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Abstract. We draw upon a series of articles in which a method based on pseu-
dovalues is proposed for direct regression modeling of the survival function, the
restricted mean, and the cumulative incidence function in competing risks with
right-censored data. The models, once the pseudovalues have been computed, can
be fit using standard generalized estimating equation software. Here we present
Stata procedures for computing these pseudo-observations. An example from a
bone marrow transplantation study is used to illustrate the method.
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1 Introduction

Statistical methods in survival analysis need to deal with data that are incomplete
because of right-censoring; a host of such methods are available, including the Kaplan—
Meier estimator, the log-rank test, and the Cox regression model. If one had complete
data, standard methods for quantitative data could be applied directly for the observed
survival time X, or methods for binary outcomes could be applied by dichotomizing
X as I(X > 7) for a suitably chosen 7. With complete data, one could furthermore
set up regression models for any function f(X) and check such models using standard
graphical methods such as scatterplots or residuals for quantitative or binary outcomes.

One way of achieving these goals with censored survival data and with more-general
event history data (for example, competing-risks data) is to use a technique based on
pseudo-observations, as recently described in a series of articles. Thus the technique
has been studied in modeling of the survival function (Klein et al.[2007), the restricted
mean (Andersen, Hansen, and Klein 2004), and the cumulative incidence function in
competing risks (Andersen, Klein, and Rosthgj 2003; Klein and Andersen 2005; Klein
2006; Andersen and Klein 2007).

The basic idea is simple. Suppose a well-behaved estimator 5, for the expectation 6 =
E{f( )}, is available—for example, the Kaplan—Meier estimator for S(t) = E{I(X >
t)}—based on a sample of size n. The ith pseudo-observation (i =1,...,n) for f(X) is
then defined as 0 =nxf— (n—1)x 9_2 where 0_2 is the estimator apphed to the sample
of size n — 1, which is obtained by eliminating the ith observation from the dataset. The
pseudovalues are generated once, and the idea is to replace the incompletely observed

© 2010 StataCorp LP st0202



E. T. Parner and P. K. Andersen 409

f(X;) by é\l That is, @\Z may be used as an outcome variable in a regression model
or it may be used to compute residuals. @ also may be used in a scatterplot when
assessing model assumptions (Perme and Andersen 2008; Andersen and Perme 2010).
The intuition is that, in the absence of censoring, § = E{f(X)} could, obviously, be
estimated as (1/n) )", f(X;), in which case the ith pseudo-observation is simply the
observed value f(X;). The pseudovalues are related to the jackknife residuals used in
regression diagnostics.

We present three new Stata commands—stpsurv, stpci, and stpmean—that pro-
vide a new possibility in Stata for analyzing regression models and that generate pseu-
dovalues (respectively) for the survival function (or the cumulative distribution func-
tion, “the cumulative incidence”) under right-censoring, for the cumulative incidence
in competing risks, and for the restricted mean under right-censoring. Cox regression
models can be fit using the pseudovalue function for survival probabilities in several
time points. Thereby, the pseudovalue method provides an alternative to Cox regres-
sion, for example, in situations where rates are not proportional. As discussed by
Perme and Andersen (2008), residuals for model checking may also be obtained from
the pseudovalues. An example based on bone marrow transplantation data is presented
to illustrate the methodology.

In section [2, we briefly present the general pseudovalue approach to censored data
regression. In section 3, we present the new Stata commands; and in section 4] we show
examples of the use of the commands. Section 5| concludes with some remarks.

2 Some methodological details

2.1 The general approach

In this section, we briefly introduce censored data regression based on pseudo-obser-
vations; see, for example, Andersen, Klein, and Rosthgj (2003) or Andersen and Perme
(2010) for more details. Let Xi,...,X, be independent and identically distributed
survival times, and suppose we are interested in a parameter of the form

0 = E{f(X)}

for some function f(-). This function could be multivariate, for example,
fFX)={AX),.., fuX)}={IX >m),.... (X >7p)}
for a series of time points 7, ..., Tps, in which case,
0= (01,...,0p)={S(m1),...,S(T;m)}

where S(-) is the survival function for X. More examples are provided below. Fur-
thermore, let Z;,...,Z, be independent and identically distributed covariates. Also
suppose we are interested in a regression model of § = E{f(X;)} on Z,—for example,
a generalized linear model of the form

g[E{f(Xi)| Z:}]) = 8" Z;
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where g(-) is the link function. If right-censoring prevents us from observing all the
X;s, then it is not simple to analyze this regression model. However, suppose 0 is
an approximately unbiased estimator of the marginal mean § = E{f(X)} that may
be computed from the sample of right-censored observations. If f(X) = I(X > 7),
then # = S(7) may be estimated using the Kaplan—Meier estimator. The ith pseudo-
observation is now defined, as suggested in section 1, as

-~

9¢:n><§—(n—1)><§,i

Here 5,1- is the “leave-one-out” estimator for € based on all observations but the ith:
X, j #i. The idea is to replace the possibly incompletely observed f(X;) by 6; and to
obtain estimates of the Os based on the estimating equation:

0 ’ -
St m) v o -6} =S e -vm -0

%

In (T)), V; is a working covariance matrix. Graw, Gerds, and Schumacher (2009) showed
that for the examples studied in this article, E{f(X;)|Z:} = E(0;|Z;), and thereby
(1) is unbiased, provided that censoring is independent of covariates; see also Andersen
and Perme (2010). A sandwich estimator is used to estimate the variance of B Let

10)=2_ {fﬁgl(ﬂTZi)}T ) {aglégTZi)}

%

and

va v (3)} =50 () v ()
W (7) =1 (3) "V {u (3)}1 ()

The estimator of 8 can be shown to be asymptotically normal (Graw, Gerds, and
Schumacher 2009; Liang and Zeger 1986), and the sandwich estimator converges in
probability to the true variance. Once the pseudo-observations have been computed,
the estimators of § can be obtained by using standard software for generalized estimating
equations.

then

The pseudo-observations may also be used to define residuals after fitting some
standard model (for example, a Cox regression model) for survival data; see Perme and
Andersen (2008) or Andersen and Perme (2010).

2.2 The survival function

Suppose we are interested in the survival function S(7;) = Pr(X > 7;) at a grid of
time points 71 < --- < 7y, for a survival time X. Hence, § = (01,...,05) where
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0; = S(1;). When M = 1, we consider the survival function at a single point in time.
Under right-censoring, the survival function is estimated by the Kaplan—Meier estimator
(Kaplan and Meier 1958),

~ Y: —d.

s =] 5

<t Y
where t; < --- < tp are the distinct event times, Y; is the number at risk, and d; is the
number of events at time ¢;. The cumulative distribution function is then estimated by

~ ~

F(t) =1— S(t). In this case, the link function of interest could be the cloglog function
cloglog {F(7)} =log [—log {1 — F(7)}]

which is equivalent to a Cox regression model for the survival function evaluated in 7.

2.3 The mean survival time

The mean time-to-event is the area under the survival curve:
oo
w= / S(u)du (2)
0

For right-censored data, the estimated survival function (the Kaplan—Meier estimator)
does not always converge down to zero. Then the mean cannot be estimated reliably
by plugging the Kaplan—Meier estimator into (2). An alternative to the mean is the
restricted mean, defined as the area under the survival curve up to a time 7 < oo
(Klein and Moeschberger 2003), which is equal to § = p, = E{min(X,7)}. The re-
stricted mean survival time is estimated by the area under the Kaplan—Meier curve up
to time 7. That is,

i = / S(w)du
0

An alternative mean is the conditional mean given that the event time is smaller than
7, ué = E(X | X < 7), which is similarly estimated by

. ["Sw) -8

- [ S5,
o 1-S(7)

For the restricted and conditional mean, a link function of interest could be the log or

the identity.

2.4 The cumulative incidence

Under competing risks, the cumulative incidence function is estimated in a different
way. Suppose the event of interest has hazard function hq(t) and the competing risk
has hazard function ha(t). The cumulative incidence function for the event of interest
is then given as

Fi(t) = /075 hi(u)exp { /Ou {h1(v) + he(v)} dv| du
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If t1 < -+ < tp are the distinct times of the primary event and the competing risk
combined, Y; is the number at risk, dy; is the number of the primary events at time
t;, and dy; is the number of competing risks at time ¢;. Then the cumulative incidence
function of the primary event is estimated by

-5 () 1 (%)

<t N1 i<ty

Again the link function of interest could be cloglog corresponding to the regression
model for the competing risks cumulative incidence studied by |[Fine and Gray (1999).

3 The stpsurv, stpmean, and stpci commands
3.1 Syntax

Pseudovalues for the survival function, the mean survival time, and the cumulative
incidence function for competing risks are generated using the following syntaxes:

stpsurv [zf} [zn], at (numlist) [generate(stm’ng) jailure]
stpmean [lf} [zn], at (numlist) [generate(string) gonditional}

stpci wvarname [zf] [zn], at (numlist) [5enerate(strz'ng)]

stpsurv, stpmean, and stpci are for use with st data. You must, therefore, stset
your data before issuing these commands. Frequency weights are allowed in the stset
command. In the stpci command for the cumulative incidence function in competing
risks, an indicator variable for the competing risks should always be specified. The
pseudovalues are by default stored in the pseudo variable when one time point is spec-
ified and are stored in variables pseudol, pseudo2, ... when several time points are
specified. The names of the pseudovariables are changed by the generate () option.

3.2 Options

at (numlist) specifies the time points in ascending order of which pseudovalues should
be computed. at () is required.

generate (string) specifies a variable name for the pseudo-observations. The default is
generate (pseudo).

failure generates pseudovalues for the cumulative incidence proportion, which is one
minus the survival function.

conditional specifies that pseudovalues for the conditional mean should be computed
instead of those for the restricted mean.
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4 Example data

To illustrate the pseudovalue approach, we use data on sibling-donor bone marrow
transplants matched on human leukocyte antigen (Copelan et al. 1991). The data
are available in Klein and Moeschberger (2003). The data include information on
137 transplant patients on time to death, relapse, or lost to follow-up (tdfs); the
indicators of relapse and death (relapse, trm); the indicator of treatment failure
(dfs = relapse|trm); and three factors that may be related to outcome: disease
[acute lymphocytic leukemia (ALL), low-risk acute myeloid leukemia (AML), and high-
risk AML], the French—American—British (FAB) disease grade for AML (fab = 1 if AML
and grade 4 or 5; 0 otherwise), and recipient age at transplant (age).

4.1 The survival function at a single time point

We will first examine regression models for disease free survival at 530 days based on
the Kaplan—Meier estimator. Disease free survival probabilities for the single prognostic
factor FAB at 530 days (figure 1) can be compared using information obtained using the
Stata sts list command, which evaluates the Kaplan—Meier estimator.

Survival

Probability

— Fab=1
--- Fab=0

0 500 1000 1500 2000
Time (days)

Figure 1. Disease free survival

Based on the sts list output below, the risk difference (RD) for FAB is computed
as RD = 0.333 — 0.541 = —0.207 [95% confidence interval: —0.379, —0.039] and the
relative risk (RR) for FAB is RR = 0.333/0.541 = 0.616, where FAB = 0 is chosen as the
reference group. The confidence interval of the RD is based on computing the standard
error of the RD as (0.0522% + 0.07032)!/2. The confidence interval for the RR is not
easily estimated using the information from the sts list command.
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. use bmt
. stset tdfs, failure(dfs==1)

failure event: dfs ==
obs. time interval: (0, tdfs]
exit on or before: failure

137 total obs.
0 exclusions

137 obs. remaining, representing

83 failures in single record/single failure data
107138 total analysis time at risk, at risk from t = 0
earliest observed entry t =
last observed exit t

|
o

2640
. sts list, at(0 530) by(fab)

failure _d: dfs ==
analysis time _t: tdfs

Beg. Survivor Std.

Time Total Fail Function Error [95% Conf. Int.]
fab=0

0 0 0 1.0000 . . .

530 49 42 0.5408 0.0522 0.4334 0.6364
fab=1

0 0 0 1.0000 . . .

530 16 30 0.3333 0.0703 0.2018 0.4704

Note: survivor function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

Now we turn to the pseudovalues approach. We start by computing the pseudovalues
at 530 days using the stpsurv command. The pseudovalues are stored in the pseudo
variable.

. stpsurv, at(530)

Computing pseudo observations (progress dots indicate percent completed)
IR N Y R, [ S | —
L S e

Generated pseudo variable: pseudo

The pseudovalues are analyzed in generalized linear models with an identity link
function and a log link function, respectively.
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. glm pseudo i.fab, link(id) vce(robust) noheader
Iteration O: log pseudolikelihood = -96.989802

Robust
pseudo Coef.  Std. Err. z P>|z| [95% Conf. Intervall
1.fab -.2080377 .0881073 -2.36 0.018 -.3807248 -.0353506
_cons .5406774 .0522411 10.35 0.000 .4382867 .6430681

. glm pseudo i.fab, link(log) vce(robust) eform noheader
Iteration O: log pseudolikelihood = -123.14846

Iteration 1 log pseudolikelihood = -101.53512
Iteration 2: log pseudolikelihood = -96.991808
Iteration 3: log pseudolikelihood = -96.989802
Iteration 4: log pseudolikelihood = -96.989802
Robust
pseudo exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
1.fab .6152278 .1440588 -2.07 0.038 .3887968 .9735298

The generalized linear models with an identity link function and a log link function
fit the relations

Di E (X;) = Bo + B1 X FAB;
log(p;) = log{E (Xi)} = fo+ f1 x FAB

respectively, where p; = 5;(530) is disease free survival probability at 530 days for
individual ¢. Hence, based on the pseudovalues approach, we estimate the RD for FAB
by RD = —0.208 [95% confidence interval: —0.381, —0.035] and the RR for FAB by
RR = 0.615 [95% confidence interval: 0.389, 0.974]. The results are very similar to the
direct computation from the Kaplan—Meier using the sts list command. We now
obtain the confidence interval for the RR.

Suppose we wish to compute the RR for FAB, adjusting for disease as a categorical
variable and age as a continuous variable. Using the same pseudovalues, we fit the
generalized linear model.

(Continued on next page)
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. glm pseudo i.fab i.disease age, link(log) vce(robust) eform noheader

Iteration O: log pseudolikelihood = -114.83229

Iteration 1: log pseudolikelihood = -93.440112
Iteration 2: log pseudolikelihood = -88.620704
Iteration 3: log pseudolikelihood = -88.601028
Iteration 4: log pseudolikelihood = -88.601013
Iteration 5: log pseudolikelihood = -88.601013
Robust
pseudo exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
1.fab .6322634 .1665066 -1.74 0.082 .3773412 1.059405
disease

2 1.951343 .412121 3.17  0.002 1.289914 2.951931

3 1.005533 .3586364 0.02 0.988 .4998088 2.022965

age .9856265 .0080274 -1.78 0.075 .970018 1.001486

Patients with AML and grade 4 or 5 (FAB = 1) have a 37% reduced disease free
survival probability at 530 days, when adjusting for disease and age.

4.2 The survival function at several time points

In this example, we compute pseudovalues at five data points roughly equally spaced on
the event scale: 50, 105, 170, 280, and 530 days. To fit the model log[—log{S(¢t| Z2)}] =
log{Ao(t)}+3Z, we can use the cloglog link on the pseudovalues on failure probabilities;
that is, we fit a Cox regression model for the five time points simultaneously.

. stpsurv, at(50 105 170 280 530) failure
Computing pseudo observations (progress dots indicate percent completed)

Generated pseudo variables: pseudol-pseudob
. generate id=_n

. reshape long pseudo, i(id) j(times)
(note: j =12 345)

Data wide -> long
Number of obs. 137 -> 685
Number of variables 32 -> 29
j variable (5 values) ->  times

xij variables:
pseudol pseudo2 ... pseudo5 -> pseudo




E. T. Parner and P. K. Andersen 417

. glm pseudo i.times i.fab i.disease age, link(cloglog) vce(cluster id) noheader

Iteration O: log pseudolikelihood = -468.74476
Iteration 1: log pseudolikelihood = -457.41878 (not concave)
Iteration 2: log pseudolikelihood = -406.98781
Iteration 3: log pseudolikelihood = -365.23278
Iteration 4: log pseudolikelihood = -350.7435
Iteration 5: log pseudolikelihood = -349.97156
Iteration 6: log pseudolikelihood = -349.96409
Iteration 7: log pseudolikelihood = -349.96409
(Std. Err. adjusted for 137 clusters in id)
Robust
pseudo Coef. Std. Err. z P>|z| [95% Conf. Interval]
times
2 1.114256 .3269323 3.41 0.001 .4734805 1.755032
3 1.626173 .3567925 4.56 0.000 .9268721 2.325473
4 2.004267 .3707305 5.41  0.000 1.277649 2.730885
5 2.495327 .3824645 6.52  0.000 1.745711 3.244944
1.fab . 7619547 .354821 2.15 0.032 .0665183 1.457391
disease
2 -1.195542 .4601852 -2.60 0.009 -2.097489  -.2935959
3 .0036343 .3791488 0.01 0.992 -.7394838 . 7467524
age .0130686 .0146629 0.89 0.373 -.0156702 .0418074
_cons -2.981582 .6066311 -4.91  0.000 -4.170557  -1.792607

The estimated survival function in this model for a patient at time ¢ with a set of
covariates Z is S(t) = exp{—Ao(t)e’?}, where

Ao(50) = exp(—2.9816) = 0.051
Ag(105) = exp(—2.9816 + 1.1143) = 0.155
Ag(170) = exp(—2.9816 + 1.6262) = 0.258
Ao(280) = exp(—2.9816 + 2.0043) = 0.376
Ag(530) = exp(—2.9816 + 2.4953) = 0.615

The model shows that patients with AML who are at low risk have better disease
free survival than ALL patients [RR = exp(—1.1955) = 0.30] and that AML patients with
grade 4 or 5 FAB have a lower disease free survival [RR = exp(0.7620) = 2.14].

Without recomputing the pseudovalues, we can examine the effect of FAB over time.

(Continued on next page)
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. generate fab50=(fab==1 & times==1)

. generate fabl05=(fab==1 & times==2)
. generate fabl70=(fab==1 & times==3)
. generate fab280=(fab==1 & times==4)
. generate fab530=(fab==1 & times==5)

. glm pseudo i.times fab50-fab530 i.disease age, link(cloglog) vce(cluster id)
> noheader eform

Iteration O: log pseudolikelihood = -471.86839
Iteration 1: log pseudolikelihood = -464.24832 (not concave)
Iteration 2: log pseudolikelihood = -406.31257
Iteration 3: log pseudolikelihood = -361.28364
Iteration 4: log pseudolikelihood = -349.90468
Iteration 5: log pseudolikelihood = -349.44613
Iteration 6: log pseudolikelihood = -349.43492
Iteration 7: log pseudolikelihood = -349.43485
Iteration 8: log pseudolikelihood = -349.43485
(Std. Err. adjusted for 137 clusters in id)
Robust
pseudo exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
times
2 3.99608  2.023867 2.74 0.006 1.480921 10.78292
3 8.225489 4.601898 3.77 0.000 2.747526 24.62531
4 11.89654  6.835021 4.31  0.000 3.858093 36.68333
5 19.20116  11.25862 5.04 0.000 6.084498 60.59409
fab50 4.047315  3.227324 1.75 0.080 .8480474 19.31586
fab105 2.866106  1.433666 2.11  0.035 1.07525 7.639677
fab170 2.008426 . 795497 1.76 0.078 .9240856 4.365155
fab280 2.022028 . 7258472 1.96 0.050 1.000533 4.086419
fab530 2.048864 .7838364 1.87 0.061 .9679838 4.33669
disease
2 .3024683 .1368087 -2.64 0.008 .1246451 .7339808
3 .9993425 .3815547 -0.00 0.999 .4728471 2.112069
age 1.012745 .0148835 0.86 0.389 .9839899 1.04234

. test fab50=fab105=fab170=fab280=fab530

( 1) [pseudo]fab50 - [pseudo]lfabl05 = 0
( 2) [pseudo]fab50 - [pseudo]fabl70 = 0
( 3) [pseudolfab50 - [pseudo]fab280 = 0
( 4) [pseudo]fab50 - [pseudo]fab530 = 0
chi2( 4) = 1.73
Prob > chi2 = 0.7855

The model shows that there is no statistically significant difference in the FAB effect
over time (p = 0.79); that is, proportional hazards are not contraindicated for FAB.
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For the restricted mean time to treatment failure, we use the stpmean command. To
illustrate, we look at a regression model for the mean time to treatment failure restricted

to 1,500 days. Here we use the identity link function.

. stpmean, at(1500)

Computing pseudo observations (progress dots indicate percent completed)

Generated pseudo variable: pseudo
. glm pseudo i.fab i.disease age, link(id) vce(robust) noheader

Iteration O: log pseudolikelihood = -1065.6767

Robust

pseudo Coef. Std. Err. z P>|z| [95% Conf. Interval]
1.fab -352.0442 123.311 -2.85 0.004 -593.7293 -110.359

disease
2 461.1214 134.0932 3.44 0.001 198.3036 723.9391
3 78.00616 158.8357 0.49 0.623 -233.3061 389.3184
age -8.169236 5.060915 -1.61 0.106 -18.08845 1.749976
_cons 895.118 159.1586 5.62 0.000 583.173 1207.063

Here we see that low-risk AML patients have the longest restricted mean life, namely,

461.1 days longer than ALL patients within 1,500 days.

4.4 Competing risks

For the cumulative incidence function, we use the stpci command to compute the
pseudovalues. To illustrate, we use the complementary log—log model to the relapse
cumulative incidence evaluated at 50, 105, 170, 280, and 530 days. The event of interest

is death in remission. Here relapse is a competing event.

. stset tdfs, failure(trm==1)

failure event: trm ==
obs. time interval: (0, tdfs]
exit on or before: failure

137 total obs.
0 exclusions

137 obs. remaining, representing
42 failures in single record/single failure data

107138 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 2640

. generate compet=(trm==0 & relapse==1)
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. stpci compet, at(50 105 170 280 530)
Computing pseudo observations (progress dots indicate percent completed)

Generated pseudo variables: pseudol-pseudob
. generate id=_n

. reshape long pseudo, i(id) j(times)
(note: j =123 45)

Data wide -> long
Number of obs. 137 -> 685
Number of variables 33 -> 30
j variable (5 values) ->  times
xij variables:

pseudol pseudo2 ... pseudo5 -> pseudo

. fvset base none times

. glm pseudo i.times i.fab i.disease age, link(cloglog) vce(cluster id)
> noheader noconst eform

Iteration O: log pseudolikelihood = -462.96735 (not concave)

Iteration 1: log pseudolikelihood = -348.27329
Iteration 2: log pseudolikelihood = -221.69131
Iteration 3: log pseudolikelihood = -198.31467
Iteration 4: log pseudolikelihood = -197.38196
Iteration 5: log pseudolikelihood = -197.37526
Iteration 6: log pseudolikelihood = -197.37524

(Std. Err. adjusted for 137 clusters in id)

Robust
pseudo exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
times

1 .0286012 .0292766 -3.47 0.001 .0038467 .21266

2 .0791623 .0547411 -3.67 0.000 .0204131 .306993

3 .1261608 .0823572 -3.17  0.002 .0350965 .4535083

4 .1781601 .1117597 -2.75 0.006 .0521017 .6092124

5 .2383869 .1488814 -2.30 0.022 .0700932 .8107537

1.fab 3.104153 1.52811 2.30 0.021 1.182808 8.146518

disease

2 .1708985 .1154623 -2.61  0.009 .0454622 .6424309

3 .7829133 .466016 -0.41 0.681 .2438093 2.514068

age 1.014382 .0258272 0.56 0.575 .9650037 1.066286

Here we are modeling C(t|Z) = 1 — exp{—Ao(t)ef?}. Positive values of 3 for a
covariate suggest a larger cumulative incidence for patients with Z = 1. The model
suggests that the low-risk AML patients have the smallest risk of death in remission and
the AML FAB 4/5 patients have the highest risk of death in remission.
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5 Conclusion

The pseudovalue method is a versatile tool for regression analysis of censored time-to-
event data. We have implemented the method for regression analysis of the survival
under right-censoring, for the cumulative incidence function under possible competing
risks, and for the restricted and conditional mean waiting time. Similar SAS macros and
R functions were presented by Klein et al. (2008).
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