
Huwk('n ('nn giw saf(' valu('s for dpsign, tll(')" would, of th('ir nature, tend to 
oV(,l'P;;timatt' til(' twak rntl' of l'lmotT. In 1931, Coleman and .Tohns(in UJ) 
:-;uggC':-;t('d that tllP pattl'l'll of thp storm rninfalllw balwcl on typical storms for 
til!' tU'p(l un(\C'r iIl\y(':;tigntiotl. 

t"nd('1' I'Pl'tnin ('llll(\itilll\S (",hidl m'is(' mostly ill urban catchments) the 
runoff (';;timatpd by tl\(' rational nwthocl for part of tlH' arpa may exceecl the 
!'lllwfi' p;;timatt'd hy tl\(' sal1W l1wthocl fO!' til!' \\'holt' arC'tt. Spl'cial techniques 
\\'('1'(' c\pv!'lolWd \\<Il('l'(' tllP rainfall illt('nsity-duratiol1 rC'itltiol1ship was assumed 
to IH' of tl)(' form; 

. a 
1=--	 (1)

b+cl 
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wh('l'(' i i~ the Itvcrug(' rninfull intensity; t the duration of rainfall; and a, b, 
and cure empiricul ('octtioi<'uts, In 1,iUch cuses, tllP pm-tiuJ area giving the 
greatest estimt.ted nmotI can be determined by drawing a tangent tu the 
tin1P-arNt C:UI'Vl', thus giving rise to the nllme "tungent method" for such 
t('dmiqu('s, Where the minbll formuht i:,; of exponential fonn: 

, a 
1.=­ (2)

tb 

tlw C'ritical partial tU'Plt mny be found by till' use of a serie:,; of overlay cm'yes 
l21, 44), TIl(' erit;cnl nI'Plt mny 1t!Bo bl' [ound by locating tht' intersection of 
til(' two eurv('s !!;ivl'n by th(' tinw-IU'l'a-C'tll'V(' (sealed lip by a fadO!' of b) and 
tlw pl'Ochwt or til<' ti,1l1l'-al'ea-oonel'ntl'lltion eurv(' and til(' tin1(' elapsed, These 
tinw-IU'('u, nwthocb w('r(' widely applied in urbull hydrology and, to a lesser 
('xtt'nt, in til(' hydrology of agrieulturnl \\'tttt'l'sht'ds, 

TIll' tinll'-arN1 vnriations of tilt' mtional nwthod (known in the Russian 
litet'lltlll'P ns !!;l'nt'tic or iso('hrOIll' nwthods) wel'p aetu!tll~' erude methods for 
dl'wloping synthetie unit hydrogmphs, Till' h.vpotlwtical or typical storm was 
plottl'd to til(' sanw senll' as till' tinw-arC'a-('oll('('ntration curvr, but in olle 
(,UH(, till' tinH' senle was plott(·cl ill a rl'v('rsr dirt'etion, Th(' two curves wrre 
tlwll slIIwrimpospcl, and thp pl'oduets of eOlTl'$ponding ordinates taken and 
sumnwd to!!;<'tlwr to obtuin til(' runoff at any givl'n time, ThE' runoff for any 
pal'ticular tinw WitS obtainNI by superimposing tlH' zero point of the reversed 
rainrnll-intl'nsity ellrv(' on till' point of tIl(' abscissa of the' tim('-area-concen­
tration ('urve C'orl'psponding to til(' rt'quil'ed tin1l', By shifting the two curves 
rC'lativ(' to (JIlP nnotlH'I', l'Hough points ('ould be dC'tcrmined to givr a. repre­
sentntion of thl' whole hydl'ogmph of runoff for the pattern of rainfall intensity 
us('cl. This. in dIee!:, was a graphical mrthod of carrying out the mathematical 
pro('Pss of l'<ll1volution, Th(' time-al'(,Il-coneelltl'ntioll curve in such methods 
has tlU' S[LIlW fUlletion ns til(' nTH in unit hydrograph procedures, Thus, the 
tinw-lln'n-COlH'l'ntration c'urve, how('vel' found, wns in fnet a synthrtic unit 
hydl'ograph, 

If thl' tinw-arcn-C'oncentmtion cur¥(' was based merely on an estimnte of 
tilt, tin1l' of tl':l.l1slnti(m (lver thl' sround nnd in channels, then the rrsuits 
obtnill('d tl'nci('d to ()vrr('stim::\.tl' the peak ratl' of disehargC' from til(' watershed, 
This WtlS only to 1)(' l'XI)('('ted sillee the p~Iects of surface storage, soil stOl'llgc, 
and e1mllud stOl'!l!!;(, an' all iguored, and the tinw-area-collccntl'lltion curve 
WilS bnsed pur!'ly on translation, In practice, drsign ellgille('rs S00n developcd 
WHyS of avoiding till' t('dium of constructing (L timt'-arcu-concentl'lltioll curve 
for <'He'h s<'parllt<' ,mtl'rshpd, "~h()re tlwy \\'('l'E' intf'l'estC'd only in the peak rate 
of run()~I, thl'Y ci('vplopl'd C'mpirical formulas for the timc' of concentration 
(lr) und for till' C'ol'fficient of runoff (C) in thp equntiOll: 

(3) 

http:vrr('stim::\.tl
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\\'1lCre Q is the peak discharge, A is the area. of the catchment, and ·i is the 
rainfall intensity for a dumtion equal to th(> time of concentration, Ie, and for 
the 't-lHrticulur frequency of recurrence r.nosen for the design. Others derived 
the timc-urea-concentration curve but, realizing that their values of runoff 
WCl"(' too high, used empirical values for the time of concentration to correct 
the time scalf' of the tim{'-area-concentration curve. This wus possible because 
tIl(' tinw ot" concentration is equal to the base length of the time-urea-concen­
tration curvp, that is, the IGH. 

In urban design, rulps of thumb for estimating the time of concentration 
\\'Pl'(' used. TIl(' tinw of concentration "'as usually taken by calcalating the 
timp of tmvpl in the sewer and adding to it an inlet time, which usually is 
within thr rangr from 5 tn 30 minutps. In sueh urban catchments, the coeffi­
cient C in equation 3 depenciE'd largely on the amount of impervious area in 
the eatehn1('nt and was also nJIcet('d by any storag(' in the system. A typical 
pmpirical fOI"lIluia for th(' value· of C was on(' which related the coefficient of 
runo ff (C) to the numoer of houses per acre (N) in the following way (21) : 

C=vN/lO (4) 

Th(' rang(' of coeffiei(,I1ts normally used [or different types of urban areas 
ean 1)(' found in standard refprenc(' books sueh as th(' American Society of Civil 
Engitl('!'rs ".:\Ianunl on tIl(' Design and Construction of Sanitary and Storm 
SPW('fS" (1). .:\ [01'(' sophistieated methods have been developed in recent 
years ror tIl(' dl'sign of storm wah'! s('wers, but the discussion of them is outside 
tIl(' scop(> of this I('('ture. 

For agri('ultural catchments, n, commonly used formula for the time of 
concentration is that of I\:irpi('h (31) : 

L)'0.77 
t,=0.0078 (S (5) 

\\"Iwrp to is th(' timt' of /'onC'('ntration in minut('s, L th(' length of flow in fc('t, 
und B is tIl(' ground slopl'. Tht' eocfficiellt of runoff C may bc related to a 
number of f!letors by: 

0=1.00- (CT+CS+Cc) (6) 

wh('f(' CT vari('s invt'rsely with th(' slopt' and has values between 0.1 and 0.3; 
Cs vRri('s b('tw('('n 0.1 for a tight day and 0.4 for sandy loam; and C .varies c 
with the' V<'grtal C'ov('r b('tw('en 0.1 for cultivatl'd land and 0.2 for woodlands. 
Th('sl' r('marks on thl' rational formula arc made not as an encouragement to 
its usc but as il background against which to judgl' tIl(' further development 
of sYlltll('tie unit hydrograph methods. 

As inclicat('cl on figur(' 8-1, th(' tim('-area methods werc, for unit hydrograph 
purpOS('S, repillC'cd by a llwthod in which th(' time-art'a-concelltration curve 
wus rout('d through a linear r('st'rvoir. Zoch (71) put forward a general physi­
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cal theory of streamflow bns('d Oil til(' Hssumption that, at any tinw, tIl(' ratC' of 
dis('lutrgp wus proportional to tllP aTl10unt of rainfall n'mainil~g within the soil 
at that tinH'. H(' Ulutiyz('d runofT du(' to !1 uniform rainfall of finitp duration 
and obtainrd th(' equatiollt-1 for four s('parat(' segnwnts of tlH' hydrograph. 
Zoch solv('d Ul('S(' pqullti()!\~ (or two simplr cnses-fl, l"('('tangular tinH'-area­
('on(,pntration ('urvp and a triallgular tinW-llrell-(,OIl(,pntmtion curvC'. He 
pointed (Jut that tht' ('xtpnsion to till' gpll('ral ('as(' would involvp Ill(' intpgra­

tion of a fun('tion of til(' tYlw: 

(7) 

whe1"(' let:r) r('pr('sC!lts tIl(' tim('-nrNl-eollc('ntrntiou curve and j{ it-1 a ('onstant. 
H(' sugg('sted tlll' usc' of serif's approximation or nun1!'rical. integration. 

Horton (27') introdu('('d tIl(' iciP!t of tl~l' virtual duullH'1 inflow graph. This 
WilS 1m att('mpt to elpriv(' from thl' outflow hyclrograph !l simp\(' form of inflow 
hydrogntph whkh wlwn l"Outpd through a linear r('t-1('rvoir woule! give thc 
outflow gmph. '1'1)(1 start of the elullllwl inflow WllS takpll at tll(' same time as the 
start of chnnn!'! outflow iUld tIl(' ('nel of ehu11lwl inflow at til{' time corrrspond­
in!~ to th(' point of contmfl('xurp on tht' recC'st-1inulimb of th<' outflow hycirogruph. 
This, in faet, repn's('nt('d till' pstimation of the time of ('nncentration from 
tll(' outflow hydrogmph. Brcm.ls(' of til<' furth('r lls!5umptioll of routing through 
n singl(' stomge elel11C'ut, the r(,('pssiOll limb of th(' virtual channel inflow 
graph hac! to pnss through the peak of +IH' outflow graph. Th,' only remaining 
('ondition WIlS that til(' volume under tlw inflow and outflow hyc!rographs 

should bp tilt' samc. 
Clark (9) sllggpstpd that tIl(' unit hyclrogr11.ph for instantaneous rainfall 

('ou!d Ill' dNived hy routing th(' tinw-area-collc('ntration curve through a single 
pl('mC'nt of lillPar stomg(\. Physically, this is ('quival(,llt to Zoch's formultttion, 
but tlw f'<[uations al'l.' simplifiNi by rpducing the rainfall duration to zpro and 
!"(\pllH'ing the numericnl integmtion of th t' tprm in pquation (9) with th(' reser­
voir routing pro('('dme. The Z()ch-Clark method clearly representpd an 
llcivllnCl' ()vpr tIl(' tinw-nn'a or isochronp nwthods, ",hieh ignorC'd storage 
p[l'pett-1 Hnd onl~' took a('coullt of varintions in the tinw of transltttion to the 
(Jutil't. The allowanc(' for storngp throughout tll(' catchment by a singk respr­
voir at the' outlet seems a highly simplifying assumption but, neverthekss, a 
st('p in th(' right dirpction. 

At-1 nwntioned earli('r in this lccture, O'Kelly and his coworkf'rs (49) rpplaced 
tiw timl'-arPll-('on('entrntion curw by an isosceks triangle alld thus produced 
tllt' nIH by routing an isosc('l('s trinnglp through a linear reservoir. This was, 
in <'fIt'ct, It (Iombination of th(' Zoch-Clark approach with Horton's virtual 

('hllnnel inflow graph. 
Th(' methocit-1 of Zoeh, Clark, and O'.K('lly only becnm(' synthetic unit 

hydrogrll.ph n1Pth[)d~ in the r('11.1 Selli;(\ of the t('rm wlH'n empirical rl'lationships 
lwtween t-111tlW of the parnnwtprs of tIl(' pro('('t-1S and thc catchment chamcteris­

http:hydrogrll.ph
http:hyclrogr11.ph
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ties W('I'(' d('l'iv('cl. An empil'ical r('lationship is l'('quir('c! which ('Ol'l'datps the 
bas(' or til(' tinW-Hl'('IH'oncNltration dingmm (that is, til(' time' of eoneen­
tmtion) to ('atehment rl1!u'aetrl'isti('s, Ex('ppt in til(' elUlr of O'K<'lly's method, 
HOllW llwthodis requirrcl for ('Htimating tlw shapt' of til<' till1('-llrea-eOnccll­
trntion diugmm itself OI\ee til(' blls(, length has been cil'tf'rmined, Finally, a 
nwthocl of ('stimMing tilt', storage fHetor (k) must bp pr('scribpd, In til(' case 
of a gagc'c1 eatchllwnt, til(' vn/up of tht' storage' ('OnHtant J( can bp estimated 
from tilE' r(,('pssion of tlH' hydrogl'llph, In til(' abs('nep of r('cords of storm runoff 
til{' Inttpt' nwthod ellnllot lw uspd. 

. JO"tlstOllP (29) using til(' Clark nwthod de'riwd re'lationsilips based on 19 
(,HU'hllH'nts with Iln'llS Iwt\\'pen 25 and l,u24 sq, mi. in til(' Scotit' and Sandusky 
Hive'r bnsins.•JohnstOlW propospcl til(' following relationship for til(' bllse of the 
timC'-nl'pn-eon(,pntr!ttion ('urvp; 

":t;.1 .uf -("')0,51-- -.. 
~- r~ S (8a) 

",h('r!' Ie is til(' bas(' or tilP tinH'-al'pa-eone!'lItt'ation cmvr (that is, the time of 
('one'C'lltl'atinn) in houl's, L is til(' Ie'ngth of tIl{' principal stt'ram in the catch­
nll'nt in mill'S, S i::; til(' avprngp slop!' of til(' main stream in fN~t per mile, and 
r i::; a brnllehing faetol' based on til(' stl'eam pattcl'll . .Tohnstonp found that 
tlwre \1'/1::; lit tip loss of Heeuraey in nC'gleetillg tll(' branching factor and writing, 

L )0,5
1<=5,0 ( v'S (8b) 

\\'hPl'(' tht' tpl'ms have' til(' san1(' nwnning as in equation 8a. .Tohnstone also 
d!'rivNI an ('mpiri('al I'xprl'SsiOll for til(' storage' delay tinw (K) whieh is the 
rntio of storng(' to outflow for the' linpar I'Ps('rvoir through whieh til(' tinw-area­
('onc'pntratioll (,Ul'Vl' is routt'd. On til(' basis of th!' ratehments studipd by him, 
lIP propmwd till' following !'mpirieal rrlntionship for thp storng(' delay time J(: 

. A 
]{ = 1.5+90 (8c)LR 

wlwl'{\ A is til(' an'a of the eatehnwnt in SqtHU'P milc·s, L is til(' I('ngth of the 
n1!tin str('ilm in mil('s. and R is nn oVI'Tltlllci slopc' factor in f(let p('r mile ('sti~ 
nHtt(lcl by plueing a SqlUll'P grid over til(> eontour map and eounting thp Humber 
of intl'l'sPetions of ('ontour lim':; nnd grid lines. 

Eaton i /91 did a similnr ('olTdation study for s('ven '1'llsmnnian rivers with 
ent('hnwnt arms varying from 48 to 322 sq, mi. H(' estimated the basp If'ugths 
or til{' tinw-!u'P!l-t'ol1('('ntmtion diagram to be given by: 

AL)0.37
I~= 1.35 ( - (ga)r 

whel'(' Ie is til!' base of the' tinw-nrea-eO!lel'ntr"tiOll eUl'\,(' in hours, ..'1 is the 
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catchment hrea in sqllllrp milt's, L is the length of the main channel in miles, 
and /' is t. brunehing [adO!' varying betwt'en .1.0 and 2.0. Eaton's use of a 
brallehing factor ratiH'r than 11 slope factor can bl' explained by the lack of 
contour maps for th(> region 1:1bdi(>d. H(> found that for five of the seven basins 
tht' storug£' constant K was ad.equately dl'filled by: 

(9b) 

wher£' ]{ is the storage' delay timp in hours and thp catchment factors arc 
dpfinrd for <'([uation 9t •. 

O'1\:('lIy (49) presentedl"l'sults for 10 catehments in Ireland mnging in area 
from 50 to 3{jO sq. mi. In his papPI', til(' results are reduced to a standard 
catt'lunent area of 100 sq. mi. by assuming a hydrologic time-scale factor 
buspd on ollP-fourth root of the area und then expressed gmphically as !1 

fUlletion of th(' ov('riand slope'. 
In a dis('ussioll of O',Kelly's paper, Dooge (15) indicated that a logical 

pxtellslon of th(> id('a of a model catchment (based on Froude similarity) 
would bp to ('xPl't~Ss tlip basp of the isosceles triangl(' (T) as: 

.11 114 

T-a­ (lOa)
- '81'2 

",h('r(' 7' is til(' has(' \(,Ilgth or tlu' inflow trianglE' in hours, A is the catchment 
ar('u in sqllar!' miles, S is till' slop(' in parts per 10,000, and a is an empirical 
(,'mstant. For til(' vnlu('s or T dl~riv('d by O'J('lly (49), the parameter (a) 
va,"it'd from 1(\ n,t a S\Opl' of 10 in 10,000 to 14 at a slope of 500 in 10,000. 
On a similar tJllsis thl' values of I{ could be expressed as: 

(lOb) 

Whl'l'l' I{ is t Iw storng(' delay tinw of the lincar reservoir in hours, b is an 
('mpirical l'Ollstant, and til!' ot\ll'l' faetors are ns for equation lOa. For the 
valul's of K cll'l'iy('d by O'K01Iy, b could b(' taken in equation lOb as varying 
from 13 for a slopl' of 10 in 10,000 to 10 for a slop(' of 500 in 10,000. DoogeL 

also d!'riwd til(' rl'lationship: 

(1111.) 

basNI Oll n. l('nst squarl'S analysis of O'Kelly's data and his estimated values 

I Doom: . .T. C. T. S\"NTIlETIC' {"NIT IIYDHOGRAPHS 1l,\SED ON TRIANGur.AR INFLOW. 

M.H. Thesis, Iowil State {"niy., An1('s. 1I)5G. 

http:TRIANGur.AR
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of T. In equation lla, it is the eatchmcnt in square miles llnd S is the overland 
slope in parts per 10,000. A least squares analysis of the values of]{ deriv('d 
by O'Kelly gives: 

,,1.0,23
]{= 100,5- o,70 (llb)s

where ]{ is the storag(' delay time in hoUt's, A is. th(' al'ea in square miles, and 
B is the slope in parts per 10,000. 

Elllpirical EXpl"essions fOl" Unit Hydrograph Parallleters 

W(' now tum to I\, r('virw of th(' empirical line of development of synthetic 
unit hydrogmphs bns('d on th(' rC'presC'ntation of all unit hydrogmphs by a 
singlC' cUt'v(' or a family of curves. 1'11.(' procedures based on this approach 
follow a standard pattern in nearly all cases, A number of unit hydrograph 
pal't1mrters are chosen as the basis for defining the unit hydrogmph. 

At th(' same time, a number of catchment ehamcteristics are chosen which 
are thought to have the strongest infitl('nce on the shape of the unit hy­
drograph. For a number of catchments with adequate records of rain.fall and 
runoff, unit hydrogmphs are derived and the values of the unit hydrograph 
pammeters det('rmined. These are then correlated with the chosen ca~C~lment 
ehameteristics. This correlation can then be applied to the catchment char­
acteristics of a catchmE'ut without adequatE' runoff records in order to estimate 
the paramE'ters of the unit hydrograph for such a catchment. The latter 
paramE't{'rS ar(' then used to derive thr full unit hydrograph by using a 
standard shape of unit hycirograph or by using additional relationships .be­
tween thr basic unit hydrograph parameters and other features of the unit 
hydrograph. 

In th(' time-area methods r('viewed in the last section, we discussed first 
the shap(' of till' uni t hydrograph (that is, the time-area-concentration curve 
rout('d through It single lin car reservoir) and after this the empirical relation­
ships by means of which th(' catchment characteristics could be used to 
estimatE' tIl(' two parameters required, that is, the base of the time-area­
concentration curve (to) and the storage constant characterizing the linear 
r('sl'rvoir (In. In dealing with the second line of development, the order of 
diseussiOl1 willlw revl'rsed. In the present section, we will discuss the empirical 
relationships betw('en thr unit hydrograph parameters and the catchment 
ehll.ractrristies; leaving until the next section the question of the shape of the 
empirical synthetic unit hydrograph. In this review of empirical methods, 
attention will bt' concentrated on the main lines of approach, which will be 
illustrated by examples. ~o attempt will be madc to list all methods or all 
features of the methods mentioned. Those interested in the latter can read 
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details of procedures in the original papers that are referenced at the end of 
this lecture. 

As mentioned above, the first two steps are the choice of unit hydro graph 
parn.meters and catchment characteristics. Three tYf)es of unit hydro graph 
paramt'ters are used-time parameters, peak discharge parameters, and 
recession parameters. There are a large number of time parameters used in 
uuit hydrograph studies, the most important of which are shown on figure 8-2. 
In this illustration, D is used to denote the dumtion of precipitation excess, 
which is assumed to occur at a uniform intensity over this unit period. Common 
time parameters used to chamcterize the outflow hydrograph are: the time of 
rise (lr), that is, the time from the beginning of runoff to the time of peak 
discharge; the time of virtual inflow (T), that is, from the beginning of runoff 
to the point of contmflexure on the recession limb of the outflow hydrograph; 
n.lld tIl(' total runo ff time or base length of the unit hydrogmph (B). The 
eommon time paramoters used to connect the precipitation excess and the 
hydro graph of direct runoff are: the lag time (lL), that is, the time from the 
renter of mass of precipitation excess to the center of mass of direct runoff; 
thr lag to pcak time (t1') , that is, the time from the centcr of mass of effective 
minfall to the peak of the hydrograph; and the time to peak (t/), that is, the 
illtrrval betwc('ll the start of rain and the peak of the outflow hydrograph. 

5 = Kq 

tlKq = qoe-

I 

~t0r-tR I 

t4--t._T~B-----+4~ 
Fwmu: 8-2,-Uuit hydrograph parameters. 
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One of tilP most important faC'tors ill ::;urftl('l' wate'l" hydrolol!;Y is the' dC'lay 
impo::;ed on til(' preeipitation C'xe('ss by th(' aetion of tll(' en,tdlllWtlt. If the 
paranH'tpl' rpJ)rpsemtitll!; this dday is to bE' u::;pful for eorrC'latiotl stndips, it 
should, if possibl(" 1)(' inc\pp('nclPtlt of til(' intpnsity and dumtioll of rainfall. In 
til(' CHSt' of n iilwar system-and unit hyclrograph tlwor.\' aSSllllWS that the 
~ystC'm unde'r study hi lin(,!lr~tl\(' tinw paramc-tprs arC' inckppndput of tiw 
int(,llsity of pl"('('ipiUttiotl ('x('('ss, but only tll(' htp; tinw (i/.) has ttl(' propprty 
of bping indC'lwnciPnt of both til(' intNlsity and thl' dumtion. A(:eordingly, 
with til(' hindsight given by til(' ::;ystC'll1S !tpprollc'h, \n' ('an say that only the 
lag tinw should bp uspd as a, clUl'u,tion paramcot('r in unit hydrograph studies. 

In l'('gard to cliselmrgp pamnlC'tc'ri-l, tlw I)('ak llis<'lmrgp (qmn.J is al most 
invariably used wlwn lmeh a parn,nwtC'l' is requirod. AnoUwt' p!u·nll1l't('[·, whi('h 
eall bE' ('stimaiNI for It ciPriv('d unit hycirogmph, i::; tll(' tinw pamnwU'r K, 
"'hleh C'iUlI"!t('tc'rizes th(' IW'('SSiOll of til(' unit hyclrograph whl'n this re('('ssion 
is of deelining l'xpOlwntial form. In su('h enRl'S, tIl<' unit h~'drograph may be 
('onsiciprpd as having lwpn rout:<'ci through n lillC'ar resprvoir whoRP storage 
cil'lay tinH' is K. If tho !"('eessitlll ('an 1.)(' rpprpspntpcl in thi::; form, a logarithm 
of tll(' dis('hargp plottpcl np;ainst timp will giw it stmight lil\(', and ttl(' vnlu(' of 
J\. can 1)(' estimated from til(' slop£' of this lillt'. Altl'rnatiwly, tIll' valup of J\. 
may b(' detpnnilwd at an~' point on tIl(' r(le(lssion elll"\'(' by dividing the 
rl'llutining outflow nJtl'r that point by tl1(' ordinnt(' of outflow at th(' point. 
Otlwr pat'amC'tPrs us('d to duu'a('tprizp unit h~'clrogl"Uphs lU'P the values of 
W-50 and vV-75, ",hi('h an' the width of til(' unit hycirograph for ordinates at 
50 p('r(,l'nt nne! 75 pC'r('Pllt of til(' ~)('ak. r('sppetiwly. 

Xash (.W, 47, 48) suggE'st('(1 til(' use of the statisti('ul moments of the IUH 
as the dptrrmining pnranwtprs of the unit hydrogmph. The first moment U1' is 
equlli to th(' lag of the IFH I". For highl'r 1110l1Wnts, Xash suggested the usc 
of tIll' dimensionlcsi-l mOI11{'nt fac'tors obtained by dividing the moment of 
any ordpr about til(' c('ntPl' of Ilrl'!l by th(' first moment mised to a power 
COITP:lponciing to t11(' orcl('r of til(' moments. X ash showed that the moments 
of tIlt' unit h~'(lrograph ('ould bp d('rivccl from til(' moments of th,~ precipitation 
('xecss and tIl(' monwnts of tht' ctired rtll10tT without the necessity of d('riving 
thE' unit hydrogrnph itsdf. 

The s('('ond stage in thl' standard procedure is the choice of catchment 
eharnet('ristiC's. As might bE' pxpp('tC'd, all pro('edlll"Ps involve a scale factor, 
but tl Yarit'ty of scal(' f!letors is used. Th(' simple;:;t scale factor is to use the 
ar('a, of tIl{' catchment itself (A). Others commonly used are the length of the 
main ehatlnE'1 or l{'ngth of higIl('st order stream (L); the kngth to the center 
of area of th(' eatdlllwnt lLcc); or for small eatehments, the length of overland 
flow (Lo). \YlwrC' only OIle catchnwllt charnetC'ristic is used (in!l one-paramC'ter 
model) " tht' catC'hment ('harnC't('ristie used is always a length or area parameter. 

,A, review of syutht'tie unit hydrograph pro('edures reveals slope as the 
second most frequently lls('d catchment chamderistic and, therefore, if the 
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applird hycll'ologi::;tB hav(' t'ho::;en wisely, til{' second most important cateh­
ment charaeU'ri::;tie, Hincr slopp vuri('s throughout fl watershed, a standard 
ddinition of sonw repn'sl'ntutive slopc' is requin'd, The slope pammetcrs 
most oftl'1l uspd ltl'(' til{' avprag(1 ::;lop(' of thp main ehannd 01' some average 
slope' of tll(' ground sUl'fa('p, Th(' l1WaSUl'pml'nt of av('mge slope pUI'l\metcrs 
usually involves tedious l'omputations (10, 60), 

Although area or stl'P!Un length n,nd ehalllwi slopr 01' ground slope havC' been 
uS(ld almost uuivl'l'1mlly, th('l'(1 is no agl'C'pm<'llt about thp l'(,IlHtining pa,mm­
( tNS, TIl(' shap(' of til(' tltl.dunent tnUHt hav(' somp dT(IC't, but Ul{'l'e is suth a 
val'i('ty of ~luLJ)(' (aefors to eitoos(' from-form factors, cireuiarity rn,tios, 
dong!ttioll rati()~, l('millisen.tp ratios, !tlle! otlwrs-that the laek of ulliformity 
iH not Hurprising, AnolIlC'r fadol' whi('h must nJTpet tIl(' hye!rogmph is the 
Htn'atn paJtl'l'U, ThiH may bp l'('Pl'('s(1ltt('(I by dminagl' density 01' stren,m fre­
qll('IlC',V 01' HOllW SUi'll parllml'tl'l', 

Although plu'anwh'rs rl'pr('spnting nwan ehameteristies must have It primary 
inHut'lle!', til(' vllriations in ('('rtain ehal'llett'l'istics from palt to part of the 
\\'fth'l'HllPcl will ~iv(' risp to sC'C'one!ary p!U'llll1ph'rs, whieh may not be llt'gligible, 
Thus, having takPn arca and slopp int,) !\ceouut, tlw third most important 
pamnwt('l' may \\'('11 bp variation of lpngth 01' of slopt' ruther tht1n shape or 
dminag<, d(,llsit~" TIll' choiel' of ettt('hmpnt dmra('tpristics for eOl'l'platioll with 
unit hydrogmph pamnwtprs will rt'main a subj(>ctivp matt('r until we have a 
cI('('pN kl\o\\'lPclg(1 of til(' I1lllrphology of nlltuml catdlmC'nts, 1'h(' httter is a 
vital subjpet for moch'l'll hydrolog~', If w(' nE'gll'et thp study of geomorphologi­
('al PI'O{'('SS('S to ('Oll('('ntnltp on mathematical manipulations ,\"hieh have no 
physieaL founchttions. t llt'n t hr wholl' progr,~ss of hydl'ology may bp impeded, 

Having clpricl('d on til(' unit hydrogmph parameters and thc catchment 
ehnraet('risliC's, it is IWl'('Ssary to eOl'l'platC' the' two, In most methods used in 
('lnHsit,!tl h~'dr()logy, til(' correlation has bl'cn one of lill('ar l'rgression, It may 
bl' that t 11(' USP of fa('tor anal~'sis would revpal significHllt groupings of catch­
nwut ehnl'!ldl'rislies, If thl' san1C' or similar groupings appeared in a number 
of dirTl'l'pnt rl'giOlHtI Htucli('s, th(' catehnwllt paranwter thus indicated eould be 
tl'lltativl'ly ns~unwd to haV<' g(,IlPml validity and could be used consistently 
in n vtll'ipty of Htudi('s, Tlll' USl' of such gPIlPml parameters might disimprove 
Hli~htly tll(' ckgn'(' of ('orrt'lation bdwrcn unit hydrograph parameters and 
('atehnwutH eluimet0ristiC's for each individual study, but it would make the 
various ;.;tucii('s l'ompnrnbk with one anoth0r and point the way towards 
gptwml law;.; of eatehn1Pnt lwhl.lvior, It is uncertain, of course, whether the 
l'xtrn insight gaillPd would be worth tlll' extra \\'ork involved in following this 
partieular lil1(', 

lr :11(' s!tnw YPltr in which .11p published his cIa&sical papPI' 011 the unit 
hydrogl'ftph \.57), Slwrmnn published another paper (58) in which he proposed 
that for n eafehnwnt without reeords a ullit hydrogmph be transposed from a 
('/'l.ll'llllwut of ;.;imilnr C'11ll.meteristics but with all the time factors adjusted in 

http:l('millisen.tp
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proportion to the sqUllrp root of the ratio of the two arcas. In the following 
years, a large variety of synthetic mod('ls \\"P1"(' suggested which involved 
correlutions between cateirment chamrteristirs on the OIl<' hnnd and the unit 
hydrograph ptuampters tor in some casC's sC'leeted ordinatt's of tht' unit 
hyclrogrn.ph) on th(' other. 

TIll' most important of thesp wer(' those proposed by Bernard (4) l 
:.\ h~Cnrthy,~ Snyder (59) , :'\[organ and Hullinghorst,3 :'I1itchell (41), Taylor 
nncl Schwartz UJB), the Burenu of Reclamation (66) I and til(' Corps of 
En~ill('ers (On. Probably the most widely uSNi nwthod for synthetic unit 
hydrogrnphs il:1 thnt propos('d by Snydpr, which has since been adapted by 
muny workers for their own needs. This llwthod will b(' discussed briefly 
brio\\' and eomparativ(' d('taiil:; of thl' other methods can be r('ad in thp rcfer­
enepl:1 indieat<'d above, dptuill:1 of which arC' given at the end of this lecture. 

Snyder's work (59) was based On data from 20 entchments in the 
Appnlachinn:;. He took [iii til(' basic unit hydrogruph parameter the lag time 
to p('nk (lp) defined as th(' intervnl in hours b('tween tIl(' centpr of rainfall 
l'xepss and til(' peak of til(' uuit hydrograph and took as the basic catchment 
ehul'Het('ristie til(' produet of th(' length of tlw main channel in milps (L) aud 
tltl' Ipngth from tilt' outlC't to thC' center of area of til(' catchment in miles 
(LeuL Hc' suggpsted that til(' unit hydrograph parameter and til(' catchment 
pnranl('tl'r eould be ('onnected by: 

ip =Ct(LLca )O.3 (12a) 

HLwing d('tprmiu('d tilt' tin1(' to peak of thp unit hydrograph, Snyder assumed 
that thp r('(,psl:1ion from peak to z('ro flow took 3 days. He derived the base 
length of thl' unit hydrograph from the formula: 

(12b) 

\\'11('1'(\ B is th(' base leugth in days and tp the tim(' lag to peak in hours. Snyder 
rPiatpcl th(' ppak of his unit hydrograph to the lag to peak already determined 
by thC' relation: 

(12c) 

where qmnx. is thl' unit hydro graph peak in cubic feet per second per square 

2 i\ICOAHTHY, G. T. THE UNiT HYDROGRAPH AND FLOOD ROUTING. U.S. Oorps of 
Engineers Office, Providence, R.I. 1939. 

3 i\[OHGAN, R., and HUr,LINGHOHST, D. ,Yo UNrT HYDHOGRAPHS FOR GAUGED AND UN­

GAUGED WA'rEHSHEDS. F.8. Corps of Engineers Office, Binghampton, N.Y. 1939. (Un­
published mantlscript.) 

http:hyclrogrn.ph
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mil(', lp is tIl(' tinw to pC'ak in hours, and ('p is a coefficient that takes account 
of tIl(' flood wave' storag(' prT('ctNl in tlw pntdmwut. 

For thp c!1tehnwnts whieh lw Rtudipd in tIl(' Appalachians, Snyder found C t 

to V!1ry lwtw('('n 1.8 nnd 2.2. and ('1' to Vt\r~' hetwe('n 0.56 llnd 0.69. Snyder 
used a stnndl1rd duration of rainfall (/)) such that: 

(12cl) 

and tIl(' penk of tIll' unit hyclrngmph had to 1)(' adjuRtf'd for othpr rainfall 
durations. In his original papPI', Snyclf'l' (59) publishrd a diagram for deriving 
tIl(' 24-hoUl' clifltrihution graph, hut this was not adopte'd by later workers who 
uspd his basie nwthlld. 

A number of flubsl'qupnt work!'rs uSNl Snydpr's form of relationship be­
tw('cu tIl(' Ing tinw to p!'nk and tll(' eatehment i('ngth parnnwters. Linslf')' 
(.19) found tilt' vallI(' ('I vari!'d from 0.7 to 1.(l for catchments in til(' Sierm 
Xl'vl1da. Th!' Corp"l or Engint'C'rs UJI) found vnlu('s of thc sam!' parameter 
varying from 0.4 in s(lut\H'rn California to 8.0 for Stnt('s bordering the Gulf of 
:\Il'xi('o and r('('omme'nd('d thnt th(' vnill(' Ct be' d('t('rmincd in a given cnsc from 
ll('ighboring or similar eatehn1l'llts. Th(' Corps of Engin('ers investigations 
indie!ttC'd that til<' vuitl(' of ep ('()uid wry from 0.31 in the Gulf of :\Iexico 
Statrs to 0.9·1 ill s()uth('rn California. 

In ~('n('ral. the' rmpiricnl m('thods for synth('tic unit hydrographs tended to 
ndopt a corrp\atioll ('quntion of the genl'ml typl': 

. I CtA)o C'(LLca)a
lLtor l or l ) =--- or --- (13) 

, P I' Sb Sb 

TIl(' valucs of th(' (,XPOIlCllts nnd th(' C'Of'ffiti('nts vari('d as might be expected. 
For cxltmph', :.\litclwll (Al) in his study of 58 Illinois streams found the lag 
rime in hoUl's ttL) could bt' related to thl' urea in square miles (A) by: 

(14) 

nncl that th(' tilopC' did Ilot improvC' thC' C'orrelation substantially. This result 
bpC'onlL's undt'rstandnbl(' wh('1l w(' realiz(' that, for the catchments studied by 
~Iitchell, th(' C'oeffici(,'l1t of correlation between area and slope was of the order 

of 0.9. 
Som(' of the synthetic unit hydrograph mC'thods resemble Snyder's in that 

therC' is only on(' correlation with cntchment characteristics. If a fixed shape 
of unit hydrograph is used, then th(' Rynthetic unit hydrograph method is a 
onE'-pnramet('r nlPthod. If, ho\\,C'ver, n further degree of freedom is introduced 
by using a relationship bC'b\:een unit hydrograph parameters involving an 
adjustabl(' coefficient, as in th(' cas(' of equation 12c, then the mcthol.. will 
becom(' a two-parameter one. In other cases, such as the method proposed by 
Taylor and Schwartz (64), ther(' are two independent correlations of unit 
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hydrograph pm'am('tprs with c:iltehn1l'nt pttranH'tprs and again in this ('nsp, Wt~ 
hav(' It two-pnmnwtpr nwthoci for dl'riving II syntiwtie unit hyclrograph. 

Empideal Shapes {Ol' the rnit Hydrogmpb. 

'YiH'n unit hydrogl'flph piu'llnwtl'rs havp i)('(,11 dpl('rmitl<'CI, it is still nl'('PsHary 
to dt'riV(' til(' ('ompiPlp uIlil hydrogmph. If till' tinH'-to-ppnk, til(' l)('ak clis­
('hnrgt', Hnd th!' bmw ll'ngth of til(' uIIit hydrograph nrc' known, tilI'n WI' know 
thn'(' points 011 til(' unit hycirogmph, nnd II ('ur\'(' ('an 1)(' siwteiH'd in by triai 
and l'r!'m to pass through ti1('.\;(' til!'!'(, points nnd to hav(' til(' r('quisitC' an'a. A 
lllunb(\r of authors havl' suggl'stpd pnrti('uinr shnpl's of dinwllsiOIlipss unit 
hyclrogmpiu; or of S-('urvps whieh ('an Ill' USl'c\ to d('lprminp lL ('ompil'tl' unit 
hydrogmph or S-('llrvp, on('p n sing\(' pnranwtpr has i)('('n d('t('rmiIl('d. Exnm­
pips of SllC'1\ stalldard shlllWS an' thos(' dpsrril)(>d by Langbpin (d5), Commons 
(12), til(' BllrC'tlU of L{p(·lamation ({lUI, thl' ses ({j8), Williams «(fB). and 
Bend<,t' and HobprsoIl {d l. Sin('p H siIlgl(' eurv(' is us('d to r('pl'('spnt nil unit 
hydrographs (or all unit hydrogrnphs within tl giwH region, or nil unit hy­
drographs within tl giY('n mng(' of wntprslwd siz(') , it is only Il('('('ssary til 

dptprmin!' OIl(' parnnwt<'r from til(' ('nt('hn1('nt eharactl'risti('s to fix til(' seall' of 
til!' Hetual unit hyclrognlph. 

If it is (/('sir('(1 to introduc'(' morl' fl(,xibility into thc' ('mpirical nppl'Onch, it 
would Iw llP('Pssary to c\pvt'lop :l family of c'urvps to repr('s{,llt til(' shape' of th(' 
unit hydrogrnph. In this east', it wouid b{' Il('('('ssary to deriv(' two ullit hy­
c1mgrnph parnn1('tl'rs from tIl(' ('ntehnwllt eharaet('ristirs. How('v('r, if WI' \\'ish 
to syntiwsizp unit hydl'Ographs with two parnnwt('ril, that is, with two dpgrpcs 
or fr('('dom, thpll it is more' ('onv('ni('nt to usp an ('mpiri(,:11 ('quatiol1 ratlH'r than 
('mpiri('lll (~urv(':;; to 1'(,PI'('s!'llt til(' sYllthl'tir unit hydrogmphs. 

Thl' first sugg!'stion of nn ('mpirirnl C'quntion to fit th(' unit hydrogmph 
app<'nl's to huY(' b(,(,11 nmdp by Edson \20l. HI' argucd thnt th(' timc area curvl' 
for n entehnwnt would hnv(\ til(' gl'n<'ral parabolic form: 

(15) 

nnd thnt til(' vall<,y storng<' arts u:; a rl's('rvoir so that th<' dischargC' with time 
d('cr('us('s Pxp()[H'lltially: 

(16) 

Edson argued thnt both C'ff('('tR op('ratc' thl'i)ughout til(' hydrognlph und 
th('rrfon' that th(' ('ombinpd ('ff('rts ('ould b(\ written as: 

Q(t) C( larbl (17) 
whirh ran b(' normalized llncl writt('11 as: 

(18) 
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wh('r(' Q is til<' discitnrgl' \WI' unit tll"Pll, l is til(' tinw, C is Il ('onstullt dppending 
Oil both til(' volunw of illflo\\' 1lnd tlH' unit;; u;;('d, and (l Ilnel ban' th(' param­
('tCI'S (ktl'rmi1ling titl' shapp of til(' ullit hydrograph. Ti\(> reasoning uSNi by 
Ed;;on OW) to aLTivp at ('<Illation 18 is f:lU!ty, IwcalU;(, he' uSps ordinary multi­
plication illstC'ad (If ('ollvolutioll to n~pl'pSPllt tIl(' pfTpet of storagp on til(' tinw­
tU'Ptl ('urv!'. XpvC'rtlH'h·ss, Ill' nrriv('(lllt a form of till' reH. 

Hon1(' Y('llt'S 1M!'r, Japall(,s(' work!'rs in hydrology (5(], (j I, (12) bns('d thc 
form of til(' leH 011 a ('olH'('ptlial modpl ('oIU;istillg of linear rpsPl'voirs and used 
u;; its ('quatioll: 

(19) 

Following thi;; XIl;;h [46') HUggpstNl till' modpl of It ('as('udp of ('C}lHll lineal' 
l'PsC'rvoirs whidl gave thl' pqlmtioll of th(' unit hydrograpit as: 

(20) 

w\tpl'(' hot I) is tlw ordillat(' of thl' leR, Jl i;; tht' numbC'r of I'('servoirs, alld 
K is UH' stort'lg(' (h'In~' tin1l' of t'nell of til!' !'('S('I·voirs. Xnsh sugg<'stpcl that in 
littiu.l!: I'qlHlti()1l 20 to ullit hydrographs. till' valup of n I\(>l'([ Ilot nee('ssnrily be' 
takl'll ns nn intp!;('r. Omy (.:!J 1, \\'u (';'U) , and HPie-h4 all wlC'd til(' Snnw mntil('­
mnti(,HI fUllc,tion to fit (\('rivpd unit hydrogr!1nhs and to ~ynth('size' further 
Ilydro.l!:t'tlphs. 

TIl(' flllll'tioll l'p\ln'spntNI by ('quatiolls 18 and 20 (whieh ar(' obviously 
l'quivah'lIt l i;; variously known ill til(' hydrologi('al litpraturp as th(' "gamma 
distribution" or "Xnsh's mo{h·I." It i;; til<' snnw as tlH' })p:lrson Typl' III 
pmpit'i('nl diHtributioll u;;('(l in stati;;tics, which j" ('ommonly writtrn in the 
form: 

. ( .1')" (P.7:)fu'\ =]\. l+~ pxp --;; -a<x<oo (21a) 

or 

0<:1'< ro (21b) 

(·qll!ttiolt 21 I;; ('lpariy !'l\uival(,!lt to ('quntiol1s 18 :lnd 20. 
TIl<' ;;h[l\)(' or di;;tributinl1 l'('Pl'('s(,lltpd by ('qutltion 20, or til(' l'quivalent 

pqulltiou UI, I:: t\ tw()-paranwtpr distribution, ]( t. or b) being a scalP fador and 
I! lora I Iwing It slmpl' fltCtor. Thus, for pompl('t<' syntll('sis, it would b{' n('('es­
sary to hnvp two in<ippPlldpnt rp\atiollships lwtw(,pn till' two paranwtl'rs of 
th(' gl1ll1ll1l1 distributioll :lnd two indC'ppndpnt C':ltdl1lwnt ehnraetC'risti('s. 

I Ih:(C'H. B. ~[. J)t:::;W:-1 IIrDnO(lI!.~I'HS FOI! 'n:ny S)I,\I,L WATlmSlmm:; FHO~! llAI:-1FALL. 

C'ivil En~ill, Set'.• C'nlo.Stnte Fnh'.. .jr pp., mus. 11)()2. 
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Edson sugg('st!'d til(' dil'N,t usp of til(" pnrnm('(l'l's 1'01' C'ol'relati;l\I PllI'pos('s, 
Ilne! this hilS b(lPll dOll(' by SOIlW laU'I' \\'orkPrs. Xllsh pr('f('I'I'pd to W'i(' thr first 
111011wnt about til(' ol'igin (til(> lag) and til(' sP('ond Illompnt about til(' ('cntcr 
[or !'OITPI!ttiOIl. fiin('(1 U1(l$(' mOl\1puts ean l)(' ('Xpl't'sspd as V('I'Y simplp l'xpt'es­
sions involving til(' [lHl'nmNl'l's It and 1\, till' vnlups ciptpl'min('(1 by 011(' typl' of 
('()(,I'plntiou ('!til, in prneti('(I, (,Hsi]y 1)(' ('(JIlv(ll't('(1 to th(' oUH'I'. EXllmplps 111'(' 

gi \'('n ill t!t(, I1(1Xt l:i('('tiOIl of til!' (·wT(·lation of gttmmn distribution pmltnwt<'l'S 
with eateitnwnt ehnm('[pristies ns dpl'ivpd by Xal:ih (.h'i') nud \Yu (to)' As 
nWlltinn!'d abov!', th(' gllmma distdbution hnl:i bPl'll \\'iciply uSNI in hydl'o]ogic 
stlldb~, 

Tit!' ll1odl'1 d('VC'loppd by TVA (fl4) Wl('R an Pll1pil'ienl \'qlHltioll whieh 
(\ss('ntinUy il1\'olvPl:i [t tinl(' transfOI'll1tltio!l of tlll' gtlmmft distribution. It is 
giv(,1l by: 

(a+ 1 )t"b'/)
Qel) = (' .. - ~-- ('xpt -bim) (22a)ll'! 

(22b) 

\\'hpl'(, (t, il, nnd II/. :\1'(' pnml1wtl'I':;. \Vh('11 til hal' t;l1(' value of ] I ('quation 22 
rt'du('Ps to tlil' fOl'm or ('quatioll 1S. TI\(, tmll~r()rm('d gamma dh;tl'ibution 
giv<'n by l'qlltltiol\ 22 hal' 1>1'('11 u:;pd ill sto('hm,til' hydrology by l{ritskii and 
:.\ [('nk!'1 \ d2 \. 

Otlwl' llltltiwmnti('Il] <,quat ion:; ht\V(' I)('('n PI'opos('d fOl' thp n'pl'<'scntation 
Ilf Uw form of til(' unit h.\'drogmph. but IHlIl\' or thrill hllv(! \wen trst<'d ItS 
\\'idl'l", tiS till' gnml111t distl'ibutiotl. IkCoul';;!,,\' (/.p has propos('d th(' us<' of 
till' gmnmn distribution a;; far IU, tlw point of f'ontmfl('xlll'P on til(' falling I<'g of 
thl' unit hydl'ugl'aph and t 11('11 til(' liSt' of all ('xpOIwntial J'('('('ssiol\ from that 
point Oil, BrnkplIsipk (U> hilS I'p(·pntl.\' pl'O(1ospd til(' usc' of a. ullit hycll'Ograph 
(l r tiw fmln: 

(23a) 

(23b) 

Ilnd e(tIl lw shown to 1)(' <'quivnlput to it PPIU'SOI1 Type V cmpiricnl diiltribution 
with ft squtln' root trnllliformlltion of the tinw £:('ale, It hilS two parameters; 
IWIlC'P, til!' problpll1s (If titting and ('orn'llllion would l)(' t'ssentittlly thp same us 
for tlw p;ntnnHl distribution. 
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Concep.tual :Models of the 'Unit Hyd:rograph 

In til(' pr('('('ding ~l'('tions, wp haY(' tnwl'd the drvclopment of synthetic 
ullit hydrographs aloug two different linC's. Wp havp S('PIl, as outlined on figure 
8-1. thn,t til(' lint" of d(lwlopnH'nt bnsl'C1 on til(' till1('-area diagmm led to the 
C(lll('C'ptunl modc·l of routing nn isos(,ph"s triangle· through a linellr reservoir and 
that tilP linC' of ciPwlopnH'llt bns('(l Oll pmely ('mpirical rt'latiollships lC'd to the 
usC' of tlH' gtunma distribution, whi('h Xnsh t48) showed to be l'quivnlellt to 
th(' cOllc('ptuul mockl of It enscncie of ('qual lineHr reservoirs. "Within recent 
y<'ttrt-l, attpntion has l)('(,Il eOlleentmtNI Oil til(' t-limulatioll of tllP direct I'esponse 
of catehment;; by eOllcC'ptunl lllodC'ls. 

For It ('ollc'C'ptunl modrl to bC' an ndpquntC' tool for synthesizing unit hy­
drogmpht-l, it muM provid(1 a ('ollwn[('nt Ilwthod for pr('dir:ting tiH' shape of 
til(' unit hydl'Ogrnph, tmel It rPiationship must nlso b(' pstablished between the 
bnsi(' pnmn1('ter of til(' eOlll'C'ptunl mod(11 and the catchn1('nt ehamcteristil's, 
For 1U1r eOIH'('ptunl model, \\'C' ('l1n relate such unit hydrograph parameters as 
til(' lag (lL). thp tinl(' to peak \il') , 01' the pN.k disclu\rg(' (qUIll.,,) with the basic 
pnrnmetC't's of til(' modeL Hell(,(" it ;;hould b(' possiblC' to ('ombine a concC'ptual 
modpI with IUl~' of thr empiri('al r(')ntionship;; between unit hydrograph 
pt\mnH't{'rs and eatehn1<'nt eharnetC'ristict-l (;;onw of which wel'C' l'C'vic\\'ed in an 
('[ldiN' t-lC'dion), whi('h IItw(' bel'n ckrivpd indC'pC'ndently of any conceptual 
InudpL Bp('llUSP W(" nt'(' d(~lliing with synthl'tic unit hydl'ographs in this keture, 
W(" will ('onc('ntmt{' on (,OIH'pptunl modC'ls of linparizC'd systems but will 
indicate', wl1('I'(' npPl'oprint<" the' way in whi('h th(' approach can bC' extended 
til ('OV('I' thC' simulation of nonlinelll' systems, 

Thr uSl' of (,()[l('('ptual l11oclc·ls is quit{' ('xpli('it in a papC'r by Sugawara and 
.\[aruyltI1Ul (lJd) puhlisll<,d in IH5(), Starting with tllp ('as<' d a riVC'1' whert' the 
ullit hydl'ograph ('ould b(' approximlltdy l'<,pl'('sC'ntC'C1 by a nC'gative ('xponcntial 
fUllC'tioll, till' n.uthors d('v('\op('d a (,OIH'pptunl rC'ulizution of th(' systc'm opera­
tioll in til(' form of an OP(,11 v('ssei fillC'd with W!ltC'I', 1'11<' water discharges 
through a ('apillary tulw at thC' bottom, thus giving a linear relationship 
bpt\\'C'('1l outflO\\' and ::;lol'agC' in tlw V('fiS('1. Tht'y then attempted to model the 
Iwh:wior of ('C'rtain riVC'rs by means of til(' sum of sC'veml exponential com­
pOlwnt~, that is. by using s('veral diff('rC'nt vessels with different stomgc eon­
;;tants arrangl'(\ in parallel and taking ditTerent proportions of the inflow, 
By plneing th!' capillary at a \Pv(·1 higlwr than thl' bottom of the vessel, the 
thrC'shold df('et of initial storag(' satisfaction ('ould be simulated, (Further) 
('()Il('('ptual elpl11<'nts usl'cl were 'vC'sseis tapped by eapiliaricR at n, number of 
points, whieh produ('(ld a srgmentpd linC'ar storagC'-disc:hargC' relation that 
eould approximatf" a nonlinear relationship and, hen('l', simulate a nonlinear 
system. 

Hhortly aft ('I'Wlll'ds, Xash (4()) publislH'd his work suggesting the gamma 
distribution as th(1 appropriate equation for thl' reH, He derived this equation 
by ('ollsid('ring til(' ('ITpct of routing Il delta fun('tioll through a cascade of 
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(lqunllinmr rpsprvoirs. For It such respn'oirs in spries, thp impulse respons(' of 
tll!' cnscaciP (that is, thp discharge from til(' last reservoir for a o-futletion input 
to til(' fi.rst 'J tak(>s tht' form. of pquatio1l20, ",h('r(> J{ is til(' storngp ciPlay tim(' in 
('tl('h rps(,t'voir and Il is thp tlumlH't' of r('"('r\'oir,,. Xash Huggpsted that this 
pquatioll ('(lull! Iw gt'lH'ralizl'ci and n al1o\\'pd to take' nonintpgrnl vnlues. 

Xnsh also gil\,(, Il('ut'isti(' nrgunwnl;; for Iwlipying that for n ('us('ud(> of \In­
l'qual liIH'nr rl'sPt'vnir;;, tl1<' shapl' would not clitTpl' gt'Plltly from that giv(,l1 b~' 
('qllation 20. His urgunwnts sllgg<'stpcl that for a gi\'Pll vultI(' of til(' din1!'l1Hiol'l­
I{';;s H(,(,Olld \l\Ol1wnt (1112), til(' dinH'llsionlpss third l11onH'n t (ilia) fOl" u ('usenci(' 
of tUH'qunlli\lplt!· r('s('rynirs \multl lip IwtwP('n tlw valu(' fot' n ('usendp of ('qual 
lin('tlt' ("(')wrvoit's, that is. 2(1112) 2, nnd t h(' \'nhl(, for til(' l'oml>inatioll of 1I linenr 
l'lwllnl'l and It lilWHt' t'P:;PITOit' ill s('t'ips, that is, 2( 1112 P 2. Fot' /l/2=U ot' 1. til(' 
YnlllP" of ilia nt'C' s('('n to ('oinl'idl', and it ('Rn hI' I"padily v<'l'ifil'd that for v[(lups 
of 1112 IH't \\"('('ll 0 l1nd I th(' Jill('" ('OITPsl)(lllding to tlH' two limiting ('ns('s C'nf'losC' 
It ('ompnr'nt h'P[~· lHU"!"OW I"q~i()n of tlw ilia -1Il2 pInup. 

III I \Iii\), J)()()g!' \1 () nttf'mptpd to prodtu'(' a g(,lH'rnl ('on('C'pt unl nwd,,1 of 
tIl!' ullit hydrograph. '1'11(' nrgullwnt \\'ns madl' thnt ;;ine(' the' unit hy<il"Ograph 
onV ('XiHtC'd fOl" a lill!'Hr systf'm 0\' n JinPltl"izt'd sYHt('m, a gpnl'rnl model of tlH' 
unit hydl"Ograph could ('olltain only lilwar l'lpnwllts. As nWntiolH'el prpviously, 
I\"h!'n \\'p wi"h to "imulat!' WI' mllst first ma\.;:l' up OUl" minelH about tl1(I type' of 
"imulntiol\ and th(,1l ahout til(' ('ompon('nts of our modd. In this entil', it was 
dl'Pid('cl to usp ns pompont'nts of til(' mndd only liuC'lU' di"tortiollh'SH ehallllPls 
nne! lilH'ar st(l\"ag(' ('IC'nwnts. In nn netual I\"atl'rsll!'d, tl1<' inflow at all~' point 
trav('I" through til(' Hyst('m to til(' ()utlC't and in doing ::>u iH subjC'et to both 
tranl·dation pfTpet" nnd storag!' 01" attplluntioll ('fr('ds. 

'I'll(' assumption mnd!' in Doogp':; (,Olwpptual mod('l (17) waR that thpsp hnl 
t'IT('ets could 1)(' ('omplpt('I,\" "<'pnrntpcl from OIl(' allother. Th(' ('11"pct;; of tl'llnsln­
tillll in ditTl'rt'llt parts of" til(' catehnwnt \\"('1"(' ('oll"iclPl"('c\ to l)(' IUl1llWd tog('ther 
and l'Ppr(',,!'lttpcl by lin(,lu' ('halllwls. 1I"11('\"('a:-; tlw storagl' <,11"I'('tR in th!' vnriOUR 
part;; (]f tIll' ent('hnwnt \\'('l"(' lutnlWc\ t()~I'tIl('r and rC'pr!'SPl1tC'd by lil1mr 
r('s('rvoir;;. Hi!H'!' til<' moc\!'1 i" n lilH'H1' onl', \\"(' havC' t1w full advantll~(, of Huper­
po"itioll and tlw opprntiolls mn.\' 1.)(' ('arripd out in :tny ordC'r. SinC'!' linpal' 
ehntllH'ls m('l"ply (\Play nil inflo\\" without di"torting it, any numJ)(,1" of lill!'ar 
('lutrlnl'ls ('nn 1)(' ('OIll1('c't('d togt'tIH'l" to form 011(' lil1('ar ('hannC'!. Similar1~', til<' 
nrdl'r of tlw !ilwln l'psprvoirs in a enH(,uclp ('nil 1)(' n\tr'r('(1 without aIT('('ting tlw 
r('"pon,,(' of til(' ;;ys t ('Ill. ('hnnl1('ls :1nd r('sprvoirs ('an also 1)(' intl'rchang('d 
without nIT('eting the' l'pspOnl"lC' of til(' syst('l11. 

'1'11(' most gell!'rnl moc1(11 cI('wlop<'d was onl' ill which th(' storngt' ill ditT('rl'nt 
pl'lrts of til(' \\"lltl'rsll!'d was ('oll('('ntmt('(1 so that til(' flo\\" from nny part of th(' 
wntprsll('d ('oult! 1)(' simulat('cl by a lilH'ar ('hannpt whORl' length ('orrpspondecl 
to tlw tinw of trnnslatioll lor timp of ('on(,(,lltrntion for that point) and a 
llumlwr of liu('tlr r('s('\"\'oirs ",host' stnmg(' tinw IlP('d not be ('(lUll!. If tIl(' 
assumptioll is no", mn(\p that for ('VNY point alon~ nil isochrOIlP (that iR, for 
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equal tran~lation tinl(' tll til(' Qutl('t) the cascadr of reservoirs to be passed 
thfough in renehing the outlrt are thr same, tht' equation of the unit hy­
drogmph ean br written as: 

r /'7' () 0(/) [( '1 
hot t) = ~i ~ II' ~ • lI:~T (~:l{~,O) cl ~)J (24) 

\1"111'1'(' hoU I is t1w orclinlltp of till' n:n, f' is til(' VlJlldl1r of inflow, '1' is til(' time 
of ('OlH'Plltrntioll or tli(' wholp wnt!'rslH'c\, !ctT "l'l is th(' time-lll'ea-('ollecn­
tmtiol\ ('urvP, Ii( n is an impull'P [unction, J{ i is a typienl rt's('rvuir storage 
e1plny timt', D is til!' ditT(·t'(·ntial !lllPmtor, nnd II r('pr('sents snN'('ssive 
IIIul tipl iC'llt iOll, 

I.f t lIP assump!:iu!1 IS no\\" made' thnt tIll' ('nsetlck of u\1{'qullllinenr r('Rcrvoirs 
llpproprilttl' to It l!:i~lI.':l is()('lmJlll' ('llll hI' /'PpitH'Pel b~' a. (,llseac\p of C'qunllinpnr 
rps('I'voirs, tlwll till' unit hyclmgmph ('Ull hp writtplI ns tlw ('(lnvolutioll of the 
tiIlW-tU'Pll-('OI)('pntmtioll ('III'Y!' anel tl gnmma distribution. as follo\\'s: 

(25) 

\\"\1('fP II is lIot !l fixC'd valup hut vari!'s with tll(' valtH' of l. Th!' gPlleral model 
rl'prpsPlltl'd by ('quatioll 2;) i~ ~till ('xtn'mdy flPxibl(,. If n= 1 for all points on 
tIl!' (·!tteitnwnt. th('11 til(' mocipl r('cltl('('~ to thl' Zoeh-Clark model of routing 
till' tinw-IU'('a diagram through 11 linPHr r('H{'rvoir. If II is gn'ater than 1 but the 
sanw for all point8 ill tIll' eatehn1l'nt, tlWll tIl(' model rrpr('sents routing th€;', 
tinw-lln'lt diagnun through It llumiw[' o[ r!':l('rvoirs all situatrd at thr outlet. 
If tIl(' tinH'-arpa-('Olu'('ntrntion eUI:W is itst'lf n gamma distribution with the 
fill1£' s('al(' K. thpll tlw modt'l givPll by <'C(ll1l.tion 25 rpcltl(,cs to tlw Xash model 
of l\, ('n~('a(Jp of ('(JUt..! linpur n's('rv()ir~ \l'il h inflow at thl' upstream cnd. 

A Iilunlll'r or {'()I\('('ptllltl mo(\<'is havl' b(,l'11 cl('wlop('d by graduat!' students 
wOI'king un(lPr Profpssor Y('n T(' ('how (8) at til(' rniv('l'sit~y of Illinois. The 
ll1od!'llllu'amptprs in tl1('~!, ellS!'S \I'('n' ('orr('lat!'d not only with the eatehmcnt 
('hlU'!tet!'risti('~ but also with til(' intl'IlRity of rainfall. The analysis was con­
s!'qllPntiy OIl(' ()r n lilwarizt'll syst!'1l1 ratlwf than It lin('af system. Such an 
approl\('h tak('s l\('('llunt of tlH' nnnlin('ar ('fT('ets due' to varying levels of input. 
TIl(' mod!'l lIsl'd by flingh5 eonsist('d of translation to th!' outl('t and thcn 
sll('('('~siv(' fouting through two linear fPsrrvoirR of differ!'llt storage cocffi­
dents. Th(' r('~p()ns(\ fUlH'tion for thi~ mode'l would br: 

') e-t!K~_e-I!KI 
(26)hot!) =l(' ( T * K - Kl 

2 

S ~{X(;lI, K. P. A NOXLIN/,AH AI'l'1I0ACH TO 1'11£ INSTANTAN~WUS t':-/I.T HYDHOGRAPH. 

Ph. D. tl1t,';;i~, lI\. l'niv. 1\)62. 
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Diskin6 mj(~d two cnscaejps of lillcar rrs('rvoirs in pamllrl, til(' numbPI' of 
rcs('rvoirs n.nd tll(' stnmgp c()('f1kipnts bdng diifPl'ent in thl' two casps. Tlw 
n'spollsp funetion fOl' this model is: 

(2.7) 

cascudl', Itl and 112 iln' the llumiwr of (lqual r('srrvoirs in ('Hch cllsclld(' and Kl 
and K2 IU'!' till' r('sp(,etiv(' stOl'HgC' d('lay tin1('s. 

Kulandaiswamy7 uspd n modPi whieh ean be' dl's('l'il)('d ns a gell('raliz('d 
~(uskingum mod,·!. As showu in Il'etlll'p 2, pag<'s 43~57, till' t'ssPlItial nssump­
tion of tlH' :\ [llskingum nwthod of flood !'Outing 11; that till' storagt' is a linear 
l\uH'tion of til(' inflow ilnd tlll' outflo\\,. Wlwll thp pXpl'{'ssioll for til(' ston1gr ill 
ins('rtC'd in till' {'ontiuuity ('(Iuution, an equation for th(' s~'stem is obtailwel 
linking inflow and outflow Ilnd th('ir first derivative's. If th!' :\luskingum 
assumption iH ('xt<'nclpd to makl' thr storage' a fuudioll not only of til(' inflow 
nnd til(' outflow but llhiO of thpir d('l'ivlttiv('s, tlH'n W(' hnvp what might bp 
(~alkd It gpnpmlizl'd ~luskingum mociPi. If till' ropftiri('nts of the' terms in til(' 
gPl1pml t·plntiun:4hip d('IWnd Oil pitll('r tiH' inflow, 01' thr outflow, or both, thpn 
W(' hn v!' It gpnt'rnliz('cillolllill('Hr ~ lU:ikingum modp!. 

Kulnnciaiswamy r('HtrietNI his dl'tail('d analysis to tht' casp of It linearize'd 
systl'm in whieh til(' L:~'rivlltivl's of til(' outflow higher than til(' third and tll(' 
dl'rivativps of til(' inflow high(·r thtUl til(' HP('ond wcrl' ignored, thus giving as 
a g(,lU~rnl rquntioll: 

(28) 

wh('J'(' 1 is till' inflow to thl' Rystpm llnd Q til(' outfl()\\', and ai, 02, aa, bl and b2 

lll'l' ('onstitnts, which nrc' pamnl<'tprs of tllt' systl'm. For a h<'avily damp<,d 
syRt!'m, nil til(' roots of til(' polynomial on thl' Ipft-hanci sidp of pquation 13 will 
1)(' r('al and npgativ('. If til(' system can bp rrpr<'s<'ntcd bya number of cascades 
in parnilpi (without rpvcrH(' flo wI , tlwn th(' valu('s of b1 and b2, in the form giv(~n 
by Kulanciaiswnmy in ('quatioll 28, will b<, ll('gntivc. If b1 and b2 an' both equal 
to Zl'ro, tlwn til(' RystC'm reducps to a easeadp of thrpp lincar rcservoirs whose 
dplay timps an' givrll by roots of till' polynomial on tIl(' left-hand side of the 
NIlUttion. If till' ('()('fficient bL in equation 28 is negative and thl' coefficient b2 is 
7Jero, thPll tIl(' mod('l will in g<'neral eonsist of two cascades in parallel, each 

6 DISKIN. M. H. A BASIC S1'l'DY OF TilE \;lNUAHlTY OF HAINFALL-HUNOFF PHOCESS IN 

WATElIsmlDS. Ph. n. thesis, Ill. Fniv. H1G·L 
1 ·KlTL,\N().\IS\\'A~IY. Y. C. ,\ BASIC STUDY m' TilE RAINf''\I,I, ~;XCESS-SUHFACE UUNOFF 

HBL.\THlNSIIlI' IN A nASIN SYS1'~:~r. Ph.O. thesis. Il1. Cniv. Urbana. 1964. 
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ma(h' up (rom 'linenr I'('s('l'voirs whosl' d('lny timC's arC' giV('n by til(' polynomial 
on thC' jdt-hand sic\(' of ('(luatioll 28, If both b1 and b~ at'(' npgativC', thell tlw 
('quat ion willr('pr'C's('nt It systrm of thr('p ('ascadcs in parallel. 

In clnssienl hydrology, usp is mr.d(' of !'Outing through !l nonlinrar r('sl'rvoir 
ill ",hic'h til(' storag!' is pr'oportiongl to sonw pow!'r of til(' outflow, If th(' 
outflow is controll!'d by a w('ir, th!' ('xpon!'nt in tht' stnrilg(\ <'(Illation would 
b(' thr('('-halv('s; wilt'I'l'lls for illl outflow ('ontrollC'd by a d('('p siuiec, thc po\\,pr 
would 1)(' orH'-htt\t'. Prnslld WI) introdu('('d a ('ollecptull.1 model in whieh th(' 
storagp wus ('xl)!'['sspd us tlw sum of two terms, tIl(' first of whieh is related to 
SOil\(, pow('r of til(' outflow (as for tIl(' nonlin('ur r('sprvoir) and th(' ~eeond of 
\\'hi('11 involv(,8 til(' ml!' of ('hang(' of odtflo\\', 

...\8 with all t~'1)(,8 of mod pis, it is n!'('('ssIUT to find tllp optimal values of thp 
PIU'!lIlwt('rs of a ('(Jl\('ephllli mock!. This ean 1)(' dOll(' by th(' nwthod of least 
squun's, by minimax l'l'l'or, by mat('hing of momellts, or by n direct search 
t('ehniqu(' on It (li~itnl ('omput('r. To us(' til(' n1('thod of l(,H:;t squnrps, it would 
1)(' n('('PHHllry to <Ii tl'prPl1tit\t(' til(' equationH for tl1(' IeH with respeet to each 
of till' pnrtlml't!'l'H in turn and Holvl' til(' r('suiting sitUultan('ous ('quations, This 
mayinvolvp UH in HOtU(' rompll'x matlwml\ties. It is l'llsy enough to differ­
<'ntilLt(' til<' gammn distribution with r('spl'ct to timp to Cind its peak, but to 
cli tI('rl'ntin.t(' it with r'('Slwrt to n or }{ !;oon IpadH us into an undergrowth of 
unfamiliar rnnt\lPmlltil'1l1 funC'tiOllH, Wh('l'(' ('onc('ptuaL mod('ls have been 
uSNL, thl' (,l'it(,l'jnlt of fi.t has b('('tl that the' mod('1 should match thp, two ('0­

ordinat!':; of til<' p!'ak of tlw ('mpiri('lllly dprivpd hydrogmph, In dIect, such a 
erit('rion m('IUlH matching th(' modpl to th(' prototype at two points only 
(til(' Ol'igin and tll(' ppnk) Ilnd ignoring tlll' information availabl(' in the 
l'('mainckr of til(' hydt'Ograph, 

In prncti('(\ it has b(\pn found 1'('lativdy easy to ('omput(' the moments of 
most l'()t1('(\pttral modt'ls. This sugg('sts that matching by moments b(' used as 
tlw ('rit(,l'iou for dt't('rlllining thl' optimal values of tIl(' parameters, The 
gput'l'l11 fOl'll1Uln for the' Rlh mOtl1l'nt of til<' impulsp r('sponse of a linear reservoir 
about Uw origin is giv(,lt by: 

(29) 

and tht' gl'n(,l'!ll ('xprf'ssion [or its eumulant is: 

(30) 

If lirH'ttr storagr ('\pl1wnts 111'(' ('ombinpd in sl'rirs, then til(' cumulllnts of the 
r('sulting {,tlsC'!\c\r art' obtainrci by adding togpth('r thr corresponding cumu­
Lants of thl;' individual r('sl'rvoirs, If linenr rpservoirs arc eombined in parallel, 
till' tnOlllrnts of tilP r('sulting sYRh'm about thl' origin can bC' obtained by 
adding tlw individual moments Itbout thl' origin, 1'hp moments and the 
rumulants havl' til<' advllntagp that tlwy takp into account tlw complete unit 
hydrograph, but for th£' higher moments then' is tllP disadvantage that the 



r('(,(,~llion limb of tllp hydro);raph mnkPs II dominant ('otllributioll to til(' v!llu(' 
of tIl(' ll10nwnt Rnd errol'~ in til<' r!'(,PssiOll mny diHtOI't this "ulul', 

,rh('I'(' a till1P-Hr(,H-('ol1('('ntl'Utioll ('urv(' iH !'('prC'spntNI b~' u gC'onwtrical 
figur(' and l'()utC'cl throu);h n linC'!\!' l'('SC'rvnir. then til(' ('ul11ulants of til(' rp­
suiting ('onppptual ll10dpl Hl'P (lhtainpd by uddin); til(' ('umulants of I'll(' g('o­
lHP!ri('ul rigul'{' (,pprpsl'nting tilt' tinw-arp!H'()l\('pnfntlioll ('urvp and tll(' 
l'umulants of til(' lill('IU' l'psprvoir. Thus, for t Iw ('mH' of til(' J'olitNI isos('<'it's 
triangll', if (II(' bas!' of thr triallglp is gi\,pn by 7' !Lnd til(' stol'llgl' ddny (inl(' of 
til!' linC'lu' l'i'HPI'\'oir by J\, til!' eUlnulantH of Ow I'('suiting mod!'1 UI'(' as follows: 

(3ld) 

H tll(> I'I'Sp!'('t i \'(' IIll1llwn(s (lll' cUl1luiants I of tlw ('OtH'pplulIl mocld are 
I'quatC'd to II\(' dprh'pd 1l10nH'nts toJ' ('llInulants) of an Plllpiric'lli hydl'ogmph, 
thl'll tl1{' V<litH'S of tht' plll'allwU'rs that art' optimal in th(' SN1S(, of moment 
ll1!lt('itinp; ('Iln \w 1'\'llilllltl'c1. 

As nwnt iOIH'(\ tlf t 11(' Iwginnillg of till' sPC'tion, It ('Oll('pptuill mod!'1 call only 
bp lIs!'(\ to s,\'n(h!'si7.1' IlIl IH'tlial unit hycll'ogl'llph if SOIlW mit' is availablC' for 
pl't'di(,ting til!' vni.tH's of till' parnnwt!'I's of thI' !'Olw(lptual mod!'1 Oil til<' hasifi or 
['('(\Clily H\'llilahh' ('n(('hll\('nt ('hnr'lwt!'l'islies, rSllllll~' sueh mil'S Ill'!, bnspd Oil 

till' {'ol'rPln.t ion or t11(' mod!'1 pm'1lI11l't ('I'S with C'fttehnwnt C'hllrndt'l'isti('s fOl' 
unit hycimp;mphs dl'I'ivNI from ('at('hnwnts \\'hpl'(' n·(·mds al'(' availablc', If tlH' 
p!ll'am!'t PI'S or t hI' (,OlH'('pt 1I1l1 modPlH dWSl'1l for ('flIH'Optlllll modl'lf1 111'(' Hot 
V{,I'Y slab\{', or if til(' optimal valtH's of till' pal.'aInptN's eallllO{ bl' shal'ply 
icll'ntilipd fl'mll til!' past r{'('ol'd.., of input and output, then t1w ('ol'l'('latiolls OIl 

whit'h is bns('d til(' syn( hC'si;; of the' unit hyc1rograph for 11 ungaged clltrilmellt 
will \H' ull!,pliablp, 

1'11('1'(' is It gn'at d(,!ll to I'pc'omnwn(\ til(' proposal by .:\'Hsh (4·7) that til(' 
moments bp \lli('d 11S tlw basili of this eOl'r<'intion b('(!itUS(' tlH' low('1' onl('!' 
monwllts !\l't' mort' Htnhi!' thall slleh pltranwtrrs as tinw-to-pcak and peak 
c1isrharg('. On .tIl(' baF;is of 90 F;lOl'ms Oil 30 British C'lttehnWlltf1 (whos(' area 
varipd from 4.8 to 85H square' milPH), Xllsh (48) derived the' 1'C'lationship: 

,t)O'3
C'1'=Ir.=27,(i (·s (32) 
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whl'l'(' ('1' j" lIw fir:;t ml1l1wnl or lng, A i" til(' nrl'n in "qunrr mill,s, nnd S is the 
OVl'l'illnd ::;Iopp in PH!'t::: 1)('1' tt'Ll t ho\,sllnd, Bpforp adopting this I'l'intionship, 
Xnsh hnd tripe! til(' l'pgl'!'s:::ioll of thr fir:::t mOlll('nt on Ynl'ious ('ombinntions of 
nin!' (,lltrhl1wnt::: eilllr!lr'tl't'isti('s. TIU' rodfiei(,llt of multiplt' ('OlTPintion (R) 
for til!' rpilltiollship gi vpn in (>(Iuntioll :-l2 \\'ns O,UO. \\"I1('n til(' dim(,lIsionl(,ss 
SPc'olld lllOI1Wnt \l'tlS ('OlTPhttt'd against th(' ('utebnwnt ('hnntC't!'l'istic's, the 
llPst 1'('SUlt obtaitwd wn,,: 

('.2 OAt
/11.,= .. ~= ... - (33)

- (( "t')2 III 

wlH'l'(, 1/l2 i" til!' dinH'lIsitluit'"'' s('('oneL 111011wnt and L i::: tlll' 1!'lIgth or tllP long!'st 
st n'nm to Ill!' ('Ill c,hnwn( Ihlulldllry in milt·:::, III this :::('('onel !'('gr('ssion. th(' 
1'{){'tIiei('lIl or multipl(' (,UlT!'lation (Rl was 0,45. 

(lIlt'!' t IH' 1I10!HPll t::: of tll!' unit hycll'Ogmph hnn' l)(,pn clrt;!'l'min('d and 
I'<;till\!tl!'d, til!' pqlUttion::: r!'llttlng til(' mntnpnt::: of tll(' ('olH'('ptual modpl ehos(,ll 
for s),ntlwsi:-; to till' hHsie !Hodc·l P1U'ltnwtl'I'S ('Hn lw sol\'('d [or til!' yltlu('s of 
till's!' pnt'iU)1Ptl'I'S, In gn.rnrnll dist dilutions, tll(' pll!'nnwtprs ean bp c\ptprmincd 
din·('tly fmm til(' m(ll1wnts sin('(' Wl' hllVP: 

(34) 

1/112 
11=­ (35) 

])12 

'I'll(' pnr'tUlw('!' Yaltl('::: dl'l'i,'rd ill thii' way rail thrlt 1)(' tlsrcl to generate the 
partie'ula.!' gtunmn distrihution whi('h is uspd n::. It rppl'l'Hentntion of til(' IUH 
for t IlP l'llt('\\llWnt lwing studipd, 

\Yu ! 70\ haH ]'('pOl'tpd on n syntill'lic nwthod ckriYNl from tilt' rp('orcls for 
21 \\lltPl'slwds in Indillnll "[lrying [rolll 7 to 100 sqUtll'(' milps, H(' (,ol'rclah~d 
til(' tinw-to-pl1ak with ctltehm('nt ('hat'!letpristi('s lmel found: 

31.'12 (A ) I,OSS 
(36)lp= ~L) 1,2:I~(S)O,66S 

",hpl'{' /p is t IH' tin1(' to Jwak in hOlm~, A ii' thp ar('a in squar'(' miirs, L is thG 
Il'ngth of tl\(' nUlin :-:tn'HIll in mil(':::, nne! ::; is til(' siopr of til<' main stream in 
part:; lWl' tpn thousand, Th" otl1('r pnmnwt('I' \\'hi('h WllS corr01at('d by \Yu wns 
til(' l'(·('t'8S1011 ('OIlstant I.e, fll1' "'hieh h(l proposed: 

_ 780 (.:1 ) 0,937 
l~=-__:.......:__­ (37)(L) 1.474(8) 1.473 

1I'11(Ir(' J{ i:; tlu' :;toragr ('onstant in hours, nnd thr catchment characteristics 
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un' as dPiilH'ci for pquatio!l ~i6. Bceuusr the tinw-to-pNtk for tlw gn,mma dis­
tribution is rdutpd to thr parameters nand ]{ by: 

(38) 

tlWrt, is no diflieulty in deriving thp valur of n from equutions 36 and 37 and 
so gPIH'rnting Hw synthrtic: unit hycJrograph. 

Comparison of lHethods 

In this In'tun', WI' hllY<' (lutlinrd It numb('r or mrthocJs ",bieh ean br USNi in 
at tpmpting to sol\'C' til(' problC'm or syntiwtie unit hycil'Ogrnphs, that is, t.he 
probkm or predi('ting the' unit hydrograph fOl' fl. watc'rshrcl ill whi('h no records 
of inflo", Hnd outflow a('(' availablp. A largp numbpr of nl('thoci::; have bern 
llI'OpmH'd, sonw lwlongillg to til(' eut('gory of linw-l1.!'('IJ.. nwthocls, sonw to the 
!'llt<'gOl',\' of pmpiri('ul nwthods, Snn1(' to tll(' c!Ltpgory of ('onoeptual models. 
'I'll(' h~ drologist f1H'(,([ with tnl imnwdiatp pmbl('m, but anxious to usc as 
objPl'tiw a l11C'thod flS possibl(' might \\'('11 ask. "How sball I choose' between 
tlU's!' nwtb{)cil;'?" To alls\\'!'r this qu('stion, it is IH'C'('ssary to C'ompare the 
llwthocls lwlouging to (,!H'h ('at(lgor~' and also to C'ompal'(' the ditTcl'lmt cate­
gorips. 

In ti[lw-aren llwthod:>, w(' must d!'cici(' whrther to use th(' actual time-aren­
('o[lC'cntmtioll CUlY\, or n g<'om!'tri('al figun' and ,,'het!wr to rout!' t.hrough one 
or mol'(' linenr l'{'s('I'voirs. It would appeal: that tll<' C'xt!'enw tedium of deriving 
n tinw-nr!'tH'Onecntrntioll (,lll'V(, is llut justified by any appreeiabl(' increase 
in n('em9.('y in r('pr('sf'lIliug uetunl unit h~'drographs and that the judioious 
r(~pla('!'n1('nt of tIl{' tinw-an'a-oOlU'Plltration ('urve by a geometrical figure is 
unobj('('tiouablt'. Carp must b(' taken, how!'ver, that a catchment of untypical 
shapl' is not fO!'('('d into till' straight jaeket of bring rrprrsented by a geo­
metrienJ 1igUl'(, ",host' shape is bU:lc'cl on the general shapp of other catchments 
in tll(' region. OUC(' it has l)('en c1P('iclecl to rout(' a geometrical figure mther 
than 11 dl'riwd lu'('n-('onecntratioll Clll'VE', the problem really reduces to one of 
a C'oll('t'ptual mod('!. Tht' question of what figure to use and how maIlY reser­
voirs to route through call be determined by the methods given below for 
c'onc'C'ptual modc'ls. 

The pmpirical ('tlrves used to represent the unit hydrograph (nearly all of 
\\'hieh arE' oI)('-parauwter mod('lf'j can b(' compared by dimensionless plotting. 
It i~ important to r('ll1embC'r that for one-parameter Curves only one parameter 
is HvailnblC' to act as a seal€' factor. Thus, a comparison by plotting the ratio 
of discharge to pC!lk disoharge against time over time-to-peak may not be 
valid as the volnme under the hydrograph may not be normalized to unit 
volum('. 

Both thC'orC'tical considerations and practical results in the field indicate 
that the lag (the time interval bctwN!ll the center of precipitation excess and 
the ('entpr of direct storm runoff) is the most stable time parameter and the 
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O[1e most highly correlated with the cn,tchmcmt ('hametC'ristics usuall,'{ used, 
It is sugg(lst('d, thcr('!'or(l, that llny eompal'iSOll of dimensionless unit hy­
cIrogl'n.phs should be made by plotting: 

(32) 

whNO q is the ordinatc' of the ullit hyclrogmph, it is til(' lag as definod abovo, 
l' is til(' volumr of rainfall ('X('(lSS, and f) i~ th(' durntioll o[ minfttU excess, 
oimilady nlly (\imPllsiolllpss S-(~ltl'\'(' Rhould bl' plotted ns: 

SCi) =¢ (t) (33) 

In enC'h ensc', ¢ is an undefined funetioll r('pn's('nting the standard shape 
ndopted. 

A eompi<'t(' eompnrison of ditT(,I'('nt nwthods of syntllPtie unit hyclrograph 
gC'lH'l'!tliOll bns('(l on ('mpiric'al CUt'VPR must tnk(' into nccount the empirical 
r('\n,tiollships with en.tehllwnt C'harart(·risties lls('d to cIt'tennine the basic 
unit hyclrogmph pttmnwtol' or paranwtc'rs, A number of eomparisons have 
bp('ll mack but nOll(' of tllPm \\'('1'(' eomprt'ilPusive, DoogeS compared, in a 
erudp [aRhioll, th(' shap(' obtaiJl(ld by routing an isosceles triangle through a 
lineal' r('s('rvoir with tit(' shap(' of the dimC'nsionkss unit hydrogl'aphs proposed 
b~' Commons U£), Williams trW), and til(l Soil Conservation Service (68). 
T1U' !~omparison was mnd(l by plotting till' ratio of the discharge ordinate to 
maximum discharg(, tq/qmn;J ngainRt til(' ratio of the time to the time-of-peak, 
(l/I p ). B('('ttWH' all tlw ('Ul'VC'S \\'('I'P eonstrailwd to go through common points 
at t h(l origin and tlll' peH,k, no grNLt diffpr(,lw('s 'n~r(' l'('vealcd, 

Coultpl' (},'3) in a st.udy or l'lu'nl eatchments in X(I\\' South Wales, comparf'cl 
tlw synt lH't ie unit hydl'ogl'aphs gl'l1C'l'at(ld for nill(' rH,tehmcnts by the methods 
of Taylor and Seln\"ftrtz (eM), Chwk and .rohnstollc (9, 29), Eaton (19), 
U'](plly l49), and ~\ [orgall and Hullinghorst.9 For a few of the catchments, 
the peak flows prpdidecl by tll(' various methods were quite close to one 
auotht'r, but othC'r catchments showed a three- 01' fourfold variation. 

])001';(1 (footnot(' 1) put fonYH.rd the iclPH of C(lmpariug methods of synthetic 
unit hydrowaph gpnrrntiou on til(' basis of th(lir predictions of the unit 
hydrogntph for 011(' or mor(l standard catchments, A standard eatchmcnt is 
takl'll !\~ lwing One' in geomorphological equilibrium. Though ttl! catehments 
ILrr not in t'C[uilibrium, it may be assumed that C'atchments out of equilibrium 
at'{' tC'nding to equilibrium and tend so more rapidly the more they are out of 
equilibrium. One€' th(l size of the standard catchment ,,'as fixed at 100 square 
mil('s, thE' remaining topographical characteristics were fixed on the basis of 

s See footuote I, p. 199, 

9 See footnote 3, p. 204. 
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gromorphological principles and published relationships. In this case, the 
channel slopc was taken as 100 fcct PCI' mill' and the ground slop(' as 400 fret 
p('r mil('. Other chnraetcristics wcr(' a drainage density of 1.25 and a length 
of overland flo\\' of 2,200 f('rt. 

:\forgan and Johnson {4;2) ('omparrd til(' rplatiw nc('ura('y and l'cliabilit~. 
of til(' sYlltlwtie ullit hydrograph mrthocis propospd hy Snydrl' (.1.9), thr Soil 
Consf'l'vatinn S('rvie(' WS), Commons (J 2)' and :'Htehell (,1/). They appli<'cl 
tlw nwthncls to 12 clrninng<, al'('as in I1liliois ranging in I'iz(' from 10 to 101 
squfU'(, mill'S. Again \\'ic1(' variations \wt\\'P(,ll til!' I'YlltlH'tie unit graphs and 
iwtW('('1l tlH'1l1 and till' (letual unit gmph \\,prp founel. Xo nwthnci consistently 
OVPl'- or undpl'('stimatc,cl tlw aetual \wnk dis('l\arge, TIl(' higlwst nwthocls of 
\)(Iak di~;rharg(' mnk('d in t\H' following ()l'd('r: SCS, CommonI', :'I Litf'llPII, and 
Snydl'r. Thpl'<' \\'llS littlc' diIT('l'PIl('(' \Jpf\\-(,l'n till' ('stimatc's h~· til(' SCS nwthocl 
and til(' Commons nwthod. WIH'll nn obs(,l"vpd lag \nU; USN! instpad or a lag 
{'stimatl'd on til(, basis of eut('hnwnt ('harnC'tpri;:;ti('s, til!' synthdi(' nwthods 
giL\,(, 11111l'il bpttpl' l'('l'ults. Studil'~ b,\" Coultr,1' (13) and by :\lol"gan and 
,Jllhllson (.P) an' of intpl"P;:;t lWellllsP tlwy t<'st til(' g('llerni appli(,Hbilit~· of til(' 
('mpil'ieal rPlationships \wtW('('1l ullit hyclrogrnph parnnwtl'l's and catchl11pnt 
c'ltartl('tpl'istil's ol'iginally d('rivpcl from l'('gions which al'(' \\'iclel~' sppnratpd 
1'1'0111 011(' a!loth('r. 

Thl' t'ollowinl!: tabulation shows till' ability of n !lumber of methods to 
prpclkt til(' lug of n ;:;tnndnrcl ('at('hnwnt. When :\[eCarthy's nwthocl (sre 

.JulllOl' Location 

)'frCarthy (l!l:3S)", '" .. Connecticut 16.2 
Snyder (l()a~:n, . , ..... , " ApPlIlnchians Hi. 5 
nlitchell (1().lR) .•....... , lllinois 15.4 
O'Kelly (lI);'i:>). .. " ..... Ireland 14.0 
-"'ash (lOGO).,', ..... , , .. Britnin 15.9 

footllot(' 2), which\\'ns basNI on n VPI'Y fp\\" streams in Connrcticut, "'ns 
appliN! to tilt' standard eatehmpnt of 100 I-lqunrp milrs, a lag of 16.2 hours was 
obtainpcl; Snyder';:; l11C'thod bm.,ed on \\'ork in thl' Appalachians gave a lag of 
l(j.5 houn;; :\[it('hell's nwthod baspd on watershrds ill Illinois gave a lag of 
H>.4 hours; O'I\:C'lly's nwthocl bnl'l'd Oil a. number of catchments in Ireland, 
gnNC' l·tO hours; tlnd .i.\nsh's l1wthod hnspd on eatchments in Britain a lag of 
li).O hours. With the ('xeC'ption 0f the r('sult by O'Kelly's mC'thoel, thesp are all 
rpmnrkably e101'l' varying only from 15.4 to 16,5 hours, a difference of only 
7 Pl'J:('PIIt. In addition to this rC'markahlp ('oneordanec, there is a reason why 
tll(' ent('hments studic'd hy O'KPI!y would bp exppetecl to ha.V(' shorter lag 
times for standard dimensions. O'Erlly was eoneC'rnec! with the problem of 
dpsigning nrt('rial drainng,' s('hen1('S (main river improvem('llt s('hem('s) in 
Irpiancl. .t\('('ordingly, his nwthocl was basrd on the charaeteristks of rivers for 
which sueh sehpmps had \)('en ('arril'd out_ Under post-drainage eonclitions, 
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catchments ilrt' expectpd to show shorter lag times than the averag('. It would 
appear that, while the dimensionless unit hydrographs, which were used in the 
past is a purely empirical fashion, will be' replaced by mathematical equations 
or by conc'pptual models. til(' ('orr('lntions of hydrograph paranwtrrs (partieu­
larIy lag) with catehment ehamcteristies dt'veloppd in tIl(' dassieal synth('tie 
mpthods may still be' uspful. 

'1'11<'1"(' J"('maIllS til(' problem of clt'riding how ("ompl('x th" mathematical 
('<luatioll or (,OIl('<'ptual Il10dpl must be' and how to ("hOOR(, l)('tw('('n diffl'rpnt 
modpls (or ('quatioIlR) of ('quill ('omplf'xity. Xnsh (.rl", 48) propospd a W"H'rnl 
SYlltlH'til' :wlH'nw along til(' litl('s shown in figut'(, 8-;3. As has \)('('(l l'('peat('dly 
l'l11plUUiiz(·d. tlw rpltttionships on whi('h til(' syntlwsis ill'(' bas('d must be 
dpl'iv('d fl'om til(' analysi::; or a ntlln\)pr or wnt('n;hI'C[::; fol' \\'hic'h IlWaSl!rpm(,llts 
un' tLvnilnbl(' and whieh S(,I'Y(, as a sample' for t1H' n·gioll. Xnsh suggpstNI that 
thp mom(,lIts of til(' n'H J)(' cll'rivl'd from a sp[ of ~amph' ('at('hJ1Wllt:-; ane! tl1('sP 
mOI11C'llt:-; ('IJtT{'itt t('tI wi th ()l\(' allot ill'1' and \\'i th till' ea t('hnH'n t eharnrt('l'isti('s 
to dl'lpl'IllilH' tlH' Ilumlwl' or e!pgn'p:-; of [n'('dol11 inlwl'('lIt ill til(' I'('SPOIlSl' of a 
('utehnH'llt \\'1H'1l opl'ratillp; Oil pl'('('ipitatioll (,X('pSS to prOdll('(' flood runoff. 
Thi~ would ('IHlbh, liS to dl'tpl'w'll!' till' uumiwr of pamJ1wtprs np('dC'cl in the 
simulati()1l systl'It1, Il(' sup;p;pst!'d that til(' dinH'll:;ionlpss mOIlI('nts of the' aetual 

MOMENTS CATCHMENT
14---,....-..-j 

OF IUH PARAMETERS 

, 


IUH BEST DEGREES OF r--......'"----l 
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rt'spOIlS('S ltllld tlH' dimensionipss moments of a 11l1lnbpr of COlH'pptual modpi 
s),strm.s with tlw r(lquirrd numlwr of paranwtprs) 1)(' piott('d against ()I1P 

nnotlH'r. 011 SUdl a piot of /112 agnim,t 11/:: or nl4 against 1112, a oIlP-paranH'tpr 
mode'l \\'(nlld plot as tl singi(' point: a {wo-pnmmp{f'r modpl, as II singlp ('urv('; 
nne! n thn,p-pamllwtpr mod"l. as a family of ('UrvN;. B~' ('ol1lparing til(' rurvps 
fll!' til(' modd systpm with till' plot of points for aetunl ('ntchnwnts, th!' bpst 
IlHlCIt·1 ('ould 1)(' ('lim;!'I!. 

On('!' tIl(' t'orrl'lations of ICH mom('nts with entehnwnt eharlwtpristiC'R 
hltVl' hC'1'1l {\p{prmin('d and titp mnclC'1 t'hospn. it is pORsibl(' tn syntiH'siu' til(' 
unit Itydmgmph for a wtttl'l'sl\(>d for whic'h no r('('ords ar!' availablc'. Firstly, 
till' 1ll0llH'uts of til(' 1t'H m'(' d!'tprmill('(l by th(· r/'grpssion ('<luatiolls using the 
valul's of tilt' en(('hnwnt I'harnetpristic's of HlP partil'ulttr eat('\II11PIlt. 1'11('s(' 
prNlic,tl'd rnonwllis ('nn lit' ('qunt<'C1 to thl' ('xprl's:.;iOlIR for tl1(' ('orn'sponciing 
mOIl1!'nts of tl1(' ll)()dt'l I'ho:;P!l. and till' optimal yaitws of tlU' mod!'1 parnmrtprR 
fur til(' parti('IIlar (,llte'lll1lPllt thuR c1l'tl'rmiIlPd. On('(' til!' nHl(\C'1 and the' optimal 
vnItH's of til(' parllnwtt'rs arp known, til!' ('ompld(' TCU for tiw pnrtieulnr 
watC'rslwd ('[til hI' g(llH'ratp(L 

Xash 1.18 1 nppli!'c1 his nwthod to the' data for !lO storms Oil ao catdlll1ellts in 
Un'nt Britllin. Hpgn'ssiotl fltltlly;::;is gav(' a rt'latiol1ship l)('t\\"('(,11 tllP first 
nHlIlwnt 11111 and til!' ('atehnlPl1( ('hnrnt't!'ristil's of arPll und ()vl'rland slopr 
with (t ('ol'fI1eipnt of mll\tipl!' (,OITI'lntion of (l.BO. .:\ fllrthpr rpgn'ssion of th(' 
:;pe!)IHI !l\onwnt \ lII..d with 1/11 and tlw ()vf'riane! slop!' gav(' It ('()('ffieipnt with a 
mutt iph' ('on-pIa tiOIl of (J.;) 1. Though til(' latt('r r('sult is statistically significant, 
it dOl's Hot givp It good dp{!'rminatioll of tlw RP('ond l1lonwnt llnd. h(,I1(,(" the 
nbility of thl' J;('hrnw to prl'diet all unknown unit hydrograph iJ; impaired. 

WlwlI Xnsh plotll'd till' 1l10n1<'ntJ; of his (wtllal r!'spOllSPS against OIl(' n.nother, 
/1;.\ ~hm\ll OIl lip;urp R-4. tilt',\' ('()vC'rpd a rl'gion ratll('r than fpll along a singlp 
lin('. lit dis('u~~inp; Xash's pap('r, DODg(' point('d out that til(' data and the 
('urV!' nrc' not stril'tly comparabl('. Th(' data \\'1'1'(' d('rived on til(' nssumption 
thnt til!' bus!' of tht' unit hydl'ogrnph was thr('(' tin1PS its lag; wlH'rt'as, the 
hns(' or th(' gumma distribution is infinitl'. A ('mdp ('orn'etion can b(' made 
and tlU' l \\'0 mad!' mOr(' ('ompnrabh' by trun('ating the gamma distribution 
lH'eording to th(' n1rthod of bas(' flow spparatioll given by Xa1';h so that the 
bas!' of thc' tnlll('utpd gamma distribution is thr('(' tinl<'s its lag. ,Yhpn this is 
dOIl(,. thl' truneatrd gamma distribution plots as a lint' lying below til(' data 
points shown on figur(' ~-1 and. thus, appC'ars to approximat(' a limiting 
form ratlH'r than nn twerngp form for til(' l(-H's derived by Xash. Figure 
f;~·4 also show;; the' comparison of the data with thrp(, models: (1) a chunuel 
and rCf:crvoir in s('ri('s I ('urve ..l); (2) a ('asead(· of ('qual linear rpservoirf: with 
an upstream inRo\\', that is, thl' gumma distribution (curvp B); (:3) and the 
caseaci(' of equnllinear reservoirs with lateral inflow (curv(' C). 

'1'11(\ gPlH'rnl ssntllf'ti(' S('\WllW propos('d by Xnsh eOlllcl, with ndvantng(', be 
Illodifil'd to til(' SCilCllW outlin(>(l on figUl'C' 8-5. It is Ruggpstpd that, instead of 
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correlating the moments with the catchments characteristics, the moments be 
correlated among themselves to determine the number of degrees of freedom. 
Thus, in a two-parameter system, the third moment will be completely deter­
mined once the first and second moments arc known; whereas in a three­
parameter system, the fourth moment will be known once the first, second, and 
third moments arc known. If the moments are made dimensionless by using 
the first moment as a scaling factor, then thE' criterion for a two-pare;meter 
model is that the third dimensionless moment is completely determined by the 
second dimensionless moment (or cumulant); the criterion for a three-param­
('ter system is that the fourth dimensionless moment (or cumulant) is com­
pletely determined by the second and the third dimensionless moments. 

In his discussion of Nash's paper, Dooge (18) calculated the coefficient of 
multipll' eorrelation of 1n3 with 1/t2 for Nash's datiL as 0.il7. This indicated 
thnt the variation in thl' third dimensionless moment (ln3) was only 50 percent 
aecounted for by vuriations in the dimensionless sE'cond moment (1112) and, 
hence, thnt the two-parameter model would not be highly efficient as n basis 
for simulation. However, thp coefficient of multiple correlation between the 

0.5r-----.-----.-----.-----~----~----~ 

A 

B 

0.4 c 

0.3r-----+-----4---~~--~~----_#----~ 

O.I~----~~_,~~---+----~------+_----~ 

0.1 0.2 0.4 0.5 0.6 

FroURE; S-l.-8hape fnctor diagram for NllSh's dat,a. 
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IUH 

dinwn:-;ionh':o;:-; fUlH'th lllonlPnt pn.d and thl' two InwC'1' dinwllsionlC'ss Illonwnts 
(11I3 nnd Ill:!. \ wn:-; found to \)(' 0.0:3, indieating that tIl(' vnrianeC' in 'm.~ was 
a('C'ountpd fol' by til(' varianc'C' in thC' InwC'r moments to thl' C'xtent of nlmost 
90 pl'rC'pn1. Consid("ring tIl(' basic nntlH'P of Xash's datI' (which werl' normal 
rivl'r ob:-;('rvntinIlS mtlw!' tluln rl'sparch rradings), this was a vrry high correla­
tion tlnd indicatpd that a thl'('l'-pnranwtpr model would probably givr as 
satisfactory a simulation ns thp data \\'arrantl'd. Thr !'cmninder of thr modified 
gf!lH'!'nl s~'n tlwtie selwmp shown on figlH'l' 8-5 is thl' sanw as for Nash's original 
proposnl sh()\m on figlll'(, 8-3, ('xC'ept thnt the parameters of the IUH arc 
('nrrf'latrd di!,(,C'tly with eatchment parameters. 

It must 1)(' str('ssl'd that what is requirpd in thl' correlation for unit hy­
drograph ilynthC'sis is llOt Il( cl'ssnrily a correlntion with individual catchment' 

ehal'llci("risties, To (\l'termin(' th(' tl1l'(\p indppendent IUH parampters that 
would 1)(' rl'quirpd for tl thrp("-paranwtpr model, it is necessary Lo Imvc three 
indpppudcnt cnt('hm('nt paranwt("rs which bptwl'cn them would nccount for 
90 p('l'('I'nt or morp of th(' variation in th(' shap(' of the rUR. Ench of these 
pnraml't('rs might be madl' up from n. number of catchmcnt characteristics 
(su('h as arm, slope, drninagt' dpnsity, and shape') in the same way as the 
FroudI' Ilumbpr and tll(' Hl'ynolds' number Itre made up from n. number of 
hydraulic ehnmctt'ristics. 

1'11(' dptt'rmination of thl' signifieaut grouping of catchnwnt characteristics 
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into catchment parn.nH'tcrs r('mains one of thE' great unsolved problems of 
surfaec water hydrology. Fl1.rtor analysis may help in the preliminary trial 
grouping of catrhmcnt characteristics, but it is likely that the final significant 
forms of til(' groupings will only emerge through a better understanding of 
geomorphological processes. 

The shape factor diagram in which dimensionless moments or cumulants 
arE' plott('d against onr another is a most useful d('vic(' for comparing nlternn­
tiv(' ('onreptual models of thl' sam(' number of pnram€'ters and of comparing 
concrptual models with aetunl dnta. Thus, figure 8-6 shows n comparison 

A Routed rectangle 

B Routed triangle 

C Cascade of re.servoirs 

FlOUlU~ 8-6.-Slmpe fnctor for models. 
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b('t\\,p('l1 tlll"('(' t wo-pnranH't('r conceptual mocipls: (1) a l"Outpcl rpctllnglp, (~) tL 

rout('d tl"iungl(', !\nd (8) U cHsencip of ('quill linenr 1·C'scrvoirs. It clln bp S(,(,II 

tlmt (,Heh of tlws(\ t\\,()-paranwtpr ('olll'Pptual mocirll:l dl'fil1('s n lilH' in the 
S3-S2 pI1IlH' , whpl"(' Sa is tlw dinH'nsiolll('~~ third (,llll1ulant (or 1110111('110 and 
s~ il:l tlw din1(,l1sionlpss I:l('('oud ('ulllulallt (.or mOll1('llt), Thes(' IiIWI:l plot r('la­
t:iVl'IS dOl:lpI,\' togl'tlH'I' on tIl<' diagram, thus pxpluining \I'hy all of tIl('sP modpls 
bnvp bt'(,1l sug~pst('d HI-; Il basis for simuillting tIl(' snn1(' typl' of prototype 
systt'lU. 

FigUI'P R· 7 shows It ('ol11pnrison of a Pl'llrsol\ Typl' IT r distribution (gnmma 
di:4t ributiolll with n. Ppursol1 T~'pl' Y di:4tribulion and a Pparsoll Typ(' I dis­
tribut iolt. This diagl"fllll ('ould 1)(' uRPd to d('C'id(' ",hi('h PC'nrsoll distribution to 
('1100RI' for fitting unit hydrogmphs or otlwr l"('SPOllS(' ('urv!'s by taking the 
distributioll "'hid, In..'' ('Ios('st Oil til(' shap(' fHetOt" diagnun to thl' plottNI 
]loint:-; c'OIT(,l:lp(Jnding to t Itl' unit hydl"()gmph~ for a llumlwr of snmph' C'ateh­
I1WUtS. 

Figllt"P H' H shows !t C'Olnparisoll lwt\\"('('ll thl' tinw-trnl1sfornwd gamma 
dist dilution nnd tIH' ol"dinHrY gamma distribution. 'I'll(' ('asl' plott(ld is for n 
\'!Liul' of III::; !A~ and C'(llTPSpllnds to til!' to\"pC' of ll10dpl uSNI by TVA. If eurvl's 
\\1'1"(\ drawn fOl" othpl" valu!'s of III. it \l"ould b(' possible' to sC'p if tlw plotted 
points from snmplp ('ll(c'hnwll[s all fl'lI nl()l1~ ()[I(' IiII('. This would t'l1abll' us to 
u!",p it t wO-pal'IlIl1I'[l'l" modpl bns('d on tlw valu!' of III ('orrpsponcling to that lil1(, 
ll!" ('Is(' to indil'lt[p \\'11('tl1('1" til!' family of ('urV('S s"'ppt out t\w region of plottt'cl 
points, thus allowing us to ust' l'qun.tion 22 as 11, thl"c'<,-parnnwU'r Himulation 
of tht' pl"Ot()t~'IW sys[pm. 

:(>"ohlems on Syntht·tk Cnit Hydrog"aphs 

L ('ompnl"(, tlw vHlu!'s of t1H' lag, tinw-to-pt'ak. nlld pf'nk disrharg(' givpl1 
by fOll!' dltT(,l"l'nt syntlwtil' unit hydrogntph n1('thods for tlw 100 Hqunrf' mill' 
('I1('hnwu[ whos(' ('hnr[lett'ristiC's art' lisl!'d on ApPf'ndix tablf' n. 

~. ('ompL\!"(' tlw vnlllC's of tlw lag. timp-to-p('nk, ancl peak dise\ulrgr given 
by fOUl" dit1'PI'pnt synthptic' unit hyclrograph methods (two t'mpirieal nnd 
two tinl<' arl'!ll for tIlt' t'a(('hnwnt whose' chnrartrristi('H at"(' givPlI on Apprndix 
tabl!' 7. 

a. COn1pal'p a numbt'l" of standard unit hydrograph slmp<,s by plotting 
dinwnRionl('ss ordinate's against c1im('llsionl('ss timt'. 

4. Compal"l' !1, numlwr of standard S-C'urv('s b~' plotting dimrnsionless 
ordinat!'s HV'linHt ciin1PllSioIll('ss time. 

,i. Com pan' It nUll11wr of stundarcl unit hydrogrnph slmprs Oil u plot of 
dinwnsionlrss third 1l10nH'nt vcrSUR dimensionl('ss s('('ond moment. 

G. Dl's('rilw the' various st('ps of On(' partie-ulnr n1('thod for syntlwtir unit 
hydrographs. lind N)mn1('nt Oil tht' strong Hnd \\"rak points in tlw mrthocl. 

http:AORICFLTl'.RE
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FIGUlU: 8-7.-Shape factor for Pearson's empirical distributions. 
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FIGURE S-S.-Bhape fuctors for tim!)-trunsfonned gamma distribution. 



Ll::\EAR THEORY OF HYDROLOGIC SYSTE;\1S 

I, J)('s('l"ibt' til(' 1"t'lnt iO!lship lH'tW('Pll tilt' ~(,IH'ruliz('(i ) [u:,ki[\~um fot'lnultl­
tio[t of HIWltl" etltl'hnwnt I"PSPOllS(' with tlw p;l'IlPrai lineal' ('qUtltiOll with 
('Ollstant ('o('fli('ipntR. lllus\nttf' hy simplp l'xamp!p, 

S, D(,:H'ritH' til(' l"!'llttiollship hl't\\'(,l'll till' p;l'lll'rni lilll'ar ('([uation with 
('ol\stant ('opfh('i(lllts nnd tlH' I'P[Jl'pspntatioll of till' lin('nl: (,llt('hllH'nt l"PSPOllS(' 
ill tprms of I'qunllilWtll" st()rtt~W !'lpl1wnt:-l. lliustrnt!' with n simplp l'xllll1pll'. 

H. Dp:-l(,l"ilw tlH' l"!'inliollship Iwtw(,Plt till' p;!'llPnll lillPtU· ('([wtlion with 
eUllstunt ('()(lUi('iPllts and til!' l'P[!l'l'R1'ulatiolt of tlw ('nll'hnwllt by Il smail 
llum\lPl' of tlllt-quul s[ornp;!' plpl1wn!R. Illust mtl' yotll' nus,,"!'!' by a simple 
('xluupl\,. 

10. ('hoosp n H\H'('ilti !illl'Hr n\odpl with !tn inlinitp tinw baRt'. Cnitoulnt(' th(' 
(ltT!'<'t of tl'UIH'ttlillP; this l"PSjlllllsP ('un'l' to mnk!' til{' bUH(, fiuit(' und work out 
till' ('ml'petiUll:-l to lH' lllUt\t' to til(' nHJllH'l1(~ of tl\(' I'P:-;P()ll~(, ('Ul'''\'. 

11, ('(HlI]HU'P It !lullllH'1' of twn-plu'anw(pl' ll\mltob, by plottinp; dinwllsionit'Hs 
~H'tth. di:-;('hnl'j!;<' u~aill"t dinU'll~itlnh'~~ t il\\(,-t o-ppak. 

1~. ('tl\IIPIU'P It \Illlubpl' uf [WO-ptll'lllllt'\('l' lUo(\pl:-; by plotting ill (('I'ms of 

dinH'lIsi(lnh·s~ :4impp fn(·t()['~, 

1:3. \)('\'is(' It W'IIPral s~'nlh('ti(' :·;('Il!'IlW I'm lillPltl' ('utt'hnwlll l'PH]lOllRP. WOl'k 

out a flow diagrnm I'm tIw ('(Jlllputntiulls ill\'olwd. Apply this flow diltp;mm 
to a spt Ill' !,I'linblp datn. 
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LECTURE 9: 
ll'IATHEMATICAL SIMULATION OF SURFACE FLOW 

As It l'('sult of the c1rvelopmcllt of cOllcrptual models in unit hydrograph 
theory, thr['e has bC(,ll a tcndency sil\(~(' till' mid-1060's to propose til(' usc of 
coneepturti modC'IH to l'epn'scllt sprcitie ('Iements of thc hydrologic cyclC' othor 
than til(' oVC'l'llll dir,('(·t ['('spons(' of !l catclll.l1('ut. Th!' principlC's of matllC'maticnl 
physics can I)!' applird to tilr invpstigation of various parts of thC' hydrologic 
eycle, and til(' individual pro('('sses can 1)(' r('prcsC'ntpci by a set of C'quations 
und boundary conditions, To Holv(' tl1('s(' pquntiollS, it is neccssary to make 
further' simplifying assumptions, which aC'C'entuat(' til(' simulation nature of 
til(' mntlwmatieal HolutiolUl obtninC'd, The rC'placen1l'nt of tiwse simplified 
matlwmati('al l'XP['('SSiOllS by (,OllC'C'pt unl moth'ls is in :tC'C'ordallce \\'ith the 
gt'll('ral syst('ms approach, which eonsid('rs each system ill terms of a certain 
numb('t, of illt(,[,(,OlIll('dC'd denwnts and judgcs a system by its overall opera­
tion mtilP[' thall til(' p['peis(> lIaturp of tlw Plement:; themselvrs, Conceptual 
l1lo<i('ls nt'P formulntNI on th(' ba~i:; of a simple nrmngen1['nt of a relatively 
small lll11nbpr of elrmrnts, raeh of which if> itsplf simplp in operation, The most 
wieldy lIs('d C'Oll(\('ptual Pipments arr li[war rrsC'rvoil'S and linear channels, 
Though COI1('('ptual nlod('is \\'pr(' originall~" introduced as highly simplified 
v('rsion:; of tlw aetual physieul opNations involved, they can also be looked 
UPOll as mathpmnticnl abstraetions \\'host' only function is to simulate the 
behaviOl' of tIw physical Rystems l)['ing studied, 

In tlw two finnl Ip('tur(IS, w(' discuss four segments of til(' hydrologic cycle 
thnt to SOI11P ('xtpnt lend themsplvps to mathematical simulation and to the 
sYllthesiR of ('oll('pptual modpls, Th(' four segments involved are overland flow, 
OP(,ll channel flow, unsaturated flow in soils, and ground water flo\\", 

Overland Flow 

Ov('rlancl flow is an intel'('sting pxample of the application of mathematical 
simulation and thr possibility of applying concrptual models to the solution 
of a hydrologic problem, Overland flo\\" has bf'en studied analytically, in the 
laboratory, and in thl? field, It occurs early in the runoff cycle, and the in­
hereut nonlinC'arity of the proc('ss is not dampened in any way, Hence, the 
mC'thods of linear analysis and synthesis ar(' inadequate in this case, and the 
gelU:ral approach usC'd in dC'vC'ioping linear methods must be extended, 

A physical picture of overland flo", is shown in figure 9-1. The essential 
probh'm to be solved is to dC't('rmin(' thr flow off the plane at the downstream 
rnd for given physical conditions and a given pattern of lateral inflow along 
the plane, The equation of continuity for the two-dimensional lateral inflow 

:!32 
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LATERAL INFLOW, rbl,t) 

t ~~~J ~ ~!~! !!~~~! ~J 
, 


!+-UPltream boundary 

and dividing point 


~""------------~~ X 

FIGURE 9-1.-0verlulld flow (two-dimensionul). 

problem can be written as: 

aq ay
-+-=r(xt) (1)
ax at ' 

when' 
q=q(x,t) = rate of overland flow per unit width 

y = y (x,t) = ciepth of overland flow 
and 

r=r(x,t) = rate of lateral inflow per unit area. 

The dynamic equation for two-dimensional overland flow can be "Titten as: 

1 au ay u au q- -+-+- -=So-S'--'r(x,t) (2)
g at ax g ax gy2 

where 
u=u(x,t) =velocity of overland flow 

So = slope of plane 

S, = friction slope. 

Though the continuity equation is linear in q and y, the dynamic equation is 
highly nonlinear. It is possible by means of a high-speed digital computer to 
obtain a numerical solution of equations 1 and 2 for any given set of boundary 
conditions. This approach will be considered briefly later in this section. For 
the present, however, we are concerned with the simpler approaches to the 
particular problem, that is, with the attempt to find a simple mathematical 
simulation or a simple conceptual model. 
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Tit!' ('la.s.sienl probl(,111 of "\'prlnnd flow is to solw til(' parti('ulnr ('ust' \\'I\('r!' 
titt' iutl'ral inflow is unifornt al()ll~ tlw platH' and tnkp."i til(' fml11 of n unit Slc'p 
fUllC'tion: 

(8) 

TI1('r(' Iln' .s('wrnl parts to til(' ('ompl('t\' solution of this pl'Oblt'll1. Fir.stly, tlIPI'(' 
i.s th!' Ht(,~ldy-stilt(' probll'1l1 of d!'tprmillin~ til(' pquilibrium profilc· \\'I\('n till' 
outfl(lw aJ thp dnwll.strc·nm (lnd of tit(' JllalH' i.s I~qunl to till' in flo\\' OVl'r th!' 
surt'n('(' of tit!' plnn!" Sp('(JIldly, th('('(· i.s till' prohll'm of dC'tpnnilling tlIP riHing 
hytlr()~n\ph (II' outflow Iwfqrp pquilibriulll I'm tll('HJl!'einl inflo", (,:I.sp rpprl'sNt!(,cl 
by (·qutltioll :~ aboV!'. [f titl' problpl11 w(,[,(, n lin('tu' OI1l', thl' .solution of this 
s{'('olld prohlC'lll \ thnt k tit!' d('t(lrn~;lIntiol1 of til!' stl'p-f\llwtioll I'('.spon.sl') 
would Ill' surli('i!'lIt to ('hnl'H('tt'rizl' til(' n'spons!' of tlw .sy.st('tn, alld th!' outflow 
h.'"dl'Ogmph for any (lth!'!' inflow pattl'rIl ('ould 1)(' d!'I'iwd from it. HOII'l'vpr, 
:;iIH'I' titP probh'lll i:; illhprt'lltly lIonlint'ar, til(' prin('ipl(' of :;up(lrpo:;ition (,:\lIlIot 
ill' :t[lplh'd, nlld pnC'll ('Itl'(' of inflow mu.st 1)(' tn'atp(t on its nwri(s. TIll' titird 
Imsi(' prolll('1l\ i.s that of dl't(,l'minin~ th(' ('('('('s;;lon rrom til(' l'quilibriutn ('ondi­
lion afkr tlH' ('l';-:;;alion uf lOll!; ('()tllillll<'d inflO\\'. '1'11(, nalm!' of thr I'p{'('ssion 
wlwn til(' inflo\\' ('pas(':; hC'fon' c'<[uiiihriutn is renelwd t that is, Iwrol'(' til(' out­
/low huild:; up to n valul' (·qunl to til(' inflowl mUHt 1)(' inv('stigatrd, and this 
('on:;titut!'s n fourth bnsi!' problpl1l. Th!' nc'xt stpll is to inv('stigntl' till' l'fTect 
Ilf all inflow fortlwd hy th(' supprpcmitiot1 of t",o or mol':' step functions. Thus, 
titt' fifth haslc' problplll inv()lv('s ('ollsidt'mtion of til(' casp \\'hp[,(' thpn' is a 
8udd<'n inert'a:;c' from olle' uniform raU' of iufio", to n s('cond higi1PI' ratr of 
1I1liform inflo\\'. Tit!' sixth ('as(' ('on:;idC'r('(\ i::; thM wllC'n n uniform mU' of 
inflow is ::;uddpnly ('hang('(\ to [t sC'('ond uniform ratt' of inflow which i.s smaller 
t han till' Ii rst. 

A fp\\" of til(' ('(n:;si('al c'xpprin1!'lltnl r('sults by Izzard (28) an' shown Oil 

fig\trl' 0··2. Tlw top ligurl' sholl'S n ri:.;in~ hydrngraph, a ('r('('ssion, a sP('ond 
risin~ hydrogrnph, unci n linnl I'('('(':;sio\l. TIl(' s{'('ond figur(' sho\\,1; til(' efTC'ct 
of ('hllll~inp; til(' inflow ratt' from l.Sa to ;L3ii in. per hr. (4.G5 and 9.02 em. pcr 
hr., rp:;p!'c,tivl'ly I and tlt<, lowpr diagmm :,;holl':; the' dIed of changing the 
inflo\\' ratl' from :3.135 to l.S·~ in. pt'r hr. (9.27 and 4.6.7 em. per hr., rcspce­
tiwly I. AI.s(). shown in til(' ligurc' ii:': a lognrithmi!' plot of til(' dptention storage 
on til(' surra!'!' of til(' plnlH' ngninst til!' dis('hnrgC' at the (iOwIlstream end. 

TIH' flrst apllrnaeh to thl' solution of till' oVl'r1anci fio\\' prohlrm in e1assieal 
h:'drnlo~y to 1)(' ('onsid!'red i:; that hasNI Oil til(' rppln('emrnt of till' dynamic 
('<Iuation 2 by an a:::sulll('(1 rrlationship brtm'I'll outflow and storage. B('cause 
this nwthod was Ilrst propos('(L by Horton (.22) [or overland f)0\\" on natural 
cnt('hnwnts !tnd 8ubs('qllrntly u:;rd hy Izzard 128) fOl' ptwrd surfaeps, it mny 
jw rpfl'rn'(\ to as th(' Hortoll-Izzard approach. Hydrologists notpd thnt when 
thp <,<[uilibrium runofT l thnt is, thp ('quilibri1l111 dischargp at thr downstream 
pnd) of a numb!'r of pX]Jrrimpntai plots was plott('d against th(' average surface 
d('tentioIt 101' total surft\e(' c1('tention) at <,quilibrium on log-log paper, the 

http:I'('.spon.sl
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experimental points 1'(,11 npproximatdy nlong H straight lillC'. An exnet linC'lll" 
rC'lationship on lognrithmi(' paper would inditut!' that tlll.' equilibrium outflow 
nt the' do\\,nstrCiun end and ell(' e'quilibrium storage' W('I"\' ('olllll'et('d as follows: 

(4) 

where q. was the discharg(, at til(' downstreum ('nd of the plane und('r equilih­
rium conditions, 8. \\"as tIl(' total surftH'(' storag(' nt rquiJioriul11 conditions, 
and a and (' \\,pn' paml11c'tpl"s. 

In tlw Horton-Izzard npproaeh to til(' ()vprinnd flow problc'm, til(' assump­
tion is mnd!' that sll('h tllH>WPl' l"elntiom;hip holds not only at <'qllilihrilll11, hut 
also at nIly tinw dllriil~ thl' rising hydrogntph or during tilt' rp('(lssioll. FHing 
this assumption \\'p ('an writ!': 

whpl'p 'II. is tlH' disehnrgp at til(' eI()Wll:;;trl'nm pnel at nlly tinH' ilnd .s is til{' 
('nrrpspoll(\illg total storagp on tlw :;;llrflH'p of tlw plnnp of (lvpriund flo\\,. Thl' 
!'«untion of ('ontinllity, ('quntioll 2, ('an 1)(' wnttpll in tlIP hydrological form as: 

d8
r·L-qr.= (6)

cll 

whieh for our assumptions ('an he' written as: 

d8
(/ -a8'=­, elt 

or 

ciS 
(lc/I=--­ (ib)S(-Be 

The' solution of l'quntiol1 7 is: 

I f el(S/S.) 
(Sa)I=~S,""'I 1-(S/S.)c 

(Sb) 

EquatiOli 8 Clln he sulvrd nnnlytically for vuill/'s of c=1 (liBra!'), c= 2, c=3, or 
r=4, and nhm for mtios of t11l'se vnlu(,H, that is. for c= % or ;l.!J. 

Horton {.22) l:iolvl'd the pquatiol1 of the' rising hydrograph due to a step 
funetion input for thr eaSt' of r=2, whieh hr describ('d ll.S "mixed flow" since 
the vlllul' c is interm('(liate between tht:' vnlu(' of ?!J for turbulent flow and the 
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V(litH' of 3 fOt' laminflr flow. Horton'::; solution nu.y be written as: 

q. 

q-=tanh-• ( -_t ) 
q. !\.. 

(gn) 

where 

K .­- _So 
(9b) 

HillC'l' thl' sysll'nl is lIonlilH'ur, til(' tinw parnmdpl' K. will dr'pelld Oil the 
intt'l1sity of illflo\\', Horton gav(' lUI empirical ('xprt's!;ioll for til(' pquilibrium 
stOrHV;C' p('r unit width alld his ('<Illation for til(' rising hydrogrnph hns been 
uSNI ill til!' clpsigll of airport draillag<' sill('(' that tinH'. Izzarcl (27) presentpcl 
tlw solution for tIl(' ('asp of 1'=:1 (that is, for laminar flo\\') in thp form of n 
dinwnsion\('::i::i riHing hydrugmph. Izzard wwd ali his tinw pammptpr a tinH' to 
virtual pquilibriunl, ",hi('\l is ('xa1'tly twic(' til(' tinw pnmnwtel' used in rquation 
Ub above. It is of inl!'r(lst that thp int('gl'lll in ('quation 8 is of thr sanll' form as 
till' BilkhnH,tplT vHI'!('d flo", [uIH·tinll lllld, h('I1('(', tabulat('d valu('s of the 
vari!'(\ flo\\' [uI·etiol1 may Ill' us('cl to tnhulat<· or drllw th(' ri8il,g hydrograph 
fot' any valU(' of c for wbich it is tubulat('d. Typical rising hydrographs arc 
shown on fil,!;tII'(1 H-3. 

For r('cl'ssion fl'Om !'quilibrium, tlH' r('chargr in ('quation 6 b('comes zero) 
and tilt' illl'll'l'tioll of thr valtl<' for (1 from l'([nation 5 leads to thr solution: 

1 )'<-1\1< [
It =1+(c-1)-_ (10)( q A. 

",11('1'(' q iR til!' ordinate of tht' I'P('('ssiol1 (,Ul'V(' and I is thl' timr elapsed sine(' the 
C(ls::iation of inflow, that is. till' timr sinl'{, til(' start of rrcession. Typical 
l'<'('Pssion ('Ul'V('S as pl'pdiet!'c\ by thr Horton-Izzard model arr shown in figure 
H-a. TIlt' spPC'ial ('asp of l'quntioll l() for thp value of c=3 was given by Izzard. 

If til(' dmntion of inflow l D) is Ipss than thf' tim(' requirl'd to rrach virtual 
!'quilibriull1. WI' gC't il pCll'tial \'ee('ssion from the value of th(' outflow (qD) 
\\"hi('h has bp('11 1'('t1<'lwd ilt til(' (,lid of til(' inflow. It can bl' C'asily shown that 
thiR ('urV(' iR tIt!' sam(' shap(' as for r('cpssion from C'quilibrium except that the 
reel'ssinn flo\\" ent('rs thp eurV(' d('fined by pquation 10 at thl' appropriate 
vHIll(, or q. qD. 

rr tlll'I'(' is a ('hang!' to a nl'\\' ratp of uniform inflow during the rising hy­
clrogmph. two casps ean O(,CUI'. If thp n('w rat!' of inflow is highl'r than the rate 
of outflow wll(·n till' chang(' oe('urs, th(' sanl(' dimensionlpss rising hydrograph 
('au still bl' UR('d, lm~ ;"\nc(' q; is ('qual to tlH' inflow at l'quilibrium, the value of 
q qt will ('hangp as .~O()11 IlS tIl(' ratp of inflow changrs. If til(' n('w ratr of inflow 
i~ k'8S than til(' outflow when til<' ('hfin~l' occurs, th" hydrogmph will corrl'spond 
to till' falling curv(· of till' vnripdflow fundion. The latter function can be used 
to (\ptpt:minp til(' shap{' of sueh a fulling hydrogmph, which will be of the type 
shown in til(' bottom of Jigurp 9-2. 
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FrQUl:B 9-3.--Shtlpes of rising find recell-5ion hydrogmphs. 

Looked at as a conceptual model, the Horton-Izzard solution clearly assumes 
that til(' whol(' system can be lumped together and treated as a single nonlinear 
reservoir whose outflow-storage relationship is given by equation 5. Even 
though this conceptual model is extremely simple in form, the fact that it is 
nonlinear makes it less easy to handle than some of the apparently complex 
conceptual models used to simulate linear or linearized systems. Thus, the 
impulse response for such a system no longer characterizes the system because 
the output will also depend on the form and intensity of the input. The cumu­
lants of the impulse can no longer be added to the cumulants of the input to 
obtain the cumulnnts of the output. The solution for a step function input 
cannot be used to obtain the output for a complex pattern of input. 

http:BL'LLET.IN
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Th{' s('('olld simplt' solution propp:,(>d [or thp overland flow problem is the 
kitwtnatic WttvP solution. It also ll1volv('s a pmvpr rplationship b<'(\\"l'en dis­
('harp;p and d('pth but, ill this ('lUll" not It IUIll]wd rl'llltionship ('overing the 
wholt' s~:stpm. hut n relationship bpt\\'('Pll tIl!' diselul.l'gp and til<' depth nt cneh 
point nnd, tlwr('for!', n distrihutNI rPiatiollship. TIIP llHsi(' assumption for tlw 
kitH'matic wnw solutioll is that all til!' tprms of dynamic ('quation 2 at'<' 
IIpglip;ibk ('ompur!'d with ttl(' ;:;\O\l<' tprm and til(' fri('tion tprm, so that we' 
lunr (' : 

(lla) 

whi('h ('all also 1)(' written as: 

(llb) 

If friction is tnkl'll (H'('()rdit\~ to thl' ('lwzy fonnulll, til<' mltH' C will l)('a~L 
wlwrPlls. if it is lllkl'll tH'('mtiing to till' ~ lUllning furn,ultl, tilt' valu!' of (' will 
bl' :i:i. Fol' Z!,I'() initial ('ontiitions and tllll'quilibriulll dis('hllrp;t' q. tequal to til(' 
produ(·t of tlw ('Illlslnnt supply mt!' r nnd tIl(' Il'ngth of ()wl'itllld flo'" L), we 
havl' till' t'ollml"inp;;:;olutiun rill' till' ri::;inp; hydrop;raph; 

(12a) 

q
-=1 (12b) 
qo 

(12e) 

In ('qunt ion 12, lk. i~ til!' kin!'mnti(' tinl(' plHtUl1rtcr find lie is the depth or flow 
uiltnilH'd wlwll tilt' <,quilihriutn dis('harp;p q. i" substitutpcl in e'quatioll nb. 
TIll' killl'll\!\( ie tin\(' pnmnw(pl' II: should 1)(' clistinguish('d from tllP time 
partlnw(pr fur til!' Horloll-Izzard Illo(\pl Ke dpiinccl by <'quation 9b above' and 
from (Ill' tinl!' to pquilibrium l .. u:wd by Izzard. Tlw risinp; hydrogmph for the 
kiupmatil' wnvp sulution i" shown on til(' upppr ptlrt of figurp H-l. 

TIl(' n'('('~"i!ln from full ('quilibrium for til(' kilH'mati(~ sulution Cilll be 
"I\Own to 1)(': 

(~-1) (q_) 1/< =c.~ (13) 
q qe ll< 

\\"11i('h is also shmm on till' IIp]wr purt of figurp n~4. Wh('rp the duration of 
inll!)\\' \ In is I\';;s than til(' tin1(' of kinemlltie ris(' (lk), thp kincmatie wave 
solution ~iv('s a .flut toppp(\ hyclrograph, in ",hi('\l til<' flo,,' is ('onstant until it 
Ill('('ts th(' full r('('<'ssiOll. \"un'p tis shown in thl' lower diagram on figure n-4. 

TIl!' kirU'mntie' "'!tV!' ~{)luti(Jn has b{,(,1\ applied to overland flow by Henderson 



240 TECHNICAL BULLETIN NO. 1468, U.S. DEPT. OF AGlUCUL'!'URE 

tk 

Duration > tk 

----~ 
1\ 
1\ 

\
I \ 
I " 

ttk 

Duroti,on < tk 

FIGUHE 9-4.-Kincmlltic WIIVC solution. 

nIHi Wooding (21), and Wooding (60, 61, 62) and used to construct a model 
of cntchment responsf'. Thf'Y analyzed the problem and developed equations 
for the rising hyclragruph and falling hydrogruph by arguments based on the 
method of eharncteristics. 

The numerical solution of the overland flow problem has been tackled by 
\Yoolhiscr and Liggf'tt (63). They reduced the equations of continuity and 
momentum to dimensionless forms by expressing the variables in terms of the 
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normt\! depth and vploeity Itt tilt' dOWlIstr('llm ('nd of th(' plane for the maxi­
mum disehurg<'. Whpn this is dOll(' ts('(' 1'('fer('11('(' 63 for details), equations 
1 and 2 be('on\(': 

aq ay-+-=1 (14)ax at 

1.Dll a!l l!aU 1- ( lP) 11
-+.'";~ -+ = \. 1--· -'" (15IL)
Dt /.:. a.l' a.1: !I Y 

(15b) 

in \\'11[('h nIP sllJl('rsC'l'ipls d(\llOting that tht' \'arinhlps ar(' dimensionless 
variable's Imv!' b('('u omittpt\ till' ('onvpnlt'ucP. Th('l'(' UI'(, only two parn.nl('tcrs 
in th(\lW (·qual ions, th(' l<'l'oudl' numbrl' fol' normal flow at maximum discharge 
IF) !lnd til!' pammptl'l' K dpfitlPd by <'quatioll 15ll, ",hieh refleets til(' length 
and slop!' of til(' pl!llw (or ehnntwll as \\'('11 as th!' normal flow variables. 
Equo.tiolls lA and lii \\'('1'1' {'xpI'P;.;spci in ('harl1etpristie form and solvpd by a 
linitc ditTpl'Pt\l'P U'('hniqul'. For high valu!'s of K, til(' slop(' and frietion 
(iomilliltt'(\ til!' flo\\' nnd .. as might 1)(' l'XP('('tpc! in tll('S(' eonditions, tll(' solution 
a\lpmximatNI til(' kint'lllati(' wayp solution. For values of the parameter K 
smull!'1' than 10, tilt' kiIlPmntie \\'0\,(' HolutioH WllS found to b(' a poor I1pproxi­
mution. 

A t~'piral ri~ing hydrogmpil found by \\"001hi5('1' and Liggett (60) is shown 
on (i~ur(' 9··3. [t would aplwnr that in til(' !'ariy stag!'s or th!' ril:iing h~'drogmph, 
t'lIP shnpp of till' hytimgmph approximatp,s to til(' kin!'matie solution, whereas 
in tllP htt!'!' stag!';.; it nppl'oximatps mol'(' to til!' Horton-Izzard solution. This 
is lIot Ull(,XPl'et!'(\ bp(,lHIH(' in tIl(' l'ariy stngps of tlll' flo,," dq/cix would be 
l'l'lntiwlY.Rlllal!, thn;:; approximating til(' kinemntic solution for which dq/dx 
is Zt'l'O downst [,Pltm or till' eham(·t!'risti<' which starts from the upstrel1m end 
of tll!' pial\(' at till' .Rtn!"t of infhm'. In til(' latPl' Rtag('s of th(' rising hydrQgmph, 
th(' valtw of tlq elI wlluld approll('h til(' mtl' of latpml inflow and the Horton­
Izzard solution. ba;i(·d on an pmpirical l'{,tntionship ",hi('h is It good approxi­
uHttioll l\t pquilibrium. might 1)(' ('xppet('d to give lwtter prrdietions than the 
kilwmatie mndp1. 

In simulating ov('rland flow, !'ithpr aR n hydrologie Rystem or as a subsystem 
of It watprshed, pon::::idprtltion should 1)(' givrn to thl' typr of flow involved. 
Th(' Stanford mod"l ineorpOl'atp8 a rising 11ydrograph fol' overland flow de­
v('loppd by ~[orgali and Linsky 1491. Their hydrograph is for a high valu(' of 
1{ and l1I'n('(\ npproximtltp;.; v(\ry ('los('I,,' to til(' kilH'matie' solution. For lower 
y!\h!!'s of 1\, thi:::: ri::::ing hydl'Ogrfiph would not ll(\(,pl<snrily bp n good representa­
tion of nVl'rlnnd flow. 
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l'IGUltE \)-5.-Cull1j)llrison of rising hydrograph. 

DoogC' (9, to) rC'e(mtly proposed as [1. conceptual model for problems with 
lateml inflow it cascadC' of ('qual reservoirs, {'ither linear or nonlinear, with 
intermediatc inflow. 1~0I' overland flow, these reservoirs would be nonlinear. 
This conceptual model is what the author has rderred to as uniform non­
linearity. In such cases it; can be shown that the outflow hydrograph for 
uniform inflow can be rcpl'esonted in dimensionless form by: 

fJ...=cp (~J E.) (IGa)q. 10 10 

\\'h('rc q is th{' outflow, q. the equilibrium outflow, t the time, 10 a characteristic 
tin1(' which depends on thC' intensity of inflow, and D the duration of uniform 
inflow. For [1. step functiou input, there is no duration to affect the issue and 
the eqnation of the rising hydrograph can be written as: 

fJ...=cp (~) (1Gb)q. 10 

It ct),n be shown that the Otltflo\\' from it cascade of equal nonlinear reservoirs 
is of th(' form indicated by equation 1Gb. Dooge (to) has shown that the 
cumulativt, outflows measured by Amorocho and Orlob (2) for pulse inputs to 
it laboratory catchment (whieh was nonlinear in belll1Vior) can be plotted as a 
sing!!;' liue when fi, charaderistic time based on the intensity of inflow is used 
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ror dimem;ionles:;; plotting. In thr same- pappr, Dooge showed that the wide 
variations in t:1l<' unit hydrogmphs dprived by :\linshall (4-7) can be enor­
mously r('(tueNI by till' san1<' tYPt' of plotting. 

A ('ompfll'ison of I'qlUltions 8 lWei 9 with t'quation 1Gb indicatc·s that the 
Hortoll-1zznrd mod (11 bplongs to thl' t'inss of uniformly nonlinear models with 
K. tiS tlH' rhurud('.ristiC'tinw. Bimilariy, a ('omparison of l'quations 12 and 13 
with ('quatioll 10 indicatps that tlw kin('matiC' Il10dpl also belongs to this dass 
with til(' lk a:;; tit!' eharuc'tpristir tinH'. As aln'ady poinl('(l out, tllP Hortoll­
Izzard solution n'[u'cs('nts till' slw('ial ('mil' of oop nonlilwar r('sel'voir, The 
!--hlt'mati(' \\!lV(' solution for tlw lirwar {,llSP, elUl lw apPl'OXimatNl by 11 cascade 
Ili lilll'nr t'Ps(,l'voil's in whic'h thl' PI'O<iuc't of til(' number of r('s('1'voirs and the 
iudi ddunl stmng;p (\plny til11P rpll1ains (initl' as thp IIlllnlwr of reservoirs tends 
to inJinity. 1<'1'011) tlH'l-H' ('ollsiciPt'ntio!\s, it i~ plflusiblp to suggest that it might 
1)(1 possibl(1 to simuittt!' satisfnetorily tlw hy(\rographt; gf'IlPmlC'd by \Vo(Jlhiser 
and Liggptt ·~\\'hic'h nl'C' intC'l'llw<iinlp 1)('1\\"('('11 til(' kinematiC' solution and the 
IIOl'ton-lzz!lrcl t;olutio!\ -by 11 {'Hsead!' {'onsisting of n. (iultp number of equal 
1I0nlil1<'tlr slum!!:(' (llrllWn tt;, 

Fusteady Flow in Open Channels 

'I'll<' pl'Oblt'tn of pl'P(\ieting til(' disehiu'gp hydrograph Itt II downstream point 
on tht' hasis of tilt' hydrauliC' propprtips of th(' rhltlllwi and a known discharge 
Itt all upstrPIl!l1 point is a ('Iassic'al probll'm in h;'drology. Th(' various methods 
proP[}Sp(\ fill' its solution ('au 1)(' 1'l'vipwC'cl in the rpcpnt bibliography by 
YP\'jp\'ic'h 1'1.:.1, Tlw I'qulttioll of ('ontinuity for ullstend~' flow in open ehnnnds 
without latC'l'al inflow is givPIl by: 

aQ a.A-+-=() (17a)
D.l' Dt 

wlwl'P Q is till' di:whmg<' nnd A. thp al'C'!l of flow, 1'11(' above is the form in 
whil'll til(' ('(}ntiuuity I'quatio!\ at n s('C'tiolt is written in open ('hannel hy­
dmuli('s. H..vclrol!lgist~ morp frpqu(,l1tiy writl' thr C'ontinuity equation in the 
lUlUIWd form nhlnitwd by intl'grating {'quatiol1 lia ov('r a channel reach, thus 
obtaining til(> hydrologiC' l'qnatioll: 

dP,
1-0=­ (17b)

dl 

wlw!'(' I i~ tilt' inflow to th(' rrltC'h; 0, thr outflow from til(' re11C'h; and S, the 
~torag(' in Ill!' [,(,H('h at II giV('n tinH'. In open channel hydraulics, the dynamic 
<'quatiol1 j~ writtl'll as: 

<111 I U c1u 1 c1u t.~ L'-,- -+ -='~O-·:ll (lSa)
c1x g a.r g at 

'I'll(' (·orrp.sponcling ('{[uation in hydrology is th(' equation for the looped 
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rating etll'V(,: 

0=( l )1~II,) ('8 0 -
ay - . ~- --1 -all)It au 

(18b)a.t" g a:r gat 

\\'11('1'(' R i~ til(' hydl'nuli(' nwnlt radius and Cis tll(' Ch('zy fridion fnetor, whieh 
may 1)(> t'vlllunted fl'Om It fl'ietioll fOl'mulil suC'h as thr :\ [unning <'([lHtLion, 
Equations lia and ISa l'('fll'C't the hydraulic' lll>prou('h to U1(' pl'oblpm of 1I11­

~t('!\d~' flnw in 1\1\ UpI'll C'hannd, \\'hilt' ('qUtltiollS 17b Ilnd 18b 1'('fh'('( the 
hydt'o\ogh' Ilpproneh to til(' BallW problt'I11, Th('s(' t \\'() f;('lmral(' aPP('OIH'lH's 
Il(tvl' dl'vplopN\ indpppnd('ntly of onp I\noll\('I', A syst('mn.tiC' appro!leh to til<' 
pmh]PlIl, ho\\'('vC'r, ('nnbl(ls us to ('('('oneil(, till' two, 

Vmiolls llwthods hltv!' lH'l'1l llsNI for llw solution or til(' hy<i!'!luli(' rmmulll­
t ion Dr til(' probh'\l1 of routing H flood down Rn OP('[l ('hanrwl. :\ laflwrnatienl 
nwthllds ('ltll iw us('d to find I'lolutions for simpliripd v('rsions or ('quations 
lilt uud 18tl. 

If w(' wish to go h('yonci t h('s(' id('alizt'd mat lwmatiC'1l1 fO!'!l1ulatio!ls, it is 
(lP('p~sary to lliH' nunw('ipul nH'th()d~. Th(' n'('usting of tiL(' <'qulttions in terms 
of C'hltl'lH't/'l'istic \'al'iablt's fueilitllt<',s Hud! llullI('l'ieal solution, EvPI1 iw[orp th(' 
advent of high-sp('pd digital ('omputC'l's. nunwl'iC'al solutiolls \\'1'('(' obtainpd in 
thi~ way. 'flIP nc!Vt'llt of tl\(' ('ornputpr, hmyc'v"I' , has gl'(·atly fueilitatC'cl tIl(' 
nunwrielll solution of til!' pmbkrn. T1l(' IIwthod of ('hnraet('riMies is still us('d 
in SOlllP llumpl'ieal apPI'Oltl'ilPs to til!' pl'Obl(,!l1; in ot\H'I's, ('itlwl' /til ('xplieit 01' 

an implieit fillitp difl'P('PIH'P s('lwlI1(' using U I'P('(angular (wt work is used. In 
('xplieit s<'iwnws, s('t'i()us pmblpInS of stability may arise, wlwl'elts in irnplieit 
seilf'llH'S tl\(' slorag<' C'ltpaeily rl'quil'pci to soln' til(' rt'sltiting simultall('OliS 
('quat ions is n limiting fll('{m" 

III til(' hydl'Ologic' ttpprnueh tll til(' solution of til(' routing problem, til(' ('Oll­

tinuity I'<tulttion lib is ('<'lllinpd and Ill(' clynamie (''Iuution 18b l'('pitw('cl by 
snnw ~irnplifyillg 1'dll.tio!l, 'I'll{' nwthods most ('ommo!lly us('(1 in applipd 
hydl'Ology fO!' flood !'Outing HI'P til(' :\ [uskingum nwthod of :\ [('Oal'thy, I the 
lag and rout!' nwthoc! of :\(,(,YN' (,~£l), til(' diftusioll IUIIt!Ogy of Hnynmi (18), 
and til(' Sll('(,p~siV(' routing nwthod of 1\ulinin and ;'[ilyukov (SO). Thes(' arc 
1l1l1illl'ar !ll(1th!ld~j nne! thu$, in pl'Il<'ti('(', tilt' ehiUlnpl ('mch is nssll!1l('d to be 
litl!'llr with {'onstant ptll'itllwll'r valu('s or ('Is(' i~ lin('ar'jz('d and It r('lntiollship 
found lwt W(,Pll thf' pnmnwt(lr vnlu('s Ilnd tbl' l('v('1 of l'itlll'r inflow or outflow. 

Hine!' \\'p nrl' intl'l'('stpcl in it. solution at OIl(' particular dowllstream lo(!ation
we' do not Hc'Pel to knm'; eonditiom; Ilt all intprmt'diatC' points, A sy:;t C'Il1S 

1 

approueh would '.h('rrf()!'p SC'PlU to hI' mol'(' appropriat(' thllll a camplpte 

I .\.1CC'All'1'HY. G. T. Tilt! t'NIT II\'IJHOGHAPII ,\ND Pl.OOD HOl11'lNG, l'np\I!)lillhed papcr 
prescn{('d l\t tht' Confen'Il(',' of Xorlh Atlnntir Div" r$. Corps of EngincCI'H, Providencc, 
1\.£. wao, 
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nunwriCtLl solution, which gpnpratE's unwanted solutions at intermediate 
points. Hl)\\'PVf'r, OUI' present systems techniques in hydl"Ology are such that if 
w(, wish to use a systems approach we must confine ourselves to t.he linearized 
versioIl of the problem. Recent studit's havl' been made involving the compkt.e 
linearized solution to til(' equations of eontinuity and momentum for two­
dim(,lIsioIla\ flow in a uniform ehann('i, (11, 16'). This approllch, in fact, 
n.ppli('s to thp flood routing problem the }1t1me assumptions that are made in 
unit hydrogmph tiwory for th(' mor(' complex pI'oblem of catclunont response. 
It is remltrkable that ill t1l0 past 25 years, during whieh the unit. hydrograph 
approll('lt has lw('u wid(>\y u:s('d, no ('OlT('sponding att('mpt has been made to 
tl'('a.t a ('hI11111('1 us a linear sy::.lt'm. 

If we ('clllfinp oursl'lv('::. to til(' <:as(' of a spmi-infinit(' uniform widl' reetangular 
CIUUlIH'\, without IMl'ml inflow, [01' whieh t.he fril'tioll dIed call be represented 
by till' Ciwzy fOl'lUul(t,w(' (,ILn writ(' equn,tions 17a and 18a as: 

(19) 

(20) 

TIl(' houndary couditionH to bt' sati:;fiNI 11,1'(' thr initial conditions determined 
by all inititll uniform flo'" throughout th(' l('ngth of the channel and an up­
~;trl'am b()llndar~' condition d('t('rmin('d by th(' inflow hydrograph at the 
upRtre-am ('lid. Though til(' rCjuatioll of cOlltinuit~· (equation 19) is linear in 
q and lj, til(' dynamic equnJion (rquatioll 20) is highly nonlinear. 

If w(' ('on~id{'r a small p(,l'turlmtion about til(' st('ady discharge go, then we 
can writl' tll{' following equation for the perturbation of discharge- (g) from 
this r('f('l'(>11('(' valu(' qo: 

(21) 

in. which th(' ('odfieiPlIts hnv(' b('('n froz('n at thp values corresponding to the 
rpf('fl'l\cP discharge (fLo). Thp aboY(' linearization wus proposed by Deymie 
(7) who al:;o cit'rived till' solution given in equation 29. The work of Deymie 
and of .;\ [nsse (4.5) publislwd in 1938 w(ts not followed up, and the linearization 
giVl'Il in pquatiou 21 and til(' solution given in equation 29 were developed 
indppeudplltly by Dooge2 in 1965. 

Strictly spraking, rquation 21 is only valid for perturbations small enough 
that the variation coe-fficients in tilE' nonlh1(~ar equation is not sufficient to 

, Doom" J. C. 1. I,INEAR ANALYSIS Ot' now Il'O OI'El'O CI!Al'Ol'OELS. Unpublii3hed memo­
TI\lldUlll, l'niv. Col., Cork, lrellllld. 1965. 
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atI('ct the result. If W(' follow thr unit hydrograph approach and ignore the 
faet thitt large perturbations give rise· to nonlinear behavior, wc' can apply 
equation 21 to largE' perturbations nnd accept the solution of this linearized 
('quat ion as an approximation to tl1(' I"olution of the original nonlinear problem. 
How good an apPJ'()ximation it will b(' cnn only b(' d('t('rmined for a giv('n caSe 
by com(laring thil'; complt,te lineal' solution with tlw ('ompl0tc nonlin('ar 
solution. The faet that lillC'ar routing nwthods hn.v(' b(,(,11 used in applil'C1 
hydrology wl)uld indieatp that til(' ('ff('ct of lilwarization eaunot b(' so catas­
trophic' as to mak(' liu('ar methods worthl(·ss. 1'11(' ('ompl(·tC' solutioll of the 
lillC'Hriz('ci hycimuli(' <'quation 21 has th(' advantag(' that it ('an b(' used as a 
standard agninst which to nwnsurC' til(' simple' linear models used in applied 
hydrology. IncIl'rd, the' lattC'r (,llll be ('onsicINPcI us attC'mpts to simulatC' the 
('omp!('t{' \ill{'ar solution. 

Sine'(' \·quatioll 21 is lil1('al:, it is {lnly IH'('('Ssary to dC'trrmin(' til(' solution for 
a ddt[\, t'ullrtion input. For any other inflow, it is olll~' 11('('('ssar~' to cOllvollltC' 
tlw impulsp I'Pspons(' with the' actual illflow. For C'onvl'niC'nec, tlw impulse' 
l'{'spons(' or n, d1H1lIH'1 obtaiuNl from pquHtioll 21 will bC' referred to HS tlu' 
lint·ut' ('hanlld l'('SPOIlS{' ,LeI{). 

If til(' original inti<'pC'ncIent variabks (:r,O are l'C'pia('C'cl by tht' characteristic 
dir('(,tiollS (Ill and II) and tIlt' clepC'nclC'tlt variablr (q) i8 replaced by a new 
trallsfornwcl (/('I)('ndpnt variable (z) I tIl(' equation calt 1)(' written in tht' more 
('ompaet form: 

a-z'· ---h2z=O (22a)aman 

q=z-exp( -rt+s.'r) (22b) 

:t 
7Il =t-­ (22c) 

CI 

x 
n=l-­ (22cl) 

C2 

wl1('r(' Cl and C2 arC' til(' charflcteristi(, wa.v<' v('lociti('s and l' und s arc parameters 
defin('d ill terms of til(' ('hannel paranwters (11). Though equation 22a is more 
t'ompurt in form than equation 21, it is no easier to solve since the simpler 
form of til(' pquation is c.'ountNbaIanc('d by the fact that the boundary condi­
tions arC' not as ('OI)VC'nient \\'11('n expressed in terms of 'Ill and n as tlwy arc 
w]1Pn ('xpn'sseci in terms of :1.' nnd t. 

Any of til(' standard mnthematical h'chniqu(>s can be used for the solution 
of ('ithcr form of th(' ('quation, but it is probably morC' eOllvC'nient in each case 
to us£' Lapla('C' transform n1('thocis. WhC'1l this is done in terms of x lwd t, 
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til(' Lapia('c transform of tilp impuJ;,;p rPHpom;(' or LOR iH found to bra as 
follows: 

(23) 

",11('1'(' eL, b, c, c, and! ilt'(' paranwtpl's c\l'J)pnding Oil tht' hydraulic' characteristics 

of tIll' clutlulPl. 
Hinr!' til<' Laplnrp trnnsform of thl' LOR is of e'xpol1pntial forl11 , the' rU\11U­

tants ('!tn 1)(' dp[('rmiIlI'd hy ['('Iwnt('(! difT(,I'l'ntiatioll of the C[unntity insicip the 
squan' i>ra('kpts in ('quntioll 2:3 nnd ('\'alua{l'd at s=O. This I)I'O('PHS is ('0111­

pli('ntt'd by tlll' ('ontillual ()(,('UlTPIH'P of indd('rminutl' forms which htwP to be 
(lvaluatl'd by L'l:Iopitnl's l{ull'. \\'IH'1l this is dOtH' and tlH' vnlues or the 
pnranwt('l's (t, b, c, e, and! an' substitutp(\, it is possibl(' to writ(' til(' rumulllnts 
us follows: 

(24a) 

(2-!b) 

t24c) 

- , (_ "[_., 'Hl ( F~) ( 11 /., 1 F4) ( Yo )3 ( X ).1
'."4= l-'){ .. le=- 1-- 1+-.2+-_. -- -- (2-1d) 

- D ·1 20 4 .)0.1' 1.5uo 

TIl{' rpsult for tilp Ing givpn hy (,(luntion 2·la. indicate'S that for tIl(' linparizrd 
solutioll, tilt' nVl'mgp ratl' or propagation of the flood wn.V(' is 1.5 timc's the 
V('loC'ity ('OrL'('l'pouding to tlU' l'pf('J'l'nre discharge. This (,Ol'rPsponds to the 
vnlul' illdi('ll.ll'd by til{' I\:kitz-SpdclonL[Lw tSQ, 55) for the celerity of a flood 
W[LV(' in n. wiciP l'l'rtl1ngular ('haBne! with Chez)' friction: 

aQ aq 3 " 1 '., 1­c=-=-= .'Jay '-= .Dll (25)
a.A ay ,­

'1'b(' higher r\lmulants ('an 1)(' mncle dim('l1sionl0ss by dividing by th(' appro­
prilttp powPr of thp lag. 

It ('un b(1 I'Pltdily :,,(,pn from l'quntiol1 24 thnt th(' l'(lsulting dimellsiolllpss 
emnulants or simp<' fnrtol's nr(' functionH of the l"roucip l\umbt'r and the 

3 1)!lom~. ,J. C 1. l.l:-lr;.ut TIIl';ORY 0[0' O[,l;;:-I CHA:-1Ngr, FI.O\\,; I-CO~[P[.V.TE [.[:-IEAR sor.l'TION 

o~' lHH'Tl){G Pll(lUr.l'~l. Fnpllhli!,hcd memorandum, Cui\'. Col., Cork, Irebnd. 1067. 
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dinwnsionll'sH length pumn1('tpr (SoX!!1 of til!' following form: 

Sn=r/lRlFl (J))t-II for R=2, 3." .. (26a,) 

D=.sQ.'I: 
(26b)yo 

CousC'qul.'lItly, ('VI'Il if \\'(' \\"(,1'(' ullnbl(' to invrrt tIll' trtlllsfornwd fUllrtion givPIl 
by <'«uatioll 2:3, it would Htill bc' pm;sibl(' to dptpfminp til(' (,U1l1ulnntH of tht' 
1;olutiOll Illlt! to plot til(' Holutioll for any giv<'Jl vnlup of P on a sha!>p factOl' 
dingrnm, 

Th(' inversion of ('quntion 28 giv(>s n solution in thr original (.t,l) ('oordirultc!'; 
('onsisling of two tprms: 

(27) 

wh('I'(' '11 1'!'1)r('s!'ntH tit!' h('ad of tlw \\,av(' and Q2, til(' body of til(' \\'twr. The' 
t<,rm l'('pl'c's!'nting tilp Iwad of til(' wuv(' it ,:>f til!' following form: 

Q1'='0 (l-~J ('xP(-p;r) (28a) 

2-P So 
(28b)fJ= F+F2' 2yo 

It ('nil bp S('('I\ thn{ thc' }wad of tIl(' W1W(> mow'!'; downstream at thr dynamic 
Wttv\' sp(,pd CI in tlw form of a cit-Ita iUIIC'tion of rxpollrntially df'clining volume. 
TllP body of tIl(' \\'(WI' has till' form: 

(2911) 

wl1<'rr 

(29b) 
IUlti 

(29c) 

e[l] = tlllit step function (29d) 

CL and c~ arc thr dynamiC' wavr velocities. and r, s, and h arr parameters 
drpencling on tIl(' hydraulic proprrtirs of th(' ehlinncl (11). 

Thr shape of tht' body of the WIW(' for F=O.5 and various valuE'S of the 
dimC'nsionlcss I('ngth fartol' D arC' shown on figurr 9-6. For short lengths, the 
impuls(' r!'SPOt1l1l' drclinr!'; monotonically; for intrtn1('diatr l('ngths, thl' impulse 
r<'spons(' is It unimocinl ('urY(' with 1111 appr('C'inbl(' initial ordinatr. For long 
('hantlC'i::;, til(' unimud!ll shap(' of respollse' rises from an initial ordinat(' which 
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is practically zero and declines again to zerO. For other values of the Froude 
number tF), th!' sanw three shapes are obtained, though the values of the 
dimensionless length parameters at which a change in shap(' occurs increases 
with th(' Froud!' llUmber. 

Figur(' \}·6 is plotted in dimensionless terms-glo/V versus lilo-and hence, 
gives th!' !'rroneous impression that th(' peak is increasing as tht, flood wave 
moves downstream. This is due to the fact that tlw time of travel in a reach 
tio) i.ncreases with distance. The variation of the downstream discharg(, with 
length of channel is shown in real terms on figure 9-7. This shows th!' result of 
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FIGUR~; 9-6.-8hnpe of impulse response. 



250 TECHNICAL llFLLETIN NO. 1468, 1:.8. DEPT. OF AGRICULTURE 

computations fot· 0. channel with the steady state .ruting curve: 

(30) 
and for an inflow given by: 

J(I) =125-75 cos (:~) 0<l<96 (31) 

which corresponds to the inflow used by Thomas (57) in his classical paper 
Oil ullstNldy flow in open channels. The figure shows the modification of the 
flood wave for distnn('Ps up to 500 miles (S05 km.). 

For any linearization of th(> routing problem, it is necessnry to choose a 
vaitH' of the rcfercnc(> discharge tqo) about which the dischurgp is perturbed. 
Sim'p this valup of qo is uspd to evaluute Yo from equation 30 and hencp llo und 
til(' coeffieicnts in C'quatioll 21., it will natumlly affect til(' result. The effect of 
tIll' choicp of referencp discharge 011 the outflow at 50 miles (80.5 km.) for an 
inflow givPIl by equatioIl 31 is showIl on figure 9-8. 

'I'll(' inflow vurips from 50 cubic f('et per second per foot (4.65 m3/sec./m.) 
width to 200 d.s. per foot (18.6 rn3. scc.m.) width and the reference dis­
chargp is taken ut valu('s of 50 (4.65 m3 l, 100 (9.3 m3), 150 (13.9 m3) and 
200 (18.6 m3

) c.f.s. per foot width. It can be seen from figure 9-8 that for 
tht' smaller values of the reference discharge; the flood wave is displaced in 
time and occurs later as would be expected from equation 24a. It is interesting 

,..500 miles 

FIGURE 9-7.-Variatioll of outflow with distallce. 
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to note, however, that the shapC' of thr flood wave for the various reference 
discharges is vcry similar 

For It challnel whose rating curvr is given by equation 30, that is, one 'with 
Chez)' friction, tht' Froudr number is indrpendent of the depth of flow and 
hrn('e, thr vah\(' of thr s('(~ond cumulant given by equation 24b is independent 
of thpfC'fpren('e discharge. Since' the second cumulant of the outflow is equal 
to thr spcond C'umulullt of the' inflow plus the second cumulant of the LOR, 
the sC'('ond cumulant of the outflow will, for a case of Ohezy friction, be 
indrpendent of tll(' reference discharge chosen. The reference discharge will 
affect tht:' third and fourth cumulants, but these may be small compared to 
thr third and fourth cumulants of the inflow. In any case, the third and fourth 
cumulants do not hav(' as marked an effect on the shape as the first and second 
cumulants. 

Having obiAincd the complete linear solution of the hydraulic equations, 
it is now PQ;,;sible to comparp ~he various special linear hydrologic solutions 
with it anci. drtermine the' acclLUry with which they can simulate the complete 
solution and th(' range within which they apply. This was done by the method 
of mom('nt matching, which is most convenient in this connection. The 

http:BASEFL.oW
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l'('sults W('r(' ('11('('1-;:('(1 by till' nwtho(/ of l!'ust sqUfil'('I>. Xin(' lilH'ur modl'ls were 
studipc\ and may b!' ~l"OU!we! HI> shown twlllW; 

Olle-paranwtl'r Jl\(jd('I~: 
dYlloll1ir WltVP equation 
kinemlltir WILVP l'quutiol\ 

'1'\I'(l-Jlt1r:lln(~ter m()clpl~: 

diffusion (llInlogy 
~lll,;kingum lIll'thod 
lag lind routl' methud 
l\:;\lillil\-~liIYllkov method 

'l'hn'('-pllfllmeler models: 
dilTusiulI Jllu~ lug 
Illultiph' ~Iuskingurn IlH,thud 
threl'-pnrallwter gamma di~trih\lti()l\. 

Of most intl'r!'s! HI'!, till' I\n>-pnrallll't!'r modl'ls which IIlIV!' 1>1'('n uspd ns 
pnH,ti('1l1 eh!ll\I\(>ll"Ollt in~ I1wthods in ilpplil'd h~·drolll~y. 

TIl(' ("ompl!'l!' lilH'Hr solutioll b tl lhr!,p-pnrnn1l'tpr sy;;t('m. If ('xl)("('ssNI in 
dinwllSionll'sl> form, tllP dinwnsionll'ss diselutrg<, ('an 1)(' fOl"ll1uialNI aR a fune­
ti.OIl of a c1inwl1sionll'sR tinl(' pnrnnwtl'l'. tl diml'lIsiunll'ss Ipngth param('tc'l', 
nne! till' FroudI' I\lllnlwr. It mlty npp!'nr pointl('ss to ntt('mpt to simulatl' the 
tlll'p('-paranw(!'l" ('omplt'tp Ii 11 l'IU' solutiou hy :\l1otilPl' thn'<'-pal"lll11C'tpl' Rystem 
\\'hi('h. nl Ill'S!. ",ill 1)(, an approximation to it. H()w('vPl', til(' ('omplf'tC' linenr 
solution i" C'lllnpll'x in fOl'ln and rda.thrply difikult to ('omput('; if it ('an br 
npproxinliltNI wit h u sufliciPllt dl'gl'(,(, of IU'C'Urtu'y by a110tlwr thl'C'e-paramcter 
~y1{l('m \\ hic'h is pasi!'r to ('(Jmpl'l'IH'lld and ('nsi!'r to ('ompute, t1H'11 the simula­
tion may Ill' lll(Jl'P ('ottv!'nil'ut than tll(' ww of tIl(' original mathematical 
solution. 

A Olll'-pamnl!'t('r simulatioll will plot ns single' point on a shape' factor din­
grnm. H!'IH'!', it ('IUl hardly 1)(' ('xpro(,(pd to ~imulat(' II thre<,-paranH'trr Rystem 
whi('h plots as n family of IiIH'S. :\('v('rtl1('ll's;:;, its ability to simulntC' flood 
muting nU1y b!' tl'stl'd by ('omparing til(' first moment of th!' Ol1l'-parnmeter 
mo(h,1 \\"ith tlw !irst l1l0mpnt of tlw ('ompldp lin('ar Rolutioll giv(lll by ('quation 
2·ta. If tll!' t \\"() t('rmR on til!' ri~ht-halld sick of rquatioll 20 arC' l1('glect('d. that 
j1{, till' diITprl'l1(,(, 1)(,(\\"(,(,11 lwd Rlopcl and fridion slop£' is asslll1H'cl to be negligible 
compnnd to til{' ntll('!" t('rm;;, t1wu \\'(1 obtain the classlcallinear wave solution. 
For a dPlta function input at til(' upstrpam pnel, this solution is a cl('\tn function 
trn.v('ling dowll tIll' eilllnnel at a vplocity ('qunl to th(' dynamic W1W(' spl'cd 
\ Cl = 1/0+ v 'gl/~). 'I'll(' probl£'m is only prop('riy posNI for Froude numbers less 
thnn onl'. For such ('ns('s. th(' dynamic wn:v(' spC'rd is g!"l'nter than 1.5 110, which 
is thl' tlVerag(' sp('t'd of translation as giVl'n by equation2.ia. 

Altprtl!ltiwly, if nil tIl(' tprms on the left-hand siei(' of ('quation 20-01', 
whnt is the SUll1(~ thing, tIl{' t('rtl1S on the Ipft-hnnd sid(' of ('quatioll 21-are 
Ill'gll'('tl'd, t1H'1l WE' gd thl' lin!,(lr kinpmntir W(l,Vl' solution. This is equivalent 
to assuming that the dYllnmic l'quation mny be us('d in thl' simplifil'cl form 

http:equation2.ia
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upproprintp to Hl!'ndy uniform flow, that iH, th!tt thl' pfi'('('{H due> to eho.nging 
dppth und vpi<H"ity urt' lwgligihl(' ('ompnrpd to ttl(' !'ffl'etR of ;;[opp nnd fridioll. 
III thi::; ('I\SP, thl' solutioll is also tt tranHlntiml without distortioll, but thiH tinl!' 
at till'spl't'd Lillo so that t1H' Iilwnr kilH'lIl11tie WitV!' solution is 0. oIlP-panlll1t'ipr 
mOth·1 whieh hus !'xndly til(' sllnw Illg as till' ('ompl!'[!' solution. 

SlnHt of tIl(' flood routing Ilwthods uspd in npplipd hydrology nrC' two­
pm'nnwtPr mod!'ls. If tlw s('('ond and third lprll1s Oil til(' Ipft-hnnd sid!' of 
l'qutltioll '2 L IUP (,Xl)l'psspd in t('rm:; of til(' spC'ond t\pri\'aliv(' with r!'spp(,( to 
disttU\(,(, on thl' busis of til!' IillPar kim'nulti(' \\"(w(' solutioll \ whi('h is It [in;l 
approximnlioll til til!' "mlutiulll, tlwn til(' I'ql1ntioll ht'{'onws: 

1102) [FIt ,Oq '2{1 SCI Of}
(11/(1-- --=3q,'\0 -~+-- . (32)( • • .[ (J.r2 • (J't' lIo at 

whi(,1t is It pnmiloli(' I'quutioll ill ('ontrnst to til(' ori~inn\ ('quat ion 21 whi('h 
\\ us It hypprbo\i(' l'qlltlt iOll. 

TIlt' paraboli(' solut iOIl I nr ditTllsioll llnnlogy, or (,()llv('C'tivp-clLtTusion 
solution j lIiJtnitwd from {'quatioll ;~2 mny lw shown to be' i<i(,lItienllo til(' eOlll­

p\plp solutioll for til(' slwehtl 1'!lS!' of tl\(' FroudI' llumbC'!' ('qua\ to ZPI'O und 
may nlso Iw shown til ha v(' thl' ~anH' lirst and s('('()(lcI n10ll1('nts I1S til!' ('omplt'{p 
solution for any "aitH' of F. Whil!' it is prl'ft'nlbll' to think of this solutioll :18 n, 

paraboli(' approximatioll to til!' (lomp\(·tC' :<O\utillll. ('quntion 32 mny bc' ('on­
sidt'l'!'(\ ns It ('onv!,(,tiw-clif1\lsion C'quntlon in ",hi('h till' "('onvpetivp v('\oeity" 
is givpn h~': 

(1=1,5110 (33n) 

und til(' l'hydmulic' diffush'ity" is giV(,1l by: 

J)= - 1-­1]0 (. p.".-)
2So ·1 

(33b) 

HydrauliC' diITu:-;l\·ity must not 1)(' tnkpn to nwan thitt tl1(' physiC':1\ proc('ss 
iU\!IlI\-('d is (m!' of (\itTusioll, For tilt' parabolie solution (or ditTusioll analogy), 
till' litwHr ('hllluwl r('~pmlS(' i8 giV<'ll b~': 

(34) 

TIU' ('umlllallt:-: for this rpspon:-;p (,(UI 1)(' d<'tprmitH'd from til(' g('\wrnl <'quation 
I'm tIll' Nth ('UlHulant whi('h is: 

, , . .. (2D)n-l (:1')/1
kit = I ! 1) 1:3)( :i I , .... l2R - 31 I (IX ~l (35) 

~ub"tituti(ln of tlw yahl!' Il from pquation a3H and tht' value of D from 
equation :3:~b in l'qlUtti!lll :{5 giv('s (';:q)rps~i()m; for tIl(' (,UtnuiantR in t('rms COlll­

pltrnhl!' to thOH!' \lsl'd itt pqllnliol\. 24. 011 PflP;(' 373, When this is donc, it is seen 



thnt til(' ('umulunts givt'n by {'<[uation a3 an' til(' I'1tlnw IlS thos!' indi(·ah.d by 
!'quutiou ~·l for tllP spp(·inl ('nsl' of F '= 0, 

TIIP oti\(·I' sp{'('iul mod!'[s l\Sl'd in applil'd hydrology ('all nl:m hI' ('omptU'pd 
to tll(' ('otnpll'tp linl'tu' solution, Thp '\[uskingum llH'thod of flood routing is 
bmied on til(' Ilssumption that in It rPlt!'h: 

S:=;E[XI +r l-X/OJ 13Ual 

whic'h I'IUI IH' l'ombillPd with thl' C'lllltilluity ('<IlIatioll to givP: 

, _ dO __ d I 
()+!\ll-.\l-=[_!\.\' ... 13Ub)ell til 

TIll' UII(,lIr systPlH 1'('pr(ls(,Iltpd hy tlIP abo\'!' I'quntioll ('un 1)(' showlI to hav!' 
thl' impuls(' !'I':-;ptJ!lSP: 

Th!' dl'ltn fUlll'tioll h'['m in I'quat ion ;)7 intiiC'Htl's tIlt' possibility of til(' 
O('PlIlTl'lI('P of [wgltliv(' ordinatp;; in th(, outflow unlt·ss til(' inflow is such ilS to 
l'lmblt· thp ('tJlltrihuliml of th!' firs! tprm to t!w ('ollvolull'd outflow to poullter­
Ill'! the' piT!'!'! of tlw sP('ond tl'['m, TIl!' ('Ull1lilllllt...; of til!' '\(u~kin~lIm $olutio[l 
('tltl lw showll to 1)(·; 

(38n) 

(38b) 

(38e) 

(3Sd) 

'I'll(' pm'anwtl'r:-; or tllP .\ [uskingull1 ll1odp\ ('un lw optimizpd by !,Cjuuting th(' 
{jr~t lind s('('ond ('umulnnts givpll abov!' to til!' firRt and s!'cond cUlllulllnts of 
til(' ('ompiptp Iilwnr solution, This results in til(' valu('s: 

r.­ .1.'
..(\.= '._'.­

1.5uo (39/1) 

und 

x=!-l (I_E) (yo)
- v 4, So:r 

(39b) 

In It uniform ehUlllH'l, W(l ran dc'tprmiu(' tIl(' optimum values of the puram­
('t!'rs for til!' :. [Uskitlgum 1UC'thocl by usiitg (''Illation 3H provid(ld We' know the 
optimum 1'('[('1"('11('(' dis('hnrg(' Ilnd tlw prop('rtic's of til(' channel. For nOI1­
\Ill ieoI'm. !'hanupls, tlH' first and sP('oncl mOllWlltl1 of the' impulse rcspOllflC cun 
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Ul' got by ~ubtm('ting tIl(' 1l10ml'nts of til(' inflow (rom th!' cOrl'('sponding 
monwnt~ of til!' outflow: til!' vaitH' o( K is t'qual to thr Hrst 1l10ll1rnt and X 
('nn hI' obtnilwd from ('qu!llion 38h 01\('(1 K i~ known. This would ~('em to 1)(' u 
mon' obj{'('ti VI' proc·pciurt· thnn t11(' IllU'mpt to transform a loop('(l storag(' 
('lIrv!' to 11 straight lilH' by tnking t!'ial valu('s of X. It will lw llotC'd from 
I'([UlLtiml :mb tlul! for ('prtaill :ihmt diHtnnc'ps til(' vllitl(' of X will 1)(' IwgatiVl'. 
From HlP [loint of vip\\' of ('lusHic'al hydrology whic'h vjpws X ns U JllPllsun' of 
til!' nmoun! of \\"('dW' stOl'ug<' pn'~('nt. thi~ appears phy::;it'!llly ulir!'l\s(Jnllb\c·. 
Fro111 til!' point or \·i(l\\' of llltlt\wnUltielll ll1atehlIlg. tlw Ill'gativ(' vnllt<' of X 
is thI' (,OIT!'('! \'nlu(' to liSP. 

Till' It\g ilnd !'Out<· nwthod I ,~n) nS:iunH's thnt till' sHlmg<' at nIly tinll' mny 
1)(' lakpn us IlJ'lljlOJ'( ionlt! \0 til!' ()ulflow whi('!; ()('('urs nftC'r thp (lltIP~(, of 11 tinw 
lag trl so that WI' ('UIt wrill'; 

St Il =K ·O<l+rl (4011) 

whi('h ('lUI hI' ('(Jlnbilled with til!' ('olltinuity C'quation to giv('; 

(<lOb) 

l<r: 111/)=0 (41al 

('lIb) 

Tht' c'lllnuitllltl' of til(' lag find routp model may 1)(' rC'neiil), dC'rived nitlH'r 
from its LapllH'!' t rlUlsform or b,\' tnkiug m01l1C'nts nbnut til(' origin and using 
tllPm to lind til!' ('utnulnnts. TIl(' vuItH'S n.r!': 

R=l: J.~l=K+T (42a) 

R>l: kR= u~-n !f{R (42b) 

Th!' yn;lups or !\ und r whieh nrC' optimal in th(' moment matehing llense CUll 

bl' ubtnitwd by ('qunting till' first t\\'o moments of til(' responsp to the first 
two 1l10nwnts (or til(' romplc,tp linear solution. This results in the vnlues: 

(43a) 

r =~- [1- ~(l-F2) (_~o )] (43b)
1.011o 3 4 SoX 

As ill tht';.\ [uskingulll modrl. OIlP of tht' pnrnmders may takp on "unrenlistic" 
vnlues. This may lmpPPll !line<' til(' V!litH' r givpn by equutioll 43b may be 
nl'gllti \'(' for <{hmt It'ngths of ehann(lL Agnin it must be cmphnsized that this 
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unn'ltlislie parametpr valup givNi the best fit aeeOl'dillg to til(' c:hoscm eritc'ria 
I1.nd should b(' usPc! if elOSPII('SS of pn'clic·tiou is required, The element of 
ulU'enlity liC's in til(' eiwicp of this partiruhu' modpl for short ehnllnel lengths 
and til(' assumption that til(' rrud(' hydrologic reasolling on whieh it is based 
will r('sult ill til<' optimum parttnwtNs pC'rforming tlw stunp fUIIC'tiOIl as till'.\' 
do in till' ('r'mlt· ll1odpl. 

TIlP liSP of HlH'('('ssiv(' routing through il eharlll'teriHti(' reneh wns proposed 
by Knlinillllnd ~lilY\lkov \.101 in 1957. This is til(' snl1l(' modd HS til(' ensendt' 
ll10tipl lISl'd to 1'C'pr('til'nt tlw unit hydrogmph, It was pl'OposNI for {'hallllei 
routing by Ealinill Ilnd :.'I [ilyukov Oll til!' bnsts or It linearization of til(' un­
Stl'lHly !low t'qlhltion, 'I'll(' impulsp mlpon:w fUllr'tion of till' model is given by 
tIw gammn distribution: 

(44) 

"'hos!' ('ul11ulnnts ar(' givPtl by: 

KII=Il!R-l) !£..11 (45) 

:\~ has IH'I'Il (lointC'd out in dealing with ('O\l('pptuul ll1oc\(·ls of thr unit 
hydrogmph, th()ugh til(' ('oIl('pptual modpl i;;. bnst'cl on til(' idpa of a cnscaclr in 
whi('h till' vnlu!' II would Iw int('gmt. l1nnintC'p'nl vulu('s of It mny bC' usrd to 
tit tlu' mlld!'l to prototypl' data. TIl(' T\alinin-:\Iilyukov mode'l, likp tIl(' other 
1\11)(11'1;; tli;;('uSSPcl in this. s('('( ion. C'iUl bl' USNI ns Il lincarizrd model. The 
Pltt'IUll!'!!'!';; though tnkt'n as. ('ol1stnnt for n givPll flood ('v('nt, or part of a 
giv!'n flood I'\'pnt, ('!lU lw \'Ii I'i (>(1 with tlH' intE'l1sity of inflow to allo\\' for 
l1nnlitwtll' I'fipt't:-:, 

By tnltt!'hi!\g the' first and s('('ond 1l10ll1pnts giv!'n by ('quation 45 to thr first 
and s('(>(llld mOlllpnts. of tl1(' ('ompiptp lilwar solution, tIl(' following optimal 
\'a!tIPs fur tIll' parltnlPtPrs I\. anel/! nrC' obtairH'd. 

(46a) 

(4Gb) 

Thl' t'llmnlPtpl' f{ is til(' tinw-C'onstnnt for II singll' li[war resrrvoir of thl' 
('as('nd('. If till' aVE'rng<' mt!' of tnlvpl of tl1(' flood Wlwr (which is 1.511 ) iso
t1st'd to C'flllVl'rt this Chttl'U('L!'risti(' tim!' to a C'hnraetcristic Ipngth \\'r obtain: 

(4&) 
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whieh is ic\('nti('al with til(' formula for thr C'hnnH'tpristi(' length proposrd by 
Kalinin and ~ [ilyukov (dUl I'x('ppt for til(' fa('tor \1- j<'2j4). 

Thp slmp(' flWtor diagram Sa's.~ fOl" til(' ('omplpt(, linear solution und til(' 
dassie-al flood routing methods h; shown on figur(' H-9. Thl' ('omplf'tp solution 
plot,::; 1\5 a fllmily of pllt'!lboln,::;, and tht' diffusion lUlalogy eoincidps with til(' 
(OurV{' for P "'" (), From (>((lUttion 2n, it ('1m bp S('('11 that til(' higlwr thf' dimensioll­
Il'ss I('ngth l J»), tlw lowpr wiJI \)(> tlH' V!tlu(' of '~2 and til(' oth('r shapp factors 
nnd viel' vprSit. Thus, w(, ('IUl dpdu('p [mill (igurp H"H tlU\t [01' short lengths 
(high S2l. tlw various tWtl-parllnwtPr ll1oc\t'ls otiwr than th£' ditTusion analogy 
"mIld apppnr to Ill' about ('qual in thpir ability to simulat£' tht' eompletp 
linptlr solutioll, FOl' long l!'ngths (l'nnaU B2), ho\\'PVN, thp ~ [uskingum mpthod 
is S(,PIl to hnvp n vah\(' of '~3 approa('hing 0.5. wlH'rrlls th(' ('omph·tr linput' 
solutioll ([or nil FroudI' Ilumlwl's) and tIl(' otllPr moch'ls all hav!' vnluc'H of S3 

npprOlt('hin~ ZPl'O. \Y(' would dedu('p from this di v('r~pn('p that for long 
Il'ngths of ('htll\!wl. til!' ~ [uskingum Ilwthod would not simulnt(' th(' outflow 
hydrop;mph Its w(l1l as tl\(' otlwr nll'thoC\::;. That this is so is shown by (igurp 
H,-lO. whil'l, p;iv('s til(' Ill'pdidpd outflow for til(' ('omph·tp solution (for qo= 150 
('.f.s. or ~L2.j m3• pPr SP('.} aud til(' differput mod('ls for til(' Tholl1ns input 
d('.fiIwcl by ('«\mtioll :H and a ('hnl1lwl length of 500 rnilE's (805 km.). 

Tlw pnmbo\ie uwthocl and til(' Kn.linin-~[ilyuko\r tSo) nwthod pre'diet dis­
dlllr~PH \\'hi('h t\rp graphi('nUy indistinguiHhnblp from tlH' ('olllpipte linenr 
solution. The' Ing and routt' Ilwthod prN\i(·ts the tnwpl tillw to n fair degrpe of 
u('('unH'Y, hut lllld!'l'Pstimntps tlll' d('gr('p of nttplluntion. TIl(' :Huskingum 
llwthml is SPt'1I to pr('diet lWp;ilti\'(' ordinutps for til(' firHt no hours nnd a pellk 
disl'lutrW' \\'hil'h is about 20 ppn'pnt too high nnd whose timp-to-peak is I),bout 
:i0 PI'l'l'Pllt too smalL It (,IHl lw wrifh·cl tlHtt for th!' short ehnnnri lengths thr 
~ luskiup;Uill nwtlwd pl'rforms IlS slltisfu(·torily as tIl(' othc'r mrthods. TIl(' 
(·omph.[1' fltilur<' (If tlH' ':'[ll::;kingllm nwthod for til£' ('asr shown on figurr 9-10 
is dup to t 111' fnet thnt tlw t iuw-to-pPllk of tlw l'rsu\ting hydrograph is greater 
timn tilt' tin,\{' of inflow. WllPn'liS tlw ':'[uskingum outflow must dpc\iur ns soon 
n::: inflow :::(op:::. AS!l rull' of thumb. this suggrsts that thr ':'[uskingum Illrthod 
will fRil if tIll' In~ of tlw ('hann('l r(,ll('h is grentrr thlln about half til£' duration 
of ill.f\oW. 

TIlt' ttbilit Y of tllP thrpp-pnranwtrr mod(·ls to simulat(' till' complrt(· linear 
Sllllltio[l ('an lw similarly analyzpc1.4 As might lw pxpcetrd. thr thr(,p-pnranwter 
mlld!'ls t\rl' b!'ttpl' nbl(' to sill1ulntp tIl!' thl'Pp-pantllwtrr ('omplrtp solution. 
Fih'1.1r(' \I~ 11 show:; tt plotting Oil n 81-82 shap<' f!letor dingram o[ thp ('ompletr 
linl'itl' solution for n ,Frouc\p nmnlwr of 0.5 and th(' lim's for en('h of the thr('('­
plu'nm!'tl'r mud!'\::: for tl1(' snm!' Froud!' numbpr. TIl<' eloscnrss of tIl£' linrs on 

I H.\Iu.t:\. It ~L l.l:n:.I.H Tm;()ItY OF nOO\) IlOt·Tl:-:O. :\1. Engin. Sci. Thesis. Xntl. 
l'niv. [n'imlli. lIlli'. 

http:Fih'1.1r
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th(' shape ftwtor diagram suggests that the aetual hydrographs would be very 
similar. In faet, it .is not possible to distinguish the solutions when plotted in 
hydrograph form at 1m ordinary scnl('. 

Th(' llmnner of variation of the- three- param('te-rs in each of the models­
which result fL'Orn the matching of the first three moments to the first three 
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FIGUHE 0-1O.-8imulution by two-pl\ramcter models. 

moments of the complete linear solution-shows somc ,interesting features. In 
the case of the diffusion plus Ing model .. a change in the length of channel 
considered does not result in any change in the value of the convective velocity 
(a) or thE' "hydraulic diffusivity" (D), but the third parameter .. the lag Cr), 
varies in order to maintain the optimum solution and is directly proportional 
to the lengt,h of channel. In th(' case of th(' three-parameter gamma model, the 
I"('s{'rvoil' lag time J( remains constant as in the two-parameter Kalinin­
i\[ilyukov model, but both the number of reaches (n) and the lag of the linear 
channel (T) vary diredly with the length to maintain similarity with the 
eomplete linear solution. In the case of the multiple Muskingum model, the 
values of K and X are independent of the reach length and the complete linear 
solution is matched by using a number of :Muskingum reaches which is propor­
tional to the length. The conclusions given above are developed on the basis of 
long reaehes of channcl and might not hold for short reaches. 

The g('neral approach described above can also be applied to a channel with 
laternl inflow.s Trcntment of this case is outside the scope of these lectures. It 
nUt.)' be said, how{'ver, that the derivation of the complete linear solution in 
lateral inflow is more complex than the one given above. It should be noted 
that the linear response obtained is in fact the IUH for a uniform channel. 

• O'~b;AI~. \Y. .LINEAR ROU'rING OF LATERAL INFLOW IN UNIFORM OPEN CHANNELS. 

M. Engin. Sd. Thesis. Dept. Civ. Engin., Univ. Coil., Cork, Ireland. 1968. 
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It is interesting to note that one of the models which is most successful in 
~imulating the complete solution, particularly for Froude numbers approaching 
1, is the model consisting of a rectangle routed through a linear storage 
clement. In fact, this model is the Zoch-Clark model of routing the time-area­
concentration curve through a linear reservoir. 
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I3.2 	 3-Parameter Gamma .---
Muskingum 	 _ .. _ 

(Multiple Reach) I 
2.8 

2.4 

1.6 

1.2 

0.8 

0.2 	 1.4 

FIGURE..9--11.--8hape factor diagram for three-parameter model (F =0.5). 
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Pl'ohlelllS on Surface Flow 

1. Calculate the steady state profile' for overland flow from a plane 80 feet 
long at a slope of .l ill n, 1,000 with Chez)' coefficient of 100 ft. 1/2/sec. and a 
lateral inflow of 0.001 feet pe'r second. Draw both the' profile and the velocitjr 
distribution along the length of the plane. How would the re'sult be' afTected 
by the neglect of Lt,~ various terms in the basic dynamic (>quation? 

2. Compaf(' the Horton-Izzard solution and the kinematic wave' solution. 
What is the n\lationship be'tween the time to equilibrium in the two methods? 

3. Compare tiL(' various methods proposed for the IIumerical ::>olution of 
the equation for unsteady overland flo\\'. Based on til(' ditTerent methods, 
what difficultie's in computation would you expect? 

'1. Determine til(' rising hydrograph and the' falling hydrogmph by the 
Horton-Izzard method for til(' data givcn in Appendix table 12. 

5. D('terminl' the' rising hydrograph and til(> recession hydrograpll for the 
kinemntic WILv(> solution for clata in Appendix table' 12. 

U. Dl'tt'rmine thp rising hydrograph and tll(' recession hydrograph by a 
method of numt'rieal ('omputation for thp data in Apppndix table 12. 

7. Fit it Horton-Izzard typt' solution to tIl(' data for the data in Appendix 
tablp 13. 

S. Fit a kilL('matir wave' solution to the data in Appendix table 13. 
H. A wid(' rpctiLngulnr rhanne>1 has a bottom slope, So. of 3 fpet per mile 

to.57 m. Pt'r kIll), H, iPngth of 200 miks (322 km.), and Chez:; fridion with a 
C of 50. Find the discharg<' hydrogmph at the> downstream end, using the 
nwthod of chnrnctpristic.s if tll(' inflow P('f unit width is given by function 5 of 
Appendix tablp l. 

10. Ust' a finite' di tl('fenct' scheme, either implicit or explicit, to solve 
problrm l. 

11. Discuss thl' qupstion of thr stability of thp solutions obtained by fillite 
di tTt'rpncp nwthods for un.stt'nciy flow in open channels. 

12. Find til(' linpar ('hanttt'l response' of thl' given channel for this particular 
flood ('vpnt from tll(' givl'n inflow and from the outflow computed in either 
problpm 1 or probkm 2. 

1:1. Find tht' linear channel responst' for the data of inflow and outflow 
given in Appendix table 10. 

14. Deriw' the form of thl' linear channel response for the following classical 
methods of flood routing: lag and route, :\Iuskingum method, Kalinin­
:\£ilyukov method. 

15. What basic physical assumptions are made for the three classical 
me'thods of flood routing mentioned in problem 6. 

16. For thl' inflow and outflow hydrogmphs given in Appendix table 10, 
find till' bp.st valul' of thp lag and the routing coefficient to handle this flood 
e'vpnt by till' lag llnd routt' nwthod. Draw the linear channel response for 
thesl' paranll'ter vailH's. 
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17. For tlw inflow and outflow hydrographs given by Appmdix tablP 10, 
find thr valu('s of K and X for handling this flood ('V('nt by tiH':\[uskingum 
method. Draw thr linear channel r('spollsr for tlwsr particular vahlE'S. 

18. For thr inflow and ()utflow hydrograph 6'; vrn in Appendix table 10, 
nne! thr valul' of n lllld k to handle this flood rvent by til(' Kalinin<\Iilyukov 
nwthod. Draw thr linear channpi rpspO!1lW for tb('s(' parnnwter vnlues. 

19. Deriv(' the' ('xpr('ssiO!ls for tilE' eUlllulants of the complpt<, linenr solution 
given in f'quation 24, pag(' 000. 

20. It has l)('en sugg<'sted that apart from th!' pff('et 011 lag, n ehangt' in tht' 
r('[{'r('n('(' discharg(' produ('('s only a very small chang!' in tlw slltlp(' of the 
outflow hydrograph. Would you (,XI}('ct this changC' in shape to be greater 
wh('r(' till' inflow is !l gamma distribution or \\'h('I'(' the' inflow is a ('osin(' curve'? 

21. What oth('r models, besidN; thos(' nwntioned in til<' I('cture, might 1)(' 
uspd to simulate' t1w linear ehlHlIl('1 r('spolls("? Indicat(' a onp-pnmnwtcr model, 
n tw(}-pnranwtel' mocld, llnd a titrc('-pnramrt('r model which might have be'en 
uHPd. Ctllculntp th!' ('umulants of these modds. 

22. In this 1('clUl'(', tIl(' 1l10l1wnts and cumulnnts havc Iwen used as a 
eritprion of mnt('hing. Disewis til(' significllIl(,(' of this eritprion, and indicntp 
what otlwr ('riteria might haY(' 1)('('11 used nnd what difference' this would have 
mad" to the' computations. 

2;3. rsing fundion 5 on Appendix tnbJp las til(' inflow, computp til(' outflow 
hydrogrnph in a wid(' f('ctangulnr chanrH'1 for diffcrput vnitI('s of So, C, and L. 

24. For til<' COlT('sponciing inflow nnd channel Cil..:.. l1ctpristics used in 
probkm 28, ('omput<' th(' pnrnnwtC'rs of a two-parameter simulation model nnd 
g('IH'mtl' til(' simulat('c1 hyclrograph. 

2'i. For til(> inflow patt('rn in til(' ('hnnnel of problem 23, compute thc 
ptUHnwtprs of n thf('p-panlmptpr simulation modpI and ('omput(' the simultttNi 
hydrograph. 

26. From fl, SNips of ['('Imlts of probl('ms 23,24, Hncl25, dm\\' up rough work­
ing rull's for til(' c;rcumstllnces under which eneh of til(' models are valid . 
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LECTURE 10: 
CONCEPTUAL MODELS OF SUBSURFACE FLOW 

Lp(,tur(' n cit'nlt with I11nthemntieal simulation and eOlleeptual models for 
flow pro('('ss('s that ('ol1stitutp part of til(' diJ'('et eatehmellt J'cspons(' to inflow. 
It \ras (,OIH'N[W(\, tlH'J'0for<', with tlw simulation of procC'ss('S eontl'ibuting 
to til(' fonnation of til(' unit hyclrngmph, whieh is r('quired ('ith('J' as the direct 
storm rpspOI1S(' or as part of tlw Ilimlliatioll of til(' total catchnwnt r('spollse. 
TI\(' remaining two subsystems showll nil figure' 7-0 art' th(' soil-water r('sponse 
Systl'l11 and tlw ground watf~r rl'SpOIlS(' syst('m. 

TIl<' tr('atllwnt of thrs(' t \YO phas('s of SlIbsurfae(' flow is similar to that for 
()vpr\and flow lind C'iulJllwl flow in tll(' last l('etur!'. In ('aeh easc, til(' basic 
equatiom; d('riv('(l fl'Om Uw physi(·s of ullsatumtNI and satumted fiow in 
porous nwditl will 1)(' giv('Il, togl'thl'r with an a('eouut of tll(' more importallt 
solutions bn:wd 01\ simplifh>c1 vl'n,ions of til<' fundanwntal equations. A brief 
dl'seription will tlwn 1)(' giVPll of how eoncl'ptual models may be used to 
simlllat0 thpsp portion::; of th0 hydrologiC' eyelc'. It has bpen mentioned pre­
viously that til(' soil phils(' is til(' subsystem of th0 hydrologie cyclp in which 
th!' h'aHt systems work has b('('11 don('. Only in rl'crut years has any \york of 
this typ<' lWPIl dOll(' in r('gard to ground watcr !lo\\'. Cons0qucntly, the pr('sent 
1('C'tllr(' \\'ill1)(' larg<,ly C'Ollcprn('d with a r('vl(,w of th(' th('orl'tical and empirical 
rPi(ttiom;ilips whil'h htlVl' b('('n pl'Opos('d and which are necessary as a back­
ground to til(' tackling of tlw probl('1ll from n sysU'ms vi('wpoint. 

1'Hoven1ent of Soill\'loisture 

. In C'onsidp['ing til(' soil phns!' of thp hydrologic eyel(', we ar(' eoncerll('d with 
til(' mtt' [<nei amount of infiltration into til(' soil through surface entry, the 
ratp and amount of downward prreolation from tll(' surface to the water 
tahl(', til£' amount of soilmoisturt' Iwld in storage, and the rate and amount of 
dpplption of soil m.()iMur(' storage' 0ithrr by !'vaporation at the surface of the 
soil or by transpiration through plants. Infiltration is probably the most 
important of thl's!' pro('Psses since' it controls thp ('xtent to which total pre­
eipitatioll lwpomps pff!'etiw as an input to thE' system representing the rapid 
rp:'lpOIlS(' of th!' eatehnH'nt. Physical information on infiltration is available 
[rom laboratory ('xpprin1<'nts. fipld rC'sults in infiitrometers, analysis of recorded 
hyclrographs, and the eomputation of watershpd indicators of equivalent 
mt('s of infiltration. 

Any thC'ory of infiltration must bp grouudrd OIl th(' principles of soil physics 
ti, 5). Th£' watpr in unsaturn.tl'd soil is held against gravity mainly by the 
aetion of soil suction, The eurv!' showing thp relationship between soil suction 
and soil watpr ('ontC'nt is rrfprr!'d to as tllE' moisturr characteristic curve for 
that partku\ar soil. The soil moisture characteristic f'urve exhibits a hysteresis 

267 
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etTr('t fo!' nn~" givrll history of nit('rnntiv(' wptting n.nd drying. 'I'll(' moisture 
('hamf'lrl'isti(' ('urV('s in sueh t'as('s tau spnn thr tlrpn bpt W('(m t \\'() limiting 
('urV('s, 01H' fo!' drying nnd tlw othpl' for \\,ptting. 

If w(> ignorp th!' pfTC'C't of tC'mp!'I'!ltUI'I' I\ltd osmoti/:' prt'SSUI'r, thl' movC'mrnt 
of wat!'I' will Ink!' plnl'l' undp!, the' ndioll of tl p\>tentinl difT('I'("It(·C' in n('('ol'cinn('p 
with n g!'n!'l'Illization of Dnr('Y'8 Lnw: 

\"= -K grndq, (1) 

",hpl'!' r is tlw ntl!' of flo\\' p!'r unit IlrPH, K is tlw hyclraulie ('onciuetivity of 
till' soil (which is d!'IH'ndpnt on moisturp ('onten! 1, nnd q, is til(' hyclrnulie 
Iwad or potpnlinl. Thl' pntpntial is mad!' up of prl'SSUl'P 11<'l1d and l'l('vation: 

(2n) 

=-8+= (2b) 
\\'11('1'(' 

, p. 1 "I ..'1 := - )s t 1(' SOl su('tlOn (2c)
'Y 

llnd z is till' ('Il'vn.tioll Ilbov(\ a fixl'd datum. 
In ('()nsi<il'ring in/ilt ration, PPl'('oit.tion, tl.nd :'Vn.pOl'l1tion, WI' llr(\ Inrg(.ly 

('olH'prHN! with flow in a v(\rtiCIlI dirpdion. FOl' vprtic!1.1 flow, <'quation 1 
lwco111(>:-;: 

(3a) 

or 

iJS 
" T.." ~ 

\ =.1.\--K (3b)
iJz 

If tlw soil su(·tion (;,S I iH llssunwc\ to b(' !l singlp-valuccl funetioll of thr moisture 
('ontl'tlt (c), tlH'll w(, Ciln cl0fine til(' hydraulic ciifTusivity of thr soil as: 

iJS
D=_E (4a)

iJc 

nnd writ!' ('<luation 3 as: 

(4b) 

whi('h is tIlr ou!'-c1im('llsiOtl!1.1 difTusiou form of Darcy'S Law. Over a given 
rung\' of moisturr contt'nt, til(' vllriation in D will b!' less than the variation 
inK. 

For unRtClldyfiow in an ullsatul'lltpcl soil in a yprtical direction, we have tho 
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pquatiol1 of continuity: 

al" ac 0-+-= (5)az at 

whc're-\' i8 til(' ratr of flow PM unit o.rQa and cis thr moisturC' eontent ('xprQss('d 
ns l\ proportion of total volumr. Combination of ('quations 1 and 5 gives us: 

_i!. (K acjJ)=~~ {Ga)az az at 

01' using ('<[uatioll 2b \\'(' get: 

(6b) 

and with equation 4b w(' g('t: 

(6c) 

For infiltration into a ypry dry soil (or upward mov('mcnt from the ground 
wat('r to a dry soil surf!l(,p), thC' gradient of thp soil suction will bC' very much 
larger than til(' dit'f.'re-nc'p in p]pvation. Conse-que-ntly, thC' last term (K) on the 
right-hand sidC' of C'quations 3b and 4b can bC' npgldcted compared with the 
otll('r two terms; similarly, tilt' sC'cond trrms on thr left-hand side of equations 
6b and 6e call br nrglrch'd. Omission of these terms corresponds to the assump­
tioll that th!' ('ffeet of gravity on wat!'r movt'mrnt is negligible compared to 
tll(' ('ffrct of thC' gradient of soil moisture suction. 

Equation G is a nonlinear parabolic equation sinc(' hydraulic conductivity 
(K) and thl' hydraulic diffusivity lD) arr functions of the moisture content 
~c). Equation 6e has the samr mathematical form ns thr concentration­
dep('nd('nt clitrusion t'quation in mathematical physics and is the most con­
\Trnirnt form for tlworetical analysis. 

A llumbpr of authors havr suggested empirical relationships between the 
unsaturated permrabUity (K) or th(' hydraulic diffusivity (D) OIl the one 
hand, and thl' moistur('contc'nt (c) or th(' soil suction (8) on the other. These 
('an b(' used in th(' plac(' of purely empirical moisture characteristic curves to 
prrdict watC'r profilrs and watrr movement; th('y could also be used as the 
basis fOl coneC'ptual modrls of the movement of moisture in the unsaturated 
zonC'. Bear. Zuslavsky. and Irmay (1) suggested that unsaturated permea­
bility can bE' r('lated to saturated permeability by the equation: 

K (C':-'1l0)3 (7)
Ksat= 1/.-710 

wl1l're c i$ th(' moistur(' content, n is th(' total porosity, and 710 is the ineffective 
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or irr('(lueibll' pOl"llsity. (~urdlH'r f /;,1, su~g('st('d pxpn'':';;;ing unsaturatpd 
pl'rnll'ubility as n fUIH'lion 1)1' 'ioil l1loislurl' ;;ll!'tioll by illl f'quntiou of tll!' form: 

(Sal 

1\ b 
i::';= b+,'I';: fHb) 

",hpr!' J{ is thl' ullsaturalf'd pprt1l1'abiiit y. 8 is tlH' soil {l1oistur(·l{u('tioll. II! is a 
puraml'tl'l' whi!,!! has II \'Hltit' of llpproxill1tttply 2 for 1\('/1 vy soils and. approxi­
!lUlI!'I,\' ·1 for s!ttlds. and (l :tnd h Ur!' pmpiri('al parnnlptprs. Unrein!'!' also us<'d 
lUI. I'xpolll'ntini J'l'lat iOl\ship bpI W('l'll Ullsaturat('d pprrneabilit~· and soil 
sUl,tiou; 

(8c) 

~()nll' SPI'('illl ('ll:-!'S of 1111' rl'lntiouship givPll in t'quatioll Sa had b(,Pll sug­
gl'stl'd pt'P\'illllsty by Wind. ,j.i, and hy Hp!l1snn and Fox (da). Gat'dllPr and 
;\ lay hugh 1,;.1 ha\'1' suggl'stpd tlw following l'l'lation;;hip for thp hydraulic 
tli t[usj\'it~ ; 

(9) 

\\hl'f/' j)" i:-; I hp V!litW IIf Ihp hydrnllli(' diffllSi\'lty for thp moisture' ('ontent 
/' ""'" !tnd It !lnd II an' I'XIWrlnwntal paranwtprs. 

r ndpr stputiy :;tlL{(' f'1ll1ditinns with no loss or gain of moisture' to th(' 
nfmosphf'rl'. tIl!' soil moisturE' prolH!' will hI' in pquilibrium. Tlw moisture in 
t~lI' unsalumtf'(l WIlt' is 11flld aho\"(· tIll' watpr tabl!, against thp pull of gravity 
hy till' ,-;qil slll'tioll; tlll' ('Uivaturp of til(' intprfa('(' bpt wpen soil air and s()il 
wafl'r allows thp sllil Wltt(l[' to bp at a prpSSttrp Ips8 than Iltmosplwrir. 

In n stpu(\y pt'rl'ol!l.tioll mil' \ql from thE' sttrfarp to the watrr table, we have: 

[ as]q=K 1-az (lOa) 

or in t!'rms of tlU' hydrauliC' diffusivity: 

ac
q=1\+D­ (10)uz 

1'11(>1('\'1'1 abov!' Ihp watN table, at whi('h It particular moisturp content occurs 
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can be ciptprminpd from: 

S Kz=j ~-'-(U:3 (lla)
s_oK-q 

(Ilb) 

In n. multilltyerpd soil, th(· int<'gmtion can 1)(' cnrriNi out sl'paro.tely in 
en(~h In.Yl'l": 

L j".: K 
z= ,,!- el8 (1211,) 

i Si-I 1{,-q , 

Z= (12b) 

8inc£' it is ttl!' soil suction that is ('ontinllous ncross th(' boundary between 
layer;;, tlH'rl' will l)(' dis('ontinuitips at tll(' bOllnciari!'s if th!' computation is 
dOlI{' in terms or llloistur!' pontNlt. 

Til(' I'ltpady upward mownwnt of wat!'r [rom lwln,," til(' water tablf' to 
providl' a stpady rnt(' of ('\'!l.poralioll (e), givps risf' to a similar formula, except 
that in this ('ns(' W(' lulY(,: 

iJ'i ) (13a)e=K ( a:-1 
D ae K~ 

c=- -­ (I3b)az 
and thl' solution is ~iwn by: 

S 1{ 
z= f ~~·dS (l4a) 

._ol\. -c 

C 

z= f ...t D 
-'-·de (14b) 

" K+e 

If HlP watpr tab\!' is v!'ry e\mw to thf' surfn('t', tll('r!' will only b!' a small 
drying of th!' surftH'P, and !'vaporntion NUl ()rrur at til(' potpntial fat!'. In the 
caSf' of It dppp walp.!" tabl!', how('vpr, tilp gradipnt necl'ssary to movp watef up 
from lwlo", tlw wn.tPf tabl!' rp8ults in n. high soil su('tion nt thl' surface md, 
('Ot)!'('qlH'ntly, a IOWN tnoi:;tur(\ (,OUU'llt and a lowpr unsaturated pl'fmcn.biiity. 
By usin~ an pmpirit·n.l f('lutionship brf\yp('ll .K and 8. it is possibl(' to integratl' 
<'quntioll 14nltnd so prpdirt tilt> ~iOil profi\p for <:apillary risr (Sa, 87). Asimilaf 
calrulation e{)uld lw tisI'd to rstimnJp transpiration b~' using 11 eonstaut suction 
itt 11 giVl'tl !'I('vntintl to ::;imulatp root llC'tion. 
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For thf.' conditions of clC'C'p Watf'l' tubh' and high ('vnporation rat£', it ('an bf' 
shown that therf' is n limiting rate of f'vaporation which df'pcnds on tht' drpth 
of tht' ground wnter and the soil propt'rtit's U3), llndf'l' somp eondition8, this 
rO!lCf'pt of a limiting ratl' of l'vapOl.'ation, dE'prncling not On climatologicnl 
dnta but on soil propf'rtips nnd ('onditions, may 1)(' of importnnc(' for th(> 
mocl('ling of thE' soil phase of thp totnl catehmput r(>spOlHW. 

GnrciIwr has shown thnt if thl' unsnturntpd pC'rI11('nbility cnn b£' ;',,,:;~r,u('(1 to 
hnv(' tlw l'platiol1flhip with soil surtiou given by l'quation Sn, t!tpa f(ll' any 
givf'l1 valul\ of 'Ill, thl' limiting ratt' of evaporation would 1w giY'l! I,JoY: 

(15) 

\\'IH'I'(' to is til(' clopth of th(' wntC'r tabll' below til(' surfae('. Ev~,ivlr:rti()n may 
takl' pln(!p at g['('atpr thnn this Limiting ratp, but if it dol'S f!\l' v, d<'r lwing 
supplipd from soil m()if;l Uf(' stOl'!lg(' rathC'r than ground wn.tC'l' storaw' and til(' 
soil moistur(' distribution ill not thut of a sl('udy stut<'. SehlNtsC'twr llnd COI'C'Y 
[,$9) bItVP l'('portpd p:qwrinwntal r('sults incli!'ating tll!' ('xistp[I('(' or a mllximum 
rlttlwr thun a limiting n),tp of pvuporntion from tlw soil surfl\('(' nnd sugg('st 
that this plwllomeunll cun be' ('xplainpd by til(' pffeet of hystC'r('sis. 

Fusteady lVlovement of Soil lVloisture 

In prneti('C'. t 11(' soil moisturp rnrPlr attains an equilibrium profill', Hathl'r 
than IU1Ving It ('oustant rainfall ratp or a eonstant pvaporation ratp at till' 
surfnC'(' fot· fi long pnriod. WI' hnvl' a\t(,rtl!1ting prpdpitatioll and C'vapomtiolt 
l'('sulting in ('ontinual eimngps in the' moisturp prof1\p and til(' unsteady mov{'­
llH'llt of \\"!\tpl' l'itlwl' upwards or downwards in tl1(' soil. As hydrologists) wc 
(\l'p ltltl!;l'ly ('()Il('Prtwd with conditions which oecur when a dry soil is wrtted 
by pr('('ipittttioll at n hight'r rill(' than til(' avpragp or wheu a \\·pt soil is dpplptpd 
of its moistnrp ('OIltmlt by all C'V(l.poro.tio[) !'Itt!' higher than Iwpragp. As in the 
I'/hi!' of st!'nciy downward p('rcolation, or stE'udy upward capillary risp, tht' 
prohll'ms of up\\'urd and downward movon1('ut arC' essentially similar, and 
tpdmiqll('}l \\'hkh \\'OI'k for onC' wiil bC' appropriut(\ for the other. Du(' to 
limitations of spa('C', only tlH' infiltration probll'm will bl' dealt with in thr 
pr('s('ut disrllssioll, 

It i~ important to distinguish bot\\'('<'1l thp infiltration caparity of til<' soil at 
an~' parti!'lIlar tiuw uud thp IlC'tllal infiltration oeeurring at that timp, Infiltru­
ticm rapllrity i~ tht' maximum rate at whieh til<' soil in a givell conditiOIl can 
absorb wutC'r at t}l(' surfnc('. If ti1(' l'll.t(' of rainfall or thl' rat<' of snowmelt is 
I('f;:; than thr infiltration rapacity. then th<' aetual infiltration will bp 1('55 than 
tIl<' infiltratioll rapacity sincp thE' n1l10unt of moisturE' ('ntpring tIl(' soil caullot 
(\xcl'(·d thC' amount availabll'. A numb('r of C'mpirical formulas for infiltratiou 
C'n,parity hilV(' been propos('d in thE' litpraturp. Thos(' by Kostiakov(23) I 
Horton (19), Boltnn (17l , and (h'prtOIl (29) arp dis('ussed below. The theo­
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retieal formullls which a1'(' discussed are: the solution of the basic equation 
OIl a constant ditTusivity (4), the solution based for a constant profile (80), 
and Philip's genpI'Il.I solution for the ponded infiltration case (31). 

TIl(' following notation will bl' used for both empirical and theoretical 

formulas: 

1= rate of infiltmtion capacity 
10 = initiall'il.te of infiltmtioll capacity 
f.; uitimttte rule of infiltration capacity 
f~= ratl' of (,X('E'SS infiltmtion l. I-Ie) 
F::; volumE' of infiltrn.tion 
Fe"'" ultimat<' volume of infiltrn.t1on 
/<'),= volunw of potential infiltration (Fe-F) 
F. = yolunw of ('XCN,S inft1trn.tioll (F - Jet) 

Ji'.. :;,; final yolump of ('xce!;s. infiltration I..Fc-I.·l) 
Fp<= V(lIUllH' o( pot('utiall'xrcss infiltrution ,Fee-F.). 

In tht' ('ll,sP of fOl'mulu:'> for infiltration volume, t\w eorrpsponciing formuh't for 
infil tmtion rilt t' ('un 1)(' gott ('11 by di ff('rcnlifltioll. In th(' eMe of formulas for 
infilt ration mtl', the' fmmula for infiltmtion volume ('an b{' gotten by integra­
tioll. All of tIlt' abov!' dpfinitions r('fpr to infiltrn.tioll rapacity. If it is necessnry 
to dist inguish it, tlw netllal infiltrn,tion ratr can b(\ designated by fA and thc­
Hetllal vnlunw of infiltration by FA. 

As nwntiOlw(\ llbovl', attentioll will bt' ('oufitwd to the more important 
!'mpirieni l'qllations found in til(' literat~lre. In 1932, E:ostillkov (23) proposed 
the followiIll; formula for till' initial high rate of infiltration: 

a (16)1=­lb 

wlwrl'I is til{' mil' of intiltrntion up to the timp when tb(' infiltration rate would 
1)(' ('qual to till' saturated pl'rmpability of til(' soil. Horton (19) suggested the 

following fmtnulu tor tll(' rate of infiltration cllparity: 

I-fc= tio-Ic) ('xp(-kl1 (l7a) 

(l7b)I. = Ioe ('xp t - kt) 

Holttto t.J7 \ :'>ugg('stpd that th(' rat(' of excpss infiltration in th(' cnrly part 
of 11 storm ('ould 1)(' r!'latf'd to til(' volume of pot('ntial infiltration (F1') by an 

('(Illation of the' fmm: 
(ISa) 

(lSb) 

UWrtOl1 \291 slumpd that for t1 value of n=2 in ('quatiou IS, the rate of 
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inliltmtioll could be C'xpressed as a function of time in the following form: 

(1911) 
where to is given by: 

(19b) 

and i~ the tinw taken for the infiltration capacity rate to fall to its final 
yaluei•. 

We tum now from empirical formulas basE'd on the analysis of field observa­
tions to tht'oretical formulas based on the principlrs of soil physics. For a 
soil whos(' moisture eilaracteristics and ullsaturated permeability (or hydraulic 
difrusivity) arc' known, equation (j for til(' unsteady Y0rtical movement of 
moh,tur(' ill It soil can 1)(' solved by numerical methods (22, 31, 88).Wcare, 
ho\\"rv('r, 1110l"(' eon('cmed with simplified mathcmati~itl formulations of this 
particulm- problem. 

On(' of til(' simplrst modds of infiltration into a soil (and the subsequent 
downward percolation of til(' wetting front) is that obtained if the hydraulic 
ditTusivity is taken as constant (4) and, in addition, either the hydraulic 
conc\u('tivity takC'n as a eonstant or the dfE'et of grcwitj neglected. In this 
ease, w(' havr: 

D a2c= ac 
(20a)(lz2 at 

Instend of taking dcvatioll (z) yertiealJy upwards from a datum, we express 
our ('quatio ll ill U'rms of the depth of pereoiation downward from the surface 
(.'t") so that we have: 

(20b) 

Fo!" tIl(' problem of ponded infiltration into an infinitely deep soil, we have 
the boundary eouditiolls: 

C=Co, for t=O, x>O (20c) 

C=C., for t2:0, x=Q (20d) 

wherE' Co is til(' initial moisture content of the dry soil and C is the constants 

moistul"f' coutput at the surfae(' (usually; but no\, necessarily, cs.t). Equation 
2Gb is n lin('ar parabolic equation of the ciffusion type and has a solution of 
thr general form: 

(21a) 

which gives the moisture eontent (c) for a given depth of penetration (x) at a 
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giVNl tinH' ttl. TIl(' depth of pcnetration for a giV('Il moisture' content can be 
written a~: 

(21b) 

Thl' total amount of infiltration up to a given tinw I iR givcll by: 

(22a) 

whel"(' Ko iR tlH' ullsaturat('d pernwability cOiTespontiing to the initial moisture 
('ont<'nt co. Substituting ('quntioll 21b into rquation 22a \yp obtain: 

(22b) 

ThiR is clearly RP('l1 to givl': 

(22c) 

which p.llowR us to ('xpn'ss the inliltration volume (J?) as [1, function of time, 
and of tht' initial and saturated moisture' contcnts and til(' initial permcability: 

(23a) 

(23b) 

Equation 23 is til(' inf1ltrntion capacity equation for the simple mockl of 
eonstant cliliusivity and constant perm('ability. On the basis of the definition 
of hydmulic' diffusivity in equation 4, this is l·quivalcnt to assuming that soil 
suction is related to moisture content b~': 

(24) 

that is. that thl' soil suetion is a linear function of the moisture content. It 
should be' noted that the two parameters in (·quation 23a both vary with initial 
moistur(' content. 

As an alternative to !\~suming constant diffusivity and constant permea­
bility, w(, NUl makP the a~sumption that the diffusivity is constant but that 
the permeability is a linear function of the moisture eontent, that is, that 

J{ c 
(25a) 

By inserting the rl'hltloJlship given by equation 25a in equation 4, we obtain 
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tt logarithmic relationship between soil suction and moisture content given by: 

D (cut)S=-·log. - (25b)k c 

where 

(25c) 

For the model of constant diffusivity and linear permeability, equation 6c 
can be wri tten as: 

D d
2
C+k de = de 

(26a)dz2 elz ell 

which is the same as equation 20 except for the addition of the "convective" 
term. It is still a lineal' equation and is similar in form to both the parabolic 
(that is, diffusion analogy) form of the linearized equation for unsteady flow 
ill an open channel, discussed in lecture 9, and to the linearized equation for 
unsteady ground watel' movement to b(' discussed later in this lecture. For the 
Same boundary conditions as given ill equations 20c and 20d, equation 26a 
has the solution: 

c-co) , (X-kt) / (kX) ( X+kt)( ~ = ;'2erfc 2VDl +;·2 exp D erfc \2VDt (26b) 

When converted from the form of equation 26b, which is appropriate to the 
moisture profile, this solution gives for the rate of infiltration capacity: 

K.nt-Ko[exPC-Ck2t/4D)] r ( Ik2l)] Kf 2 V 7rk2t/4D e fc ~4D + (26c)
sat 

Solutions to the problem of ponded infiltration have also been obtained by 
assuming the hydraulic diffusivity to be a linear or an exponential function 
of thE' moisture content (40). 

In 1911, Green and Ampt (15) proposed a formula for infiltration into the 
soil based on a model of uniform parallel capillary tubes. In fact, their approxi­
mate treatment is not derendent on this specific model but merely on the 
assumption tll/,lt the advancing moisture profile consists of two parts-an 
upper zone of higher moisture content (C2) separated from the original dry 
soil (C=Cl) by a sharp discontinuity (5,30). 

The rate of flow through the upper part of the soil may be written as: 

(27a) 
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where cp.l is the total head at the top of the column and is given by: 

(27b) 

where x is the depth of penetration of the higher moisture content and }[ is 
the depth of ponding on thr surface. CPI is the total head immediately below 
the dis('ontinuous wctting front and is numerically equal to the suction (Sa) 
at which air enters the soil medium. Consequently, equation 27a can now be 
wdtten as: 

(270) 

8il1('e th!' upper part of the soil is assumed to have a constant mean moisture 
content (cz), W(' can also write: 

1 " ) dx= (C2- Cl -
dt 

(27d) 

Combining rquations 27e mlCt 27cl we hnve: 

(28a) 

which integrated will give: 

(2Sb) 

This equation hUR thr disadvantage that it relates the depth of penetration 
(x) to tIl(' timt' (t) in implicit form. However, it can be seen from equation 260 
that tll(' rat!' of infiltmtion is extremely high for small values of x and ap­
proaches tlU' value K2 for large values of x. 

A mOrl' complete theory of infiltration allowing for concentration-dependent 
ditTusivit,y and for the gmvit.y term has been developed by Philip (31). Philip 
shoWE'd that the equation for the depth of penetration of given moisture 
content can be represented by the series: 

and statNl that, for the range of t and of values of D and J( of interest to soil 
scientists, thE' above series converges so rapidly that only a few terms are 
requirpd for an accurate solution. Equation 21b developed above for constant 
diffusivity and constant permeability is seen to correspond to the first term 
of equation 29. 

As for the simpler model, the volume of infiltration can be obtained by 
integrating the depth of penetration over the range of change in moisture 



278 'l'ECHNICAL UlTLLETIN NO. 1468, 1'.s. DEPT. OF AGRICULTURE 

content. For the presl~nt model this giws: 

f
e..t 

F= x·dc+K.t (30a) 
Co 

(30b) 

which cOllvergc's except for very largC' valuf's of t. Philip suggC'stcd that for 
most pmcti<-al purposes only tlw first two terms arC' required so that we can 
write: 

F=B·t l12+_tl·t (3Ia) 

w}wn: 8 is ca[[C'd till' sorptivity and is given by: 

(3Ib) 

and tIl(' s('cond parnmet('r A is given by: 

(3Ic) 

In 11 serif'S of papers, Philip i31, 32) discussed the implications of the 
solution given by I'quatioll 30, th(' natur(' of the surface profile, the effect of 
surfac(' ponding, flnd other factorR. 

It must b(' emphasized that th(' solutions given above are all for one par­
tiC'ular formulation of the infiltration problem. In every case, the analysis is 
madC' on tilp basis of an infinitely deep soil profile with a uniform initial 
moisture content, into which infiltration takes place as 11 result of the satura­
I ion of the surface. Sueh It stylized ease would havE'" to be modified in several 
respC'cts before it would eorn'spond dosely to eonditions in actual catchments. 
In pmctiel', til(' t1wo[,(,tical solution would he modified by the presence of a 
watc'r table l\t som(' finit(' depth, by the actual moisture distribution in the 
profile at the instant that the surfaec is first saturated (which would depend 
on tlH' prC'vious history of moistur(' distribution and movement in the profile), 
by distinct lay('rs in the soil profile which might give rise to intcrflow, on the 
possibility of shrinkagr and swelling in the soil, and so on. Nevertheless, us in 
so many other instances in hydrology, a simple model can be adopted to get a 
feel of the phenomena under study and then be used as the basis of a more 
complex model. 

Comparison of Infiltration Formulas 

H, is interesting to compare with one another the mathematical equations 
for ponded infiltration based on various simplifying assumptions and to relate 
them to th(' empirical equations which have been suggested. This is done in 
thr present section for the theoretical and empirical equations mentioned 
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t'arlier. Finally, an utU'mpt II' made to reiut<' thl' mathemfttical simulation of 
infiltration to possibll' ('()llc('ptunl models of infiltration to explore the possi­
bility of using C()!l('eptual models in th(' soil moisture phas(' of the hydrologic 

cycle. 
The- first comparison mad(' is for initial infiltration rates, that is, for the 

form of til(' mathemati('lll <'<Illations at small values of t. For the model based 
on ('onstnnt hydraulic diffusivity and constaut saturah'd pernwability, the 
infiltration rat<,-whi('h Cfln bt' obtain('cl by ditTerentiating equntion 23-is 
given by: 

75 .,
f= (c••L-CO

)
'\/;t+K (32a) 

Th!' infiltration ratt' iH s('('n to vary inversely with the- squar(' root of th!' time 
('lapsed and to Vilry dil"t'ctly with the ditTereIl(,p between satumtecl and actual 
moistur(' ('on tent l that is, \,'ith til(' voluml' of POl'(' space nNailable). 

Thl' infiltration ratl' for tht' mod(,\ bns('cl on constant hydraulic cliffusivity 
nnd 0. lilH'ar vnrin.tion in unsaturatpd pernwability with moistur(' content is 
giv{'n in equation 2Ge. For small valups of l, this equation can be expressed 
(S 1l in tht' following form: 

K.nl. - Ko [4D ,- /k"t ] r (32b)f=-2Y;' k21- V7r +'\j4,v-· .. ·· +K.nt 

If only til(' first two terms arC' used, this becomE'S: 

75 Ko+K..t.
f= (c.at-co) -t+--')-' (32c)~71" .. 

It can be sc(,[t by comparing pquations 32aand 32c that if the constant un­
sn.turatt'c\ permeability in til(' first model is tnken as thc mean value of the 
inititLI and til(' so.turatcd p('rmeability, thE' infiltration rates will be identical 
forthosC' small valuE'S of tht' time ilt which the series ·within square brackets in 
t'qnation 32b can be ndequately represented by the first two terms. 

For the Green and Ampt model, the infiltration for small values of t and, 
hence, small values of x can 1)(' obtained by neglecting 1 in the last term within 
the brackets in equation 28a and then integrating to obtain: 

(32d) 

By diffcrentinting the latter equation and substituting the value in equation 
27d, we obtain for the infiltration rate: 

f= I(C2- Co)(K2)(So+H) (32e)
'\j 2t 

An inte['('sting comparison between the Green and Ampt model and the 
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modPl has{'d on eomitant hydraulic' difIusivity Itlld eonstant lItu;aturnt('d 
pt'rnwnbility ('nn bl' macip ns follows. If thl' ('oll('cntmtioll eli tTerene!' in equa­
tion 32fl is tnkPIl undl'r th!' squ!ll'P root sign, it w.ill appear as squlll·pd. '1'11(' 
modl'l of l'lJnstnnt di ffllsivity nnd Iwmwability in I'<luation 2-1 implil's a sppcifie 
relationship bet \\'(lPtl soil slwtiotl and moisturf' eontpnt inelieutC'Cl b~' that 
equatioll. Al'{'orclingly, ()l)(' of tlll' t\\'o I'C! unl fnelms of \ Cso • - c,,) und!'r th(' 
s'lum'l' root 8il-,'ll enn bC' l'l'pltH·pcl by K.So" D So that w(' h!wl' fOl' the infiltration 
mtt': 

(320 

thW-l illdimting n !'lost' similarit.y lH'tW(,(,1l tl\{' two l11od{']s. 
Finally. till' \H'llIwior for smull valu{'s of l of Philip':,: ~l'n('rnl solution for 

ponclpd infiltmtiul\ ('!tIl \H' l'xaminl'd. Philip (<12) sugg('st('d that for prneti('al 
purpus('s oIlly tlw firHt two (prInS of l'quntioil 30 n('C'd b(' rl'tnillPcl and that thp 
<'<Illation ('an lH' writtl'n ill till' form of C'quntioll :Ull. TIl(' illfiltmtioll l'n.tp 

('olTl'sponding to tlth, {'<[uation is giVl'll by: 

(32g) 

in whidl til(' pamnwtpr S is tpt'llwd "thp sorpti\'ity." 
AU [out' l11od£'is at'(' thus Sl'Pll to giv(' elosply similar sulutiolls for til!' initial 

lwrilld of infiltration find to ('OrrpSfHllld to til!' !'mpirienl equation propospd by 
Kostiakov ill ('(Iuation \(il with til(' HI)('('inl vnlu(\ of b.=: 1 2. From n systems 
vi('wpoint, it would apppar that tll(' high infiltration rates at til(' start of a 
storm ('ould b{' rppl'('sl'llt('d by ('qllntion a2g with thl' sorptivity (8) and thl' 
ultiml\t(' .innltratioll rntl' (A) as pnmnwters to bp clptl'nninpd. 

A ('ornpnrison \'1\11 also \)(' mnd(' betW('l'1l tlw beluwior of til(' di fferrnt models 
al V(,l'y larg<' valu('s of l. For tlll' ('onstant diffusivit.y and constant perml'a­
bility modl'l. till' ultimatl' innttmtioIl rntp is given by tho eOllstallt value of 
til(' pPrtneability 1\.. For till' mode'l bnse'd OIl eonstant ciiffusivity and linear 
variation of ul1snturat('(l Iwrmrllbility, thl' g(>IlC'rnl solution given ill equation 
2Ge has tl1(> following form for largr valu('s of I (33) ; 

(33) 

For vl'ry large' Vl1hlt'S of t the cxponrntial term will render the first term on the 
right-hand sicir of ('quat ion 33 llrgligiblc, nnd give flS the ultimate value of the 
infiltmtioll rate' thr saturatNl permeability K. at• 

H is clrar from till' nbove discussion that aU of the n10clels arc compatible 
\yith til(' rqllation proposed for pmctical use by Philip a lel given in equation 
32g. However, in linear models ttlP indiClttion is that the first term will be 
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proportional to the ditTert'l1(,p bi'tween til(' saturnt<'d moisturE' ('ontcnt nnd the 
initial moisturt, ront('nt. A('('ordingly, it is suggested that 1l convenient formula 
for w)(' in tIl(' simulMion of infiltratioll might be: 

(34) 

LTsing till' form of ('<iuation ~H rather than ('<Iuation 32g would enable us to 
(tHo\\" for thC' ('ITpet of v!lrying initiltl rnoistul'P ('ontt'nts in thp synth('sis of a 
eutehnwnt rt'SPOilS('. For !lny storm C'WIlt. the initial moi;ltUrt' content woulel 
lH' lwailnbl<' (rom til(' soil moillturr l\('('ounting. 

Ov('rtml (291 hllS shown that l\ Illlln\)('l' of infiltration pquations call be 
dpriv!'d by postulating 11 rplntiollship r.wt\\,(,pn til(' rIlt(' of illflitrntioll (or ex('('ss 
inf1ltmtion} nnd til(' volullw of eitll('r uetual or potentinl infiltration (or pxcC'ss 
innltl'tltioll). Th1lR, \\'C' ('ltll writt' pach of tlw models for infiltl'lltion in terms 
of the variablps listed. Thus, if we write: 

J=­
a (35)
F 

wp art' using thp assumption that til(' ratp of infiltnltion is inversely propor­
tionnl to volul1w of inflltmtioll up to that time. Equntion 35 cnn be readily 
intpgrnted to giv(': ,-F= V 2al (36a) 

or 

J= ~?~'I-Jf'l (36b) 

whic·h is th(, l\:nstinkov formula for b=;/2. Similarly if we write: 

a (37a)J.=­
F 

that is 

J-J.=-­
a 
F 

(37b) 

the solution tan bE' shown to be; 

l=!:. [F-?:"IOge (1+~)1 (37e)
J¢ Je alJe J 

which is of the samp form as till' Grccn-Ampt solution. 
If the rnte of E'xerss infiltration is taken ns inversely proportional to the 
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v()lunw of t'x('('ss inHltmtion, as follows; 

(38a) 

or 

a 
/ -/, = F--fcl (38b) 

th!'11 til(' solution is: 

t38e) 

",hit'h is Philip's equMion 3la with: 
/~.-

S='v'2(/ (38d) 

(38(') 

It would l)(l intel"Psting to S('(I if a ratl'-VOIUllW equHtioll could be found that 
would gi V(' additional tr'rll1S in Philip's gelwral solutioll. 

If w(' r(1latr tIl!' ratr of infiltration to potential infiltratioll volume, the 
simph'st equation is: 

/=aFp (39a) 
or 

/=a(F,-F) (39b) 
or 

/=/o-aF (39c)
whieh Ims til(' solution: 

(39d) 

and 

f=.lo· ('XP( -all (39(') 
A.~;suming tilt' relationship: 

/c=aFp (40a) 

is (lquintl(,llt to pquation 3$) sineI' it reduees to: 

/=/o-aF (40b) 

and, hC'll('p, it also has the solution: 

/=/o·exp( -at) NOe) 
'I'll(' morE' gelwml relationsillp: 

/.=aFpe (41a) 
or 

(41b) 
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or 
(41c) 

has tIll'solution: 

(41d) 

which is tiw Horton equation. Finally thE' rplationship: 

J.=aFl (42a) 

i::; til(' f('latiol1::;hip proposed by Ovprton hinuw!f which gives: 

J=Jc·s('e2[~tlc-t) ] (42b) 

as giv('11 pnriil'r in thii-i s('ctioll. 
Ap!Ll't f!'Om its intrinsie intt'rest, tlw formulation of thp infiltnl.tion as a 

rplu.tiolUlhip lwtw('('n n ralp of infiltration and a volunw of actlULl or potential 
intiltmtion would apP('!\r to luwp many adVfl.lltages in tht' formulation und 
computation of eoncpptual models of th!:' soil moisturE' phase and the simula­
tion of catchnwnt response. 

\Ve are familiar with the eoncept of a linear reservoir as an clement in which 
til(' outflow is dirl'ctly proportional to the storage in the reservoir. Equation 
39a rppr('spnts an eiPlrtPnt in which thp inflow is proportional to the storage 
d('fieit and, 11(>l1e(', might bE' eonsidcred as a special conceptual clement to be 
known itS 11 liMar nb'iorb('r. 1'hr relationship indicated by equation 41a could 
1)(' ronsicll'rpcl as ('om.; >ting of a linear absorbrr preceded by a constant rate of 
()vprflow, whieh div('fts moistur(' at tlw rnt(' Je around thr absorber and feeds 
into thp ground water resrrvoir even whrn tl1(' field moisture deficit is not 
s!ltitlflPd. By ann.logy, ('qu!ttioll 35 might be considered as br.ing represented 
by !l. sP('ond tyP(' of roneeptual r1emrnt in which the inflow into it is inversely 
proportional to tilt' amount of inflow which has taken place. For want of a 
lwttl'(' nalll!'. this might bf' rl'f('rrrd to a~ a linear invers(' absorber. ~Iuch 
work rpmains to bp done in this arra, but there are indications of the track 
to lH' foUow('(l. 

Basic Equations of Ground Wate!" Flow 

gvpn though linear solutions havr been widely used in ground water 
hydraulies, until r('e(,!ltly thrre has not beca a deliberate treatment of ground 
watpr rP!'iponSl' itS a linrar systrm. An assumption frequently made in applied 
hydrology has been that tllP ground water reservoir acts as a single linear 
stontgP pll'n1!'nt. This asslllnption is implicit in the fitting of exponential 
reression curV(1S to hydrogrnphs and thl' plotting of falling hydrographs on 
spmilog pappr. Such a model is iln rxtremely simple one, and we cel'iainly have 
availabk til(' tP('hniques to go bryolld it. If w(' wish to tackle the ground water 
phns(' itl th(' sanw way in whieh we tacklr thr surface runoff phase, then we 
~hO\lld makr tlw !l.Ssumption that th!' ground water system is a linear system 
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Ilnd not tllfl.t it h, just tl parti('ular highly simplified, singk-plpment, linpar 
SystNTI. If W(l do so, we IH\,\'(' availablp all til(' t('('hniqups of linrar analysis and 
synth('sis. \Vp can ciprivp a "ground watpr unit hycl.rograph" provided we 
know til(' 6round watpr rpeharg(' and til(' ground wlltrr outflo\\". 

From til(' poiut of vipw of syntlwsis, WP can Ipllrn from what has bern (\nllc 
in til£' simulation of til(> SUrfil('(' runofT phasp of til(' hydrologic ryelp. bur we 
l:lhould lwwtll·p of following too slavishly tlw appro!l(,}lPs nnd till' modpis 
d(lwlop('d ill that partieulnr lipid. If wp arp to simulatp SlH'('pssful\y, \\'(1 must 
unclprstllnd t Iw physiral hydrology of ground watpr flo\\' nnd mnkp usp of 
('xisting knowlNlgp in this fidd so that our mndt'ls can bt' IlS "I'ealistic" ns 
possible'. This s('('(iou giV('1-o fl vpry bri!'f rC'vi('w (If til(' basic pquatiolls of ground 
wntpr flo\\', nut! tlwn dis('lI8St'S !l liuPllriz('d solution of n s~)('('ial ('nst' of ground 
watpr flow and til(' pm~sibility of simulnting this solution by eonerptuul 
mo(\pls. 

TI\(' busie PQUl1tiOll8 of ground wMpr flo", al'l' '\'p!l-pstahlisllPcl Md ('an bt' 
studi('(1 in standard works suC'h as :'IIm;knt (28), Polubnrinovll-Koehina (Bin, 
Luthiu (2m, Hllrr (WI, dl'Wi(,8t (1()), and H('al'. Zaslavsky, and lrmny (1). 

Just us ill OPPII l'halllH'1 flo\\', WI' avoid til(' cliffi('ultips inhl'l·pnt in thl' annlysis 
of tw{)-clinwnsiolllll flow by rpdu('ing our probl('m to 011(' based on th(' assump­
tion of Otw-dinwnsionnl flow. With this assumption, tilP I'([uation of.colltinuity 
for horizontal flow through soil ill a sntumtpd ('onciitiou is: 

aq alt
-+1-=)'(.1',1) (43)a.r {)t 

whel'(' If is til(' horizontnl flow p!'r unit width, h is tlH' hcight of the water tuble, 
1 is tilt' dmiuabl(' POI'(' HP11('(' (\\'hi('h is nssllnwd to bp ('onstnnt) I and 1'(:r,l) 
is til<' mtl' of r('c'hnrg<' at tll(' watC'r tablp. 

The nS!:lumption tlw.t til<' stream Iinps Ur(' nil horizontal and tht' vdoeity 
unifOl'Il\ with dppth is knowll in gl'(l\Ulcl watN hydrnulics as the Dupuit­
ForrlwillH'r assumption. For tl1('8(, eonditions, Dnrey's PqUfLtion: 

r=-K grad</> ( 44a) 

(44b) 

wlwrt' K i~ tht' hydruulie conductivity (usually nssumcd to be constant) and 
give's LIS tItr following rplationship bt'twCt'1l flow and height of water table: 

ah
q=-Kh­ (45)ax 

Substitution from equation 45 into equation 43 gives us the differential 
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equatiou: 

K" a - ( II -ah)+r(xjl)=f-aIL (46)a:c ax at 
For a S(·t of parallrl drains or pu.rnllel tl'('n('hes, whieh are a distance S apart 

nnd whieh !tre subket to a constant ratr of rpeharg(' fit Ow watrl' tables, the 
E'quilibrium situation is given by: 

a (_ alt)- Kh- +r=O (470.)ax a.r 

with tht' bouncl!try ('onditions giv('ll by: 

.r=() or 8, II =d (47b) 

",Iwn' d is til\' d('pth of wlttpr oV{'r th!' pnralh·1 drains or tll(' depth of watrr in 
til(' parnll<·l tr(,IH'\H'S, \\'hi('h(',,('[' is appropriate. This nonlinear equation has 
til(' solution: 

(48) 

whh'h is known n;; til(' ('llips!' pquation, 
It must bp l'pnH'mlwl'pd that eqtmtion 47 is bnsed on the Dupuit-Forchcimor 

aS8umptiotl8 and is only corr('('t if til(' flow ('an br validly approximated by a 
purply horizontal flow; it' tIl<' drains 01' til(' tr('nehes do npt penrtrate to the 
imprrviolls iay('r, or if tht' df'ptll (d) is small, tht' nssumptioll ccnses to be 
r!'ilSOlHtbll'. TIH' various solution;; proposed for draling with the problem as a 
tw()-dinWl1sional flo\\' may 1)(' rpvi!'wpd in Luthin \26) or in a rrview paper by 
Kirkham (tel l. In OUl' dis('u~~ion of both stpady and Hnsteady flow, we will be 
('ontpnt to tltkl' til(' Dupuit-F()['('lH'inH'r nssumptious and tll(' solutions derived 
[mm tlll'm ns til<' basis of our dis('ussioL1. 

'.I'll(' problpm of tIl(' 1'('('C'ssiol\ of til(' wat('J' tablr after ccssation of recharge 
is an important ()[l(' in drainngp pngin(,pring and has bcen widely studied. A 
['('(,PIlt r('vi<'\\' of work in this lipid has b('('n given by van Schilfgaard (43). As 
in otlwr (1('ld~. th(' first att('mpt is to s('ck a 1i11('ar solution. Th('J'c are two ways 
in which C'quation4G can be linenrizrd. In the first and more common lineariza­
tion. til(' wat(\!· table' height insidp the bmckct in the first te'rm of equation 
4G I;; frozen at some' pamnwtric value (ii) and then removed outside the second 
diffprrntiatiull with resprct to x, thus giving: 

__ a2h alt 
AIL ax2+r (x,t) =fiJt (49) 

In th(\ second form of linearization, h2 is used as the dependent variable 
inst()ad of It and an ('(luivalent pamme'tric value of h is used to adjust the term 
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on tlw right~halld sielp of equation 46; 

(50) 

Though th(' first linrarization giV('ll by (·quatiol1 '19 is til<' mo['(' commOl1 
form, til(' s('('onci on(' giv(,l1 by (·quatioll 50 has the' advllIltagp that for the 
stl'aciy stat(' it givps til(' ('llips(' ('quation of rqluttio[\ 48, ",hh'h is tIl<' eorrert 
I\Ol1tilH'!U' solutiol1, Wh('l'rtls C'C)ulltion 49 giYNl a parabolic shapC' to tlw \\'H,tCI' 

tllhlp for the steady state· pOllciition. Both I'qualinl1s 49 and 50 at"(' parabolic in 
form ilnd cnn el(lady lw solvpd b~' til!' t('('hniqucs whieh hay(' provpd successful 
in thl' analysis of prnblpms in 11l'at .fIo", and of "di fTusion-typ<," problems 
~2,91. 

Equation ~Hl for t1w initial ('onciition of 11 Ic-v('l \\,Mer tilbl(' II. =110 was solved 
by CrlOVPl'1 (Also, sp(, 1'C'fpr('l1ep 12 by Dumm)wbo obtained: 

h = ('\rYatiol\ of watpr tabl(' abov(' impPI'vious lay<,l' 
d:= ('1('vati0l1 abov(' the impervious layer of water surface 

in trendl (or above drain) 
ho = maximum Pif'Y!ltion of \\·!ltN table 

x = horizontal distanee from tren('h or drain 

S = spaeing of t['('llrhe-s or drains 

K = saturat!'c1 pNmeability of soil 


t;= tim!' <'lapsed siucp start of rC'crssion 

J= drainabl<, porC' spacf' 


I\:raije-uhoff (£4) has pointC'd out that tll(' soil and drainage charactC'ristics 
in !'qun.tiou 5la may b(' grouped togC'thp(" into one parameter, which he dpfiued 
as th!' resf'rvoir coriIicie-nt j: 

(51b) 

so that Glove-r'g solution can be writtC'u as: 

ll-d= 4_'(ho-d) ~ sin (n7l".x/S) ( ol)
L.. -- exp -n- -: (51c) 

7l" /1-1,3..... n J 

Kraijl'llhoff also pointed out that Glover's solution was the solution for a 

1 Gr,OV.ER. R. E., Ilnd BITTINGER, M. \V. sounCE MNl'ERlALS }'OR A counCE IN 'rRANSIENT 

GROUNDWATER HYDRAULICS. Colo. State Univ. 1959. [Mimeographed.) 
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imit(, volullw of rechargr in au infinitesimal time and consequelltly equation 
51(' represents til(' impulse response of thE' ground water system. 

If WE' adopt thE' second linearization instead of the first, a similar equation 
ean be obtained, exc('pt that it will be in terms of h2 rather than h. The diffi­
(~ulty about conflicting predietions of thE' shap(' of the wILter table profile docs 
not atTcrt us in our study of the rpcession of outflow. ThE' outflow to a drain 
or a tl'eneh is given by: 

(52a) 

In tl\(' first lim'arizatiot1, q is y;iven by: 

f. "h flit r.'I- altq=- \. -= -,1\~-- a;~ ax (52b) 

and in th(, s('cond ('([uation, q is giveu by: 

r."1 alt -J( a 'h)q=-AL-=---l2 (52c)
a."C 2 a;t; 

so thn.t in eitlwr t'quation W(' obtain fo/' the discharge: 

8Kli(ho-d) 
q= (53a)s 

If thr initiall;right of instantanC'ousrreiuugE' (ho-d) is expressed in terms 
of tilt' volumr of rCehl.1rgr, the dra.in spacing, and the drainable porosity of 
tht, soil, W(' ha,,(': 

t E'Xp (-n2J~) C53b) 
11-1 ,~L •••• 

so that for all instantaneous input of unit volumE' we have as the impulse 
response: 

(54) 

Obvillusly as t beromes large, t.he first term in the infinite series will dominate, 
and tIl(' outflow ",ill approximat(' that from a single linear reservoir. For small 
valu('s of it howevrl't the other contributions cannot be neglected, and for a 
valuE' of l E'qual to zero, they arE' all equal and add up to an infinite initial 
value of htt). 

'I'll(' response function given in equation 54 has been normalized to have 
unit volume, and its moments can bl' shown to be: 

. 

1 I 1 71'-.

[ -I =1\:l=-'J (55a)
12 
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(55b) 

(55c) 

The shape factors for the Glover solution as given by equation 54 calculated 
from equations 55a to 55c as: 

(55d) 

124 
83=-=3.54 (55e)35 

If moment matching \\"0re taken as a criterion, then simulation of the Glover 
solution by a cascade of lilwar reservoirs (that is, by the gamma distribution) 
would require a value of n=O.7 and a value of K= 1.15. 

Xote that if equation 54 were plotted on semilog paper, the first term would 
plot as a straight line and the other terms would only make contributions at 
small values of t. Following the lin('s of classical hydrology, we might be 
inc'linc'd to interpret such a result as indicating that the first term was thf' true 
basl'fio\\" anct that the contributions duc to the other terms represented residual 
interno\\" or surface runoff. If we took the straight line on the semilog plot as 
the bas('fio\\", we would in fact truncate the infinite series of equation 54 and 
use only its first term in forming our implicit model. Such a procedure would 
haY<' the further defect that we would take the lag of the system as equal to the 
r('servoir co('fficient j rather than the value given by equation 55a. The work 
which Kraijenhoff has initiat('d in applying the systems approach to the 
ground water phase is most important in so far as it indicatf's the likelihood 
of considerable progress if the t0chniques of parametric hydrology developed 
for th~ surface water part of the cycle are applied to the ground water. 

Even if we wish to persist with the model of a single linear reservoir (that 
is, the first term only of the Glover-Kraijenhoff equation), then we can 
extract more use from this assumption than is normally done. If we assume 
that the recession for the ground water phase of our watershed is given by: 

(56a) 

thf'n we nrc in fact assuming that the ground water reservoir acts as a single 
linear reservoir wh~re we have: 

S=K·Q (56b) 

If such a :::ystem is subjected to recharge at a uniform rate (R) j then the 

http:83=-=3.54
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ground water outflow during recharge will be given by: 

(56c) 

where the time origin is taken at the start of recharge. If the recharge ends 
aftC'r a time D, thC'n thC' ground watC'r outflow at this time will be: 

(56-1) 

Both brforC' and after thr recharge, thr ground water outflow will follow the 
mastrr r('crl'sioll ('urve. ThC' outflow givell by equation 56d is the same as 
would have beel1 g' .('ll if there had be-C'n an instantaneous increase in dis­
charge- at a tinw t=U of an amount: 

(56e)Q=R [exp (~)-lJ 
wh:eh would then rece-de along with thr initial outflow. Assuming for the 
monwnt that thC're were no thresholds ill the systetn and that recharge were 
taking plaN' direetly to ground watrr, rquation 56e could be used tog,,~ther 
with a plot of ground water outflow and a knowkdge of the volume of recharge 
to ddermir\(' the ratt' and duratioll of rechargl'. Quite apart from this aspect 
of analysis, C'quation 56c indicates that the sC'paration between ground water 
and dirC'ct storm runoff should br takC'n as a curve which is concave down­
wards ratlwr tlHlIl as a straight linr. 

The disC'ussioll given above for the receSS1,Jn of the water table deals with 
horizonhll flow overlying a horizontal impC'rvious layer. The analysis can be 
adaptrd to flow ovC'r an inclined impervious layrr, but still retaining the 
Dupuit-Forchrimer nssumptions and the linrarization of the equation. If the 
slope of the impC'n"ious layer is taken as a, then equation 45 must be modified 
to give: 

ah ) (57a)q=-Kh ax-a( 

where h is still the elevation of the water tablr above thc impermeable layer, 
which has a downward inclination of a to the' horizontal. Similarly! equation 
49 must be modified to give': 

._ a2h ah ah 
Kh --Ka -+r(xl,t) =/- (57b) 

ax2 ax at 

This is still a parabolic linear differential equation and resembles in form the 
l'onvective' diffusion equation, which has already been cncountered as a model 
of unsteady flo\\- in an open channel. Thus we see that the same model can be 
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used to simulate unsteady flow in an open channel, unsteady flow in the un­
saturated zone, and unsteady flow in the saturated zone. 

Other simple models can be devised for the recession of ground water flow. 
Thus we eould estimate uutflow on the basis of a succession of steady states in 
each of which the rllipse equation was assumed. The relationship between 
discharge and the water table for the ellipse E'4.uation is given by: 

4K .
Q=-- (h2 -d2)8 max (58) 

while the storage above the water level in the drains or trenches is given by: 

(59) 

Two successive valurs of hmRx could be taken and the difference in storage 
computed from rqHl1tion 59. The averagr rate of outflow could then be 
approximated from rqur.tion 58 for a value of hmax. half way between the two 
assumed. Division of the change of storage by this mean rate of outflow would 
give an estimate of the time taken for the level to fall by the amount assumed. 
For the combination of a very deep trench and a shallow rise of water table, 
as follows: 

hmax.«l 
(60a)d 

equation 58 could be written as: 

8K 
Q=S ho(hmR:<.-d) (60b) 

Comparison of equation 60b with equation 59 indicates that storage is propor­
tional to outflow so that we would in fact get an exponential recession with 
thl:' recession constant given by: 

V f8 2 11" ~ 
K=-=--=-.j (60c)Q K 32 32 

For a steep rise in water table in a shallow trench, that is, for: 

hm,x»l 
(6la)d 

equation 58 becomes: 

(6lb) 
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and equation 59 becomvs: 

(61c) 

so that thC' outflow is proportional to the storage squared: 

64 V~ 
Q=-o- (61d) 

~ jhmax 

For intC'rmC'diate conditions, it should be possible to simulate the recession 
with fair accuracy by treating the ground watC'r system as a nonlinear reservoir 
with the outflow proportional to some power of the storage: 

(62) 

whC'rC' c hl1.."i a valuC' bctwC'en 1 and 2. 
The above discussion was not only ba..c;C'd on a simplified analysis of ground 

watC'r storage and flow, but it has also disregardC'd the linkage between ground 
watN flow and till' othC'r phases of the hydrologic cycle. Space precludes a 
discussion. of the work that has been done in this regard. However, the ap­
proach which has bC'en outlined above can also be applied to such problems 
as the rrchargc of bank storage due to an increase in channel flow and the 
subsC'quC'nt rC'cession aftC'r the channel flow has diminished (8,42), and the 
interaction of ground water with the unsaturated zone and with the at­
mosphere (3,11). 

Probleo1s on Subsurface Flow 

l. Look up in thC' litrraturr C'mpirical results for the values of the soil 
:,metion and thrunsaturatrd permeability for a number of soils of different 
tYPt's. In rach casC', drrivc thr hydraulic diffusivity from the data. Compare 
til(' absolutC' vulurs, the range of values, and the variability of each of these 
soil moisture parametC'rs according to the different types of soils. 

2. Fit the C'mpirical equations mentioned in the text to the data of the 
last problem. Compare the ability of the different formulas to represent the 
data. 

3. For the soils for which you have obtained or derived data, tabulate or 
graph the equilibrium moisture distribution for various depths of ground 
water. Calculate the effect on this distribution of differing rates of percolation 
to the ground water or evaporation from the ground water, assuming steady 
state conditions. 

4. Show that equation 15 for the limiting rate of evaporation from ground 
water can be derived from the assumption of the relationship between con­

http:SYSTElI.lS
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du.ctivity and soil suction in the form given by ('qlUttion Sa. Derive the value 
of the numerical constant in ('quation for n equal to 2, 3, and 4. 

5. For the data us('d in probl('m 1, calculate' th(' mte of evapomtion for 
differ('nt valu('s of soil suction at the surface for three assumed dC'pths of 
ground water. 

6. TIl(' tC'xt statC'd that for the assumption of constant diffusivity and 
constant permeabiiity, til(' moisture content during unsteady infiltration can 
be r('pn'sC'llt('d as a function of x2/t. Find thC' form of this function. Use your 
answ('r to find thC' value of th{' ('o('ffici('nt of the first term in the infiltration 
('quation for constant diffusivity for a number of diff('rC'nt values of the 
mc,isture co):ttent. 

7. DC'rivC' an infiltration C'quation from a r('lationship bt'tw('en rate of 
infiltration (or ('xc('ss infiltration) and ('itl1('r actual or pot('ntial infiltration 
(01 ('xc('ss infiltration) other than thos(' nwntion('d in th(' tC'xt. Compare the 
d('riv('d ('quation to thl.' standard C'qlmtions. 

S. Comp~lre a numb('r of infiltration formulas. What ar(, th(' assumptions 
und('rlying the diff('rC'nt formulas'? How would you fit each of the formulas 
to the data givNl in App('ndix tabl(' g'? 

g. Compare th(' solutions given in th(' litNature for the stC'ady outflow of 
ground wat('r in (,quilibrium with a constant mte of rainfall or infiltration. 
Compar(' th(' solutions for a givC'n sC't of conditions, and discuss critically 
which solutions you c'onsid('r would be the most accurat('. 

10. Compar(' the solutions givrn in th(' literature for the recession of the 
maximum water table Icv('l. Compare' til(' assumptions made and the ('ffect of 
the assumptions on the' solution. Which solution would you consider to be the 
most accurate'? 

11. Using 0itll('r a st('ady stat(' solution or a \\"at('r table recession solution 
otll('r than thos(' treatf'd in th(' {('xt, cit'rive' an expression for the recession of 
ground water outflow. Comparf' this solution with the solutions already 
dNivcci. 

12. ComparE' the various solutions for the recession of ground water outflow. 
Contrast the assumptions made and the effects of these assumptions on the 
form of th(' solution and on its accuracy. 

13. Expr('ss the onc-dim('nsionaI unsteady equation for ground water 
outflow in th(' appropriate finite diff('rence form for setting up the problem for 
solution by direct analog. Show that this formulation is equivalent to a series 
of linear storage' ('}f'ments, each one causing backwater on the onc before. 

14. Show that th(' system of backwater storage elements derived in the 
last problem can be represented by an equivalent simulation system of linear 
storagE' ('l('m('nts without backwater. 

15. R('prescnt one of the unsteady state solutions by a model consisting of 
linear storage clements. 
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16. List the various m('thods for the separation of base flow from the total 
hydrograph which have been proposed in the literature. Indicate the physical 
justification, i' tUly, for these various methods. Rank a few of the methods 
which you think are most accurate in order of their probable accuracy. 
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LIST OF SYl\'IBOLS 

TIl(' following liRt of Rymbols should be used as a guide to assist the reader 
in recognizing commonly cited variabl(';;, rathcr than as an exhaustive listing 
of all symbols used. In some easps, the numbcr of the lecture in whieh a symbol 
is used in a particular sense is indicated in parentheses. This list docs not 
ineludp Rymbols t1s('d oner or twic(' in it particular srnsr and drfin('d whrre so 
tlsrd. :\eith('r dors it include symbols used to drnotc syst('ms pammctcrs or 
pnmmct('rs in formulas except ",Iwr(' sueh pnranwtcrs al'(~ the subject of 
ciis('usRion. 

A ........ suprrfieial ar('a of entehmcnt. 

A ........ cross-srctionnl arr!1 of dmnnrI (9). 

Ako ••..... a Fourirr co('ffiri('nt of output (5, 6). 


B....• .... bus(' length of unit hydrograph (8). 

13k. .... , . ,a Fourier c()('ffiri.'nt of output t5, 6). 


C.... ..... cilpaeitor in analog circuit (1, 7). 

C .. , ..... .c()('fll('i.('nt of runoff (4,8). 

C . ........ codlieirnt in Chczy formula (10). 

CI: . ....... codfici('nt in rxpansion of output. 


D . ....... unit p('riocl of rainfall ex('('ss. 

D . ....... eli fTer('ntial op('rator (8). 

D . .......dinwllsionl('ss l('ugth factor (9). 

D ....... . hydrauli<' difTusivity (9, 10). 

D . ....... duration of rrcharge (lO). 


E . ........ ('vnporation. 

B( ) ... , .. ('ITOI' criterion. 


p ... ...... volumr of infiltration capacity. 

pI....... , .Froudt number (9). 

F ... ....... u('tual volum(' of infiltrntion. 

P(s) •• .... Laplace tran::;form of f(t). 

F(w) ...•• ,Fourier transform ofj(t). 

F(z) .. , ... Z-transform of f(t). 

F/J(s) .. ..• bilateral Laplaet' transform. 

PI«(~), .•. . imaginary part of F(w}. 

PR(w) ..... rC'al partef Few). 
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[ll]. .....convolution matrix of system response. 

JJ . ....... available energy (2, 7). 

}[ ........ drpth of ponding (10). 

}[ (s) ...... systC'm function, that is, Laplace transform of h (L). 

H(w) .•••. FOUl'i('r transform of impulse r('sponsc. 


I . ........ rate of inflow to ehannel I'N1Ch. 


J . . , ...... 2·1-hoUl' 1·!1.infall (7). 

ll[ J...... l11ociifi('d Basspl function (9). 


K . ....... storage clt'lay time. 

J{ . ..••••• hyciraulic ('onciudivity (2, 10). 

K II ( J) .... Rlh cumulant o[f(l). 


D . .••....• 1C'ngth of chanIW1. 


Lco . ...... 1C'ngth to (,pntt'!' of arpa (8). 

L •. ....... kngt h of ()wrIand flow. 

Ln(O. , , •. LaguC'ITe polynomial. 


J[ ........ clUl'ation of continuous input (1, 5) . 

.1[,.(s) .... :\rc'ixner polynomial (3,6). 


x ........ memory l('ngth of systrm. 


P... . , .... pre'cipitntion. 

P .. " . , ... dUl'ntion of out put (I I 5). 

p./., ..... uni t pulse of duration D (1). 

p •. ....... pI'C'eipitation C'xcC'ss. 


Q.•..•.... runoff, flow, outflow. 
Q. "' . , .... Nl('l'gy (2). 

Qb . •.•.... base fiow. 

Qo . ••.•... ground water flo\\'. 

Q•. ...•... intC'rflow. 

QI11.:<: •••••• prak discharge'. 

QQ • ••••.•. oYC'rlanci fl<)\\". 

Q.•. ....... clir('('t storm 1'C'sponse (surface' flo\\'). 


R . ........ n'charg(' to ground ",at('r. 

R .. .......r('sistancc in analog circuit. 

R ...... , . .hydraulic radius (9). 

R2 . •...••. multiple corrC'latiOll cO('ffieient (7). 

RO . ....•. rulloff. 




298 TECHNICAL BULLETIN NO. 1468, U.S. DEPT. OF AGRICULTURE 

s... ..... ,storage in reach, storage. 

S ......... slope. 

S . ........ soil suction (10). 

Sf ..•.. ... friction slope (0). 

So .• ...... ground slope. 

So . ....... ehanuc! slope. 

S(t) ......S-curve, S-hydrograph. 


T . .•...... transpiration (2, 7). 

T ........ .l('ngth of time series (5,6). 

T . ........ pl'riod of repeated function (5, 6). 

']' ......... tim('l of virtllltl inflow (8). 

1'''' .......• mran temperature (1,7). 


uet) ...... unit step funetion. 

UH ( J) ....Rtll mom('lnt ofJ(l) about eenter. 

C',h J) . ... R,th mom('lnt of Jtt) about origin. 

U.ll.. ..... unit hydrograph. 


T' ........vdoeity. 

F. , ...... volume of runoff. 

[Xl ..... matrix of input yalut's. 

Xi........ yolumr of input in unit ppriod. 

[XJT . .... tmllspose of X. 

X(s) ...... Litplacp transform of .1.'(t). 

X til') ..... Fourirr transform of X (l) . 


(Ik . ••••••• Fourier eoeflieirnt of input. 

lik • ••••••• Fourirr co('(f1eirnt of input. 

C/: •• ••••••• coeflicirnt in expansion of input. 

e . ........ vapor prrssurp. 


J . ........ ratr of infiltration capacity. 

J . ........spr{'ific yi('ld, that is, drainablp porp space (2, 10). 

JA . ... " .. artual rate of infiltration. 

J(t) ...... .arbitrary function of time (3,5). 

JII (t) ....•• nth order Laguerre function (3, 6). 

In (s) " •.•. nth order .:\ feixner function. 
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gil (t) ...... function orthogonal under integration. 

gll(s) ...... function orthogonal under summation. 


h(O . ..... impulsr rrsponsc function. 

Ih I ....... v('ctor if impuls(' rcsponse ordinates. 

hv(t) . . , .. puts(' respons('. 

h( . . , ..... orclinat(' of unit hydrograph. 

hopl .•••••• optimum lin('ar r('spons('. 

haCt) .... , ,instantaneous unit hydrograph (IUH). 


i. . . .. . .. pn'ripitation intensity. 
i(x,t) . .. . ratp of clistributC'd inflow (2), 

In . •....•• tinl<' at stitrt of final period of rainfall excrss (m= 111- D). 
ma ...... •di n1!'llsion less mon1('nt. 

n........ . lmgth of finite-ppriod unit hydrograph (n=N+D). 


p . ........ lpngth of output for diserdp-timr (p = P). 


q(.r,tl .. . , .disehargr prr unit width. 

q•. . " ..... pquilibrium discharge. 

qo •.•...... r('fprrn('p diseharg(, (9). 


I'(Xtt) .... rat(' of lat('ral inflow. 

nO ....... rl'siclual ('rror (5). 

{r). , .....wetor of r('sic!ual rrrQrS (6). 


,~ ......... diserptp tin1!' variabl('. 

s . ........ ('ompl('x argument of Laplace transform. 

SR, •••••••• shap(' factor, that is, dimensionless cumulant. 


t. ' ....... continuous time variable. 

Ie • •••••••• tin1!' of cone('utration. 

I •. ..... , .. time to t'quilihrium. 

IL. • • , • • • •• tag timt'. 

lo • •••••••• eharacteristie rrsponse of flow (9). 

lp . ••• , •••• time to peak. 


U(X,n ••... velocity of flow (9). 
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x . ........ distance along channrl (9). 

x . ... , .... depth below surfacC' (10). 
:rI' ••••••• ordinatC' of input. 
x(t) .•.... continuous input function. 
I:r} ....... vC'ctor of discretC' inputs. 
x(sD) ..... discrC'tC' input fUllction. 

y(l) ...... continuous output Junction. 

Yi . ....... ordinate of output. 

{y) .........v0ctor of discretC' outputs. 

y(sD) ..... discrete output function. 

y(:r,I.) ..... dC'pth of f10\\' in OP('Il e1umnC'1. 


ctk • ••••••• Fouri('r ('odfieiC'nt of syst('m rC'spons('. 

13k •. : .••• Foul'i('l' ('()('ffici0nt of s;'stem response. 

Om,,' •.•.•• KrollC'ckl'1' delta. 


cpo ••.•..•• hydraulic potential. 

CPu (k) ..... ciiscrl'tl' autocorrl'lation function. 

CP.u:(T) . " •• ('ontinuous uutocorr0lntion function. 

CPxu (k) •.••• disrrptl' crOSR-corr0lutioll function. 

CPzu(T) ..•.. continuous cross-corrl'latioll function. 


'Yko •••• " . ('o('fficil'ut in l'xpansion of SystCIll responsC'. 

J.iR • •••••••Rlh mOIllrnt. 

O'D • ••••••• discl'ctc time variable. 

T •••••.•• • ('ontinuous timE' variablr. 

w•.. ...•.. argul11('l1t of Fourier transform. 


APPENDIX TABLES 

TABLE l.-Conlimwus functions 

~o. Function Range 

1. ....... 	1 O<t<2 

o 	 elsewhere 

2........ 	1/4 O<t<2 
I-t14 2<t<4 
o 	 elsewhere 

3........ 	tl5 O<t<2 

2 2t 
2<t<5

3 15 
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rrABLE l.-Continuous jllnctions--Con. 

No. Function Range 

4........ 125-75 coS(:D -oo<t<oo 

5 ........ 125-75 cos(:~) 0<t<96 

6....... . [",1,+(["'0,,-1mi.) Sin(2;t) 0<t<7' 

7 ....... . 	 exp( -tlk) O<t<", 


(t/k)n-t exp( -Ilk)

8........ 	 O<t< ",


(n-l)!k 

9....•... 	~~ exp( -at2) -", <t<'" 

10 ..... '" _t3_e•....!xl....:,)(_-.-:,t) O<t<",
3! 

n ........ 3it3 

exp( -t/2) 0<1< ", 

12 ........ Kt+~) exp( -t/2) O<t< ", 


O<t<",13 ......... K~+S) e:<p( -~) 
14 ........ 101(1-t) exp(l-t) 0<1<1 

t t 
15....... lO"exp(8-t)-1O 0<t<8 


t3 

16. , . '" .. (ll) -(2-1) exp(9-1) O<t<l 
12 


+(t2+3t+4) expel-i) 


-(4-t)e 


(b) et;;l) exp(9-t) 1<t<8 

+( 11-3t) -(4 -I)e 

(12t2 -1301+335) (9 ) 8 9(c) 	 exp -t <t<
12 

-(t-8)3(152 -4t-t2) 

+(11-3t) 
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TABLE 2.-Discrete functions 

Xo. 

l. ....... 
2........ 
3........ 
4...... " 
.5 ... '" ., 
G.• , •.. " 
7........ 

Function 

(2, 1) 

(6,4) 

(2,6,1) 

(0,4, H, 8, 1,0) 

(0,4, 11, S, 1. 0) 

(1,5,2,2) 

(0,2,4,2,0) 


S...•.... (0,3, 6, ·1, 2, 0) 
9... " ... (0, 2, 4, 3, 2, I, 0) 

]0..... '" (0, 1, 3, 3.5, 2, 0.5, 0) 
11. ..... " (0, 22, 33, 26, 11, 2) 

12........ 
125-75 cos(::) 

la ........ 125-75 cos(71's)

48 

14 ........ 


15........ 


Hi. ....... 

17........ 

IS........ 

19 ........ 


Imiu+(luUl:c-Irnin) sin e7l'S)T 

(s!k)n-l cxp( -s/k) 

(n-1)lk 

(":',)(12)' 
(~)( I :i)'/' 
[(;) +W )U2)(,+I)f2 
l(i) +2(~)+(:) ) ( 1 :;)('+1)12 

Range 

-00<8<00 

0<s<96 

O<s<T 

O<s< 00 

O<s< 00 
O<s< 00 
0<8< 00 
O<S<OO 
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TABLE 3.-Daily minfall and average daily flow, Big J[uddy River, 
Pllll1ljielcl, Ill. (atea 753 sq. mi.), Apn·l 19271 

Day Rllin Runoff Effective rain enit graph Runoff 

('(tSec..~Jllciws Percent Iliches CU<1CCS 

1 0.45 15 O.OGS 1,050 (132) 
2 ~ ~ , " ....... ~ ................ ... ... ~ .... , •• 2,500 (17G) 
3 ... ~ ... ~ ...... " .. '" l ,. ....... ~ .......... • ••••••••• 3,370 (229) 

~ t~ 

¥O> 

,l ... .. .. ...... .. .... ...... ...... ...... 3,S70 (2G3) 
5 

~ 

'Y 
~ 

15 3,540 (312)._n .037 
G ... .... .. ....... .. ...... . ..... " 2,470 (2G4)

~ ~ ~ « ........ ~ '" .....
~ ~ 

7 .lfi 17 .027 1,310 (IG7) 
S .38 27 .102 GlO (553) 
\I .25 320 .OSO 350 (GGG) 

10 .85 520 .440 160 (I,GI5) 
11 .15 55 .083 SO 2,llG 

-')12 .1.22 1- .8S0 0 4,201 
13 .S7 71) .GOO .................. G, ISS 
14 1.01 81 .S20 ., ............. S,5S0 

15 .51 83 .423 10,229........ '''0"" 


16 .58 8G .500 ............... 11,481 

Ii .. ,. ............. ................... ... "' .......... 10,924
~ .............. 0- ... 


IS .05 80 .040 ................ 9,375 

10 .w Sl .130 ........ , .... 7,355 

20 .04 'H .033 ................... 5,106 

21 .00 S2 .074 .............. 3,500 

22 .03 S2 .025 ............... 2,377 


I SH£IUIAN, L.. K. STH£.UI Fl.OIV FHO~I HAI~FALL DY THE UNIT-GR.UH ~r£THOD. Engin. 
News-Ree. lOS; 501-505. 1032. 

http:UNIT-GR.UH
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TABLE 4.-Data for Ashbrook Catchment 

Date and time 
(houf$} 

Mllrch 26: 
15 .•••.•...••• 

11' .•.•.•...... 

21 •.......•... 


2·1 .... 
Murrh 2i: 

a..... . 
6..... .. 
9.......... . 

.12 .... . 
15 ... .. 

lR ..... . 

21. .. .. 

2-1 •••••. 


Mnrd128: 
3 .... . 
u... . 
9 ...... . 


12 .... 

15........ '" 

IS ... . 

21 ••... 

24 ..... . 


:\rnrdl 29: 
3 ..... . 
G.......... .. 
g........... . 

12 ...... " . 
15 .•...•.•.... 
IS......... . 
21 •••• , •.•.•• 
2-1 ••.. , .•.•.. 

Effective rain 

('usen 

1,829 

3,530 

1',330 

Storm runoff 

Cusecs 

o 

30 

980 

l,a20 
1,290 
1,280 
1,160 
1,0-10 

910 
i90 
6S0 

580 
-180 
390 
320 
280 
2·10 
210 
180 

155 
13S 
lIS 
100 
SS 
iO 
65 
60 



305 LINEAR THEORY OF HYDROLOGIC SYSTEMS 

TABLE 4.-Dala jar ,Ashbrook Catchment-Con. 

Dnte t\!ld time Effective rain Storm runoff 
(hours) 

l\hrch 30: 
3 ........... . 55 
(i. .......... . 50 
n........... . 45 

12 .••..•.•..•. 40 
15 .........•.. 35 
IS ......... .. 30 
21.. .......... . 25 
24 •••.•....... 15 

Mltreh :31: 
3........... . 5 
5 .... , ...... . o 



TABLe 5.-Datu on linear channel response ~ 
0 

fl'Q=lst moment; F.=Frnllde number; S.=slope (ft. per mi.); L=length (miles); K n =1tht rumulantJ 
C> 

Case Jlo Po So L Kl 
----. -~--~-~ ,-----.. ~ -.-.~-~---~---

K".! K3 K. 
t;5 
(')..,.. 

2 
~~ 
4 
5 
0 
7 
8 
9 

10 

2.70.')8 
2.70.'5ll 
2.7058 
2,7058 
2.7058 
2.7058 
2.7058 
2.7058 
2.7058 
().92fi8 

0.12.'5 
.125 
.125 
.]25 
.125 
.125 
. ]25 
.125 
.12.) 
.512 

.5 

.5 
5 

25 
')­_!l 

2.5 
15 

50 
200 
500 

5 
50 

200 
.'i 

50 
200 

5 

,--......-~~.-------~-

12.3192 63.7:364 
49.2760 25·1. 9·157 

123.1922 6:37.a643 
1.2319 1.2747 

12.3192 12.7-17a 
49. 27(j!) 50.!)Sal 

] .2a19 .2.'549 
12.;3102 2.541)4 
4!).27U9 IO.HJ7S 

..JR12 .025a;~ 

985.:3lS70 
3941.5516 
98ii3.K7bS 

3.!)416 
30.4155 

1.57.6fi21 
.1577 

1.5766 
(i.:30()5 

.00371" 

2601.5.308 
104061.60 
200153.98 

20.812:3 
208.1232 
832.4928 

.1fi()5 
J.fi()50 
6.660 

.001399 

Z...., 
(') 

>­
t" 
Ci 
r:::: 
t" 
t" 
~ 
.-:: ..... 
Z 
~ 
9 -It 

]2 
]3 
l4 

6.9268 
6.9268 
6.9268 
6.92G8 

.512 

.512 

.5]2 

..512 

15 
]5 

100 
100 

50 
200 

5 
25 

4.8122 
H).2.JH9 

.4H12 
2.4061 

.2533 
1.0131 

.0031;0 

.01000 

.03718 

.1·1R7 

.0000X3U7 

.000·11.<.;:3 

.013996 

.05GO 

.00000·1724 

.00002362 

... 
C> 

_if.; 

~ 
rn 

15 
16 

U.92U8 
6.9268 

.512 

.512 
]00 
400 

100 
] 

9.G245 
.09£i2 

.07()0 

.0001900 
.00W73 
.000001046 

.00009447 

.000000014 76 
0 
t;j 

~ 
17 
]8 
19 
20 
21 
22 
2:3 

6.9268 
6.9268 
8.7668 
8.7668 
8.7U68 
8. 76U8 
8.7668 

.512 

.•512 

.729 

.729 

.729 

.729 

.72!) 

400 
400 
35 
3.5 
35 

200 
200 

5 
10 
5 

10 
')­
~;J 

1 
2 

.4812 

.9(j24 

.3802 

.7G04 
]. ilOll 
.0760 
.1.521 

.0009·IfJS 

.001000 

.005:35 

.01071 

.02677 

.0001 H74 

.000374S 

.00000,')220 

.00001046 

.000 J!) I 5 

.0003Sa 

.0009.576 

.00000JJ73 

.000002346 

.0000000738 

.0000001476 

.0000289 

.00005773 

.0001443 

.00000003094 

.00000006188 

;.: 
0 
":: 

>­
0 
;:;:l...., 
(') 
C; 
t" 

24 8.7668 .729 200 5 .:3802 .0009370 .000005865 .0000001547 ~ 25 
26 
27 

8.7668 
8.7668 
8.7668 

.729 

.729 

.729 

900 
900 
900 

1 
2 
5 

.07UO 

. ]521 

.3802 

.00004164 

.0000833 

.0002082 

.0000000.1793 

.0000001159 

.0000002897 

.0000000003395 

.0000000006700 

.00000000170 

;:;:l
t:::l 
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TABLE 6.-Characteristics of a standard 100­
sq1wre-mile basinl 

[tem B C2 

Area (square miles) ......... . 10 100 l,OOO 
Challnel slopc (feet per mile). . 100 
Ground slope ............... . 400 

750Tributtlry angle ...•......... 
Draillage densily (miles per 

square mile) ........ . 1.2ij 

Length of overlllnd flow 
(feet) ................... . 2,200 


St.rcam order. '" ........ . 0\-5 


nifurcation mtio ............ . 3 

Length ratio .............. . ')....,)~ 


Length to ccnter of Im.'a 

(Lea) (miles). ..... . ..... 11 

Length of ehanncl (L) (miles) .. 22 
Width of basin (W) (miles) ... 9 

I Dooot;. J. C. I. SYN'l"IIE'rl(, UNIT IIYDHOGHAI'IIS IlA$lm 

ON 'rIUANGtrLAItFl.O\\'. M.H. Thesis. 10Wl1 8tate rni\'. 
June 1956. 

2 Tlwse ('olumns arc to be filled in by the user or student 
in working problems. 
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TABLE 7.-Geomorphic parameters oj a simulated 
basinl 

Characteristics of drainage pattern: 

Designation :-.l"o. Area Length2 

Square Jfiles 
mUes 

lTnit watershed ............ . 0.05
385 0.33 
Sub-subwatershed .. .', ..... . 49 .35 .87 
Subwatershed ........ , ..... . 7 2.75 2.87 

Total watershed .... . 21.35 8.09 

Channel sizes: 

b= (). 79 :lo 03 11=0.04 
;3 = 1. 92 ,·lo ,0<; 8=0.003155 A-o %0 

Hurfal'C ('haracteristic.< for computing overland flow:' 

800 feet by 1,750 feet =0.05 sq. mi. 
Overland slope ..•... = 10.2 percent 
L . .. ' .. , , , ......... =4t)() ft. 

II. .•... ' .•. ' ...•.. =0.2 
Rising h.vdrograph by Morgali. 
Rec(>ssion linear. 

Assumed conditions for channel routing: 

(ll) 	In first-order channels, translation of overland 
flow to outlet of sub-subwatershed at equi­
librium velocity. 

(b) 	Initial HOI\', 4.9 cusecs!sq. mi. 

Channel uniform between junction. 

Xumericlll routing (rectangular grid). 


1 MA(,H~n;IEH, R. E., and LARSON, C. L. THE EFFECT 
OF HI:NOF~' SI:I'I'LY RATE AND DURATION ON HYDROGRAI'HS 
FOR A ~IATHt::'IIATI(,AL WATERSHED ~IODEL. Jour. Hy­
draulics Div., Amer.Soc. Agr. Engin. 1966. 

2 £",.40 ~63j tributary angle=450. 
J MORGALI, J. R. HYDHAULIC BEHAVIOR OF SMALL 

DRAINAGE HASINS. Tech. Rept. 30, Dept. Civ. Engin., 
Stanford Fniv. Calif. 1963. 
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TABLE 8.-Data on eL'aporation l 

Solar Avernge Average Average 

No. l\lonth radiation tempemtnre vapor wind F,oughness 
pressure 

Ly. 0('. mb. M./,~ec. [)111. 

1. ... ,. April 73-l Ui 4 2.1 0.001 

2...... April i4R 2U 4 1.S .02 
S 1.6 1.03...... l\!.lrc:h 532 17 
6 .74 ...... June itH 24 1.S 

22 3.0 
~) ... .., ... August 625 31 1.3 

I V,u" BA n:r., C. n. 1\1. l'OT~::STIAI. t,;\'APOHATIO:S; Tin: (,O~I\lIX'\TION CONC'IW1' AND ITS 

I:lx('<~;!\m;:S1''''Ln;IIlFI('.\TlON. Waler Resources llos. 2(3): 455-467. lOGO. 

TABLE g.-Data oninfiltration l 

P_p.23Time Precipittltion 
(minutes) 

Illches Illches 

{) 0 0 
10 .33 .33 
20 .G7 .63 
ao 1.00 .S!) 
40 1.33 1.07 
50 1.67 1.20 
00 2.00 1.30 
70 2.33 1.36 
SO 2.67 1.43 
1)0 3.00 1.50 

100 3.33 1.56 
uO 3.67 1.63 
120 4.00 1. 70 

I MlTSGllAYE, O. \Y., and HovrAN, H. N. INFIl..­

THATION. In Chow, Ven Te, cd., Handbook of 
Applied Hydrology. New York. 1964. 

1 i'-P.=precipitatioll minus precipitatccl excess. 
3 Average depth (D.)=0.J2. 

http:D.)=0.J2
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TABLE lO.-Data on inflow and outflow1 

Dny Inflow Outflow 

Cubic Jeet per second Cubic feet per second 
1 93 85 
2 137 102 
3 208 141 
4 320 205 
5 4'12 290 

6 546 3S0 
7 630 470 
S (i7S 1539 
!) 691 .591 

10 692 627 

It (iS4 648 
12 671 660 
13 657 664 
1·( 638 660 
15 609 650 

I!l 57; 635 
17 53·1 610 
IS 484 580 
19 426 540 
20 3G6 48S 

:11 2\)8 430 
22 235 365 
23 183 300 
21 137 233 
'>"_0 103 liS 

20 SI 132 
27 75 100 

I LA WLEI!, E. A. HYDROLOm; OF FLOW COll/TROr.. In 
Chow, Ven Te, ed., Handbook of Applied Hydrolog)'. 
New York. 1964. 
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TABLE 11.-Data from e.cpenmental 

Outflow 
volume 
Q (c.c.) 

Time 
(seconds) 

Outflow 
volume 
Q (c.c.) 

Time 
(seconds) 

X =1.75 cc./sec. 

10 
20 
30 
40 
50 
60 
70 

46.0 
(\5.4 
82.7 
93.9 

105.5 
1 tG.8 
127.3 

150 
160 
170 
180 
190 
200 
210 

193.0 
199.6 
206.2 
212.7 
218.4 
224.2 
231.1 

80 
90 

100 
110 
120 
130 
140 

l:n.O 
146.2 
154.6 
J(j2.5 
170.8 
178.8 
IS5.S 

220 
230 
2·10 
250 
260 
270 
280 

237.1 
242.7 
248.3 
2.54.3 
261.0 
267.0 
272.0 

X =2.58 cc./scc. 

10 3(\.6 110 130.S 
20 53.5 120 135.8 
30 66.5 130 141.6 
40 7i.l 140 147.3 
50 86.9 150 150.7 

60 95.3 160 156.2 
70 104.2 170 161.3 
SO 111.4 180 166.5 
90 117.8 190 170.5 

100 124.3 200 174.6 

See footnote at end of table. 

'Watershecl1 

Outflow Time 
volume (seconds) 
Q (c.c.) 

290 27i.9 
300 283.9 
310 289.7 
320 295.2 
3::;U 301.5 
340 307.4 
3GO 317.9 

380 329.2 
400 341.0 
420 353.3 
440 364.5 
460 376.3 
480 387.9 
500 399.5 

210 179.4 
220 184.2 
230 188.8 
240 193.2 
250 197.5 

260 202.3 
270 206.3 
280 210.3 
290 214.3 
300 218.3 
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TAnLI~ 11.-/)(1111 from e.tper-imcnlal walershed'-Coll. 

Outf\O\\' Timc Outflow Time OuWo\\' Time 
volumc (sc{'oll(il;) VOIIlI1W (seconds) vol 11111(\ \t'€(\)llds)
{J (c.c.) (J (c.('.) (J (c. c.) 

X=":l.50 ('(,./Ile(·. 

"''''.~.-'~''''''''' --...,"..,.---,-.,.~.,---'"------. 

10 al.:l 200 IS·!.;"; aoo 10·I.S 

20 ·'3.~ :!10 137.!> ·100 107.7 

au fl2.B 220 1·11. :l ·120 20~J.2

,10 nO.7 2ao 1·1·1,8 ·,,10 !Mi,!J

50 OS. I 2.1() J.I!'.O 4(i0 214.7 


no 7·1..1 250 151.;') ·,~o 220." 

70 ROA 2no lij.l,,[ ~jOO 22G.l 
xo H~). ; :!70 
 157.6 :i20 2:31.7 no 00.<; 2RO Iuo.n 5·10 2:37.:3 

100 u~). () 2!lO HI:!. 7 :iOO 242.R 
ILO 100.0 :lOO lUn. -; 5RO 24R.2 
\2() HH.:l :11.0 170. I GOO 25:1.0
lao IOR .•j :l2() 17:1. I ()20 2:iO.5 
1-10 11:l.B aao 17tl..t (HO 2tl5.1 
l,iO 110."; :Wl li!lA (iOO 270.H 

[(In 120.2 :350 IS2~5 (i80 27H.2 
170 12·1. I :3(\0 1:-\5.5 700 2S2.1 
I~O 127.;) 370 lSS.7 720 287.0 
100 laO.n :lHO .191.8 7·10 20:LS 
- ...... .",""..."",.--- .- . -."-~~',~"-"-- ...,.,...,-,-"">-, ~+--""~-

I A~IOHO('H(). ,J .. !tnt! Om.oll. n. T. NnNI.I:-I~;.\1I A:-IAI,1'SIS OJ' 11\'\)1101.00\(' SYSTgMS. 

Wntl'r Re,mllrt'ell Celller, Conlrih, ·10, 1:10 pp. {"nh', Cnlif., Berkeley, l!J(i 1. 

http:11\'\)1101.00
http:X=":l.50
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TABLE 12.-Data Jar overland flow! 

No. J,ength Slope Surfllce Rnin 

Feet Feet per foot I1Iches IJer hour 

1. ...... 12 0.0001 asphalt 3.65 
~<)2.............. 1- .005 crushed slllte 3.67 

3..... " 72 .04 .... do" ......•. 3.(\6 
4. ••. , , ...•..... 72 .02 tmf 1.89 

~<)5... . , .. 1- .04 .., .do...... , ••. 3.60 
6....... i2 .04 . ... tIo ..... ,., .. 1.89 
-----..~ 

I !ZBHD, C'. P. IIYDI\AUI,I('S OF 1t1'NOn' J.'HOM DEY,EI.OPED SUHFA(·ES. Highwu)' Res. 
Btl, (Wushington, D.C'.) Pro{'. 26: 129-146. 1946. 

TABLE 13.-EJ'perimenlal data Jar overland flow 

[Rising hydrogrltph: 0-2 min .. i= l.S9 in.lhr.; 2-7 min., i=3.7S in./hr.; i=1.941 

Time Runoff Time Runoff 

JlirllllcB [Tlche.~ IJeT hOllr JfillllleB /;Jches IJer hour 

a a o o 
.5 .015 1 .022 

1.0 .095 2 .Oil 
1.5 .32 3 .139 
2.0 .61 4. .22'1 
2.5 I. 13 5 .326 
:l.0 2.0·' 6 .441 
3.5 2.80 7 .570 
4.0 3.27 S .712 
4.5 3.52 9 .866 
5.0 3.67 10 1.029 
7.0 3.78 11 1.198 

12 1.367 
13 1.529 
14 1.674 
15 1. 793 
16 1.880 
17 1.934 
18 1.957 



~ TABLE 14.-Runoff dala for Coshocton watershecl151 (1963) ..... .... 
Rainfall Surface runoff Outflow from 0-12" soil Outflow from 12--48" soil 

H 
~ 

Date and time Rate (inches 
per hour) 

Date and time Rate (inches 
per hour) 

Date and time Rate (incht:s 
per hO l1r) 

Date and time Rate (inches 
per hour) 

() 
::c 
Z ...... 
0 
~ 
t" 

lUarch If) 
0405 
0432 
0456 

0 
.11 
.02 

lrfarch If) 
0409 0 
0411 (I) 

0453 (1) 

March 17 
2200 0.000553 

March 18 
2000 .000553 

J\ft;rch 17 
2400 0.00277 

l'Jarch 18 
2400 .00109 

t;:l
c:: 
t" 
t" 
t<j 
>-:3 ...... 

0502 
0517 
0602 

.30 

.08 

.04­

0457 
0505 
OMS 

.0031 

.0016 
0 

March 19 
0300 .000553 
0500 .000553 

11farch 19 
0530 .00109 
0637 .00170 

Z 
Z 
9 
..... 

0702 .01 0753 0 0630 .000982 0845 .00170 "'" C> 

0757 .04 0803 (1) 0815 .000982 0930 .00277 y> 

c:: 
0802 .12 0825 (1) 08·t5 .00161 1000 .00831 fn 
0827 .07 0845 .0062 0900 .00818 1015 .0101 t1 
0832 
0847 

.24 

.28 
0905 
0925 

.0125 

.0094 
0915 
0945 

.0323 

.0323 
1230 
1400 

.00670 

.00519 

t<j 
"'d 
!-3 

0902 .32 1005 .0031 1015 .0154 1800 .00387 0 
>'%j 

0907 
0947 
1717 
1752 

.48 

.12 
0 
.14 

1025 
1105 
1205 
1715 

.0016 
(1) 

0 
0 

1100 
1215 
1445 
1715 

.0128 

.00639 

.00497 

.00349 

1830 
1840 
1850 
1900 

.00387 

.00514 

.00670 

.0120 

>
0 
::0 ...... 
()
c:: 

1757 

1812 

.72 

.16 

1719 

1749 

(1) 

(1) 

1745 

1800 

.00497 

.0214 

1930 

2015 

.0143 

.0120 

t" 
>-:3
c:: 
~ 1817 2.88 1753 .0156 ]810 .0214 2100 .0101 

1820 1.00 1805 .0094 1820 .0611 2230 .00670 
1824 .15 1809 .0156 1830 .0655 2400 .00519 



1832 .50 
1837 .17 

1811 
181a 
1815 
1821 
1823 

1829 
1833 
1841 
1857 
1921 

1941 
2005 
2045 
2125 
2305 

.0904 

.1995 

.3570 

.2806 

.3367 

.2136 

.1341 

.0733 

.0:312 

.0125 

.0062 

.0031 

.0016 
(1) 

0 

1930 
2015 
2100 
2200 
2400· 

0300 
0600 
1500 
2400 

1200 
2400 

1200 
2400,· 

0400 
1200 
1800· 
2400 

1500 
2400 

.0281 

.0241 

.0123 

.0104 

.00639 

March 20 
.00349 
.00245 
.00161 
.000982 

March 21 
.000553 
.000533 

Murch 22 
.0003.51 
.000351 

ilfarch 23 
.000312 

I 	 .000234 
.000312 
.000312 

.""[arch 24 
.000195 
.000195 

0400 
1030 
2100 

0600 
2400 

1000 
1300 
1600 
1900 
2400 

1200 
1600 
2400 

0600 
1500 
2100 
2400 

March 20 
.00387 
.00277 
.00170 

March 21 
.om09 
.000669 

il{arch 22 
.000380 
.000380 
.000507 
.000507 
.000380 

March 23 
.000284 
.000380 
.000380 

March 24 
.000284 
.000249 
.000284 
.000284 

t-< ..... 
Z 
t:;1 
>::;; 
;-3 
~ 
t:;1 
0
::;; 
>< 
0 
>xj 

~ 
>< 
~ 
0 

S 
0 ..... 
0 
UJ 
><
UJ 

@ 
s:: 
UJ 

~ ...­

1 Trace. 

01 
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