

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

gebilal Bulletin No. 95
February, 1929
ENITED STATES DEPARTMENZ OF AGRICULTERE WASHENGTON, D. C.

THE MEAL WORMS
y R. I. Comton, Simior Entomologist, Division of Stored-Product Insects, Bureau of Entomology: With technical descriptions of the mature larvae by R. A. Sr. George, Associate Entomologist, Dipision of Forest Insects, Bureau of Entomology

Revier of literature.
Syponymy.
-
Distraution and orfgin.
Economic importance.
Life history-
The egz
The lexva.
The pupa.
The actult
Length of iffe cycle.

Page		Page
	Fesistarice to gtarvation.	24
2	Effect of extreme temperatures.	24
2	Parasites	25
3	Contzol mensures.	25
4 5	Description of the mature larva of Tenebria moiltor Linngetus.	25
7	Description of the matnre larvs of Teretrio	
15	obsturtes Febricius.	${ }_{35}$
17	Summary----	35 36

The meal worms have long attracted the attention of both sciantists and laymen, owing to their usefulness as food for birds, reptiles, fishes, and small mammals in zoological gardens, aquariums, and elsewhere, their desirability for anatomical and genetical research (for they are large in size and easily reared), and their destructiveness as flour, meal, and grain pests.

REVIEW OF LITERETURE
Moufat (18) ${ }^{1}$ as early as 1634 and Ray (21) in 1710 referred to the yellow meal worm. Frisch (9) in 1721 described and illus trated its various stages, commented on the usefulness of the larvae as food for nightingales and other birds, and gave a short account of his observations on the life history of this meal worm. In 1758 Finnatus (15) named and described it as Tenebrio molitor.

Judging from early accounts, the yellow meal worm was much nore abundant in Europe in those times than the closely allied dark ueal worm, which was described by Fabricius (8) in 1792 as T. bscurus. Joyeuse (12), De Geer (11), Latreille (14), Sturm (29), jurtis (7), Westwood (33), Taschenberg (30), and many others ublished short, interesting accounts of one or both of the meal worms, but little accurate biological information was published prior to the observations of Riley (22) in 1883. He found that eggs of T. moititor laid on May 29, 1876, hatched on June 5, one larva molted for the first time on June 15, snd had molted 11 times by May 3 of the following year, when it died. A second larva had molted 12 times

Italic numbers in parentheses refer to "Literature eited," p. 88 .
by June 10 of the following year, when it elso died. Three larvae of h obscurus, from eggs hatched April 30, 1876, were reared to adults One molted 11 times by August 30 of the same year, pupated fanuar 20, 1877, and finally emerged as an adult beetle February 7, 1877 The other two molted 12 times and attained the adult state on Feb ruary 18 and March 9 , respectively. All were kept under the sam? food conditions.

Chittenden in $1896(5,6)$ gave short general accounts of the meat worms and included observations on the egg laying of T. molitor Rau (20) published some interesting observations in 1915 on thy pupation of tbe two species and on the longevity of T. obscurus. H found that the larvae of T. obsourus began to pupate in the labora tory toward the end of February but that none of those of T. molitor pupated before May. The duration of the pupal stage of 54 specimens of T. obscurus ranged from 4 to 24 days.

The most comprehensive work on the biology of the meal worms with which the writer is familiar has been done by Arendsen Hein, the results of which have been published in articles appearing in 1920 (2) and 1923 (3). In conducting experiments on variations occurting in the different stages of the meal worms, he made many observations on their life histories. He found that under favorable conditions of food and texuperature both species would breed uninterruptedly the year round, the larval period averaging from 6 to 8 months, and thet female beeties of T. molitor lived from 89 to 132 days.

References to the anatomy and morphology of the meal worms are numerous but will not be noted in this bulletin, a long list of these ard other references to the meal worms having been given by Gebien ia 1911 (10).

SYNONYMX

According to Gebien (10) Tenebrio molitor L. has but one synonym, T. molitoria Fourcr. No synonym is listed for T. obscurus Fab.

DISTRIBUTHON AND ORIGIN

Both species of meal worms are cosmopolitan in distribution. The dark meal worm, Tenebrio obscurus, was considered by Curtis (7), Lintner (16), and early writers as a native of America, and to differentiate it from T. molitor, the yellow meal worm or European meal worm, they called it the American meal worm. In all probsbility both species are of European or Asiatic origin. In regard to their distribution in North America, records kept by the United States Bureau of Entomology indicate that T. molitor does not breed freely in the South but prefers the cooler climate of the more northern States. Figure 1 shows the localities from which reports have been received by the Bureau of Entomology of the destructive abundance of this species from 188i to 1927, inclusive. As will be noted, only ons complaint has been received from a State south of Virginia, that one coming from North Carolina. Reccids of T. obscurus would indicate that it breeds freely in practically all parts of North America. ${ }^{2}$ (Fig. 2.)

[^0]
ECONOMC IMPORTANCE

The meal worms, although the largest of the insects that infost atored products, are not nearly so destructive as same of their smaller

Fia. 1.-Locsitties in the Unitati states from Thich specimens of Tenebrio moifor have been received during the pariod from 1881 to 1027 , inditusive
associates. They are nocturnal in habit and frequent dark places, breeding in refuss grain, coarse cereal, and mill products that accumulate in dark corners, under sacks, in bins, and in similar places

Fig. 2.-Locelities in the United States from whioh apecimens of Tenebrive obscurur have been received durleg the period from 1881 to 1027, incluaive
where they are not often disturbed. They are fond of moist situations and are often found among bags that are slightly damp. The larvae are active and not infrequently wander into strange places. They
have been found in bags of fertilizer, bags of salt, boxer fi sode ash, in ground black pepper, and other unlikely places.' The larvae in infested cereal foods are occasionally accidentally swallowed by human beings. One such case was recorded by Acrel (1) in 1799, another by Kiley and Howard (23) in 1889.

A rather interesting ghost story with the yellow meal worm in the rôle of ghost was recorded by Riley and Howarả (24) in 1889.

A guest in a hotel in Rtode Islend was awakèned one night by a scratching sound that apparently emanated from a pincustion on the dressing table. After spending a sleepless night the guest reported to the landlord that the room was haunted. Investigation resulted in the discovery that the pincushion was literally alive with beetles. The cushion had been made ubout four years earlier and had been filled with coarse shorts. The beetles, which proved to be Tenebrio molitor, had been breeding in the cushion until they became so abundant as to attract attention by their struggles.

A rather unusual case of damage attxibuted to Tenebrio molitor has been reported by Scott (28), who states that perforations found in lead from the roof of a disused bakery are thought to have bean made by T. molitor, living laryae and pupae of which were found in closa proximity. The writer is inclined to doubt this. Full-grown larvae are occasionally found in the timbers of infested grain bins, but so far as the writer has observed, only when such timbers are rotting and soft.

Meal-worm larvae are used as food for many small birds, amphibians, reptiles, young insect-eating animals, carnivorous arthropods, and fish. In aquariums and zoological parks, where there are many hungry mouths to leed, tiey are in great demand. Their popularity as fish bait may be sumised from the statement made by a fish-bait vendor to the writer that he could use "half a billion" of them annually.

Meal worms are sold by the hundred, by the thousaind, or by the pound, and the business of rearing them is very old. Frisch (9) more than 200 years ago referrad to thair use as food for nightingales and other birds, and many of the early writers gave directions for rearing the larvae for that purpose. More recently Wolf (34) in 1905, Krefft (18) in 1907, and Megušar (17) in 1912, discussed the uses of the meal worms for feeding purposes and have given minute directions for rearing them. So highly have they been valued as food for birds that according to Philippi (19) Tenebrio molitor was intreduced into Chile solely for the purpose of rearing the larvae for bird food.

LIFE HISTORY

At Washington, D. C., the meal worms normally pass the winter in the larval state. The adults emerge in the spring and early summer; live for two or three months, and die. In the natural state there is, therefore, only one full generation a year. In the laboratory an occasional individual of Tenebrio obscurus completed its development from egg to adult in as short a time as four months, transforming in June, July, or August instead of waiting until the following spring; on the other hand, a number of individuals of the same species required two years to complete their development, although all were reared under the same conditions. Under similar conditions no specimens of 7^{\prime} molitor completed their development in less than 10 months, and slightly more then half of the specimens reared required two years to complete their development. When reared in
an incubator with continuous favorable conditions of temperature, moisture, and food, both species bred uninterruptedly the year round and all stages were obtainable at any time.

THE EGG

The eggs of both species of meal worms are oblong-oval in shape, opaque, milky white, and shining. Eggs of Tenebrio obscurus (fig. 3, A), measured in the labora:ory, ranged in length from 1.4 to 1.5 mitlimeters and in width from 0.60 to 0.66 millimeter those of T. molitor ranged in length from 1.75 to 1.80 millimeters and in width from 0.60 to 0.70 millimeter.

INCUBATION PERXOD

The incubrtion period of the egg of both species of meal worms varies considerably, being influenced chiefly by temperature. The data in Table 1 indicate the length of the egg stage of Tenebrio obscurus when the average mean temperature ranges from 65° to $88^{\circ} \mathrm{F}$. When the average mean temperature ranged from 80° to 88°, tha incubation period ranged from 4 to 7 days, whereas with an average mean temperature of 65° the period was lengthened to 17 and 18 days. In like manner Table 1 shows the length of the egg stage of T. molitor as determined by the writer when tha average mean temperature ranged from 66° to 58°. When the average mean temperature ranged from 82° to 88° the incubation period ranged in length from 4 to 6 days, whereas with an average mean temperature of 66° to 70° the length of the period ranged from 10 to 19 days.

Table 1.-Incubation period of meal-worm eggs
tenebrio onscurbs

No.	Date eg\% u'us lait	Date eg Inateled	Kangth of inetbatios jeriod	Average mean temperatire for period	No.	Dute ettg was inid	Daterg hatched	Length of incabation period	A verage mean temperature for period
	$10 \% 3$					1023	1923	*	- E.
	Mat. 3	Mar. 16		72	17.	Jrue 3	Jung 8		88
2	Minc. 7	Mar. 23	26	71	18.	June 21	Iune 25	4	88
3	Mar. 19	Apr. 2	14	70	19	Junie 26	Iuly 2	6	82
4	Miar, 21	Apr. 4	14	70	20	Jane 30	Iuy 6	6	83
5	Mar. 23	Apr. 5	12	70	21	July ${ }^{\text {du }}$	July 11	5	85
1	Apr ${ }^{\text {¢ }}$	Apr. 14	12	70		Juy 7	July 12	5	85
	Apr. 5	Apr. 18	13	7 l					
8	Арг. 22	Apr. 24	12	70 :		1824	1324		
9.	Apr. 24	May 7	11	72	23	5anc. 4	Jan. 22	18	${ }_{65}^{65}$
10	Аझr. 29	Мuy 11	12	11	21.	Jan. 10	Jan. 28	18	65
11	N035 3	May 14	11	72	25	Jan. 14	Jan. 3I	17	68 65
12	May 8	May 18	10	73	26	Jan. 22	Feb. 8	18	65
13	May 13	May 21	9	75	27	Feb. 2	Feb. 19	1.7	65
14	May 96	3une 2	7	80	28	Fob. ${ }^{4}$	Fob. 22	18	85
15	Niay 31	Juna 6	8	84	$\underline{2}$	Fob. ${ }^{\text {B }}$	Fob. 26	17	05
18	Jano 2	Juns 7	5	86	30.	Fob. 11	Fah. 28	17	65

TENEBRIO MOLITOR

 Bdult beetle, $\times 4$

THE LARVA
The larvae when newly emerged from the egg are white and between 2 and 2.5 millimeters in length. They begin et once to feed and soon acquire a yellowish-brown color. When fully grown, the larvae of both species are about 1 inch to $1 \frac{1}{4}$ inches in leagth. They are easily distinguished by their characteristic color. The larva of Tenebrio obscurus (fig. 3, B) is dark brown, shading to mush darker brown toward each end and at the articulation of each segment. The larva of T. molitor is bright yollow, shading to yellowish-brown toward each end and at the articulation of each segment. Immediately after molting the larvae are white but soon attain their normal coloring.

Technical descriptions of the larvae have been prepared by R. A. St. George and will be found toward the end of this bulletin.

FOOD OF LABVA

The larvae of both species of meal worms have similar feeding kabits, and they are frequently found feeding together. They feed on meals and flours of all kinds, bran, refuse grain, coarse cereals, bread, crackers, mill sweepings, and all foods of like nature. They are also fond of food of animal origin, such as meat scrap, the bodies of dead insects, and feathers. They are usually found in dark, moist places, in neglected corners of mills where sweepings have been allowed to accumulate, in storehouses and feed stores, under bags of feed, or in the litter of chicken houses and bird houses where featiers and refuse grain are mixed with excrement.
In feeding the larvae in the laboratory the writer found a mixture of graham flour and meat scrap to be a very satisfactory food, and this was used throughout the experiments. Many breeders of meal worms supply them occasionally with fresh vegetables, such as pieces of carrot, potato, or lettuce. Probably because of the high moisture content of such foods, they are eagerly eaten by the larva. To obtain the best results in breeding meal worms, it is necessary to keep the food supply fairly moist. Care must be exercisod, however, to prevent molds from developing or the colony may be lost.

Length of larval btage

The length of the larval stage varies considerably and is influenced by several factors. At Washington, D. C., both species of meal worms normally require at least one year for development under storehouse conditions. In the case of Tenebrio obscurus a few larvae that hatch in the early part of the year complete their growth and transform in midsummer, a few remain as larvae for two years before transforming, but the majority transform at the end of the first year during the spring and early summer montts. The shortest larval period observed was 79 days, covering the pexiod from March 15 to June 2, 1924 (Table 2); and the longest was 942 days, from April 5, 1923, to January 6, 1925. The shortest normal larval period recorded for T. molitor was 281 days, covering the period from July 25, 1923, to May 1, 1924; and the longest larval period recorded was 629 days, from June 26, 1922, to March 16, 1924. Of the specimens reared individually to obtain detailed life-history data, more than 50 per cent required more than one season to complete their growth. This was doubtless due to the difficulty of keeping small
quantities of food at the optimum condition for normal development. Specimens reared in an incubator with continuous favorable conditions of temperature, humidity, and food completed the larval stage in six months.

Table 2.-Life-history data of meal worms oblained at Washington, D. C., 192g1925

TENEBRIO OBSCURUS

Table 2.-Life-history data of meal worms obtained at Washington, D. C., 1982-1925.-.Continued

TENEBRIO MOLITOR

NOMBER OF MOLPG

The number of larval molts varies somewhat in both species of real worms. As will be noted in Table 3, 12 was the least number of molts recorded for any larva of Tenebrio obscurus during its entire developmental period, whereas the greatest number recorded was 22. Approximately one-half of all the specimens reared molted either 14 or 15 times each.

Table 3.-Length of larval periods of Tenebrio obscurus

No.	Date egg hatched	Date first molt	Date second molt	Date third molt	Date fourth molt	Date filth molt	Date sixth molt	Date soventh molt	Date eighth molt	$\begin{aligned} & \text { Date ninth } \\ & \text { molt } \end{aligned}$	Date tenth molt	Date eleventh molt	Date twelfth molt	Date thirteenth molt
	1923	1023	1023	1923	1023	1923	1923	1923	3923					
	Mar. 23	Apr. 15	May 22	June 5	July 3	July 12	July 19	Aug. 4	Aug. 13	Sept. 6,1923	Sept. 23, 1923			
2	-do..-	Apr. 19	May 16	May 28	June 10	June 21	July 5	July 14	July 30	Aug. 15, 1023	Aug. 29, 1923	Sept. 13, 1023	Sept. 30, 1823	Oct. 20, 1923
3	do	Apr. 22	May 12	May 27	June 5	June 19	July 4	July 12	July 2?	Aug. 4, 1923	Aug. 14, 1923	Aug. 28, 1823	Sept. 11, 1923	Sept. 29, 1023
4	do	Apr. 12	May 9	June 3	June 18	July 1	July 12	July 22	Aug. 6	Aug. 13, 1923	Aug. 29, 1923	Sept. 10, 1923	923	
	.do.	Apr. 14	May 3	June 14	July	July 11	Aug. 2	Aug. 10	Aug. 22	Sept. 5, 1023	Sept. 23, 1923	Oct. 8, 1923		
		do.	May 15	May 30	June 10	June 24	July	July 30	Aug. 13	Aug. 31, 1583	Sept. 13, 1923	Sopt. 28, 1823		
	do	Apr. 12	May 9	May 23	June 8	June 19	June	July 7	Juy 17	Aug. 2, 1923	Aug. 14, 1923		3	3
	do		,	May 21	June	June 14	June 22	July 4	Juy 15	July 28, 1923	Aug. 8, 1923			Sept. 22, 1923
	do	A pr. 13	May 6	May 20	May 31	June 15	June	July ${ }^{7}$	July 28	Aug. 7 , 19823				
10	d	Apr. 14	May 7	May 22	June 12	June 22	July	July 14	Aug. 6	Aug. 15, 1923	Aug. 27, 1923	Sept. Oct. 15,1923	Sopt. 3,1923 Nov. 1923	Dec. 20, 1923
11	,	Apr, 20	May 13	May 28	July 1	July 10	Aug.	Aug. 21	Sopt. Aug. 1	Sept. 13, 1923 Aug. 10, 1923	Aupt. 21, 1023	Oct. Sept. 5, 1023	Nept. 23, 1923	Oct. 15, 1923
12	Mar. 31	Apr. 24	May 30	June 18	June 21	June 29	July	July July 18 Jul	Aug. ${ }^{\text {A }}$	Aug. 10, 1923 Aug. 15, 1923	Aug. 27, 1923	Sept. 9,1923	Sept. 25, 1923	Do.
13	do	do.	May 16	May 28	June 8	June 19	July ${ }^{4}$	$\begin{array}{cc}\text { July } & 17 \\ \text { July } & 9\end{array}$	Aug. 4	Aug. 15, 1923	Aug. 27, 8,1923	Aug. 16, 1923	Aug. 20, 1923	Sept. 13, 1923
14	do	Apr. 23	May 12	May 28	June 5	June 18	June 30	July ${ }^{\text {July }}$	Juy 17	July 20, 1023	Aug. 3, 1923	Aug. 13, 1023	Aug. 28, 1923	Sept. 11, 1923
15	do	Apr. 22	May 11	May 25	June 5	June June 23	June 22	July ${ }^{\text {July }} 10$	July 21	Aug. 4;1823	Aug. 3, 13,1923	Aug. 25, 1923	Sept. 6, 1923	Sept. 24, 1923
$\frac{16}{17}$	do	Apr. 27 Apr. 25	May 16 May 24	May ${ }^{\text {Juna }} 5$	June 10	June 23	July 2	July 11	July 20	Aug. do,	Aug. 15, 1925	Aug. 29, 1923	Sept. 11,1923	Sept. 29, 1823
18	do	Apr. 24	May 19	June 4	June 17	June 30	July 12	Aug. 6	Aug. 14	Sept: 1, 1923	Sept. 23, 1923	Oct. 11, 1823	Jan. 16, 1824	
10	d	Apr. 23	May 10	May 30	June 8	June 18	June 26	July ${ }^{6}$	July 10	July 23,1823	Aug. 4, 1923	Aug. 13, 1023	Aug. 24, 1023	Sept. 5,1923
20	do	Apr. 22	May 9	May 29	June 11	June 21	June 30	Tuly 10	July 22	Aug. 3, 1923	Aug. 13, 1923	Aug. 28, 1923	Sept. 0, 1923	Sept. 28, 1923 Sept. 12, 1923
21	do	do	May 16	May 28	June 5	June 15	June 25	July 3	July 13	July 23, 1923	Aug. 4, 1923	Aug. 14, 1023	Aug. 29, 1923	Sept, 12, 1923 Oct. 15, 1923
22	do	Apr. 27	June 9	June 19	June 28	July 7	July 16	July 30	Aug. ${ }^{\text {a }}$	Aug. 16, 1823	Aug. 29,1023	S8pt. 13, 1823	Sept. 27, 1923 Givpt. 5, 1923	Oct. 15, 1923 Sept. 23, 1923
23	do.	Apr. 25	May 17	May 31	June 17	June 25	July 3	July ${ }^{\text {July }}$	July 22	Aug. Aug. 9, 1823	Aug. 13, 1923 Aug. 20, 1923	Aug. 24,1023 Sept. 1,1923	Sept. 18,1923	Sept. 23,1923 Oct. 51923
25	Apr. 2	Apr. 23 Apr. 25	May 14	May 27	June 8	June 19	July		$\text { Aug. } 6$	Aug. 15,1923 Aug. 13,1923	Aug. 28, 1923	Sept. 8,1823	Sept. 24, 1823	Oct. 11, 1023
26	do.	Apr. 25	May 14 May 15	May 27	June 10	June 22	Juy ${ }^{\text {Juy }} 13$	Aug. 6	Aug. 15	Aug. 29, 1923	Sopt. 14, 1923	Sept. 30, 1923	Oct. 22, 1823	Dec. 12, 1023
28		Apr. 26	May 13	do	do	July 7	July 19	Aug. 8	Aug. 20	Sept. 3, 1923	Sopt. 21, 1023	Oct. 3, 1923	Oct. 24, 1823	Nov. 20, 1923
20	do	Apr. 24	May 15	do	June 5	June 19	July 1	July 17	Aug. 2	Aug, 13, 1923	Aug. 28, 1923	Sopt. 12, 1923	Oct. 3, 1923	Oct. 26, 1923
30	do	do.	May 12	May 25	June 4	June 18	June 27	July 11	July 31	Aug. 9, 1823	Aug. 18, 1923	Sept. 2, 1923	Sept. 20, 1923	Oct. 5, 1023
31	do	Apr. 2	-do.	May 27	-do	do.	do.	July 13	do.	Aug. 10, 1823	Aug. 20, 1923	Aug. 31, 1923	Sept. 13, 1823	Sept, 28, 1023
32	do	Apr. 24	May 13	May 30	June 12	July 1	July 12	Aug. 1	Aug. 13	Aug. 25, 1923	Sept, 7, 1023	Sept. 25, 1023	Oct. 10, 1923	Nov. 5, 1923
33	Apr.	Apr. 26	May 18	-do.	do.	June 22	July	July 13	July 25	Aug. 6, 1923	Aug. 16, 1923	Sept. 1, 1023	Sept. 18, 1923	
34.	do	Apr. 27	May 16	May 28	June 10	June 20	Juil ${ }^{1}$	July 11	July 21	Aug. 3,1923 July 27, 1923	Aug. 13, 1923	Aug. 28, 1923 Aug. 29, 1023	Sept. 8, 1923	Sept. 25, 1923
35	do	Apr. 25	May 13 May 16	May 20	May 30 June 12	June 10	June 21	July ${ }^{\text {July }}$ 24	Juy 13	July A 20,1923	Bept. 12, 1923	Aug. 29, 1923	Oct. 25,1923	
		Apr. 28	May 21	May 32	June 13	June 22	July	July 15	Aug. 3	Aug. 15, 1923	Sopt. 1, 1923	Sept. 23, 1923	Oct. 10, 1923	Nov. 7, 1923
	Apr. 5	Apr. 26	May 12	May 25	June 7	June 20	-do.	Juig 24	Aug. 14	Sept. 9, 1923	Sopt. 20, 1923	Oct. 27,1923	Dec. 6, 1823	9, 1924
		do	May 14	May 28	-Ju.	June 18	June 28	July 11	July 30	Aug. 10, 1923		g. 31,1923	Sept. 17, 1823	Sopt. 30, 1923 Nov. 23
40	-do	Apr. 24	May 8	May 23	June 3	June 16	June 28	July 12	Aug. 17	Sept. Aug. 13, 1923	Sopt. 18, 1923 Aug. 27, 182s	Oct. 5,193	Sept. 24, 1923	Oct. 10,1923
41	-do.	Apr. 26	May 16	May 28	June 7	June 20	July 2	July 20	Aug. 5	Aug. 13, 1923	Aug. 27, 1825	Sept. 8,1923	Sept. 24,1823	Oct. 10,1923

Table 3.-Length of larval periods of Tenebrio obscurus-Continued

No.	$\begin{aligned} & \text { Date } \\ & \text { fourteenth } \\ & \text { molt } \end{aligned}$	$\underset{\text { fifteenth }}{\text { Date }}$ molt	$\begin{gathered} \text { Date } \\ \text { sixteenth } \\ \text { molt } \end{gathered}$	$\begin{aligned} & \text { Date } \\ & \text { severteonth } \\ & \text { moit } \end{aligned}$	Date eighteenth molt	$\begin{gathered} \text { Date } \\ \text { nineteenth } \\ \text { molt } \end{gathered}$	$\begin{aligned} & \text { Date } \\ & \text { twentiet } \\ & \text { molt } \end{aligned}$	$\begin{aligned} & \text { Date } \\ & \text { twenty-irst } \\ & \text { molt } \end{aligned}$	$\begin{gathered} \text { Date } \\ \text { twenty second } \\ \text { molt } \end{gathered}$	Date larva pupated	Length of laryal (days)
35	Jan. 11, 1924									Mar. 7, 1924	338
37	Jan. 6,1924									Man. 20, ${ }^{\text {, }} 1924$	300 338
	Feb. 10, 1924									Mar. 25, 1924	355
	Oct. 26, 1923									, ${ }^{\text {a }}$. 80,1924	280
	Dec. 26,1923	Nov. 30,1923	Dee. 30,104							Feb. 1,1924	312 300
										Feb. 27, 1924	300
	Dec. 31,1923	Jan 23,1924	Feb. 23,1924	Apr. 6,1824						June 3,1024	425
	Dec. 26, 1923	Jan. 26, 1924	Mar. 1, 1924	Apr. 17,1924						May 83,1924	$\begin{array}{r}409 \\ \hline 53\end{array}$
	Oct. ${ }^{\text {Feb. }} 27,1923$	Nov. ${ }^{\text {Mar. } 20,1023}$	Jen, 3, 1924	Feb, ${ }^{\text {May }}$ 20, 1924	June 19, 1824	July 10, 1924	July 30,1024	Seipt. 3, 1924	Sept. 20, 1924		353 642
	Dee. 12, 1923	Jan. 8, 1924	Feb. 21, 1924	Mar. 26, 1024	Apr. 23, 1024					May 22, 1924	413
	Jan. 3,1924	Feb. 2, 1924	Mar. 7, 1924	$\mathrm{ApF}^{\text {9, }} 1924$	May 10, 1924	June 4, 1924				Jüne 22, 1924	144
	May 10, 1924	June 19, 1924	July 10,1924	July 23, 1924	Aug. 8, 1924	Aug. 24, 1824	Sept. 16, 1924	Vct. 20, 1924		Feb, 17,1925	628 589
	July 20, 1924	Aug. 11, 1824	Sept. 14, 1924	Oct. 14, 1824						Feb. 12,1825	

Table 4.-Length of larval periods of Tenebrio molitor

Number	Date egs hatched	Date first molt	Date secon molt	ate thi molt	Date fourth molt	Date fift	$\begin{gathered} \text { Date sixth } \\ \text { molt } \end{gathered}$	Date seventh molt	Date eighth molt	$\begin{gathered} \text { Date ninch } \\ \text { molt } \end{gathered}$	Date tenth molt
	July 11, 1922		July 28, 1822	Aug: 0,1925	Aug. 18, 1022	Apr. 23, 1023	May 25, 1823	Aug. 14, 1923	Sept: J3, 1923	Jan. 10,1024	
	.-do......	,	July 21, 1922	Aug. 2, 1922	-do	Oct. 21622	Dec. 17, 1222	Mar. 7,1923	May 2,1023	May 31, 1923	June 21, 1923
			July 28, 1022	Oct. 2,1022	Feb. 10, 1023	Apr, 3, 1023	May 8, 1923	May 30, 1923	July 29, 1923	Sept. 5, 1923	Jan. 22,1924
	June 23, 1923	ctue 26, 1823	July 9, 1423	July 23,1923	Aug. 13, 1923	Aug. 31, 1923	Sept. 20, 1923	Oct. 7, 1923	Oct. 22, 1923	Nov. 7,1923	Nov, 27,1823
	June 25,1823	Jene 28, 1923	July 10, 1923	July 19, 1923	July 30, 1823	Aug. 10, 1923	Aug. 28, 1923	Sept. 9,1923	Sept. 27, 1923	Oct. 14,1023	Dec. 27, 1923
	July 1,1923	July 3,1023	July 11, 1023	July 17, 1023	Aug. 3, 1023	Aug. 14, 1923	Aug. 27, 1923	Sept. 11, 1923	Jan. 2,1024	Jain. 24,1924	Feb. 21, 1924
	1uld	July 4,1823	July 15,1023	Aúbe 3,1023	Aug 14, 1023	Sept. 2,1923	Sept. 23, 1023	Oct. 5, 1823	Oct. 24,1923	Dec. 6, 1823	Dec 31, 1923
			do.	July 2i, 1023	Aug. 7, 1023	Aug. 17, 1923	Sopt. 1, 1823	8ept. 23, 1023	Oct. 10, 1923	Dec. 30,1920	a. 15, 1024
	July 3,1923	July 7,	July 21,	Aug. 3, 1023	Aug. 13, 1823	Aug. 31, 1023	Sept, 28, 1023	Oct. 23, 1923	Dec. 24, 1023	Jan. 18, 1824	b. 29,1824
			July 17, 1023	July 29,1923	Aug. 21, 1923	Sept. 8, 1823	Sept. 27, 1923	Oct. 28, 1923	Nov. 20, 1023	Dec. 31, 1923	. 23,1924
	July , 9, 1023	July 12, 1923	July 28, 1923	Aug 18, 1923	Eept. 21, 1023	Nov. 20, 1823	Jan. 11, 1924	Feb. 6, 1924	-	Mar. 20,1024	pr. 14, 1824
12	July 15, 1923	July 18, 1923	Jüly 26, 1823	Aug. 10, 1023	Aug. 25, 1023	Sept. 20, 1923	Oct. 8,1923	Oct. 25,1923	+. 24, 1923	F. 30,1923	Dre. 27, 1928
	July 16, 1923	July 10, 1023	July 28,	Aug. 15,1923	Sept. 1, 1023	Sept. 23, 1923	Sept. 27, 192	Nov. 15,1923	t. 27.1823	Dec: ${ }^{\text {D }}$ - 1,1823	Sañ. 30,1924
			- do.	Aug. 7,1923	Aug. 13, 1823	Sept. 5, 1923	Sept. 21, 1923	Oct. 1, 1923	Oct. 241923	Jan. 7, 1924	Feb. 3, 1924
	July 18	July 21, 1823	July 29, 1923	Aug. 13, 1923	Aug. 30, 1023	Sept. 20, 1923	Oct, 10, 1923	Dec. 4,1923	Jañ. 14, 1924	Feb. 12, 1024	Mar 19, 1924
		July 20, 1823	July 28,1023	Aug. '6, 1023	Aug. 18, 1823	Sept. 23, 1923		Oct: 27, 1923	Nov. 14, 1923	Jañ. 3, 1024	Jan, 29, 1924
		July 22, 1923	July 30,1023	Sept, 6, 1923	Oct. 1,1023	Oct. 23, 1023	Dec. 8, 1923	Jin. 11, 1024	Feb. 11, 1924	Mar. 21, 1024	Apr. 10, 1924
		July 21, 1923	---do.	Aug, 13, 1023	Aug. 23, 1823	Sept. 13, 1823	Sept. 30, 1823	Oct. 22, 1923	Dec. 8, 1923	Jan. 0,1924	1924
		July 20,1923	July 28,1023	Aug 7,1023	Aug. 14, 1823	Sept. 1, 1023	Sept. 23, 1923	Oct. 5,1823	Octe 22, 1923	Jan. 17,1924	Feb. 21, 1924
		July 21, 1923	July 20, 1823	Aug. 10, 1923	Aug, 30,1923	Sept. 21, 1023	Oct. 5,1823	Dec. 1,1923	Feb. 20, 1924	Mar. 12, 1924	Apr ${ }^{\text {a }}$ 7, 1924
		July 22, 1923	Aug. 7, 1923	Aug. 27, 1923	Bept. 7, 1923	Sept. 22,1023	Oct, 1,1923	Oct. 16, 1823	Nove ${ }_{2} 2,1923$	Nov, 23, 1923	Dec. 15, 1923 Feb 21 1024
	$y 20$	July 23, 1923	Aug. 2, 1923	Aug. 20, 1923	Bept. 0,1823	Sept. 23,1923	Oct. 10, 1923	Oct. 30, 1923	Dec. 24, 1923	$\text { Jan. } 22,1024$	Feb. 21, 1924 Mar. 30, 1924
	do	July 24, 1923	,	Aug. 11, 1923	Sept. 5, 1923	Sept. 26, 1823	Oct. 28,1923	Dec. 12, 1823	Jan. 14,	Feb, 21, 1924	$\begin{aligned} & \text { Mar. } 30,1924 \\ & \text { JBn. } 24,1924 \end{aligned}$
	July	July 27,1923	Aug. 3	Sept. 1,1023	Sept. 17, 1923 Sept, 29, 1823	Bept. 30, 102 Oct. 17,192	Oct. 18, 1223 Oct. 30,1923	Oct, 27, 1923	Nov. 22, 1923	Dec. 31, 1923	$\begin{aligned} & \text { Jan. } 24,1024 \\ & \text { Mar. 21, } 1924 \end{aligned}$
$27 .$		July 27,1823		Aug. 15, 1923	Sept: 2,1923	Sept, 19,102	Oct. 5,1823	Nov. 14, 1023	Dec. 31, 1823	Jan. 22, 1924	Mar, 11, 1924
		Jul 27.		Aug. 10, 1923	Aug. 27, 1823	Sopt, 23, 102	Oct. 21, 1023	Nov. 7, 1923	Nov. 28, 1823	Dec. 27,1023	Jan. 18, 1924
	- TO^{-}	July 26, 1923	---do...	Aug. 27, 1023	Sept. 11, 1823	Oct. 2, 1023	Oct. 22,1823	Nov. 20, 1823	Dec. 10, 1923	Dec. 31, 1823	Jan. 22, 1924
	July 25, 1923	July 29, 1923	Aug. 6, 1023	Sept. 29, 1023	Oct. 15,1023	Oct. 30, 1023	Nov, 14, 1823	Nov. 28, 1823	Dec. 13, 1823		Jan. 17, 1924
	Aug.	Aug, 4, 1923	Aug. 25, 1923	Sept. 26, 1023	Oct. 11,1823	Oct. 29, 1023		Jan. 23, 1924	Feb. 23, 1824	Mar. 25, 1824	Apr. 14, 1924
32	do	Aug. 5, 1023	Aug. 22, 1923	Oct: 5,1023	Oct. 24,1923	Nov. 7, 1823	Nov. 30, 1023	Jain. 20, 1924	Mar. 6, 1924	Apr. 4, 1924	Apr. 20, 1924
		--do-	Aug. 30, 1923	Sept. 20, 1923	Nov, 10, 1923	Dec. 10, 1923	Dec. 31, 2023	Jan. 16, 1824	Feb. 7, 1924	Mar. 5, 192\%	$\mathrm{Apr}_{2} 21924$
	Aug. 7,1923	Aug. 11, 1823	Aug. 20, 1923	Sept. 17, 1023	Nov. 23, 1923	Dec. 26,1923	Jan. 17, 1924	Feb. 14, 1924	Mar. 21, 1024	\%pr 18, 1924	May 6, 1924
	Aug. 10,1023	Aug. 14,1023	Aug. 22, 1923	Aug. 31, 1023	Sept. 20, 1023	Oct. 23,1923	Nov. 9, 1923	Nov. 28, 1023	Dec. 24, 1823	Jan. 7,1024	T0b. 1, 1924

Table 4.-Length of larval periods of Tenebrio molitor-Continued

No.	$\begin{gathered} \text { Dotente } \\ \substack{\text { Deronth } \\ \text { molt }} \end{gathered}$	$\begin{gathered} \text { Date } \\ \text { Hemith } \\ \text { modit } \end{gathered}$	$\begin{aligned} & \text { Difteate } \\ & \text { thithonth } \\ & \text { molit } \end{aligned}$		$\begin{gathered} \text { Difteate } \\ \text { mithont } \\ \text { moit } \end{gathered}$	$\begin{aligned} & \text { Distate } \\ & \text { siltonth } \\ & \text { molt } \end{aligned}$	$\begin{gathered} \text { Doventent } \\ \substack{\text { soventeoth } \\ \text { molit }} \end{gathered}$	$\begin{aligned} & \text { Dighte } \\ & \text { elghonth } \\ & \text { moit } \end{aligned}$	$\begin{aligned} & \text { Date } \\ & \text { nineteenth } \\ & \text { molt } \end{aligned}$		$\begin{gathered} \text { Dasa } \\ \text { pupated } \\ \text { pupata } \end{gathered}$	
	Aug. 13,102	Sopt. 22,	Jan. 10, 1924									
	Deal is,	Jan- ${ }^{\text {joben }}$	Jan 31,1824	Feb, 27, 1024	Mar. 26, 1224	Apr. 18 8, 1027					May	
	Mar.		Apre	Mail 12	Juna 20, 1924	July 27 27, 1024					Sume 13	
		Feber		Aprictilit							May	
10	Frab. 21,1924		May. ${ }^{\text {che }}$, 1924		(June 23.1024					Feb. 5, 1025	Feb.	¢
${ }_{13}^{12}$	Stion				Juy ${ }^{\text {Jot, }}$		July 10, 1024	Aug. 13.12024	Bept. 12, 1224			${ }^{585}$
13		Mar. ${ }^{\text {Mat, }}$	Apre	May 8 , 1,124	June 28.1294	Sjus,	July 22,1924	Sept. 11, 1834			Jan:	
${ }_{10} 17$		Mar. 21.1224	Apri		Mays 30.1024	Sune		Sept. 15,10204	Jan, 6, 12025			
18	${ }^{\text {Faber }}$			May ${ }^{\text {M }}$							-	${ }^{563}$
			May, 2 2, 1224	May ${ }^{\text {Mas }}$		July 5,1224		sept. 14, 1924			${ }_{\text {San }}$	${ }^{4} 47$
23-1		Feb.		Mar: 25,127	Apri $10,1022^{-1}$						May	
${ }_{22} 2$				${ }_{\text {Junn }}$	${ }^{\text {Junne }}$	July 13,1024	${ }^{\text {Aug. }}$ A 4,1024				${ }_{\text {rabeb }}$	
${ }_{2}^{26-0}$				${ }^{\text {May }}$	May ${ }^{\text {Preme }}$	May 31,1924		July ${ }^{3} 11224$	Јü 2 2,	Bapt. 16	5an 28	${ }^{655}$
${ }_{28}^{28.0}$		Ant.			Juno	-		उuy 212,1024	July 30, 1024	Bept: 156 , 122	eb.	
-	(taber	Mars					Aug. 20, 1204	F6.: 2,1025			b.	
\%			Mand		${ }^{\text {Jull }}$	Eent	Jan, $\mathrm{B}, 1 \mathrm{id}$					
${ }_{3} 3$	Feb. 26, ${ }^{\text {a }}$ 2	Mar.		Apr. 30,1824								322

The data in Table 4 indicate ti at the least number of molts recorded for a larva of T. molitor was and the greatest number recorded was 20. Approximately half of the specimens moltad either 17,18 , or 19 times each.

LENGTH OF LARVAL INBTAFB
With the number of larval molts varying as they do, it is not surprising that the length of the larval instars also varies. Table 5 contains data that indicate the varistions in the length of the different instars.

Table 5.-Length of larval instars of meal worms tenebrio obscurus

No.	Iength in days of larval lnstar No.-																						
	1	9	3	4	5	6		8	0		11				15	16	17	18	19	20	21	22	23
										17				35									
	2	27.	12	213	11	34	©	16	16	14	1.5	17	20	33	35.	59							
		020				15		10	13	10		14	18	25	54,	451							
		27	${ }^{2} 25$	515	${ }^{1} 13$	11	10	15	7	16.		18	${ }_{41}^{21}$	${ }_{54}^{31}$	48	$8{ }^{65}$							
	2	219	$1{ }^{1} 15$	517	1	14	22	14	18	${ }_{18}^{18}$	${ }^{15} 15$	${ }^{22} 17$		54	35								
		927	714	4.16	$1{ }^{1} 1$	9	9	10	16	12	14	16.		24	100								
	2	27	2712	214	12	8.	12	13	13	13	12	14.	19.		85								
		123	314	41																			
		$2{ }^{23}$	15	521	$1{ }^{10}$	${ }^{13}$	13 ¢					17				135	46						
$\begin{aligned} & 11 \\ & 12 \end{aligned}$		43	${ }^{6} 12$	${ }^{5}{ }^{34}$	$4{ }^{1}$		13	${ }_{1}$															
13	2	42	212	211	111	15	13	18	11				20										
14	2	319	9 17	7.10	0.10	12			14			13	15		42								
		219	914	411	18	8		10.			${ }^{4} 10$	15											
		718	9. 14	417				11			${ }^{12}$	12											
		${ }^{2}$	${ }^{2} 12$	210	${ }^{1} 8$				15	11	11.	13				024							
		$4{ }^{2}$	3	${ }^{4} 13$	${ }^{3} 13$		10	10				${ }^{97}$		18				6s					
		217	720	13	310										27	38	4						
		2.24	4.12	28	810	10	8	10	10			15	14	18	36	${ }^{6} 186$							
		712	210																				
2		512	${ }^{2} 15$	57			1.		12	$1{ }^{1}$	II	12	18			925	53						
		4	$2{ }^{2} 12$																				
		21.23	${ }^{3} 12$	3.11	1; 11			20		12	$5{ }^{2} 123$	${ }^{17}$	18			57							
27		320	0	22	011	1 B	24	9	14				51	63									
28		417	714	$4{ }^{2}$	0! 21	12		12		18	812	21	27	34	77	\%							
		$2{ }^{2}$	12	2.9	9114	12	16.	10						44		3							
				310	812			20															
		$2{ }_{2} 18$	${ }^{9} 915$	$\begin{array}{ll}5 & 8 \\ 13\end{array}$	8 12 3 18	11	$1{ }^{1}$							${ }^{17} 17$									
		22	$2{ }^{2} 12$	1213	310											5							
		318	9. 12	12.13	310	11	10.	10	13	10.	015		17			36103							
		1.18	8 ?	710	0. 11			12	15		6 16:	15	518			6							
		24.21	2312	12.15	${ }^{5} 11$			19	12		$7{ }^{17}$												
38		12	$6{ }^{2}$	13 13	313	14	20								${ }^{4} 4$	4							
39		12	8.14	14.10	111			19								80							
		19.	4.15	15.11	13	10	16	36		16	617		29			4							
41		120	2	12.10												32	37						
		15.		$2{ }^{2} 18$	87																		
		20.18	18	1610	18.14			18						33	${ }^{6}{ }^{21}$			31					
45		718	19	18.12	113	9	13	20			12			520	20.29	${ }^{4} 88$							
			20	14.12	213			26			335	$\stackrel{2}{2}$	235	53	331	3142						2	
		818	712	12515	${ }_{1}{ }^{1} 11$	14		${ }_{2} 8$	8	$\left.\begin{aligned} & 3 \\ & 4 \end{aligned} \right\rvert\,$	$3{ }^{3} 9$	21	19			${ }_{20}^{70} 4$							
		${ }_{6}^{8} 18$	${ }^{8}$	25.11				2	5							3034							
		${ }_{3} 1$	$1{ }^{1} 12$	120	${ }_{6}{ }^{19}$	14.	${ }_{18}^{24}$	21	20				$1{ }^{4} 8$		840	40. 21						1	

TENEBRIO MOLITOR

Table 5.-Length of larval instars of meal worms-Continued
TENEBRIA MOLITOR-Continued

No.	Length in days of larval instar No.-																						
	1	2											22			15	16	17	18	19	20.21	22	20
						52	26	27	22	218	9. 16	10. 2	22	25									
12	3		15	15	28	18.	17	13	23	27	2718	18.37	37	37	27	36	21				148		
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	3		18	17	22	17	24	23	35	$5{ }^{25}$	532	32	$2{ }^{2}$	26	14	52	11	12	551	140			
15			7		${ }_{2}^{13}$	12	18.				5128	28128	28	85	21	12	138	83					
10			15		21	20				$5{ }^{5} 8$	${ }^{7} 125$	10	23			130		$4{ }^{2} 10$		5153	3		
17	2	8	9	12	38	17					18	83	32	22		1	17	712			34		
18	4		38	125	22	48	34	31	39	920	20.43	43.17	17	17			12	2		45			
$\begin{aligned} & 10 \\ & 20 \end{aligned}$			814		${ }_{1}^{21}$					$2{ }^{27}$	7. 29	29	30	28	21	35	5	810	$0 \cdot 5$	123.			
21	$\stackrel{3}{3}$		12				${ }_{5}^{12}$	81	${ }^{-11}$		${ }^{5} 132$	32.18	18.	17.	18	18	18			-			
22			20			咟	15			122	${ }^{2} 2$	23	25										
23		10	18	17	17.	17	20	55	29	930	0	${ }^{5}$	22	24		21		2	2195				
$\begin{aligned} & 24 \\ & 25 \end{aligned}$				25		32	45	33	38	838	8120	20.22	22	29	17	11	1.	53		3			
$\begin{aligned} & 25 \\ & 28 \end{aligned}$	4		${ }^{89}$	37 28			${ }_{8}^{9}$	${ }_{27}^{27}$	${ }^{39}$			12	29	16			5.1	42		18	5713		
27			12								${ }^{0} 2$	4	59	15.									
23	4	7	7	17		128			20	$2{ }^{2}$	$2{ }^{2} 4$	$2{ }^{2}$	35						278		150		
$\begin{aligned} & 20 \\ & 30 \end{aligned}$	3		24	15		. 20	29	20	21	122	229	20	20	${ }_{2}{ }^{2}$							0		
31		${ }_{2}$	${ }_{32}^{54}$	15			14	${ }^{17}$	12	177	$7{ }^{20}$	$2{ }^{2}$	25	25	29								
32		17	44	19		$1{ }_{23}$	60	37	28	${ }_{22}$	$2{ }^{2}$				17			5.18	8160	18			
33		25	30	42	$30:$	21	18	$2{ }^{2}$	27	7	${ }^{2} 19$	${ }^{6} 9$	25	13	22								
34			28	67	33 :	22	28	36	28	818	81	31.18	18	12	15	16	4						
35															21	10							

ptipation
After becoming apparently full grown the larvae may transform to the pupal form or may remain for many months with but little change in size or outward appearance.

In the laboratory at Washington, which was heated during the winter, the larvae of Tenebrio obscurus began to pupate in numbers in November and continued to do so throughout the winter and spring month. A few of the larvae that hatched very early in the year pupated as early as June of the same year, and pupae were obtained in small numbers during each succeeding month until November, when their numbers increased. In barns, storehouses, or similar structures that are unheated during the winter months, the larvae do not pupate normally until spring or early summer.
The larvae of $7^{:}$molitor do not begin to pupate so early in the season as those of the foregoing species. In the laboratory the first pupae were obtained in late January, buṭ in unheated warehouses or storehouses they do not normally pupate until May or June.

When about ready to pupate the larvae of both species come to the surface of the food stuff in which they are living and pass through a short prepupal period during which they are sluggish and exhibit few signs of life.

THE PUPA

The pupa of both species when first transformed is white, except for the tips of the caudal spine and the tips of the lateral appendages. As the pupa becomes older it changes in color to a yellowish brown. The pupae are always naked and unprotected by pupal cases. The pupae of Tenebrio obscurus (fig. 3, C) reared in the laboratory at Wasbington, D. C., ranged in length from 14.5 to 20.5 mm ., and in widtsi from 4.5 to 6.5 mm . The pupae of T. molitor ranged in length from 14 to 19 mm . and in width from 5 to 7 mm .

HTBATION OF THZ POPAL STAGE

The length of the pupal stage is dependent chiefly on the prevailing temperature. As shown in Table 6, the pupal stage of Tenebrio obscutus ranged in length from a maximum of 20 days during December and January with an average mean temperature of $65^{\circ} \mathrm{F}$., to ai minimum of 7 days in June and August, when the mean averige temperature ranged from 77° to 78°. The pupal period of T. molitor waried from a mneximum of 18 days during February with an average mean temperature of 65° to a minimum of 6 days in June with an average mean temprature of 81°.

Table 6.-Length of pupal stage of meal worms TENEBRIO OBSCURUS

No.	$\left\{\begin{array}{c} \text { Date } \\ \text { Iarva } \\ \text { yupated } \end{array}\right.$	Date ndult cmerged	rangth of pupal perlad	$\begin{gathered} \text { Average } \\ \text { mean } \\ \text { tomper } \\ \text { atira for } \\ \text { period } \\ \text { a } \end{gathered}$	No.	Date larva pupated	Date adutut emersed	Jength of pupal period	Aversge mean temperatum for persd
	Dec. 20	1004 11	$\begin{gathered} \text { Days } \\ 20 \end{gathered}$	${ }^{20}$	18	$\xrightarrow{1024}$	j924 Mar. 29	Daye	${ }^{\circ} 9.86$
$\begin{aligned} & 1- \\ & 2 \end{aligned}$	Dee. 28	Jan. 13	10	67	10	Nibr. 23	Apr. ${ }^{\text {g }}$	34	67
3.	5)ec. 39	Jan. 15	16	68 '	20	Mar. 25	Apr. 7 Apr.	13 13	67
					22	Apr: Apr. 8	Apr. ${ }^{15}$	13	67 68
	Inn. 4	Isn. 20	50	66	23	4 pr .17	Apr. 3)	13	68
5	Ian. ${ }^{\text {a }}$	5 n . 23	17	65 :	21	Apr. 30	Miay 13	13	68
	Jan. 10	-do--	13	66^{6}	25	Mas 3	May If	13	68
5	Jan. 15	Fob. 1	17	65	26	May 5	May 18	13	68
8	Jan. 21	Fobs. 6	16	65	24	May 18	Mry 31	13	68
	Jan. 25	Fob. 9.	15	$66:$	38	May. ${ }^{\text {a }}$	June 4	14	68
10	Jan. 30	Feb. 15	16	85	29	June 7	June 19	12	73
11	Fub. 1	Feb. 17	16	03	30	Juna 9	June 21	12	74
12	Feb. 7	Feb. 21	14	06	31	Juns 11	-60---	10	75
13	Fob. 17	Mar. 4	16	66	32	June 29	June 29	7	78
14	Fcb. 20	Mar. 5	14	56 !	33	July 36	Iniy 24	8	76
15	Feb. 29	Mav. B_{5}	15	05	34	July 28	Alug. 4	8	77
1tis	MInt. 1	…d0.	14	05	35.	July 30	Aug. 7	8	79
17.	Mar. 7	Mer. 23	13	65 !					

TENEBRIO MOLITOR

THE ADISLT
The adult beetles of the two species closely resemble each other in size and form. They are both considerably more than half an inch in length, but Tenebrio molitor (Fig. 4) is shining brown to almost black in color, while T. obscurus (Fig. 3, D) is normally a dull pitchy black. Both species possess well-developed wings and are occasionally attracted to bright lights. While generally rather uniform in size, the individual beetles occasionally vary greatly. Arendsen Hein ($2, p$. 262), in his studies on variation, found that the adults of T. molitor ranged in size from 10.5 to 23.5 mm . Males and females
occur in about equal proportions in both spacies. Superficially both sexes look alike, but they can be readily differentiated by an examination of the genitalia, which are sasily 'exposed by a slight pressure on the abdomes.

baiergence

At Washington, D. C., the adults normally begin to appar in the spring and from then on may be seen all through the summer. The aduits of Tenebrio obzarus are the first to be out, many of them emerging a month or more before the first appearance of T. molitor. In the laboratory, which was heated during the day in winter to a temperature that ranged between 55° and $75^{\circ} \mathrm{F}$., aduits of T. obscurus emerged in every month of the year. Larvse of the first generation began to pupate as early as fume, a few adults emerged in Jume and July, and with each succeeding month the numbers of emerging

Fig. 4.-Tenchrio molitor, adult beetle, $\times 4$ adults increased until the peak was reached the following February. Adults of T. molitor did not begin to emerge in the laboratory until January, the peak of the emergence also occurring in February. Larvae of T. obscurus kept throughout the winter in an unheated building began to pupate in April, and adults began to emerge in late April and early May. Larvae of T. molitor under similer conditions pupated during the latter part of May and June.

LONGEVITY

As compared with many stored-grain pests, the adult meal worms are relatively short lived. Statisties of several hundred specimens reared in the laboratory showed the average length of life of adults of Tenebrio molitor to be about two months, while the average length of life of adults of T. obscurus was about three months. The life of the female adults of T. molitor ranged from 37 days as a minimum to 96 days as a maximum, with an average of 65 days; the life of male adults ranged from a minimum of 39 to a maximum of 92 days, with an average of 58 days. Arendsen Hein (2, p. 244-245) recorded male beetles living from 39 to 113 days and female beetles from 89 to 132 days. He obtained an average life of 60 days for the males and 111 days for the females of this species.

Fernale adults of T. obscurus reared in the laboratory ranged in length of life from a minimum of 42 to a maximum of 152 days, with an average of 84.5 days. Male adults ranged in length of life from a minirum of 31 to a maximum of 132 days, with an average of 83.4 days. Rau (20) found that the length of life of adults of this species ranged from 10 to 55 days, with an average of 24 days.

OVIPOSITEON

The eggs of both specios of beetles are laid singly or in small clusters, sometimes loosely in the flour or meal in which they are breeding, at other times along the sides of the bin or other receptacle. They are covered with a sticky secretion that causes them to adhere to adjacent surfaces or objects and become coated with the flour or meal in which they are laid. For the purpose of obtaining oviposition records adults were confined in glass Petri dishes with a small quantity of grahem flour mixed with meat scrap. The eggs for the most part adhered to the bottom of the Petri dish and were easily counted.

AGE AT WHICH MATING AND OVIPOSITIGN BEGLN

Mating takes place within a few days after emergence and is repeated at intervals throughout the life of the beetles. Observations have shown that when once fertilized the female produces fertile eggs for a considerable time, probably throughout the average egglaying period. Unfertilized females were observed to lay a few eggs, but none of these hatched.

The preoviposition period varies somewhat and is influenced chiefly by temperature. As shown in Table 7, adults of Tenebrio obscurus commenced egg laying in from 9 to 20 days after emergence, the beetles in all cases being kept at ordinary laboratory temperatures. Adults of 7 ' molitor commenced egg laying in from 5 to 18 days after emergence. The adults with preoviposition periods of less than 10 days had been placed in an incubator at the time of emergence so that the shorter preoviposition periods were doubtless due to the higher temperature maintained. The temperature of the incubator ranged from 80° to $85^{\circ} \mathrm{F}$.

Table 7.-Data concerning ourposition and longevity of meal worms at Washinglon, D. C.

TENEBRIO OBSCURDS

No.	Dato adult emerged	$\begin{aligned} & \text { Date } \\ & \text { frat } \\ & \text { egg was } \\ & \text { laid } \end{aligned}$	Length of pra-oriposition yeriod	Date fast egr was lald	Eength of ovi. position period	Number of egrs Iald	Date adult dfed	Longth of lite of adult
	1023	1020 !	Day*	1983	Days		1803	Days
1.	Fob, 18	Mrar. 3 !	13	July 18	137		Etty 20	152
2	Mar. 6	Mrar. 10	10	May 19	6.1	292	May 24	79
3	-do.-.	Mer, 17	11	June 10	9	270	July 3	119
4	-do	-do...-	11	Misy 0	53	320	May 11	66
5	10	Mar, 20	14	Jund 13	85	548	Jund 16	102
6	do	Mbr. 21	35	May 18	58	73	Mey 30	8
$\overline{7}=$	Mas. 13	Mar. 22	Q	Jusy 1	101	844	Juty 5	114
g	Mar. 15	Mar. 24	0	Junq 28	96	778	Juna 29	106
9	Mar 17	Mar. 20	i,	Junt 21	84	B55	Junc 28	103
10.	Mar, 13	Apr. 8	20	June 28	79		-do.-.-	101
11.	-da---	Apr. 3	15	Tune: 8	86		June 11	${ }_{84}^{84}$
12	Mar. 22	-do.	12	July 4	02		July 5	105
13.	Mar 24	Apr. ${ }^{7}$	14	June 26	80		July 2	100
14	Mast. 5	Apr. 0	12	Jung 30	85		--do...-	99
15	Mar. 28	Apr. ${ }^{\text {a }}$	12	Juno 21	73		-do---	9
16	Mar. 29	Apr. 10	12	Juna 7	58		June 14	77
17	Mac. 30	Арг, 16	16	${ }^{\text {slay }} 7$	22		May 11	42
18	Apf. 4	Apr. 17	13	June 19	13		July 2	
19	Apr. ${ }^{\text {a }}$	Apr. 22	17	July 15	84		Jt5y 16	101
20	Apr. 12	Apr. 25	13	June 5	41		June 8	67
21	Apr. 10	Apr, 20	13	June 9	41		June 23	6.
22	A.pr. 23	May 2 '	9	June 10	30		June 18	5
23.	Apr. 25	May 6	11	Juno 17	42		-do-..	5
24	May 2	May $12{ }^{\text {f }}$	10	June 27	40		June 28	57
25.	Mny 13	May 22 ;	0	July 1	40	307	July ${ }^{\text {a }}$	5

Taple 7.-Data concerning ourposilion and longevity of meal worms at Washington, D. C.一Continued
tenebrio molmpor

1 No. 5 and Nos. 8 to 18 were reared In an ineubatot.

- PERIOD OF OYIPOSTCON

The oviposition period extends over the greater portion of the life of the beetles. The data of Table 7 show that the oviposition period of adults of Tenebrio obscurus reared in the laboratory ranged from a minimum of 22 days, April 15 to May 7, to a maximum of 137 days, Narch 3 to July 18. The oviposition period of adults of T. molitor reared in the laboratory ranged from a minimum of 21 days, March 5 to March 26, to a maximum of 67 days, February 15 to April 23. Arendsen Hein ($2, p .244$) found that the oviposition period of T. molitor ranged from 50 to 130 days, with an average of about 2 months.

FREQUENCY AND RATE OF OVAROSITION

The Tenebrio females bred in the laboratory did not oviposit with ancegreat regularity. As shown in Table 8 , frequent intervals occurred between egg layings. Eggs were often laid for several days in succession, and on one occasion a female T. obscurus laid eggs on 13 consecutive days and after an interval of 1 day laid eggs on the 17 following days. Similarly an adult female T. molitor deposited eggs on each of 27 consecutive days. The intervals between ovipositions ranged from one day to as many as nine days.

Table 8.-Daily ovipasition records of meal worms ${ }^{3}$
TENERRIO OBECURUS

Date	Number of eges latd by indivatal No.-														
	1	2	3	4	5	0	7	8	9	10	11	12	13	14	15
1923															
Mnr, ${ }^{\text {Mur }}$ -	4														
Mur. ${ }^{\text {cose }}$	1														
Mar. 7	22														
Mar. 8	1														
Mar. 18	0	3													
Mar, 17	12	1	28												
Mar. 18	, 9	1	0												
Mar. 19.	10	0	0												
Asar. 20	0	1	18												
Mitr 21	15	0	${ }^{8}$	2											
Mer. 22	0	0	18	${ }_{2}^{6}$	0	${ }_{0}$									
Mar. ${ }^{\text {23, }}$	20	0	24	22	10	0									
Mar. ${ }^{25}$	4	2	8	0	0	0									
Mar. 38	22	0	7	0	2	1									
Mar. 29	0	0	4	3	3	23	3								
Mar. 30	13	${ }^{\text {日 }}$	0	3		$\stackrel{3}{6}$	24								
Mar 31	0	1	15	${ }_{5}^{5}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	${ }_{42}$	${ }_{2}$								
Aprs ${ }^{\text {Ang. }}$			0	${ }_{0}^{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	${ }_{0}^{42}$	0	12	\bigcirc						
Aprr. 4.	2	$\stackrel{3}{0}$	1	0	0	0	30	0	1						
Apr. 5	15	4	15	Q	0	3	25	34	2						
Apr. ${ }_{\text {a }}$		9	7	26	1	0	0	18	0	$\frac{1}{2}$					
${ }^{\text {Apr. }} 7$	8	9	13 0	2	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	2	2	${ }_{0}^{12}$	8	2					
Apr. ${ }_{\text {Apr }}$	8888888	${ }_{0}^{5}$	0	8	1	28	0	0	0	0	12				
Apr. 10.	10	8	8	2	1	8	1	38	8	46	40	10			
Aprs 12	11	7	15	32	0	0	0	0	${ }^{6}$	2	0				
Apr. 12	2	3	${ }^{6}$	0	1	14	82	23	${ }^{3}$	4	0	0			
Apr. ${ }^{\text {a }}$	17 3	${ }_{4}^{7}$	19	12	2	0	0	30	3	6	0	18			
Aps. 15	5	0	0	10	0	0	0	0	4	2	14	0			
Apr. ${ }^{17}$	15	3	0	6	0	2	38	0	0	18	0	0	--		
Apr. 18	2	7	${ }^{6}$	8	${ }^{3}$	14	0	7	1	8	20	21			
Apr. 19	0	3	12	0	1	$\stackrel{9}{8}$	${ }_{0}^{8}$	13 0	${ }_{4}^{3}$	$\stackrel{5}{0}$	0	0			
${ }^{\text {Apr. }}$ 20	0	20	0	0 4	7	12	18	3	8	34	32	25			
Appr, 22	8	12	5	25	0	0	0	0	0	0	0	0			
Apr, 23.	18	8	0	40	5	13	48	Ed	4	48	44	20			
Apr. 24	10	0	12	0	2	0	0	0	0	15	${ }^{0}$	25	$\stackrel{2}{4}$		
Apre 25	12	17	$\stackrel{3}{7}$	0	${ }^{6}$	$\stackrel{2}{8}$	28	${ }^{8}$	30	$\stackrel{15}{16}$	1	0	40		
Apt. ${ }^{\text {Afs }}$	2	$\stackrel{1}{4}$	$\stackrel{7}{8}$	0	2	18	16	16	0	14	61	21	0		
Apr. 28	22	0	30	10	0	1	${ }^{6}$	0	2	4	0	0	32		
Apr, 29	4	12	0	${ }^{6}$	4	$3 f$	0	20	$\stackrel{0}{0}$	0	0	0			
ApF^{30}		0 16	$\stackrel{0}{2}$	20	${ }_{0}^{0}$	${ }^{20}$	20	3	20	20	50	4	40		
May2.	14	0	2	34	0	12	37	0	32	0	0	9	0	2	
May 3	23	11	0	0	0	3	0	0	7	24	0	12	30	8	
May 4	,	8		5	0	5	20	40	0	0	24	0	0		
May ${ }^{\text {a }}$	$\stackrel{9}{2}$	21	$\stackrel{0}{4}$	$\frac{2}{0}$	0		14	0	18	0	11	- 4	48	2	
May ${ }^{\text {b }}$	0	0	14	0	0	${ }_{0}$	14	4	18	27	34	0	0	0	
May 8.	${ }_{8}^{12}$	30	0	10	0	17	36	18	10	4	6	0	0	6	
May 9	14	0	1	11	0	0	12	D	12	61	14	9		0	-
May 10.	0	12	0	0	0	0	18	1			0	5	0	9	
May 11	$\stackrel{2}{0}$	12	0	9	2	${ }_{5}^{8}$	$\frac{1}{7}$	${ }_{1}^{1}$	12	0	23	30 0	0	7	0
Mny 12	$4 i$	7	0	32	0	20	12	40	21	40	2	0	17	23	
Mby 14	0	1	-	0	0	46	${ }^{13}$	0	0		0	13	0	0	
May 1ă	13	0	0	24	2	${ }_{4}^{0}$	${ }_{27}^{28}$	$\begin{array}{r}33 \\ 8 \\ \hline\end{array}$	0	10	${ }^{8}$	${ }_{1}{ }^{0}$	2	5	0
May ${ }^{16}$			0	$\stackrel{98}{15}$	$\frac{1}{0}$	${ }_{0}^{42}$	27 15	${ }_{8}^{8}$	8	10	2	18	A	8	0
May ${ }^{17}$	8	$\stackrel{13}{2}$	0	${ }_{0} 0$	3	17	0	0	8		0	12	27		
May 19	$\stackrel{ }{ }$	30	0	0	0	0	25	12			12	8	0	0	0
May 20		0	0	$3{ }_{4}$	0		0	0	16		31	0	30	10	-
May 21	${ }_{30}^{26}$	0	0	12	0	55	31	${ }^{44}$			28	7	0	0	39
May 23.	2	0		0	0	0	0	14	:8		0	12		1	12
May 24	0	0	0	0	0	0	10	0	0	28	1	0	10	8	0
May 25	4	0	0	0	0	${ }_{25}^{2}$	16	${ }^{6}$	3	2	22	${ }^{1}$	40	2	
May 27.	± 8	0	0	$\stackrel{1}{2}$	0	${ }_{81}^{23}$	35	4	O	2	44	29	0	5	26
May 30	0	0	0	${ }_{0}$	0	0	0	0		30		0	27		

1 Dates on which to egge wers latd by any of the beeties bave been omitted from this tabie.

Table 8.-Daily oviposition records of meal worms-Continued TENEBREO QBECURUS-Continued

Dato	Number of egss ladd by individual No.-														
	1	2	8	4	\%	8	\because	8	9	10	11	12	13	14	15
$\underline{1923}$															
May 31.	4	0	0	${ }_{6}$	0	0	37	9	27	4	20	16	0	21	44
5 uno P	2	0	0	1	0	0	0	$\stackrel{0}{10}$	${ }^{2}$	1	0	8	0	0	10
Junes.	0	0	0	0	0	0	42	0	0	26	32	8	24	6	4
Jume 4	20	0	0	0	0	12	0	80	16	0	0	0	0	0	0
June 6	0	0	0	11	0	0	30	0	0	29	0	1	48	15	32
June	31	0	0	0	0	15	0	28	23	0	0	0	0	0	0
June 7	22	0	0	1	0	42	19	24	4	10	0	4	0	10	0
Juns 8	2	0	0	2	0	0	0	2	3	4	0	0	10	4	12
June ${ }^{\text {d }}$	18	0	0	0	0	1	0	0	0	0	3	0	${ }^{6}$	0	0
Jund 10.-	0	0	0	0	0	0	2	0	0	0	0	0	0	4	9
June 11	7	0	0	0	0	0	0	3	0	5	1	0	16	0	0
June 12	13	0	0	0	0	18	0	6	0	0	0	0	0	0	0
June 13	5	0	0	5	0	0	2	2	0	0	0	0	8	0	0
Jung 14-	${ }^{6}$	0	9	0	0	0	0	4	0	0	0	0	10	0	6
June 18	18	0	0	0	0	0	3	8	0	12	3	0	1	0	2
Jund 17	0	0	0	0	0	10	0	15	0	0	0	0	0	0	0
June 18.	28	0	0	0	0	0	20	35	0	10	8	0	32	0	16
June 19	${ }_{8}$	0	0	0	0	15	32	4	0	θ	${ }^{6}$	0	0	0	4
June 21	${ }_{8}^{8}$	0	0	،0	0	3	0	0	0	0	0	0	12	0	11
June 22.	15	0	${ }_{8}$	0	0	22	$\frac{1}{0}$	12	0	0	4	0	${ }_{8}^{6}$	0	15
June 23.	11	0	0	0	0	0	0	4	0	0	0	0	0	0	
Jupe 24.	0	0	0	0	0	0	0	0	0	18		0	0	0	. 0
June 25-	12	0	0	0	6	0	0	6	0	0	0	0	18	0	15
Jung 26.	10	0	0	0	0	2	0	6	0	4	1	0	20	0	9
Juno 28	4	0	0	0	0	4	0	6	0	12	0	0	4	0	16
June 29	7	0	0	0	0	4	0	0	0	0	0	0	0	0	0
June 30	2	0	0	0	0	3	0	2	0	7	0	0	8	0	0
3uly ${ }^{1}$	0	0	0	0	0	3	0	0	${ }_{0}^{0}$	0	0	0	0	0	20
July ${ }^{\text {Jul }}$	6 4	0	0	0	0	0	0	${ }^{6}$	0	0	0	0	${ }_{1}^{1}$	0	0
July 4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
suly 5	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
July B	8	0	0	0	0	0	0	0	0	0	0	0	1	0	0
July 8	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
July 0.	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0
July 10.	7	0	0	0	0	0	0	0	0	0	0	0		0	. 0
July 11.	7	.	0	0	0	0	0	0	0	9	0	0	2	0	0
Juy 12	4	0	0	0	0	0	0	0	0	0	0	0	4	0	0
Tuly 13	4	0	0	0	0	0	9	0	0	0	0	0	4	. 0	0
Juy 15	${ }_{0}^{4}$	0	0	0	0	0	0	0	0	0	0	0	12	0	0
July 16	2	0	0	0	0	0	. 0	0	0	0	0	0	2	0	0
July 17-	2	0	0	0	0	0	${ }^{6}$	0	0	0	0	0	0	0	0
July 18.	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	970	284	326	541	73	844	955	909	410	345	710	420	058	\%73	307

TENEBRIO MOLITOR

Table 8.-Daily oviposition records of meal worms-Continued
TENEBRIO MOLITOR-ContInued

The number of eggs laid during any one day varied considerably. Female beetles of T. obscurus were more prolific than those of T. molitor and laid the larger daily batches of eggs. The largest number of eggs laid by a female of T. obscurus dúring 24 hours was 62 , whereas the largest number laid by a female T. molitor was 40. Occasionally females of both species laid only one egg in 24 hours.

NOMBER OF GGGS DEPOBITED BY FEMALES

The Tenebrio beetles are relatively prolific egg layers, and were it not for the rather prolonged lerval period they would be capable of increasing in numbers at a tremendous rate. Females of T. obscurus reared in the laboratory deposited an average of about 463 eggs. The smallest number laid by one femele was 73 and the largest num-
ber 970 . Females of T. molitor deposited an avarage of about 276 , eggs each. The strallest number laid by one female was 77; the largest; 576. (See Table 7.)

Areadsen Hein (2, p. 244) obtained an average of from 100 to 150° eggs per female of T. molitor, with a minimum of 36 and a maximum: of $3 \overline{5} 9$ eggs.

Length of life cycle

Both species of meal worms have been considered as having one generation a year in the United States. The investigations of the writer indicate that this is for the most part correct. Under very favorable conditions, however, there may be a partial second generation of Tenebrio obscurus as far north as Washington, D. C. As may be seen in Table 2, individual No. 45 passed through the period from ogg to adult in 105 days. The egg was laid March 1, and the adult emerged June 14 . A preoviposition period of 9 days added to this gives a minimum life cycle of 114 days. On the other hand, a small percentage of individuals require two years to complete their development; No. 28 (Table 2) emerged as an adult 675 days after the egg whs laid.

The shortest period from egg to adult recorded for T. molitor was. 301 days. (Table 2, No.36.) The egg was laid July 18, 1923, and the adult emerged May 14, 1924. With a preoviposition period of 10 days, this would give a minimum life cycle of 311 days. Many specimens bred in the laboratory at Washington, D. C., required. two seasons or more than 500 days to complete their developiment. The longest developmental period recorded for this species was 649 days. (Table 2, No. 2.) The egg was laid June 20, 1922, and the adult emerged March 30, 1924.

RESISTANCE TO STARVATION

The larvae of the meal worms are very resistant to starvation, being able to go for very long periods without food or moisture. Of 50 larvae of Tenebrio obscurus kept without food or moisture at ordinary yoom temperature, half survived 6 months, 8 survived 8 months, and 1 specimen survived 9 months.

EFFECT OF EXTREME TEMPERATURES

All stages of both species were killed by a one-hour exposure to a temperature of $125^{\circ} \mathrm{F}$.

Eggs of both species were killed by a 24 -hour exposure to a temperature of $30^{\circ} \mathrm{F}$. or lower. Adults of both species were killed by a 24 -hour exposure to a temperature of 10° or lower. Pupae of T. obscurus exposed for 24 hours to a temperature of 5° to 10° were unable to transform to adults, and soon died. Larvae of both species were killed by a 24 -hour exposure to 0°. A 4 -day exposure to a temperature varying from 5° to 10° resulted in the death of larvae of T. obscurus, but larvae of T. moliter exposed to this temperature for three weelks showed faint movements.on being removed to normal room temperature, and exhibited these movements for several days before succumbing. Temperatures around the freezing point had little effect on the larvee. Larvae oi both species showed signs of life after having bzen exposed for more than seven months to a temperature ranging from 30° to 35°.

PARASITES

The meal worms appear to be almost free from the attack of parasites. Schulze (27) records the destruction of a brood of Tenebrio molitor by a mite, Tyroglyphus mycophagus Megnin, which attacked larval, pupal, and adult stages, but so far as the writer is aware the meal worms are not attacked by hymenopterous parasites:

CONTROL MEASURES

Owing to the large size and comparatively slow development of the meal worms, their control is relatively simple. Periodic and thorough cleanivig of mills, warehouses, granaries, etc., should prevent thean from becoming established. Infested materiai may be treated by fumigation with heavier-than-air gases or by subjecting it to a temperature of $130^{\circ} \mathrm{F}$. for an hour or longer.

The most satisfactory of the heavier-than-air gases for this purpose are carbon disulphide and ethylene dichloride-carbon tetrachloride mixture. Carbon disulphide in the vapor form is highly inflammable and explosive, hence its use should be restricted to situations in which the fire hazard can be absolutely controlled. The ethylene dichloridecarbon tetrachloride misture is noninflammable and nonexplosive and can be used when it is impossible to use carbon disulphide with safety.

DESCRIPTION OF THE MATURE LARYA OF TENEBRIO MOLITOR LINNAEUS ${ }^{\text {a }}$

Larvae of the genus Tenebrio LeConte belong to the tenebrionid subfamily Tenebrioninae, a characterization of which was given by the writer in a previous paper (25). The following description is based on the mature larva of Tenebrio molitor.

Length 30 mm .; color testaceous with head sad anterior face of legs somewhat darker; sternum, hypopleurum and epipleurum of thorax, anterior and posterior margins of pronotum, and posterior margins of the following segments castaneo-testaceous; anterior portion of mesonotum and metanotum, of first abdominal segment, and of nearly all nota of seventh, eighth, and ninth abdominal segments ferrugineo-testaceous, ${ }^{4}$ each of the last-mentioned segments darker than preceding one; tips of mandibles, claws, and cerci somewhat piceous; anterior and posterior margins of prothorax and posterior margins of the following 10 segments longitudinally finely striated; terga on thoracic and on first to eighth abdominal segments with a medien longitudinal line. Surface punctate, punctures quite far apart. Form elongate cylindrical, sbout ten times as long as wide (fig. 5, C); dorsally convex, ventrally slightly Hattened; pygidium movable up and down, subconically produced, bicornute. Head, ventral side of thoracic segments, anterior portion of sternum of first abdominal segment, pygidium, ninth sternum, and legs clothed with reddish setae; rest of body glabrous with few thin hairs.

Cranium rounded (fig. 5, B), nutant, exserted, about three-fourtiss as long as wide (from epistomal margin (epi) to occipital foramen), broadest medianly, dorsaliy somewhat convex, ventrally slightly less so. Anterior frontal angle (fa) rounded.

Frons (f) two-thirds the length of cranium, about as wide as long with extreme width anteriorly, side margins convex.

Epicranial halves ($\mathrm{fg}, 5, \mathrm{~B}$, epc) meeting dorsally; epicranisl suture one-third the length of cranium; ventrally the halves separated by the gula (fig. $6, \mathrm{C}, \mathrm{gu}$); dorsally with a few long reddish setae (fig. $5, \mathrm{~B}$), 2 near posterior (1 on each side)

[^1]

Fio. 6.-Tenebrio molitor, parts of mature larva: A, Mandian and ligald seen from huccal cavity, also hypopharyngeal megion and oesophaguz, $\times 20 ; 3$, hypopharyageal region of
 ventrai side, X 12; D, gide vlew of head with fight tmandibie, marith, and manns removed, showing how dorsal sinfore of molar part of each mandiflo and bsenf opines of opipharynx come together, and hoiv ventral quafece of molar jart of each mandible and hypopharyngeal sclerita come togethar to form grinding stafaces, $\times 20$; I , Iot mesothoracic iog, showing postarior face, $\times 25$ F wild G, ieft prothomaje leg, anterior, and posterfor laces, respectively, $X 25$, Magnallcatlons approximate.) apl, anterior paragnathai iobes; bs, base of stipes; cul, cardo; cl, elypeas; coz, coza; epe, eplersnlom; eph, epphargax; fe, fossis for cardo; fe, femnr; fm, fossa tor mandibio; oth, gum; hbr, hypopharyngeal bracon; hse, hypopharyngeal scierita; hup, hypostomp; ist, tot, inner margin of etipes; Iab, labrum; $i_{\text {, }}$ jlguia; by, Labinl palpus; m, molas part; ma, mais maxillaris; maf, macilary articuiating area; ma, mandible, me, mentam; mea, madian ares; map, marillary palpus; oes, oesophagus; pay, basal zaembrane of maxilary palpus; pi, piate gupporting zclerite; pon, posthypophspypx; ppt postarlor parspathai zobes; phir pretypopharymx sm, submentum;
 trochanter
and 4 near anterior (2 on each side) ends of frontal suture, inner 2 of these anterior setae placed on ejpistoma almost touching clypeus (cl); on each side near basal membrane ($b \mathrm{~m}$) of antenna, 5 or 6 setae, 3 of which are on the dorsolateral side; ventrally several thin redidish setae; behind setae around antennal membrane and along sides of the head about 6 long setae (fig. 6, C), farther inward near gula 2 additional long setae, and behind these several short ones.

Gula (fig. 6, C, gu) distinct, well chitinized, hourglast-shaped, slightly longer than wide, widest posteriorly, with tentorial pits ($i p$) just below middle of side margins.

Clypers (ig. 5, B, cl) subtrapezoicial, widest posteriorly, length to extreme width 881 to 3 , medianly with slight transverse ridge, on each side two well developed setae, one near outer margin, the other more inwardly placed along the ridge; side margins of anterior half testaceous, rest slightly chitinous; side margina of posterior half and portion along epistomal margin castaneo-testaceous, rest testaceous.

Labrum (fig. 5, B, lab) well developed, movable, transversely rectangular, twice as wide as long, anterior half testaceous, posterior half castaneo-testaceous, anterior margins nearly straight, anterior corners strongly rounded, side margins convex; disk between center and lateral margins with 2 long, reddish setae, 1 on each side, and exterior to these, and piaced a littie more anteriorly, 1 seta at margin on each side; on each of the saterior corners 2 more long setae; toward middle of front margin snother slightly shorter seta on each side, and in front of these and along the extreme edge 4 short setae: along anterior corners on ventral side of jabrum about 12 or 13 iiregularly placed, shorter, chitinous, slightly curved setae ${ }^{5}$ (fig. 5 , A), the ones nearest the center more heavily chitinized.

Ocelli vanishing, arranged in two groups on each side, just behind antennal ring (fig. 5, B); both groups transverse, the anterior one with three more or less fused lenses, the posterior one with two fused lenses.

Antenna close to mandible, attached to a diatinctly colored rim behind dorsal mandibular fossa (fig. 5, C, B); basal antennal membrane (bm) well developed with its posterior dorssl margin sligatly chitinized; three articles, all testaceous, with anterior portions rather membranous; basal article clavate, cylindrical, about as long as labrum, twice as long as wide; second article slightly darker thno first, clavate, cylindrical, not quite as thick as basal article, about three times as long as wide, distally with a few minute setae; apical articie very small, cylindrical, about three times as long as wide and about one-fourth as long as second article; distally bearing a hair as long as the article and in addicion severai minute tactile hairs; no supplementary appendix.

Mandibles of right and left sides differing in shape; both spically bifid (fig. 5, D, F, a^{1}, a^{2}), each with an additional tooth (t) between apex and molar part (m) ; tooth of right mandible (F, t), however, prominent and placed near apex, that of left (D, t) less developed and placed close to molar part; molar part of right mandible with bituberculate crown, that of left mandible with hollow crown; ventrally with cutting part deeply excavated; ${ }^{\circ}$ apex, cutting edge, and molar part heavily chitinized and somewhat piceous, rest of mandible ferrugineo-testaceous; exterior surface (the back of the mandible), distally rounded (rs), without margination, bearing a single seta on dorsal surface arising from a slight depression behind spical teeth; proximally (opposite the molar part) excavated (ezu), without membranous elevation, bearing 4 setae, 2 long chitinous ones on dorsal surface above the fossa and 2 shorter ones on ventral surfsce near the condyle.

Maxilla dorsally almost completely covered by mandible (fig. 6, D), weli chitinized; palpus (fig. 6, C, mxp) surmounting mala ($m a$) by about one-third of its own length; palpiger (pag) small, ring-shaped, rather membranous except at base, where it is somewhat chitinized and bears some nainute hairs; three articles, all testaceous, with anterior portions rather membranous; basal article clavate, about one-third the entire length of palpus, nearly as long as wide, near base on outer side with a minute seta and distally with a few more setae; second arficle subeylindrical, clavate, about one-thizd longer than wide, about onefifth narrower and longer than the basal artiole, distaliy with a few minute setae; apical article conicsi, two-thirds as long and one-half as thick as the second, slightly longer than apical article of labial palpus, with soft tip bearing a few minute tactife hairs.

[^2]Mair conical, on dorsal (buccal) surface (fig. 6, A, ma) testaceous, with \mathbf{z} series of well-developed, somewhat curved, chitinous setae extending right back of and parallel to inner margin and with a corresponding series on inner margin itself; rest of dorsal surface clethed with misny thin setae; ventrai (exterior) surface heavily chitinized, apically bearing two thin setae (fig. 6, C, ma).

Stipes (fig. 6, C, sti) fused with mala, well ehitinized, right in front of palpiger with 1 long thin seta, just below palpiger (pag) near exterior margin with 2 long setae, occasionally with 1 short one between them, and at base (bs) near carde with another seta; proximal half of inner margin ($i s_{1}$) of stipes connected with maxillary articulating aren (mar), distal half ($i s_{2}$), right behind mala, free, bearing one short seta near margin.

Cardo (ca) subrectangular, well ehitinized, nearly as long as maxillary palpus, entire, adjacent to curved hypostomal thickeniag (hyp), between fossa for ventral mandibular condyle (fm) and fossa for tip of cardo (fc); inner margin of cardo near middle with an indication of fusion with maxillary articulating area (mar); near outer posterior margin with one seta.

Maxillary articulating area (mar) protuberant, divided into haives; exterior half connected with maxilla, subdivided into an upper membranous and lower chitinized portion; an oval elevation arising from latter connected with cardo; interior half connected with submentum, entire, well chitinized, ovate, lobelike, without setae.

Submentum ($s m$) strongly chitinized, trapezoidal, broadest posteriorly; side margins slightly concave anteriorly, convex posteriorly and adjacent to maxillary articulating grea; surface bearing two long setae, one on each side, near ends of transverse middle line.

Mentum (me) with anterior half slightly chitinized, posterior half strongly chitinized; only slightly longer than wide, barrel-shaped, side margins free, on each side of posterior half two long setae, posterior one longer and placed near base and slightly more inward than anterior.

The two stipites labii (stla) fused into a chitinized unit with two setae near base and two slightly Ionger ones apically on the slightly chitimous portion near Iigula (li).

Labial palpus ($l p$) about half as long as maxillary palpus, with two articles, both testaceous, the anterior portions rather membranous, basal article subcylindrical, clavate, one-sixth longer than wide; a minute seta near base on outer side, a few more distally; apical article conical, about two-thirds as long and one-third as wide as first article, with soft tip bearing a few minute tactile hairs.

Liguls (li) slightly testaceous, small, broadly conical, sbout as wide as long, with one terminal pair of long setae, and several rather short rigid ones along front margin and on buccal surface (fig. 6, A, $l i$).

Prehypopharynx ${ }^{7}$ (fig. 6, A, prh) simple, membranous, with posterior side margins slightly chitinous and with a longitudinal series of tactile bairs on each gide, seen only with aid of very high magnification.

Paragnathal areas ${ }^{8}$ of posthypopharynx somewhat bilobed and membranous. Anterior portion of each paragnatba (fig. 6, A, apl) large, cushionlike, and covered with microscopic tactile hairs; posterior portion ($p p l$), placed on each side of the hypopharyngeal sclerite ($h s c$), small, free, ovate, lobelike, and covered with minute setae.

Sclerite of hypopharyngeal chitinization (fig. 6, A, B, D, hsc) elongately rectangular, somewhat rounded at base, projecting, strong, and supported below by a chitinous plate ($B, p l$) extending forward from bracen ($h b r$); anteriorly tricuspidate, the median cusp Iargest; disk excavate; molar part of each mandible and hypopharyngeal sclerite grinding together (fig. 6, D, m, hsc). ${ }^{9}$ Bracon of hypopharyngeal chitinization (A, B, D, hbr) heavily ehitinized below the chitinous plate (p), otherwise rather membranous.

Median area of posthypopharynx (A, mea), above the hypopharyngeal scierite (hsc) and between the posterior portions of the anterior part of the paragnathal areas (apl), membranous and without tactile projections.

[^3]Epipharynx (fig. 5, A, eph) soft skinned, with a posterior, transverae, broad sinuous, chitinous band ($t b$) carrying one pair of stublike teeth (t) and just behind each of these four or five minute teeth (h_{1}) in a row extending toward oesophagus; between the two rows of teeth (G_{1}) eight sensory punctures ($\mathrm{s} \mathrm{O}_{2}$); on otter side and in front of the stublike teeth (t), extending anteriorly vover soft-skinned part to a pair of short chitinous hooks (h, with many minute brushlike hairs. Median part of epipharymx glabrous, trith six large ringshaped sensory punctures 10 (so) near anterior margin; behind them, near hooks (h), four more, but smailer, punctures ($s a_{1}$); rest of epipharynx beset with tactile hairs visible only with high-power magnification; the stublike teeth on epipharyax also grind against the mandibles, working together with the dorsal sides of the molar structures. (Fig. $6, D, t, m$.)

Legs well developed, surrounded at base by a large articulating area (fig. $7, \mathrm{C}, a r)$.

Prothoracic legs only slightly larger than those of mesothorax and metathorax. Anterior faces of legs somewhat darker than posterior faces. Coxae (fig. 7, C ; fig. $6, \mathrm{~F}, \mathrm{G}, \mathrm{cox}$) of first pair attached so closely together that they are nearly contiguous at base, about as long as wide, anterior face testaceous and posterior face thinly chitinized; several long reddish setae on both faces, arranged mainly along outer and inner margins, also with a few minute setae; trochanter (ir) twice as long as wide, front margin about as long as that of coxa, thinly chitinized; on inner margin distally, armed with 2 strong spinelike setae; ${ }^{1 t}$ on anterior face 4 or 5 minute setae, on posterior face 2 long setae; femur (F, G, fe) one-third longer than wide, posterior margin about vne-fourth longer and two-fifths wider than inner margin of trochanter, proximal portion of anterior face well chitinized; on inner margin usually armed with 2 or 3 spinelike setne, but 4 may be present and also several long thin setae on each face; tibia ($F, G, i)^{\text {) two and one-half times as long as wide, inner margin about as }}$ long and half as thick as that of femur, anterior face, well chitingized and posterior face slightly chitinized; inner margin usually armed with 4 or 5 spinelike setae, but as many as six may be present and also a few long thin setae on each face; tarsus ($F, G, t a$) about two-thirds as long as tibia, ferrugineotestaceous except at tip where it is somewhat piceous, falcate, strong but rather siender, inner surface facing backwards distally excavate, proximally enlarged with a round, rather soft-skinned region which bears, at base of excavation, a short but strong chitinous seta and on posterior face a minute thin seta.

Second and third pairs of legs (fig. 6, E; fig. 7, B) slightly more slender than prothorucic and inserted farther apart; proportions of articles and arrangement and number of setae varying somewhat from first pair, but the two pairs themselves nearly alike. Coxa (cox) about twice as long as wide, with many long setae arranged mainly along margins and a few minute hairs on posterior face; trochanter ($(r$) twice as long as wide, about half as thick as coxa, front margin about half as long as coxa, on inner margin distally armed with 2 spinelike setae as on prothoracic leg; on posterior face of second leg 2 long setae and sometimes 1 or 2 minute hairs, but on third leg armed with an additional spinelike setn, very rarely not present; femur (f e) twice as long as wide, posterior margin one-third longer and slightly wider than inner margin of trochanter, on inner margin usually armed with 2, sometimes 3 , spinelike setae, between which is a long seta; on posterior face medianly armed with 2 additional spinelike setae and on both faces with a few thin setae; tibis ($i t$) nearly two-thirds as long as wide, outer margin about as Iong and slightly narrower than inner margin of trochanter, on inner margin usually armed with 4 spinelike setae, although number may vary from 3 to 5 ; on posterior face medianly 2 additional spinelike setae, oceasionally only 1 present, and on anterior face about 5 thin setae; tarsus (ta) two-thirds as long and somewhat narrower than fibia, inner surface facing bnckwards distally excavate, proximally enlarged and with swelling and setae like those on prothoracic leg.

Presternal ares between head and prothorax (fig. 7, $0, y$) with indication of a division into three parts; middle part about as wide as gula, bearing two setae on posterior margin; the two exterior parts each bearing two minute setae. Immediately below this midde part and well separated from it is an indication of a

[^4]

Fio. 7.-Tenevio moliter, parts of mature larva: A, Pygidjum, side view, $\times 10$, H, right meLathoracic lag, showing posteriot face, $\times 25 ; C$, ventral vaw of part of head, of thoracie segments, and of first abdominal segenont, $x 10 ; D_{4}$ pygidium, dorsal viow, \times IO; E, pygldium, vanteal viow, $\times 10$. (Mrenilications are approximate.) wr, Artleulating metmbrang of leg; b, c fpotoid articulating membrane betreen minth and tenth segments; cax, cora; e, epiplounum; e1, preepiplaurum; es, postepipleurum; ep, abdominal
 h_{1}, pesthypoplewrum; hp, sbdominal hspopleurum; i, mambranous aran on metathorax; pets, prestermal sabdivisfon of eustermum; site, sternal shield oi abdominal segment; ati, sternellum; ta, tarsus; te, thoracic terglte; fer, tergal shiejd of ahdominuil segmant; tr, tibla; tr, trochanter; V, presternal areas; z, peststernelium; VIII, IX, X, dbdominal segments
chitinous, suboval single area bearing two very short thin setae. This suboval area is probably a preeusternal subdivision (peu) of the eusternum ${ }^{12}$ (eu).

Ventral intersegmental region between prothorax and mesothorax, and between mesothorax and metathorax, testaceous, composed of distinct postaternellar, preepipleural, and presternal areas.

Prothoracic eusternum (fig. 7, C, e^{μ}) well chitinized, large, subtrapezoidal; prehypopleurai and postlyypopleural areas (h_{1}, h_{2}) both present, well chitiaized, prehypopleural area particularly well developed, internally adjacent to preateral and eusternal areas; sternellar region (sitl), behind the froat lege, well chitinize I, almost fused with eusternnm, forming together with it in hourglass-ghaped region; postaternellum (z) trapezoidial, widest anteriorly, with an elliptical, raised, rathar membranous area in center, arouncl whieh it is chitinized; prothoracic tergal abield (le) subquadrate, with anterior and posterior margins as meationed above; rigitt back of anterior margin a transverse series of 4 setae (2 on each side) and just before posterior margin a similar series composed of 10 setae (5 on ench side) (fig. 5, C); epipleurum (fig. $7, \mathrm{C}$, e) with a few setae groured anteriorly.

Megothorax and metathorax with a large chitinous eusterna) region (fig. 7, C , cu) and with a separation of a rather membranous preeusternal subdivision (peut) indicated, ${ }^{\text {,3 }}$ the latter area bearing two long and two very short setae. Presternal areas (y) distant, chitinized, subtriangular, bearing a single seta medianly; prehypopleurum (h_{j}) well developed, slightly testaceous, with small chitinization near condyle for articulation of leg, usually bearing a single setal; sternellum (sll) of mesothorax and metathorax and poststernellum (z) of mesothorax similar to that of prothorax; poststernellum of metathorax not present, but in intersegmental region an elliptical, rather membrauous area (i), somewhat like that present in poststernellum in preceding segments, which might constitute an element of poststernelum. Preepipleurtm (e_{1}) of mesathorax and metathornx partly chitinized, subrectangular; the former carrying the first thozacic spiracle, the latter the rudimentary second thoracic spiracle; anterior to each spiracle, a few minute setac; epipleurum (e) of both segments well developed and chitinized, with median portion only thinly chitinized; usually with I seta placed posteriorly and 2 or 3 setae grouped anteriorly; postepipleurum (e_{2}) chitinized, triangular, without setae. Mcsothoracic and metathoracic tergal shields (fig. $7, \mathrm{C}, t e ; 5 \mathrm{~g} .5, \mathrm{C}$) transverse, about four times as wide as long; right behind anterior margin a traneverse chitinous line (fig. $5, \mathrm{C}, l$), back of which and contignous to it is a narrow chitinous bend; posterior margin longitudinally finely striated, anterior to margin a transverse series of 4 setae (2 on each side), lateral margin usually with 2 or 3 additional setae. The first abdominal tergum aiso has a transverse chitinous liae and a band similar to that on the mesothorax and metathorax, the rest of the abdominas segments being without the line,
Typical abdiominal segment (that is, one of the eight anterior segments) with fused sternal areas (fig. 7, C , ster) covered by a tranaversely rectanular shield (ter) with a median longitudinal lies, anteriorly with a transverse slight chitinization which extends farther back in ench succeeding segment, so that the terga of the seventh, eigith, and ninth segments are almost covered (fig. 5, C); near distal margin of each of the eight anterior segments are five distinct but faint impressions ${ }^{4}$ on each side; above the spiracle, which is carried by the tergal shicld (ter), is a longitudinal chitinous line ${ }^{15}$ which eatends from the posterior band to, or slightly beyoud, the spiracle.

Setae on each side of first abdominal tergum. Relow the longitudinal line, a few minute setae placed anterior to the spiracle ($\mathbf{t} \mathbf{g} . \overline{5}, C$) and in addition two others, both long, one below the spiracie, the other in front of the transverse band; above the longitudina! line, two setae in front of the bund and one near anterior lateral margin over the spiracle. Setae on decond to seventh abdominal terga arranged as on the first, except that no seta is developed below the spiracle. Setas on eighth tergum arranged as in precediug segments, except that an additional seta is present in the series in front of the band (fig. 5, C) and several minute

[^5]setae are developed along the posterior margin of the band both above and below the longitudinal line (fig. 7, A). Setae on each side of the sterna of first to eighth abdominal segments. Sternum of first abdominal segment anteriorly densely beset with satae (fig. 7, C, ster), similar artangement lacking on other typical abdominal segments; posterior margin of first to seventh segments with two setae slong anterior margin of transverse band; eighth sternum (fig. 7, A, E) with three quite long setae similarly placed, and in addition several minute setae on posterior margin of band. Hypopteural region (fig. 7, C, hp) narrow, slightly chitinous; epipleural region (ep) somewhat broader and more strongly chitinous, both regions without setae. First six abdominal segments transverse, the seventh and eighth subquadrate.

Ninth abdocainal segment (fig. 7, A, D, E, IX) smaller than preceding; dorsal part, or pygidium, well chitinized, subconically produced; wider (at base) than long; bicornute, with the cerci eurved upward to the extent that their longitudinal axes are perpendicular to surface of tergum; cerci at bases separated by a distance less than twice their diameter at that point, onily slightly recurved and somewhat piceous; on each side, anterior to cerci, two short chitinous spines; ${ }^{16}$ tergum in front of cerci with a slight depression; punctations quite far apart; anterior margin of segment slightly chitinized, bearing a transverse series of short hairs; anteriorly on well-chitinized part a transverse series of four long thin setne, one placed dorsally and one laterally on each side; on lateral and posterior margin right above tenth segment a series of long setae. Ventral part of ninth segment simall, transverse, soft, and bearing many short setae.

Tenth abdominal (anal) segment (fig. 7, A, E, X) ventral, small, separated from niuth by a large, two-fold, artieulating membrane, with an upper and lower transverse, membranous anal lip and on each side of this a short, conical, robust and (except at tip) setose ambulatory papilla.

Spiracles (fig. 5, C. E) oval, transversely directed, cup-shaped, at bottom, with a linear opening protected by hairs. Prothoracie spiracle more narrowly oval than abdomimal spiracles.

DESCRIPTION OF THE MATURE LARVA OF TENEBRIO OBSCURUS FABRICIUS ${ }^{17}$

Length 35 mm ; color castaneo-testaceous, with head and tergum of thorax somewhat darker; anterior and posterior margins of pronotum, posterior margins of the foliowing segments, and terga of the seventh, eighth, and ninth abdominal segments dark brown to brownish black. Surface punctate, punctures closer together than in Tenebrio molitor; pygidium (fig. 8, G) longer and more slender than in T, molitor.

Cranium (fig. 8, B) slightly more than half as long as wide (from epistomel margin (epi) to occipital foramen).

Frons (f) three-fifths length of cranium, nearly as long as wide with extreme width anteriorly, side margins convex.
Labrum on anterior corners on ventral surface ustally with three short, chitinous, slightly curved setae (fg. $8, \mathrm{~A}$).

Ocelli (fig. 8, B, C) arranged as in T. molitor but more prominent.
Antenna (fig. 8. W) with proportions of basal ($\mathrm{E}, 1$) and apical (E, S) articles about as in Tenebrio molitor, but the second article ($\mathrm{E}, 2$) differing by being four instead of three times as long as wide. ${ }^{18}$

Merum about one-fourth longer than wide.
Prothoracic leg (fig. 8, F) with trochanter (ir), on inner margin distally, armed with 1 strong spinelike geta; femur (f e), on inner margin, usually armed with 2 spinelike setas but sometimes as many as 3 may be present; tibia (i i), on inner margin, usually armed with 4 spinelike setae, but as many as 3,5 , or 6 may be present occasionally.

Mesothoracic and metathoracic legs (fig. 8, O) usually with the same number of spinelike setae on inner margin as on prothoracic leg, but this sometimes vafying as foliows: Three or four spinelike setae may be present on the femur, and threc to five on the tibia. The posterior face of these legs usually carries

[^6]

Fig. 8.-Tenebrio obscarus, parts of matore larva: A, Epipharynu and anterior margin of labrum, \times 32; B, head of larva from above, $\times 12$; C, lateral view, 日howing head, thotax, and first swo abdominal segments, $\times 5$; D, first abdominal spiracle, $\times 62$; E, antenne, $\times 18 ; F$, right prothorncte leg, anterior view, $\times 16 ; G, p y g i d i a m$, dorsil vfew, $\times 10 ; \mathrm{H}$, pygldium, aide view, $\times 10$. (Magnifications are approximate.) b, c Two-fold articulating membrane between ninth and tenth segments; bm, basal membrane of antemna; cl, edypaus; cor, coxs; epe, epleranium; eph, eplphargnx; epi,

 abdominalsegments; f, ℓ, t, articles of anteman
the same number of additional spines as on Tenebrio molitor, that is, noze present on the trochanter, two present on the femur, and two on the tibis. ${ }^{10}$

Posthypopleurum of prothorax (fig. 8, C) usually without setae, rarely with one seta.
Prothoracic tergal shield (fig. 8, C) transverse, subrectangular, about twice as wide as long.

Mesothorscic and metathoracic epipleurum usually with only one sets anteriorly and none posteriorly, but with minute setae anterior to the apiracle.

Typical abdominal segment (one of the eight anterior) with tergal shield chitinized and with each segment slightly darker chan preceding; near anterior margin, between lateral and median longitudinal lines, five distinct and somewhat prominent impressions ${ }^{20}$ on each side (fig. 8 , C); longitudinal line on lateral side of tergum just above apiracle extending from the posterior band far beyond apiracle into ightly colored marginal band which evcircles the segments anteriorly. ${ }^{20}$

Epipleural region (fig. 8, C) usually without a minute geta near the posterior margin.

Ninth abdominal segment (fig. 8, G, H) with pygidium subconically produced, not wider (at the base) than long, bicornute, with the cerei curved upward, but not so much as in Tenebrio molitor, so their longitudinal axes are not perpendicular, but oblique to surface of tergam (H, IX); cerci separated at bases to a distance of about twice their basic diameters, quite strongly recurved (G, IX); punctures not very far apart, closer than in T. molitor.

Spiracies broadly ovai (fig. 8, D), broader than in T. molitor.

SUMMARY

The meal worms have long attracted the attention of both scientists and laymen by reason of their use as food for birds and small animals and because of their destructiveness in stores of flour and meal. They have figured in entomological literature since 1634, and both are probably of European or Asiatic origin. Tenebrio molitor does not thrive in the warmer parts of the United States.
They are found in greatest abumdance in accumulations of rafuse meal, grain, and sweepings in mills and under the litter of chicken houses. They are often reared and sold for bird food.

Under natural conditions there is one generation a year, though some individuals may require two years to complete their development. The female beetles oviposit over an extended period, ranging from 22 to 137 days, T. motitor laying in laboratory rearings an average of 276 eggs , with a maximum of 576 , and \overparen{T}. obscurus an average of 463 , with a maximum of 970 . The larval period of T. obscurus was found to range from 79 to 642 days and that of T. molitor from 281 to 629 days. The complete life cycle of T. obscurus ranged from 114 to 675 days, that of T. molitor from 311 to 649 days.

Meal worms can pass long periods without food (a maximum of nine months was recorded for T. obscurus). They can not stand temperatures as high as $125^{\circ} \mathrm{F}$.; they survive freezing temperatures, but not those as low as 10°.

They are almost entirely free of parasitic enemies. Artificial control is easily secured through periodic cleaning up of the refuse in mills, warehouses, and gramaries, or by fumigation with carbon disulphide.

[^7]
LITERATURE CITED

(1) Acrel, J. G.
1799. historia vermidi lahyarua nec non ingectordes. Nova Acta Reg. Soc. Sci. Upsal. 6: 98-116, illus.
(2) Arenbben Hein, S. A.
1920. studies on yariation in the healworm, tenebrio holutor. Jour. Genetics 10: [227]-264, illue.
(3)
1923. larvenarten yon der gattung tenebrio und ibre kultur (col.). Ent. Mitt- 12: 121-159, illus.
(4) Böving, A. G.
1921. the larvae and pupae of the hociai metles coccidotrophug soclalis (gChwarz and barber) and eunaubibigs wheeleri (schwarz and barber) wite hemarks on the taxonomy of the famluy cucujidae. Zoologica [New York] 3: [197]-213, illus.
(5) Chitmenden, F. H.
1896. some ingects injurious to btored gbain. U. S. Dept. Agr. Farmers' Bul. 45, 24 p., illus.
1896. anbects affecting cereals and other dhy vegetable foods. U. S. Dept. Agr., Div. Ent. Bul. (n. s.) 4: 112-130, illus.
(7) Curtis, J.
1830. britigi entonology. v. 7, illus. London.
(8) Fabriciue, J. C.
1792. ENTOMOLOGIA s.istematica. t. 1 [pt. 1]. Hafnige.
(9) Frisch, J. L.
1721. heschreibung von allerley insecten in teutschland. Theil 3, ilius. Berlin.
(10) Gebien, H.
1911. tenebrionidae iu. In Schenkling, S., Coleopterorum eatalogus, pt. 28, p. 355-585. Berlin.
(11) Geer, C. DE
1775. memorres pour bervir ì y'higtothe des ingectes. t. 5 , illus. Stockholm.
(12) Joyeuse, J. B. X.
1773. histoire des vers qui g'engendrent dans le biscuit qu'on embaroue bur les vaisgeaux, avec leg hotens pour lien garantir. 6G p. Avignon.
(13) Krefft, P.
1907. das terkarivm. 631 p ., illus. Berlin.
(14) Latreille, P. A.
[1804]. histoire natorelle, génerale ex particultère, des crustaces et des ineecteg. t. 10. Paris.
(15) Linnetes, C.
1758. systema nature. Ed. 10, t. 1. Holmic.
(16) Lintier, J. A.
1893. Ninth heport of the btate entomologist for the fear 1882. In N. Y. State Mus. Ann. Rpt. (1892) 46: [291]-494, illut.
(17) Megosiar, F.
1912. Uber hesohaffung, haltung und zttcetung jener there und pflanzen, welcee bei fübrung zoologischer experimente, ingbesondere mit wirbellosen und mit niederen wirbeltieren des binnenlandes und der binnentrisber, als futtermittel am hïtugigten benötigt werden. i. mitteilung: infusorlen, tenebrionidenlarven (nehlwürmer). Ztschr. Biol. Tech. u. Methodik 2: 327-348, illus.
(18) Moufet, T. (Moffett, T.)
1634. ingectorym sive minimorum animalium theatrum. 326 p., illus. Londini.
(19) Philippit R. A.
1886. UEber die veränderungen, welche der mensch in der fauna culles bewirkt hat. In Festschrift des Vereins für Naturkunde zu Carsel zur Feier seines fünfzigjührigen Beatehens, p. 1-20. Cassel.
(21) Ray, J.
1710. historia insectordm. 400 p . Londini.
(22) Rixey, C. V.
1883. NUABER OF MOLTS AND LENGTH OF LABVAL LIFE AS INFLUENCED
(23) \qquad by Food. Amer. Nat. 17: 547-548.

- and Howard, L. O.

1889. Larvas of tenebrio molitor in a woman's stomach. U. S. Dept. Agr., Div. Ent., Insect Life: 379-380.
(24) \qquad and Howard, I. O.
1890. beetles in A pin-cushion. U. S. Dept. Agr., Div. Ent., Insect Life 2:148.
(25) St. Grorge, R. A.
1891. STUDIES ON THE LARVAE OF NORTH AMERICAN BEETLES OF THE SUBFAMLEY TENEBRIONINAE WITH A DEQCRIPTION OF THE LARVA and pupa of merindi laevis (olivier). U. S. Natl. Mus. Proc. 65, art. 1, 22 p., illus.
(26)
1892. TAXONOMIC BTUDIES OF THE LARVAE OF THE GENERA TENEHRIO AND NEATUS LE CONTE (COLEOPTERA; TENEBRIONIDAE). Ent. Soc. Wash. Proc. 28:102-111, tllus.
(27) Schulze, H.
1893. BEITRIZGE ZUR BIOLOGLE VON TYROGLYPHUE MYCOPHAGUS (MEGNIN). (zERBTORDNG EINER MEHLWURMZUCET DURCE DLEBE MILBE.)
(28) Scott, H .
1894. INSECTS DAMAGING LEAD AND OTHER METAL WORE. Ent. Mo. Mag. (ser. 3, v. 6) 56:10-12.
(29) Sturm, J.
1895. dettrgcelande fauna in abBildungen nach der natur mit beschreibungen. In his Deutschlands Iosecten, Abt. 5, Bd. 2, illus. Nürnberg.
(30) Taschenberg, E. L.
1896. DIE K̈̈fer UND hatutalîgasr. In his Praktische Ingeisten-Kunde, Theil 2, illus. Bremen.
(31) Wade, J. S., and Böving, A. G.
1897. 日关LOGY OF EMBAPHION MOHICATUM. Jour. Agr. Research 22:323-334, illus.
(32) and St. George, R. A.
1898. BIOLOGY OF THE FALSE WIREWORM ELEODES SUTUBALIS GAY. Jour. Agr. Research (1923) 26: 547-566, illus.
(33) Westwood, J. O.
1899. AN INTRODUCTION TO THE MODERN CLASSIFICATION OF INSECTG. v. 1 , illus. London.
(34) Wolff, M.
1900. def mehlwurm ond beine zucht. Tierwelt 1905. (Vortrag gehalten im Reichsbunde der Ósterreichischen Tierfreunde am 28. Nov. 1905.) [Not seen.]

ORGANIZATION OF THE UNITED STATES DEPABTMENT OF AGRICULTURE

Febriary 1. x 3 \%

S	W. M. Jardine.
Asaistant Secretar	R. W. Dunlar.
Director of Scientific Work_:	A. F. Woods.
Director of Regulatory Wark-	Whlter G. Campbetil.
Director of Extension	O. W. Warburton.
Director of Personnel and Business Administration.	W. W. Stockberger.
Director of Information	M. S. Eisenhower.
Solicitor	R. W. Whliamg.
Weather Bureau	Charleb F. Marvin, Chief.
Bureau of Animal Industry	Joun R. Mouler, Chief.
Bureau of Dairy Industry	O. 7. Remb, Chief.
Bureau of Plant Industry	Wililam A. Taylor, Chief.
Forest Scrvice	R. Y. Stuart, Chief.
Bureau of Chemistry and Soils	H. G. Knignt, Chief.
Bureau of Entomology	C. L. Marlatt, Chief.
Bureau of Biological Survey	Paul G. Redington, Chief.
Burean of Public Roads	Tromas H . MacDonald, Chief.
Bureau of Agricultural Economics	Nils A. Olisen, Chief.
Burear of Home Economics	Louise Stanlev, Chief.
Plant Quarantine and Control Administration.	C. L. Marlati, Chief.
Grain Futurea Administration.	J. W. T. Duvel, Chiej.
Food, Drup, and Insecticide Administration_	Walite G. Campbeil, Ditector of Regulatory Work, in Charge.
Office of Experiment Stations	E. W. Aumen, Chief.
Office of Cooperative Extension Work	C. B. Вмите, Chief.
Labrary	Claribel R. Barnett, Librario

This bulletin is a contribution from
Bureau of Entomology -........................ C. L. Marlatt, Chief. Division of Stored-Product Insects_....- E. A. Back, Senior Entomologist, in Charge.

[^8]

[^0]: 'The writer is indebted to F. K. Chittenden and Y. A. Hyglop, of the Bareau of Entomology, for man
 distribution records.

[^1]: ${ }^{2}$ By R. A. St, George. The material on which this deseripton is based was reared by R, T. Cotton and hos leen plucud in the Nationul Muserm, colleution under the Hapk. U. S. No. 10 H 4 L .
 ' Probably approaches Areadsen Hein's (B) Tenebrio mailitor Ol (orange-red) variety.

[^2]: 5 This character can be used to separate this spectes from Tcatbrio obscurus Fob., T. opacus Duft, and Neatus picipes IIbst. $=$ Temebrio picipes Ebst.). A discussion of the genus Neatus' was published by the writer in 1924 (20).
 ${ }^{4}$ No soft setae placed closely together near base hailway between condyle and molar part as on the mandibles of the Eleodes-Mhaptinae group, which it strongly reserables. See the writer's articie ($05, p, 4$).

[^3]: TTho buceal ventral surface behfind the liguia the writer terma fypopharyux end divides to inte an anterior part named prebypoptarynx ($p \mathrm{~h}$) and a posterior part named posthypopharyux ($p 0$ í). The prehypopharynx ("hypopharynx" MacGbilimay) is slmple and membranous, usuatiy covered with ine sactile projections: it is normally piaced above the stipites labib. The pasthypopharyns ("gubgusto" Macallitvray) is compased of the hypopharyngeal chitinization, the paragnathal areas (apl, ppl) (Crampton), t wo-lobed or simple, and a median area (mea) between chem. Tho hypopharyngeal chitinization usualty is composed of a sciertito (hsc) and bracon (hbr). The posthypopharynx normatly is pliseed above and about the mentumsubmentum region.
 3 Thesearens correspond to thosepointed out by Bowing (4) in the larya of the social beetle Coccidotrophus pocialis (Schwara and Barber), which there are named tho marilluiae.
 ${ }^{?}$ Boving (31) was tho first to point out this function of sclerite and molar part of mandible.

[^4]: to Tbe number and general position of these sensory punctures are constant in the specles of Tenebrio molutor, T. obvcur us, T, opacus, bnd Neaths petipes.
 "1 The number of spines on trochanter of the prothoncic leg oppear to be constant and can be used to suparate this species from Tenebrio obsctrut and T. opacus, each of which has one. Neatus picipes also has twn, hat th's specles enn be separated eastly by charncters from the pygidium. Ses article published by tho writer ta 1926 (e6). The spines pan all the other articies of the lege vary la quamber aven in the satue specimens on opposite legs nad sometimes on the trochanter of the mesothoracic and metathoracic legs.

[^5]: 11 This arga is plainly indicated in a closely alligi form, herinus lavís (Olivier). See articlo by the writer

 is A sepnration is nlso indicated by Wade and the writer (ss) in the closely allied form Merinus laevia (olivier) and to some axtent in Eifodes starfalis Say of the Blapstiouegroup. In this referionce s cortection should be mate on pake 554 ; instead of reating, "no separation of a preeusternal sutdivision indicstod." is sheald reall, "separution of a preausterisel subdivision slighty fnticated;" and the footnote 7 shoukia be changed accoidinuly, readiag. "Sopuration of a preedasternal repion indicated hat not os distinct as in Merinus ancuis (Olivier)"
 is A detailed disenssion of these impresslons and their importance as a taxonouic character is given by A roudsen Hairn (s).
 "is This line is called a "hateral line" by A readsen Lein and is used as a claracter in separating the species of Tenobrio. The present writer has found that this character is sometimes variable.

[^6]: to Aecording to Arondsen Hefn (s), in exceptional cases specimens have oniy one grine on each stdo. The writer has found such aspecimen, but on the one side the sota was placed near the cercl and on the other side anterloriy so that they were not opposite asch other.
 pl By R. A. Bt. Gearge. Tho matarlai on which this descriptlon is based was reared by R. T. Cotton nud has been piaced in tho Nattonal Museum coliactlon under the Hopk. U, S. No. 10642 .
 ${ }^{13}$ Thils channcter will uiso separate this specles from Tenebrio opacus and Nealus ptcipes, both of whlen are like T. molitor in this resject.

[^7]: th On the posterior face of the metathoracic ley of an anomalous specimen, there was present only one sdditional spiaelike seta on femur and on tlbla, while fo thle same revion of the mesothoracic leg the number was constant. Also, on the Jutur margin of thls same metathoracte leg there were only two spines on tibis lnstend of the uanal four.
 wo This was Arst poiated out by Arendsen Hein (s).

[^8]: ADDITIONAL COPIES
 Of This publicatzon hat be proctird frow THE BOPLRENTENDENY OF DOCOXENTS

 U,G,DOYRENEENT PRINYTNG OPHCE
 WABHIRGTON, D.C.
 45
 10 CENTS PER COPY

