

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Technical Bulletin No. 1001, October 1949

An Analysis of Speculative Trading in Grain Futures

By
BLAIR STEWART
Consulting Economist
Commodity Exchange Authority

UNITED STATES DEPARTMENT OF AGRICULTURE COMMODITY EXCHANGE AUTHORITY WASEINGTON, D. C.

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASFIINGTON : 19.19

FOREWORD

The Commodity Exchange Authority takes special pride in presenting this study. It represents the partial salvage of a research project undertaken before the war and laid aside. It constitutes pioneering factual research on the operations primarily of small traders drawn from the actual trading records of nearly 9,000 traders over a 9 -yenr period.
From the beginning of Federal regulation of futures markets in 1922, the Commodity Exchange Authority and its predecessor agencies have been concerned with the structure and method of trading operations on commodity exchanges. In earlier years, research studies brought to light the ways in which futures markets were utilized by hedgers to reduce price risks. Intensive research studies were also made of the operations and price effects of large speculators, or "market leaders." The Commodity Exchasge Act smendments of 1936 provided further curbs on price manipulation and market corners and for the fixing of limits on the trading of large speculators.
It has become increasingly apparent. however, that the selective study and regulation of the activities of large traders does not answer questions nor solve problems arising from the trading by the mass of small traders. Because of curtailment of funds in the war and postwar years, it has not been possible for the Commodity Exchange Authority to collect and analyze the vast body of factual information necessary for thorough analysis of the operations of small traders and their effects upon the market. Current research is necessary in connection with the "special calls" made from time to time by the Commodity Exchange Authority for detailed information on the trading of all persons in the market. These special calls cover only brief periods, usually a single day, and do not provide the continuous record of trading by small traders necessary for conclusive appraisal of their operations.
Opportunity for obtaining a large body of continuons trading records on the operations of small traders was afforded in the thirties when one of the largest brokerage firms in Chicago retired from business. By arrangement with the firm, basic trading data were abstracted from its records and transferred to punch cards for machine tabulation. An umused stock of a million cards for which the Agricultural Adjustment Administration had no use were utilized in the initial punch-card operations.

A comprehersive research project to utilize the data was outlined in 1939 under the direction of Dr. Blair Stewart, at that time in charge of the analytical work of the Commodity Exchange Administration, and now dean of the College of Arts and Sciences at Oberlin College. Many basic tabulations were prepared and important progress made in classifying the data for the study before Dr . Stewart left, the service
of the Department of Agriculture in 1940. Because of the war and reduction in funds, it has not been possible to follow the origimal plan of analysis and publication. A more limited objectivo was adopted, however, and the continuing personal interest of Dr. Stewart after he returned to Reed College, Porthand, Oreg., made it possible to resume the study and prepare this bulletin. The Bomneville Power Administration was of great assistance in preparing numerous summary tabulations utilized in the study.

To gain knowledge of the trading characteristics of small traders, the study approaches the problems through analysis of individual trades. For the 9 -year period as a whole, ageregates drawn from the indipidual trades or cycles provide important factual information on the relative number of long and short trades, averuge length or duration of trades, and profits and losses. Other aggregates give the results of tweding by occupational groups and scale of operations. For a part of the trading covered in the general study, i. e., wheat cycles having a dumation of two days, the initiation and liquidation of trades are amalyed in relation to price changes. Summarization of the data affords infomation for relatively long periods of years on price-levei as compared with price-movement tradimg. Further amlysis of the original data could be made to provide comprehensive information also on short-rua accumulations and liquidations in relation to price movements. It is hoped that this may be done at some future time.

J. М. Мени, Administrator.

CONTENTS

Page
Introdustion 1
Tho unturo of trading in grain futures 1
Classification of traders on futures markets 3
Nuture of this study 4
Case study of an mastocessful trader 4
Initial trades 5
Cyele and daration defined 6
Traditional belavior of inexperioneci fraders 7
Is-and-out oyctes 7
Simpla and complex trading cycles 12
Protits sud losses in complex and simple cyeles 13
Privibego tradiag 15
Toudency of 7830 to out profts and lot losses run 18
Rehation of trading to prico movements 19
Types of crading patterns 22
Trading patecrns of 7830: short-term cycles 23
Trading pattorns of 7830: loug-term oyeles 26
Malticyele opornions on long side of market 28
Summary or 7830 's tradiag patterns 29
Case study of a successfal trader 30
Three major corn futares operations 33
Trading patterns of 7732 37
Sumbary of 7732's operations 39
Statistical amaysis: matury of tho shmple 49
Problems for manysis 40
General features of sample 41
Geograptical louation of traters 42
Relative size of the sample 44
Hedgers in tho sample 45
Oecupational clistribution of othor traders 4
Comparative ocenpational distribution 48
Charneteristies of the period sthelied 55
Protits and losses by classes of traters 57
Profis and losstes of hedgers 68
Siza distribution of prolits and losses 59
Tradiag resalts and oceupation 62
Trading resatts and seate of trading 69
Tradith characteristics, by size and typo of position 79
Toudeney for longer duration of loss eyctes 70
Aatysis of traching by type of position 81
Profits and losses, long narl short cycles 87
Duration of loug and short cycles 91
Protitubility and duration of uycles, by sizo groups 98
IWo-day wheat cyeles and price movements 09
Cycles initialed on days of priee inereaso and deoreaso 104
Cycles instiated, by size of position and extentiof prieo chango 107
Oateome of trading: price level and movement arading patterns 112
Liquidation of two-day whend eycles 115
Lifuidation of profitable ned mprofitable cyeles 118
Gyeles liquidated in relation to the extent of price change 122
lelation of trading to short-tern price swings 124
Summary 124
Appendix 132

An Analysis of Speculative Trading in

Grain Futures

By Blatr Stewabt, consulting economist, Commodity Exchange Aushority ${ }^{1}$

INTRODUCTION

The Nature of Trading in Grain Futures

The process of marketing commodities is normally carried on by persons who specialize in such activities. In one phase of marketing, however, people from all walks of life participate. This is in futures trading. Through the facilities of organized commodity exchanges, businessmen, prófessional men, farmers, and laborers buy and sell futures contracts for wheat, corn, oats, rye, cotton, butter, eggs, potatoes, and many other commodities.
Trading in futures takes place on the floors of organized commodity exchanges. Trades are made only between members of an exchange in accordance with exchange rules and regulations, and only its members are recognized by the exchange as parties to the contracts. The member may trade exclusively for his own account; he may act as a futures commission merchant and trade for the accounts of otherseither members or nonmembers-or he may trade both for his own account and for customers. The futures commission merchant usually requires his customer to deposit a margin and he charges a fee, or commission, for his services.

Futures contracts are standardized, with the quantity unit, quality characteristics, and other features the same for all such contracts maturing in a specific calendar month. In selling a grain future a trader enters into a contract, at a price agreed upon, to deliver a specified quantity, in units (or multiples) of either 5,000 bushels or 1,000 bushels, of grain during a specified month. The buyer of the future enters into a contract to buy a specified quantity of the grain during a specified month at the price stated.

Hedgers of stocks of cash grain and speculators who expect a decline in prices sell and become "short" the amount of these sales contracts. Those who hedge against forward sales of cash grain or speculators who anticipate a rise in prices buy grain futures and become "long"

[^0]tho amounts of their purchase contracts. A short is one who sells first and buys later, while a long is one who buys first and sells later.

A short may complete his contract by delivering the actual grain, and a long may complete his commitments by taking delivery. The delivery process is not described here, however, because more commonly, futures contracts are not completed by delivery. It is unlikely that deliveries on futures contracts would provide merchants and processors with the particular grades and qualities required for their eash business. Generally, speculators do not have the means or knowledge necessury to obtain or store the cash commodity, and it is not surprising that their transactions do not ordinarily involve the trunsfer of the actual commodity. These speculators do not sell and deliver wheat; they sell wheat futures. They do not buy and accept delivery of wheat; they buy wheat futares.

Instead of settlement by delivery, most futures contracts are completed by entering into otlier contracts which are the reverse of the earlier commitments. In using this means to complete a round-lot contract of 5,000 bushels in the May future, for example, a person who has been short must buy a round-lot unit in the same future, and one who has been long must sell the same amount of the sime future. The exchange provides a clearing mechanism by which these opposite transactions offset each other and the original contracts are liquidated. When the short buys he is said to have "covered," and when the long sells he is said to have "liquideted."

Profits or losses result from the differences between the buying and seling prices. If prices go down, the short, who has sold at the higher price and covered at a lower price, makis a profit. The long, however, who has bought at the higher price, suffers a loss from liquidating at a lower price. If prices rise, the profit and loss situations are reversed.

The futures market otions an extremely easy and effective means of trading in such a manner as to gain (or lose) from fluctuations in price. If a speculator expects futures prices to rise, he simply gives his broker an order to buy. He does not have to find supplies of the commodity, test for quality, or provide for financing and storage while waiting for prices to rise.

If one expects prices to fall he orders his broker to sell. He does not have to look for a trader who is willing to enter into a contract to buy the commodity at some future time at present prices (or the equivalent when storage costs and other similar factors are considered).

At the time the contract is entered into he does not have to specify the exact quality of the commodity to be delivered, and if in the maturity month he undertakes to deliver he can elect any one of the vatious options as to grade and quality provided by the contract. For some commodities the futures contract permits delivery to be made at any one of a number of different geographical locations. Standardization of the time contact is perhaps the most significant contribution of the futures market to the techniques of commerce, and its facilitation of the process of short selling is its most unique feature.

The futares markets perform many functions, only a few of which need to be considered here. They provide central matrets on which the forces of supply and demand can concentrate, and from which
information on prices can be readily and widely disseminated. They make it possible for commodity merchants and processors to reduce the price risks of their businesses, by offering a method whereby the price risks inherent in the ownership of the physical commodity may be combterbalanced by price risks of an opposite nature on the futures matket. They provide a means by which the opinions of experts as to future supply and demand situations, and as to differences in conditions botween different makets and different points in time, can be implemented by actual transactions and thas reflected in prices. Finally they provide a means by which speculators, whether expert or inept, may register their opinions as to future conditions through tho price-making process, and thus act as forces of adjustment or maladjustment, depending on the validity of their opinions.

Classification of Traders on Futures Markets

It is not surprising that the facilities and opportunities of futures markels should have atteacted thonsands of participants and resulted in widespread trading in futures. These traders are ustally classified under a number of different headings. A broad classification of traders as either hedigers or speculators will serve most of the purposes of this discussion. Hedgers in grain futures are grain merchants or processors who seek to reduce price risks by entering into futures contracts to counterbalance their inventory stocks and purchase contracts or their forwatri sales of cash grain.

All traders on futures markets, other than hedgers, are speculators. Their purpose in trading in futures is not to offset cash grain transactions, but to make a profit from the futures trading. Frequently these speculators know little or nothing about the eommodity in which they deal, and have little knowledge of the methods of producing, grading, shipping, storing, and using the product. There :-, however, a pronounced tendency for speculators to trade in commodities produced in the region in which they live.

Among specalators three broad groups may be distinguished: scalpers, spreaders, and other speculators. Scalpers are traders who, for the most part, tracle for themselves in the pit, buying and selling on small fluctuations in prices, and ordinarily closing the day with even, or nearly even positions. Spreaders are tataders who assume opposing long and shore positions of the same amount in different markets or different futures in the attempt to obtain a profit from changes in the relative prices in the different markets or futures. Other spectutars are all remaining traders, who buy and sell speculatively in the market-large or smiall, long-term or short-term, professional or amateur.

The present study is not at all concerned with scalpers, and very fow of the traders involved enguged in extensive spreading operations. Hedging operations can be fully analyzed only when information is a aiblable for boh futures and cash grain transactions, and in this study no dita were collected on the cash grain operations of hedgers in the sample. For this reason analysis of the futures opemations of hedgers will be a minor feature of this stady. Attention for the most part will be directed to the futures operations of the group that has been classifed above as "other speculators."

Nature of This Study

There has been much conjecture as to the effect of different classes of truders on futures markets, and judgments as to these effects have been embodied in numerous proposals designed to encourage or discourage different types of trading. A number of studies have been made, notably by the Federal Trade Commission and the Commodity Exchange Authority and its predecessor organizations, in the effort to determine as accurately as possible the effects on the market, and on the marketing process, of various kinds of trading. For the most part these studies have been concerned with the effects of the operations of large-scale traders, particularly large-scale speculators.

The role of the small speculative trader in the futures market has been the subject of much discussion. On the one hand it has been held that such traders are a disturbing influence in the market, accentuating price swings, and on occasions contributing to wild and disastrous price fluctuations. On the other hand it has been maintained that such traders are a necessary element in the market since their presence makes it possible for the expert traden-who is presumed to exercise a bencficent influence on prices-to find traders to take the opposite side of his trades, and supply throngh their losses the income which is necessary to support the continued trading activity of the professional. No thorough-going empirical investigation has ever been made of the trading of speculative traders, large or small, and the opinions held refleet much larger proportions of prejudice and special pleading than of objective analysis and careful investigation.

The purpose of this study is to examine the actual market operations of a number of traders to see whether valicl generalizations can be drawn as to charactecistic behavior patterus and the relation of such patterns to the functioning of grain futures markets. It is an analysis of the trading of 8,922 customers of a large Chicago futures commission firm over the 9 -yen period from Junury 1, 1904, to December 31, 1932. Two types of analysis are used. The first involves case studies of two exceptional traders, both of whom traded on a large scale. One, however, suffered the largest losses of any trader in the sample, while the other made the greatest profits. These case studies are followed by a statistical analysis of the futures market activities of all traders in the sample. In this annlysis an attempt is made to discover meaningful classifications of traders and of types of trading and to relate trading activities to price movements and profit or loss situations.

CASE STUDY OF AN UNSUCCESSFUL TRADER

The first case study is an examination of the operations of Trader No. 7830, a businessman, and evidently a person of considerable means, residing in Califomia. He was not at typical trader, but a most unusual one. Altogether his trades in wheat futures through the firm which supplied the information for this study amounted to $14,455,000$ bushels, his trades in corn futures to 505,000 bushels, in oat futures to $24 \overline{5}, 000$ bushels, and in rye futures to $15 \overline{5}, 000$ bushels. This trading extended from November 17, 1934, to October 29, 1932, and resulted (after commissions) in losses of $\$ 100,080$ in wheat futures, profits of $\$ 1,694$ in corn futures, and losses of $\$ 13,996$ and $\$ 821$, respectively, in oats and rye. The net outcome of 7830 's gatain futures transactions
through this firm, therefore, was a loss of $\$ 413,212$. Because of the variety and scope of his nctivities as well as their striking outcome, the trading of 7830 provides a good introduction to many aspects of futures trading.

Initial Trades

Trader 7830 's initial trade in wheat futures through the firm was on November 19, 1924, when he made a short sale of 10,000 bushels in the 1925 May wheat future at a price of $\$ 1.60 \% / 8$ per bushel. On the next day he bought 10,000 bushels of the stme future at $\$ 1.571 / 2$ per bushel. When these two contracts were set against each other it was found that 'Trader 7830 was in the following position:

$$
\begin{aligned}
& \text { Contract to sell } 10,000 \text { bushels at } \$ 1.60 \% \text {.-......................... } \$ 16,037.50
\end{aligned}
$$

$$
\begin{aligned}
& \text { Profit } \\
& 287.50
\end{aligned}
$$

From this profit of $\$ 257.50$ Trader 7830, who was not a member of the Chicago Board of Trade, had to pay the minimum commission for nonmembers, which was $\$ \mathbf{\$ 2 5}$. This left him a net gain of $\$ 262.50$.
'The price of the 1025 May future had risen from a low of approximateiy $\$ 1.20$ per bushel early in July $102 t$ to the $\$ 1.60$ level by the middle of November. The increase hat not been steady, but had occurred in three waves. The first two waves had each been followed by a recession. The third wave, in the early part of November, had exhibited the sharpest rise of the three, prices having risen from a low of $\$ 1.411 / 2$ on Xovember 3 to a high of $\$ 1.635 / 8$ on November 13, just seven trading days later. Then for several days there was relatively little change in price. Perhaps 7830 thought that a third recession was about to set in. Or it may be that he was a "chart trader," and the price had gone through a short-run "resistance point." In athy event he sold short, and the next day the market sagged sharplyto the profit of Trader 7830.

On this second day, November 20, 1994, Trader 7830 made his second short sale. Turning to the corn futures market, he sold 5,000 bushels of 1925 May cor'n short at $\$ 1.223 / 3$ per bushel. Corn prices had also been rising. The 1925 May corn future had risen in three waves from a low of about, 85 cents per bushel in early July. The third wave had been followed by a recession, and a fourth price rise was under way. A slight dip in this movement came after November 19, and during this dip 7830 made his short sale. He covered his short position by purchasing the future on November 21 at $\$ 1.197 / 8$, and made a profit of $\$ 125$ mitus the commission of $\$ 12.50$ on the 5,000 bushel transaction.

After this auspicious begimning Trader 7830 entered the market again on the following day, November 22, and again sold short. This time he sold 5,000 bushels of the 1925 May wheat future at $\$ 1.583 / 4$. But the expected deeline in the market did not occur. Prices rose and remained fairly steady. Trader $7 \$ 30$ did not cover his position, but on November 36 he purchased 5,000 bushels of 1925 July wheat at $\$ 1.413 / \mathrm{p}$ per bushel. Sine he wis short the May future, the purchase of the July established a "spread." He was long the July future and short the Xay future by equal amounts.
In a spreading operation, if prices of both futares were to rise to the same extent, the losses on the May future would exactly balance the profits on the July, Similarly if prices declined, his profits on the

May wouk be offset by losses on the July. The May was an old-crop fature, and the price reflected the estimates of demand for the existinge supply during the remainder of the crop year, and the costs of storing wheat mitil May. The July futne was a new-crop future. Wheat would not be har yested in 1025 early enough to be delivered on the May future, but newly harvested wheat might be delivered on the July future. Consequentiy the price of the 1920 July future zeflected current expectations in Novenber 1004 as to the relation between supply and demand at the begiming of the $1925-26$ crop year. The expectabions were that wheat would be relatively more plentiful in 1925-26, a situation which woudd be conducive to a small earry-over of stocks of wheat into the new crop year, and consequently the July futtire sold for considerably less than the May future.

On Norember 26, when Trader 7830 established the "spread" position, the differenee in price between the May and July futures was 20 cents per busbel. If this difference were to decrease as a result of the price of the July future rising more rapidly than the price of the May future-or falling less mapidy- 7830 wond have gained. The profit on his long position in July would have been greater than the loss on his short position in May. If, on the other hand, the price differences were to widen, 7830 would lose.

This trader, however, does not scem to have looked at his position as a regutar spreading operation, for in a few days (on December 1) he liquidated his long position in the July future. A week later, on December 8 . Trader 7830 again bought 5,000 bushels of 1925 July wheat, but he held this long position only a week- As a result of these two sets of transactions in the July future, he had a total profit of $\$ 200$ minus $\$ 25$ in commissions. In the meantime prices had resumed their upwad tread, and the short position in the May future, which he hat been holding atl this time, accumblated larger and larger losses. Finally, on December 19, Trader 7830 covered his short position at a price of $\$ 1.751 / 2$. Since he had sold the future at $\$ 1.583 / 2$, he suffered a loss of $\$ \$ 37.50$ plus $\$ 12.50$ in commission.

Cycle and Duration Defined

In this study the combination of trades by which a trader assumes a position, long or short, and then liquidates the position, is termed a "cycle." The initial trades in wheat and corn fitures made by 7830 throngh the firm, therefore, may be summarized by saying that he twaded hrough two short cyeles and two long cyeles in wheat and one short evele in corn. Four of the cyeles resumed in profits and one restited in a loss. The amome of the loss on the one unprofitable cycte more than counterbalanced the profits on the forr other cyeles, so that the net result of his trading in futures up to this point was a loss of $\$ 2.5$ plus $\$ 5$ in commissions.
If we give the terms "duration" to the number of trading days when elapse after the beginning of a cyele before the cyele is completed, ientrs forst five cyules in wheat and con futures may be described as
follows:

1. Sbort 10000 bashels uf wheat, farntion I day, wront $\$ 287.50$.

2. Loug 5 , (N0 bushels of whem, duration 6 dass, profit \$112.50.

Traditional Behavior of Inexperienced Traders

There is a common belief that inexperienced traders cut their profits short but let their losses rum, whereas experienced traders cut their losses short and let their profits run. In his eariy trades, 7830 acted according to the traditional pattern for the inexperienced trader.
There can be little doubt that in the above sample of his trading activity 7830 tended to cut his profits and let his loss rum. The total cluration of the four profitable cycles was only half the duration of the single unprofitable cycle. If 7830 had cut his loss and let the profits rum, his profit on the first cycle might have become a loss, since the profit on his short sale arose out of a short dip in at upward price movement. This was also true of the short sale in corn futures. His loss on the third cycle would have been greatly redueed, and his profits on cycles four and five would have been increased. The net result is in doubt, and it shoukd noe be inferred that all 7830 needed to do to become a suceessful trader was to adopt a simple maxim with respect to the proper time to close out positions. If success could be achieved so easily, there would be few unsucesssful traders on futures markets. The early experience of 7830 illustrates how a trader who takes a position counter to the trend of the market and holds that position for some time must necessarily sulfer serious losses. His later experience provides additional illustrations of this fact.

The earliest cycles of 7830 in the grain futures market have been described in considerable detail. The hater history of his trading will be deseribed in more general terms. Although there were periods of several months during which 7830 mate no trades through the firm, he continued to trade in grain futures until Oetober 29, 1932. The scale of his trading grew until he became one of the largest accounts held by the firm.

Table 1 lists 7830 's trading cycles in each grain by date of completion. The first four cyeles of trading in wheat futines have already been described. The fifth cycle in wheat futures consisted of a purchase and sale of 10,000 bushels of the 1925 July wheat future all on one day, Mareh 5,1925 . In this case the maximum position is shown as zero, since the definition of position used here is the open commitment in in future at the close of a trading day.

In-and-Out Cycles

Where a cycle begins with a purchase or a sale and ends with a sale or purchase made on the same day, no commiment remains open at the end of the day. In these cases the cycles have not been classified as long or short, but are termed "in-and-ont" Actually the trader did take a position long or short within the day, depending on whether the purchase preceded the sale or viee versa. The customer ledgers of the firm, however, do not disclose the order in which the trades were made and consequently it is impossible to distinguish bet ween long and short cycles which were initiated and concluded on the sapme dily.
Fourten of $78 \% 0$ s wheat futures eycles were in-and-out cyrles. Twelve of these resulted in profits. He also traded in one prolitable in-and-ont cyele in corm and one in rye. Flis experience in these cycles is summarized in table 2.

Table 1.-Trader 7830: Principal characteristics of individual trading cycles, listed by date of completion

Mar. 6, 1926 Mar. 19, 1926 Mar. 12, 1926 June 3, 1926 June 10, 1926 July 13, 1926 Aug. 27, 1926 Sept. 15, 1926 Sept. 17, 1926 May 4, 1927 May 11, 1927 May 25, 1927 June 4, 1927 June 23, 1927 June 23,1927
Aug. 6,1927 Oct. 21, 1927 Mar. 30, 1928 Apr. 2, 1928 Apr. 4, 1928 Apr. 12, 1928 -.do Apr. 17, 1928 May 18, 1928 Junc 5, 1928 June 14, 1928 Sept. 25,1928 Aug. 12, 1929 Aug. 14, 1929 Aug. ${ }^{\text {An }} 4,1929$ May 1, 1929 Nov. 19, 1929 Aug. 19, 1929 Feb. 19, 1930 Feb. 19, 1930 Mar. 3, 1930 May 5, 1930 May 14, 1930 Apr. 14, 1930 Apr. 14, 1930
May 19, 1930 Aug. 5, 1930

Mar. 11, 1926 Apr. 12, 1926 May 29, 1926 June 5, 1926 July 13, 1526 Aug. 3, 1926 Sept. 14, 1926 Sept. 15, 1926 Sept. 21, 1926 May 7, 1927 May 21, 1927 June 4, 1927 July 30,1927 Aug. 10, 1927 Dec. 1, 1927 Mar. 29, 1928 Mar. 31, 1928 Apr. 12, 1928
Apr. 13,1928 Apr. 25, 1928 May 18, 1928 July 5,1928 Sept. 22, 1928 Dec. 29, 1928 May 1, 1929 Aug. 13, 1929 Aug. 14, 1929 Nov. 5, 1929 Nov. 16, 1929 Nov. 20, 1929 Jan. 30, 1930 Feb. 28, 1930 Mar. 1, 1930 Apr. 7, 1930 May 13, 1930 May 16, 1930 June 24, 1930 Sept. 4, 1930

$$
\begin{aligned}
& -25,464
\end{aligned}
$$

30 5 60
60 20
20
40
10
10
10
20
10
5
10
110
30
80
50
220
150
70
40
430
650
50
50
100
2,440
1, 50
1, 050
75
50
$\stackrel{50}{25}$
50
75
2, 050

1. 50
1.00
1.00
2. 00
1.00
2.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.22
1.00
2.67
1.00
3.00
3.14
2.14
1.00
1.00
1.69
1.57
1.67
1.00
4
1.07
1.00
1.75
1.00
-1.00
1.000
2

an analysis of speculative trading in grain futures

Table 1.-Trader 7880: Principal characteristics of indiviaiual traaing cycles, listed by date of completion-Continued

1	1925 Ma	Nov. 20, 1924	Nov, 21, 1924	1	5	5	1. 00	Short--	$+125$	$+125$
∞	102.do	Dec. 29, 1924	Jan. 5, 1925	5	5	5	1. 00	Loug	-207	-82
会3	1926 May	Nov. 10, 1925	Dec. 3, 1925	18	20	30	1. 50	Short	-400	-482
${ }_{0}$	1929 Decemb	July 22, 1929	July 26, 1929	4	25	25	1. 00	Long.	+500	+18 +487
5	--..do	July 30, 1929	July 31, 1929	1	50	50 125	1. 00	---do	+469 +2407	+487 +2.924
${ }_{0} 6$	---do	Aug. 3, 1929	Aug. 24, 1929	18	100	125	1. 25	- do	+2, 497	$+2,924$ $+2,705$
7	1930 December	Sept. 3, 1930	Sept. 6, 1930	3	100	100	1. 00	---do	-219	+2,705
8	1931 May	Nov. 21, 1930	Dec. 20, 1930	24	25	50	2. 00	Short.	+388 -932	+3,093
$\bigcirc 9$	1931 July	Dec. 5, 1930	Jan. 3, 1931	23	10	10	1. 00	Long-	-932 +25	+2,161
10	1931 September.	July 16, 1931	July 17, 1931	1	5	5	1. 00	Short---.	+25	$+2,136$ $+2,343$
11	1931 December----	July 27, 1931	July 27, 1931	0	0	25		In and ou	$+157$	+2, 343
12	1932 May	Oct. 24, 1931	Oct. 27, 1931	2	5	10	2. 00	Short.	+37	+2,380
13	-.-do	Oct. 29, 1931	Nov. 25, 1931	22	5	15	3. 00	do	$+31$	+2, 411
14		Aug. 30, 1932	Aug. 31, 1932	1.	50	50	1. 00	dc	$+645$	+2,956
	1925 May	Nov. 17, 1924	Nov. 19, 1924	2	20	20	1.00	Long	+37	$+37$
2	1929 December	Aug. 26, 1929	Aug. 28, 1929	2	50	50	1.00	-.-.do	+312	+349
	do	Sept. 11, 1929	Nov. 6, 1929	47	175	175	1. 00	o	$-13,733$	-13,384
$\boldsymbol{R Y}$										
	1926 May	Dec. 12, 1925	Dec. 14, 1925	1	20	20	1. 00	Short	-101	-101
	1928 July	Apr. 3, 1928	Apr. 11, 1928	6	20	20	1. 00	Long	$+650$	$+549$
3	1931 Septem	June 22, 1931	June 22, 1931	0	0	5		In and out	$+62$	$+611$
	---do do------	June 23, 1931	June 24, 1931	1	5	5	1. 00	Long.	$+25$	$+636$
	do	June 30, 1931	Sept. 3, 1931	55	10	15	1. 50	-..-do	-312	+324
	1931 December	Sept. 3, 1931	Sept. 14, 1931	7	5	5	1. 00	do	$+156$	$+480$
	---do.	Sept. 21, 1931	Sept. 23, 1931	2	5	5	1. 00	\therefore	+31	$+511$
	-.-do	Sept. 24, 1931	Oct. 15, 1931	17	5	5	1. 00	do	$+25$	+536
9	1932 May	Oct. 8, 1931	Oct. 20, 1931	9	25	25	1. 00	do	+719 +688	+1,255
10	1933 May	Aug. 30, 1932	Sept, 19, 1932	16	50	50	1. 00	do	-1,688	-433

Table 2.-Trader 7830: Summay of in-and-out cycles

It may be seen that 7830 was moderately successful in his trading in in-anci-ont cycles, although the commissions paid amounted to almost half of the net profits from this type of trading.

Simple and Complex Trading Cyeles

In addition to the in-and-ont cyeles it is possible to draw a distinction between simple cycles and complex cycles. In a simple cycle the trader builds up a position, long or short, and then liquidates or covers that position. In such catses the total amount of the future bought is equal to the maximum position attained.

Sometimes a trader will buy and sell various quantities of the future during the cycle without completely liguidating or covering the position. This gives rise to complex cycles. In such cases the total amount bought will exceed the maximum position. An illustration may be found in cycle 28 . Trader 7830 sold 10,000 bushels of the 1926 December future on July 13, 1026, and another 10,000 bushels on July 16. On the 23 d he bought 5,000 bushels and thus reduced his short position from 20,000 bushels to 15,000 . On the next day he bought, 25,000 and sold 20,000 , leaving him short 10,000 bushels. This position he finally liquidated on Augast 3. The maximum position was 20,000 bushels short, but the quantity bought was 40,000 bushels. The additional 20,000 arose from the sale of 20,000 bushels on July 24 after the trader had started to cover his position.

A complex cycle may result from buying and selling on the same day, or it may arise from buying and selling on different days. An illustration of the latter situation may be found in wheat futures cycle 38. This cycle was made up of the trades and positions in the 1928 May wheat future shown below for the days on which trading occurred:

Date of trade	Trade	Position
Oct. 21, 1927.	Bought 20,000 bushels	Long 20,000 bushels.
Nov. 14, 1927	do	Long 40,000 busheis.
Nov. 15, 1927	Sold 20,000 bushels	Long 20,000 bushels.
Nov. 16, 1927	Bought 10,000 bushels	Long 30,000 bushels.
Nov. 18, 1927	- do.	Long 40,000 bushels.
Dec. 1, 1927.	Bought 50,000 bushels	Long 90,000 bushels.
Mar. 29, 1928	Sold 90,000 bushels	Zero.

In this case the total amount bought was 110.000 bushels, while the maximum position attained was 90,000 long. The difference arisas from the sale of 20,000 bushels on November 15.

A simple long cycle is one in which a position is acquired by a series of purchases uninterrupted by a sale, and is then liquidated by a series of sales with no intervening purchases. In the simple short cycle a series of shcrt sales is followed by a series of purchases. Whenever either the process of acquiring the maximum position or liquidating it is interrupted by transactions of the opposite nature, a complex cycle arises. ${ }^{3}$ The complesity of the cycle is indicated by the relative quantity of the maximum position and the total quantity bought. In the simple cycle the total quantity bought is equal to the maximum position. In the complex cycle the total quantity bought is greater than the maximum position.

The column in toble 1 which shows the ratio of the amount bought to the maximum position indicates the complexity of the diferent cycles. For almost $31 / 2$ years, from November 1924 to April 1928, Trader 7830 confined himself largely to simple cycles. Beginning with wheat futures cycle 43 in April 1928, Trader 7830 began to trade on a larger seal and to introduce a greater degree of complexity into his trading. Ignoring the in-and-out cycles, the average of the maximum positions for cycles through cycle 42 was 18,300 bushels, and the average quantity traded was 23,600 . For cycles 43 through 83 the averages were 152,600 bushels and 401,100 bushels, respectively. The ratio of quantity traded to maximum position was 1.29 for the earlier cycles and 2.63 for the later cycles. The later cycles also extended over a longer period. Including the in-and-out cycles, the average duration of 7830 's first 42 cycles was 13 trading days, while the average duration of the last 41 cycles was 38 trading days.

Profits and Losses in Complex and Simple Cycles

It is of interest to note the chief characteristics of the more complex cycles, which for present purposes may be taken as those cycles in which the total quantity traded is more than three times the maximum position. Table 3 shows these characteristics.
Most of these were important cycles in the trading experience of 7830. With the exception of cycle 78 , they resulted in losses. The most complex cycles were predominantly unprofitable, but heary losses were also sustained on less complex cycles.
Further evidence on the relation between the complexity of trading and the profit situation of 7830 is presented in table 4. This table gives the number of profitable cycles and the number of unprofitable cycles classified as simple, complex, or in-and-out. The in-and-out classification and the simple cycles show a predominance of profit situations, while the complex cycles were more frequently

[^1]Tabis 3.-Trader 7830: Characteristios of compiex cycles

Cycle No.	Duration	Maximum position	Total quantity bought	Quantity bought to maximum position	Loss	Loss per bushel traded
		1,000 bu.				
43.		1,70	1, 220	3. 14	3, 893	${ }_{1}{ }_{1} 77$
52.	166	600	2, 440	4. 07	32, 949	1. 35
61	88	400	2, 050	5.12	51, 108	2. 49
64	46	60	, 220	3. 67	3, 627	1. 65
70	145	250	1,285	5. 14	14, 368	1. 12
78	3	25	90	3. 60	* 398	*. 66

* Prolit
unprofitable than not. ${ }^{2}$ This raises the question whether these cycles were unprofitable because they were complex, or whether the reversals of direction and the in-and-out trading which tended to create the complex cycles were used by 7830 in the attempt to improve his position when faced with losses.

Talle 4.-Trader 7830: Number of wheat futures cycles classified by type and proftability

Type	Profitable	Unprofitable	Total
Simple	26	13	39
Complex.	12	18	30
In-sind-out.	12	2	14
Total	50	33	83

It is possible to reach some conclusion on this question insofar as the complexity of 7830's trading arose from in-and-out trading-and this was the chief source of complex cycles. This speculator traded in wheat futures on 430 days. On 152 of these he engaged in in-andout trading; that is, he both bought and sold the same wheat future. Since on some days he traded in-and-out in more than one wheat future, there are 156 instances of in-and-out trading in wheat futures. In 14 cases the in-and-out trading constituted a distinct cycle. In the other instances the in-and-out trading contributed to the complexity of the current cycle of trading. The resuits of 7830 's in-and-out cycles have been discussed above. We may now consider the results of his in-and-out trading in the 142 instances in which it did not constitute a distinct cycle but was part of a complex cycle.

[^2]In in-sind-ont trading the amount purchased may or may not be equal to the amoment sod. An illustration has already been given in cycle $2 S$ of a case in which the amonnts bought and sold were not equal. In this case 7830 bought 25,000 bushels and sold 20,000 bushels of the 1026 December wheat future on July $24,10 \%$. In such a case he may be said to have traded in-and-out 20,000 bushels. On the other hand the amounts bought and sold may be equal. Inded this was 7830 's favorite method of in-and-out trading. In addition to the 14 in-and-ont cycles in which the amount purchased was necessarily equal to the amount sold, there were 83 instances in which the amonts bought and sold were equal. This may be compared with the 59 cases of withincycle in-and-out trading where the anounts bought and sold were not equal.

Another point with respect to 7S30's within-cycle in-and-out trading may be noted. This type of tading was relatively uncommon during the early part of his trading career. As time went on and his trading increased in sizo and frequency, in-and-out trading became more prominent. During the first year of his tading (November 19, 1924, to November 14, 1025) 7830 engaged in in-and-out trading on only 2 days of the 20 on which he traded. In a similar period 6 years later (Novenber 1, 1030, to October 31, 1931) he traded in-andout on 177 days out of 75 .

Is this increasing resort to in-and-out trading due to the fact that 7830 had found here a successful method of trading? It is not possible to give a categorical answer to this question, but it is possible to summarize the major features of his within-cycle in-and-out trading. This is done in table 5 . It may be seen that in 104 cases out of 142 the selling price was higher than the buying pice, and 7830 may be looked upon as having made a profit as a result of the in-and-out trading. The total amome of this profit was $\$ 30,978$, against which must be set the $\$ 9,118$ of losses incurred in the 32 cases where the buying price was higher than the selling price. In addition it was necessary for 7830 to pay $\$ 14,988$ in commissions, so the net outcome of this type of trading was an improvement in his position which may be valued at $\$ 6,872$.
These profits, although small compared with the volume of trading done, were not inconsiderable, and this suggests the possibility that 7830 had hit upon a method of trading which could be counted on to give him small but reasomably consistent profits. These in-and-ont transactions eonld have been the result of trading in privileges, a special type of trading that has been carried on at various times on grain futures markets. The following brief description of privilege trading and its possible bearing upon the trading methocis and patterns analyzed in the study is presented, in view of the importance of such trading in some of the years covered by the survey.

Privilece Trading

The "privilege" may be characterized as a second-degree future. The future is a contract to buy or sell the commodity at a future time. The privilege is an option to buy or sell a future at a future time. Privilege trathing was prohibited by the Commodity Exchange Act amendments of 1036 , but during most of the period studied, i. e., from Jamary 13, 1026, throngh December 31, 1932, there was thading in privileges on the Chicago Board of Trade.

Tabwe 5.-Trader 7830: Summary of witnin-cycle in-and-out trading in wheat futures

| Classification | |
| :--- | ---: | ---: | ---: |
| | |

If a trader believed that the price of a particular future would be higher the next day, or the next week, he would buy an "offer." This would mean that the seller of the offer would agree to sell the future to the buyer at a specified price, usually from 1 to 2 cents above the closing price of the future if the offer was good only next day, and at a somewhat higher price if the offer was good all next week. If the price actualy rose above the price stipulated during the specified period of time, the buyer could make an immediate profit by selling the future at the market price and then exercising his option of buying the future from the seller of the offer at a price below the market. If the trader expected a decline in price, he would buy a "bid," or an option to sell the future at a specified price, usually 1 to 2 cents below the closing price of the future. If prices declined below the specified price he could make a profit by buying the future in the market and exercising the option of selling to the seller of the bid. Privilege trading was an inexpensive method of speculating, since no more than $\$ 0.50$ was required to purchase a privilege, and only this amount would be lost if the expected price movement did not materialize.

When the purchaser of a privilege exercised the privilege and took th3 profit immediately, the result was an in-and-out cycle. This was a commen practice. On the other hand he could continue to hold the position obtained by exercising the privilege. The act of making yood on the privilege would also affect the position of the seller in one of two ways. He might enter into an opposite transaction immediately and take a loss, or he might permit the transaction to add to or reduce a line already held.

The books of account available for this study did not provide direct information on privilege trading, but an employee of the futures commission firm who had first-hand knowledge of customers' trading states that 7830 was a large trader in privileges. In instances in which he sold privileges which were not made good, he would profit by the transaction, but it would have no effect on his futures position, and the result would not be shown in any of the records used in this study. If his in-and-out trading was the result of exercising privileges purchased, it should have been profitable. To the extent that it was the result of privileges sold it would have been unprofitable, unless he had been holding a position which showed a protit at the time he sold the privilege.
With these considerations in mind, 7830 's trading may be examined in terms of the date on which it occtrred, since such trading befure Jamary 13, 1926, could not have been connected with privileges. Such an examination aloes not yield very conclusive results. Of the 14 distinct in-and-out cycles in wheat futures, 3 occurred before January 13, 1926, and 2 of them were unprofitable. These were the only umprofitable in-and-out cycles in 7830 's wheat futures trading. On 5 other days in the preprivilege period he had in-and-out trades which were parts of complex cycles. In 2 instances he had profits, totaling $\$ 402$, and in 3 instances losses, totaling $\$ 162$. Thirty-one percent of his total trading before January 13, 1926, and 42 percent of lis trading after that date, was in-and-out. Consequently, no clear inference with respect to the relation between iS30's in-and-out trading and privilege trading is possible.

It is conceivable that 7830 's in-and-out trading not related to privileges resulted in fairly consistent profits. It is not possible to be certain on this point, since no information is available as to the orders given by 7830 , nor as to his methods of trading. All that we have is the record of his actatal trades. This shows when he did trade on both sides of the market. It does not show when he expected to trade on both sides, but was able to complete only one side of the transaction. This could have occurred in a number of ways, bat a single illustration will make the point clear. Suppose that 7830 , on a given day, expected prices to fluctuate up and down between values of approximately $\$ 1$ and $\$ 1.01$. He might, for example, order his broker to buy Q5,000 bushels of a diven whent future at $\$ 1$ and sell it at $\$ 1.01$. If on the clay on which the orders were to be executed, both of the prices were recorded in the appropriate sequence, it would be possible for his broker to execute boih trades and the trader would have a profit of 1 cent per bushel mimus his commission of one-quarter of a cent. If prices broke, however, the purchase could be made but not the sale, and the trader would find himself with a long position in a declining market. If it were possible to discover the extent of the losses 7830
suffered because of positions acquired in this fashion, it is highly likely that it would be fomed that on balance his attempts at in-and-out trading were unprofitable.

It may be recialled that 7830 s complex cycles were predominantly unprofitable. In a number of cases the complexity arose from in-andout trading. The above discussion indicates, however, that in-andout trading as such was clearly not so unprofitable as to be an important catuse of the losses sustained in complex cycles. The more appropriate inference is that in-and-ott trading was resorted to in the effort to improve the trader's position in unproftable cycles.

Tendency of 7830 to Cut Profits and Let Losses Run

During mach of his trading 7830 was faced with substantial losses on positions currently held. This is evident from table 6, which shows the duration of his positions in all commodities and in different types of cycles. In every commodity the number of profitable cycles exceeded the number of unprofitable ones. But in each case except, corn the total duration was longer for the unprofitable cycles. Even in the case of corn futures 7830 tended on the average to hold his unsuc-

Table 6.-Trader 7850: Duration of cycles, by grain and type of cycle

Grain and type of cycle	Successfut			Unsuccessful		
	Cycles	'Total duration	Average duration	Cycles	Total duration	Average duration
Wheat:	$\begin{array}{r}\text { Number } \\ \hline 8\end{array}$	Days	Days	Number	Days	Days ${ }^{6}$
Short	10	52	${ }_{5} 5$	6	+ 47	7.8
In-and-out	12	0	0	2	0	0
Total	50	444	8.9	33	1,665	50.5
Corn:						
Long-	3 6	23	8.7	3	31	10.3
In-and-out	1	0	${ }_{0}^{8.5}$			
Total	10	74	7. 4	4	49	12. 2
Oats: Long....-...... 2 4 2.0 1 47 47.0						
Total.	2	4	2.0	1	47	47.0
Rye:						
				1	1	1.0
1 n -and-out.	1	0	0			
Total.	7	42	6.0	3	72	24.0

cessful cyeles open longer than the successful ones, the longer total duration for the successtul corn eycles being explained by the relatively greater number of successful cyeles in this commodity. This table demonstrates that for his entire trading experience 7830 had a tendeney to eut his profits, but to let his losses run.
This feature of 7830 's activities in the grain futures market is even more clearly shown by the other characteristics of his trading activity summarized in table 7. The average profit per cycle realized in his wheat futures trading was $\$ 62$, as compared with an average loss per cycle of $\$ 11,28$. Fis trading in other commodities was on a very minor scale compared with wheat, and in com his profits exceeded his losses. For both uat and rye futures, however, losses were greater than profits both in amount, and per cycle of trading. In his long cycles in wheat futures-which consituted the bulk of his tradinghe tended to build up much larger positions during his unsuccesstul cycles than in those which resulted in profits. The average maximum position fo: the unsuceessful long wheat cycles was 181,000 bushels, which may be compared with an average of 28,900 bushels for the profitable cyeles. Furthermore, he resorted to more in-and-out trading and to interruption of the aceumulation and liquidation process by contary trades. As a result the index of complexity for the unsuccessfal long what futures cyeles was 0.26 , and for the successtul cycles was 1,30 . For the short whent futures cycles the ratios were 2.25 and 1.17 for unsurcessful and successful cycles, respectively. Trading in com and oat futures was mostly in simple cycles.

The over-all outcome of 7830 's trading is presented in table 8 . His truding, on the whole, was extremely mprofitable. He made a small! profit in com and a slight loss in rye. His loss in oat futures was considerable, and the outcome of his wheat futures trading was a loss of $\$ 400,100$. Altogether his losses on his trading through this firm amounted to $\$ 133,212$, including commissions. These are the largest losses sustained by any trader in the sample.

Relation of Trading to Price Movements

To understand how the losses of 7830 arose it is necessary to relate his trading to futures price movements. Since the trading in wheat futures was so much more significant than trading in the other commodity futures, this analysis will be confined to wheat futures.

A erucial feature in speculative trading, of course, is the relation of purchases and sales to prices. The speculator alwars hopes to buy at low prices and sell at higher prices, whether the position he assumes is long or short. Each speculator initiates a cyele of trading and assumes a position in the maket long or short, at a time which seems propitious for his endeavor to buy cheap and selldeat. Expansion of his position should logically ocem under conditions which seem even more propitious. Anillustration is the situation in which a trader is conrinced that the general trend of the market is upward, and declining prices do not shake this convietion. but rather ofter opportunities for increasing a long line at even more fivorable prices. This practice "averages down" the cost of the position and provides greater profits if the expected price movement does occur. In a similar mamer a short seller may make additional sales as prices rise.

Table 7.-Trader 7830: Trading experience, by grain and type of cycle

	Successful cycles						Unsuccessful cycles					
Grain and type of cycle	Cycles	Total profits	Average profit per cycle	Average maximum position	Average quantity bought	Quantity bought to maximum position	Cycles	Total	A verage loss per cycle	Average maximum position	Average quantity bought	Quantity bought to maximum position
Wheat: Long_, Short_- In-and-ou	Number 28 10 12	Dollars 25,140 4,221 2,033	Dollars 898 422 169	$1,000 \mathrm{bu}$ 28.9 23.5 0	$1,0006 u$. 37.7 27.5 25.8	Ratio 1.30 1.17	Number 25 6 2	Dollars 388,954 6,092 375	Dollars 15,558 1,015 188	$1,000 \mathrm{bu}$ 181.0 20.8 0	$\begin{array}{r} 1,000 \mathrm{bu} . \\ 498.8 \\ 47.5 \\ 15.0 \end{array}$	Ratio $\begin{aligned} & \text { 2. } 76 \\ & \text { 2. } 28 \end{aligned}$
Tota	50	31, 394	628	20. 9	32.8		33	395, 421	11,982	140. 9	387.4	--------
Corn:	3	3,406	1,135	58.3	66.7	1. 14	3	1,358	453	38. 3	38. 3	1. 00
Short.	6	1, 151	$\bigcirc 192$	15.8	22.5	1. 42	1	1400	400	20.0	30. 0	1. 50
In-and-ont	1	157	157	0	25.0							
Total	10	4, 714	471	27. 0	36. 0		4	1,758	440	33. 8	36. 2	
Long	2	349	174	35. 0	35.0	1. 00	1	13,733	13,733	175.0	175.0	1. 00
Tota	2	349	174	35.0	35.0		1	13, 733	13, 733	175. 0	175. 0	
Long	6	1,606	268	10.8	10. 8	1. 00	2	2, 000	1, 000	30.0	32.5 20.0	1. 08 1.00
In-and-out	1	62	62	0	5.0							
Total	7	1,668	238	9.3	10.0		3	2, 101	700	26. 7	28. 3	-

- Tawle 8.-Trader 7830: Over-all summary of trading operations

Itern	Wheat	Corn	Oats	Rye	All grains

In other instances expansion through averaging down the cost of a position oceurs when a trader has come to realize that his original expectations with respect to price movements were in error, but shrinks from the finality of the action of closing out his position at a loss. Under these circumstances he expands his position at lower prices if he is long, or at higher prices if he is short, in the hope that a yeversal of the market trend will offer opportunity for profit, or will at least reduce the size of his loss.
The contrast between action along the lines originally expected and action dictated by failure to realize such expectations is even more clearly shown in the liquidation of positions. It might appear that if the anticipated price movement does occur the trader has no problem; he proceeds according to his original plan, and liquidates his position when the expected price level is yeached. But his original plan may not have been so definite as to include a particular price it which the line would be liquidated. Furthermore, the actual price movements may have altered his appraisal of the market situation, and he may now look for another, even more profitable, price level to арреаг.
The decision when to take a profit is a difficult one. Some traders quickly become apprehensive lest the profit disappear on a reversal of the market. and, heeding the maxim that "no one ever went broke taking a profit," realize the profit almost at the first opportunity. Others may have their appetites for gain whetted by the appearance of a small profit, and revise their estimates of market action in an optimistic direction. Convinced of the validity of their anticipations they may permit substantial profits to accrue befors they act. Sometimes they realize these higher profits, and sometimes they see them fade away as a result of adverse price movements. Still another method of liquidation is that of the trader who hopes to liquidate, not at the peak of the current price movement, but as soon as a definite reversal of trend is evident. The crucial point for such traders is to determine when a contrary movement is merely a temporary interruption of the prevailing movement and when it signals the beginning of a new, and contrary, tendency.
The trader faced with the necessity of deciding whether or not to liquidate a loss position is in a less happy if no less puzzling situation. If the existence of the loss does not confince him that his original expectations were in error, he is constrained to hold his position if possible until coming events prove that he was right. The time may
eventually come when such a trader is forced to liquidate his position. as a result of margin calls or the expiration of the future. If the trader whose position shows a loss is convinced that his original expectations were in error, he still must decitie the time and method of liquidation which will leave him with the least loss possiblo under the circumstances.

Full understanding of the relation of any given trader's operations to prices would recuire information as to the reasons for each trade he makes. These reasons would in many cases be so diverse that no clear pattern of trading would emerge. The information availabia in this study is merely th yecord of the actual transactions. Amalysis of it does hot reveal all the canses of any individual's trading, but it may indicate the existence of certain of the more casily recognizable trading patterns. The discovery of such patterns, if they exist, has significance because of the eflects which diferent trading patterns have on the functioning of the market.

Types of Trading Patterns

The number of possible mading patterns is, of course, very large, but the description of a fow possible methods of trading and the associated relationships between prices and transactions will provide a background for the examination of these relationships in the operations of Trader 7830 .

Many traders are concerned almost entirely with very short-run price fluctuations. The scalper, who stands in the pit trading in and out during the day but closes the day with no opon commitments, is one example. Another is the in-mad-out "board-room" trader who watches the quotations during the doy and makes trades of short duration designed to obtain profits from short swings in prices. If a trader of either of these two kinds has a definite price level around which ho believes the short-term fluctuations will oscillate, he will sell when prices rise above the expected level and cover if and when they return to the presumed norm. If prices tall below the expected level, he will buy and liquidate the position when the anticipated readjustment has been made. It the expected level is one about which the market tends to fluctuate, such trading is not only profitable but tends to narrow the range of short-term fluctuations in prices.
The short-term trader, on the other hand, may have no definite notion of a price level which he conceives of as normal under the existing conditions. He may, however, feel that he can detect short swings in the market at their inception. Consequently, it he thinks that prices are falling, he will sell the future with the intention of purchasing at the lower level. If he thinks prices are on the way up, he will buy the future and thus be in a position to profit from the opportunity to sell at a higher price. Twaters of this type are sometimes referred to as "movement traders." If they are correct in their torecasts, their trading tends to accentuate the short-term swings in prices.

If minute-by-minute price quotations and trades were available these two patterns of short-term trading could be identified. Traders who operate with a definite price level in mind as a norm would sell on upswings and buy on downswings in prices. Movement traders would bey on upswings and sell on downswings.

The data available in this study do not make it possible to distinguish these extremely short-term trading paiterns. But some speculators who operate for the longer term may also trade on the assumption that a norm exists uround which prices may be expected to fluctuate and consequently buy as prices fall below this level and sell as prices aise above it. Another possibility is the norm trader who believes that a certain price above the present geveral level is the norm which the market should reach. Such a trader will buy futures, and if the rise occurs will sell when his norm is reached. Frequently, of course, he will have revised his opinion by the time the expected price chatnge has occurred. To the extent that such a revision is the result of the movement of prices, or the rapidity or slowness of price changes, he is behaving as a movement trader rather than as a norm trader.

Movement traders who speetate on fairly long-term price swings decide on trading policy by examining the price behavior of the market. Some of them are influenced by the rate of change in prices, others examine price swings to discover "resistance points" or" other indices by which they attempt to forecast future price movements. The effects of their trading practices on prices will depend, of course, on the considemtions which lead them to buy or sell-and these are different for different traders. It is probuble, however, that most movement traters who are trading on fairly long swings in prices tend to buy on rising prices and sell on falling prices. This is the pattern of movement trading which is assumed in the following discussion. Norm traders, on the other hand, ate presumed typically to buy on falling prices und sell on rising prices.

Trading Patterns of 7830: Short-Term Cycles

Trader 7830 trided through 83 wheat futures cycles. If a pattern with respect to price movements is to be found m his trading, it is necessary to consider the relationship of trading to prices in each significment classification of cycles.
The in-and-out eyeles have ahready been described. There were 14 such cycles in wheat futures. 12 of which were profitable. Since no information is available on the timing of purchases and sales within the trading session, it is not possible to discover trading patterns in the in-and-oat cycles. Previous discussion las indicated that some of these cycles were related to privilege trading.

Slightly more extencled than the in-and-ont cyeles were the cycles of 1-day duration. These were cycles of trading initiated on 1 day and terminated on the next trading day. An effort was made to appraise the price situations under which these cycles were initiated by comparing prices on the day of the original transaction with prices on the previous day. Where prices were generally lower on the day the trade was made it was assumed that the trausaction was made on declining prices. Where prices were generally higher it was assumed that the transaction was made on a rise in price. These characterizations may not always be correct, since price movements within the day are not considered, and a trade might actually be made during a period of rising prices on a day when prices genemally were lower than on the previous day. It is believed, however, that such siturtions were the exeeption, and that the characterizations given were generally appropriato.

The results of this analysis of 7830 's wheat cycles of 1 -day duration are given in table 9. The table indicates that in these short-term cycles 7830 did have a recognizable pattern of trading. Five of his eight short sales were made on rising prices, and seven of his eight long cycles were initiated on price declines. With respect to these short-term trades, therefore, it appears that 7830 was not a movement trader. It appears rather that he had a definite idea as to the price level which should currently prevail, and sold when prices rose above this level and bought when they fell below it. The fact that 12 of these 16 cycles were profitable should not lead to the inference that this trader' was usually right as to the level of prices. It is possible that he tended to take profits when the market movement confirmed his belicfs and to hold positions open longer if the expected reversal of the price movement did not appear.

Table 9.-Trader 7830: Trading pattern of wheat futures cyoles of 1-day duration

Direction of price change on day of initiating sale or purchase	Completed at-				Total	
	Profit		Loss			
	Cycles	Quan tity' bought	Cycles	Quanbought	Cycies	Quanbought
Short cycles:	$\underset{\text { ber }}{\text { Num- }}$	$\begin{gathered} 1,000 \\ b u . \\ 10 . \end{gathered}$	Number	$\begin{gathered} 1.000 \\ b u_{i} \end{gathered}$	Number	$\begin{gathered} 1,000 \\ b u . \end{gathered}$
Increase -------.-.	4	105			5	115
No significant change	1 2	10 105			$\frac{1}{2}$	105
Total.	7	220	1	10	8	230
Long cycles:						
Decrease	5	140	2	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	7	170
Total	5	140	3	50	8	190

An attempt was made to discover whether a pattern is to be found in the wheat cycles of 7830 with a duration of 2 to 9 days. Some of the results are summarized in table 10 . There were 22 cycles in this classification, of which 4 were short and 18 were long. It was impossible to distinguish any pattern in the small number of short cycles. Of the 18 long cycles, 8 were initiated on a decline in prices, 5 started on a rise in prices, and in 5 cases the initial buying occurred when there was no significant price change.

The differences in these frequencies are not statistically significant, and there is consequently no reason to conclude that 7830 's trading in this class of cycle conformed to any one type. The cycles which are classified as having started without any significant change in price may in fact have been initiated as a result of a price stimulus, but the
price changes which provided the stimulus do not appear in the data used in this analysis.
Further analysis of the 13 cases where trading in wheat futures was associated with a significant price change indicates that at times 7830 traded as though he had a definite price level in mind as the norm, and at other times he traded in the manner expected of a movement trader. We should expect the movement trader in his long cycles to buy on a rise in prices. Trader 7830 did this in five of the wheat cyeles of 2 to 9 days' duration. In two of the four profitable cycles he traded only on the initial and final days of the cyole. In two of these four cycles he traded on 3 days. He made his initial purehase on a price rise, bought more on a further rise, and liquidated his position on a still further rise in prices. In the loss cycle he had bought on a rise in prices. But prices fell. He liquidated part of his line on this decline in prices and liquidated the remainder on a still further drop in prices. These are the trading patterns of the movement trader.

Table 10.-Trader 7830: Trading pattern of wheat futures cycles of 2 to 9 days' duration

Direction of price change on day of initiating sale or purchase	Completed at-				Total	
	Profit		Loss			
	Cycles	Quantity bought	Cycles	Quanbought	Cycies	QuanEity bought
	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	1,000 $b u$.	Num- ber	$\begin{aligned} & 1,000 \\ & b u . \end{aligned}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	$1,000$
Short cycles:	1	${ }^{\text {bu }} 10$	1	${ }^{\text {bu }}$	$2 r_{2}$	${ }^{\text {bu. }} 30$
No significaut change			1	10	1	10
Decrease.----------			1	20	1	20
Total	1	10	3	50	4	60
Long cycles:						
Increase.-------	4	145 105	1	100 40	5 5	245
Decreasc.-.-.-.--	8				8	370
Total	16	620	2	140	18	760

In the eight wheat cycles in which 7830 bought on a decline in prices there were two cycles where trading took place only on the first and last day's of the cycle. In three other cycles the trading on days other than the first and last consisted only of in-and-out trading, the amount bought being equal to the amount sold. In one of the remaining cycles there was teading on 3 days, the trading on the middle day consisting of in-and-out trading in which the sales exceeded the purchases. The effect was to liquidate part of the line at a price level above the original purchase. The remaining two cycles were 4 -day cycles which
conformed in their pattern to trading carried on with a presumed norm in mind. The initial purchase was made on a decline in price. A further purchase was made as prices declined further. Prices then rose and part of the line was liquidated. The rest of the position was liquidated on a still further rise in prices.
The analysis of the trading patterns of 7880 up to this point has dealt with 52 of his 83 wheat futures cycles. Of these 59 cycles, 41 were proftable and 11 were unprofitable. Thr, total profits, ignoring conmissions, were $\$ 18,706$ and the losses were $; \mathbf{p}, 024$.

Trading Patterns of 7830: Long-Term Cycles

The results of 7830 's trading in cycles with durations of 10 days or more are in sharp contrast with the predominantly profitable character of his short-term cycles. There were 31 long-term cycles in wheat futures, only 9 of which were profitable. The total losses, not counting commissions, on the 22 unprofitable cycles were $\$ 385,897$, as compared with profits of $\$ 12,688$ on the remaining 9 cycles.

The contrast between the profitability of the short-term cycles and the unprofitability of the long-term cycles is in part a reflection of 7830's tendency to close out trades showing profits and to hold loss positions open. Profitable cycles consequently tended to be of short duration, while mprofitable cycles on the average were of longer duration. Furthermore, 7830 tended to take the long side of the market and to maintain long positions tenaciously in the face of declining prices.

Only four of 7830 's long-term cycles were on the short side of the market. Two of these were profitable, yelding profits totaling \$720 less commissions, and two were unprofitable, resulting in losses of $\$ 4,730$ plus commissions. His tendency in his trading was to sell on rising prices, which seems to indieate that at times he thought the level of prices was too high and took the short side of the market.
For the most part, however, his position in the market was long, and the 27 long cycles of from 10 to 177 days' duration constitute the most characteristic, as well as the most important, part of his trading. Seven of these cycles were profitable, and the relation of 7830 's trading to price movements in these cycles may be summarized as follows:

Thousand Ifu*hets

Liquidation:

The predominant pattem here was to buy on a declining market and to sell on a rising market. Trader 7830 seemed to have definite ideas as to what prices should be, and he tended to buy if they fell below the level he considered nomal for the time. Apparently this
normal was usually not very much above prevailing prices, for he tended to close out his position as soon as a moderate profit appeared.

Most of 7830 's umprofitable long-term cycles on the long side of the market were complex, involving much buying and selling during the life of the cycle. In onc case trading in a single cycle occurred ou $5 \cdot 2$ days. In the larger and more complex cycles the accumation ordinarily took plase gradually. There was then considerable baying and selling, and frequently the position was liquidated abruptly. For this reason it has seemed useful to distinguish those trades which were clearly the final liquidation of a position from the sales which were made at an earlier stage in the cycles. Using this distinction the following summary describes the characteristics of 7830's trading in the 20 unprofitable long cycles which had duations of from 10 to 177 trading days:
Accumulation: Thousand Bushels
Bought on a deellning market 2, 964
bought on a ristug market $2,06 \overline{3}$
bought on no signifieant change in prices 890
Switeh hrom earlier zatares 76
Total 6,685
Intermedtate selling:
Sold of a declining market 1,070
Sold on a rising market 1, 615
Sold on ar signifienat ehunge in prices 280
Llapuchation:
Sold on a fechatag nanket 2, 540
Sold on a risiag market 410
Switch to later future? 765
Sold at the end of tuture 5
T'otu? 6, 085
${ }^{2}$ A switeh is a trating operation in which a trader disposes of a position in ove futare-trequenty a future which is about to expire-and at the same tine atquires a position of the sume size in another futare.

The tendeney to make long purchases on a declining market is not quite as strong in these cycles as in the long cycles previously considered. This may be due to the admixture of buying and selling within the cycle in the elfort to capture advantage from short-term market swings. The characteristies of this intemediate trading are even more clearly shown by the contrast betwen the price situations which stimulated intermediate selling, and those which were associated with ligudation. More of the intermediate seliner occurred on a rising that on a talling market. The liguidation, on the other hand, came for the most part on a decliming market. Trader 7830 's sales on a rising market in these cycles sould hardly be attributed to the belief that prices were rising abore the curent nom. If this had been his belief. he would surely have liquidated his long position, the holding of which presumed the expectation of rising prices. IVis sales may, perhaps best be characterized as paper profit-taking on short-term cycles within the lonerer cycle. The heavy predominance of liquidating sales on a decliminer market should be related to the fact that these were umpolitable eycles and most of them were liguidated at a time when the losses wre inerating. These trades were made when 7830 -or his broker-felt const mined to stop his losses.

[^3]
Multicycle Operations on Long Side of Market

The most important relations between 7830's trating and prices in these large loss cycles are not to be found in the comparison of shortterm price movements with trading, but in the relation of his position in the market to longer sweeps in prices. In fact, for a very significant portion of his large-scale tradiug the cycle is not a meaningtul unit for consideration. For considerable periods 7830 was continuonsly in the market on the long side, and on a number of ocasions he switched a long position from an expiring future to a later future. Five cycles were tied together in a multifuture cycle by this clevice, and the result was the most important, and disastrous, part of 7830 's experience in the wheat futures market. For this reason it will be described briefly.

Between April 17 and 20, 1928, Trader 7830 acquired a long line of 70,000 bushels in the $192 S$ May future at an average price of 155.40 cents per bushel. Prices fell but then recovered, and at the end of the month reached a peak of 171.50 cents. Trader 7830 did not take the profit of 12 to 16 cents per bushel available at this time, but watched prices fall below his original buying price. On May 18, when the end of the May future was approaching, he switehed this position to the July future by selling 70,000 bushels of the May future at 148.28 cents, and buying 70,000 bushels of the July future at 1.19 .98 cents. On that day prices rose, and shortly thereafter a profit of about 4 cents per bushel was available on the July position. Prices later resumed their decline, and after the delivery month arrived, 7830 decided to switch to a more distant future. Consequently on July 5 he sold the 70,000 bushels in the 1928 July future at 137.75 cents and bought the same amount of the 1928 December future at 14.38 cents. He had already acquired a line of 90,000 bushels in the December future. The cycles in the two earlier fiutures had been simple cycles, but in this future 7830 made intermediate purchases and sales and on one day traded in-and-out to the amount of 100,000 busleels. In this future atso a profit of abont 4 cents was at one time available, but 7830 did not liquidate at this point. His position in the December future reached a maximum of 255,000 bushels and amounted to 210,000 bushels all during the early part of December.

Begining on December 22 he liguidated the position of 210,000 bushels in the December future. As he sold this future he bought the 1929 May, the amount of the later future purchased each day being equal to the amount of the December future sold. He sold the December at an average price of 114.44 cents per bushel, atmost exactly 30 cents less than the price of his first purchase in the future, and bonght the May at an average of 120.52 cents. He already had a position lonr 90,000 bushels in the May future, and his position was now long 300,000 bushels. Again he bought and sold the futme, achieving a maximum long position of 415.000 bushels by March 22, 1929. It one time in February he might have liquidated at a profit of about 11 cents per bushel on his transactions in this future. He failed to do so and prices resumed their downard course. He carried the long position of 415.000 bushels without change until the first day of the delivery month, when he transferred the entire position to the 1829 December future. He sold the May future at an average price of 113.09 cents per bushel,
a loss of about 10 cents per bushel, and purehased the December at an average price of 127.02 cents.
The cycle in the 1929 December future initiated by a purchase of 415,000 bushels was one of the most interesting in his trading experience. The cycle lasted for 166 trading days, from May 1 to November 16,1929 . During this period prices sanged from a low of 105 cents per bushel to a high of 158 . Trader $\overline{\mathrm{T}} 30$ was active in the market on 52 days in this cycle, trading in-and-out on 17 days and making intemediate purehases or salles on $3+$ days. On July 18 he sold 1150,* 000 bushels at an average price of 154.66 cents. If he had sold an additional 225,000 bushels at the same price, he wouk have closed ont his line at a profit of $\$ 125,723$ minus commissions. It does not appear that such a sale would have been impossible, since the future reached a high of 15 i cents on that day. Again on July 29 he sold 50,000 bushels at a price of 106.50 cents. Had he sold $2 \overline{2}, 000$ bushels more and liquidated his long fine entirely, he would have had a profit of $\$ 127.081$. On this day prices reached $15 \$$ cents per bushel. Trader T 830 did not liquidate in July, but continued to carty his long position and to trade actively in the future. When he farly closed it out in November, his loss was $\$ 2.949$ plus commissions.
It is apparent from the considemtion of this group of related cycles that 7830 did not luse so heavily on his long positions because prices were always falling when he was long. In each of the constituent cycles there were times when profits conld have been realized. In the final cycle there were prices at which 7830 could have liquidated his line, recouped all losses of the four previous cyeles, paid the commissions, and reaped substantial profits.
In most of the eycles in which 7530 experienced heavy losses, there were times when profit situations dereloped. Three heary loss cycles, howerel, were in a loss position almost continoously from their inception. These cycles and the final losses sustained (without commissions) were:

Cycle	46	Loss..-	\$11, 5\%0
Csele	5	Loss.-	81, 101
Cycle	60	Loss._	15,938

Sumary of 7830's Tradinc Patterns

The following conchasions emerge from the consideration of the relations between 7530 's wheat futures operations and priees:

1. Trader 7830 at times traded as though he had a "normal price" in mind, and at times as a movement trader. The movement trading pattern, however, was greatly overshadowed by the other type of trading.
2. Trader 330 engaged in extensive in-and-out trading, generally selling at a price higher than the price paid.
3. Trader is 30 's position in the market was predominantly long, and his most important trading operations measured by volume traded. maximum position, duration, and financial outcome, were in long cycles during declining price movements. The result was very heary losses.
4. Trader 7830 s experience in his short-term cycles and the contrast in profitability between his short-tem and long-term cycles sug-
gest that he had a tendency to cut his profits and let his losses run. In several of his most important cycles, however, he permitted substantial profits to accumulate, but also permitted them to disappear and be replaced by substantial losses. It is impossible to characterize this behavior by any simple formula.
5. Trader 7830's tendency to buy on declining prices should have contributed toward greater price stability, and this should also be true of the substantial number of occasions when he sold on rising prices. In liguidating several very large long lines on declining prices, however, he probably accentuated the drop in price.

CASE STUDY OF A SUCCESSFUL TRADER

In almost every chanateristic except the seale of his trading activities and the fact that he also was a busimessman residing in California, Trader 7735 is in sharp contrast to Trader 7830. The losses of Trader 7830 were greater than for any other trader in the sample; Trader 7332 had the largest profits. Tader 7530 traded through a large number of conplex cyeles, with much in-and-out trading. Trader T73:'s cycles were predominantly simple, and in-mid-out trading was quite rare. Trader 7530 's activities were largely confined to wheat futures; 7732's major trades were in com futures. Trader $7 \$ 30$ was a customer of the firm from Novenber 192t to October 1932, a period of almost 5 years, but he alid relatively little trading in 1924, and his heaviest trading was from 1928 to 1932 . Trader 7732 was on the books on the first day covered by this study, January 1, 1024, and practically all of his trading through this firm in the sample period took place in the first thee-guarters of 1024 . On October $17,1024,91 / 2$ months after the beginaing date for this analysis, he transferred his account to another futures commission merchant, and the records avalable for this study do not relect his trading experience after that date.
The principal chameteristics of the individual cycles in the trading experience of 732 in the period analyzed are presented in table 11. His major specubative activity was in com futures, in which he traded through 21 cycles, 17 of which were long, 3 short, and 1 in-andout. Only 3 of the cycles were moproftable, and the total losses amounted to only $\$ 2,413$. The 18 profitable cycles turned out so successfully that 7732 had a profit of $\$ 373.897$ in his corn futures trading. Since he was not a member of the Chicago Board of Trade he paid commissions at the full rate. His total purchases of corn futures amounted to $7,330,000$ bushels, and his commissions aggregated $\$ 18,32 \overline{5}$. As a consequence the net outcome of his trading in corn futures was a profit in excess of $\$ 355,000$.

Trader 7732 engaged in 10 wheat futures cycles, of which 7 were long and 3 were short. Eight of the ten wheat futures cycles were profitable, and two were unprofitable. The total ontcome of his wheat futures trading during this period was profits of $\$ 33,182$. His purchases of wheat futures amounted to $2,085,000$ bushels, and his commissions therefore totaled $\$ \overline{2}, 219.50$. As a result the net ontcome of his trading in wheat futures during this period was a profit of amost $\$ 28,000$.

Trading in rye futures was a very minor part of 7732 's futures market activities. He traded through three cycles, two long and one short, with total profits of $\$ 12,6 / 6$ minus $\$ \overline{0} 00$ in commissions.

Table 11.-Trader 7732: Principal characteristics of individual trading cycles, listed by date of completion

Table 11.-Trader 7732: Principal characteristics of individual trading cycles, listed by date of completion-Continued

Because 7732 traded harely in simple cycles with little in-and-out trading it is possible to obtain a good picture of his operations by a study of his positions in grain futures. Figure 1 therefore presents the positions of iase in com and whent funtes during the period for which information on his trading is available. His trading in rye futures, which was of relatively small importance, is not shown.
It may be seen from figure 1 that carly in January 1024, Trader Ti32 was long in com futures. On the first of the year he held a long position of 200.000 bushels which he had started to decumulate during the previous October. His total position in three corn futures reached a maximum of 200,000 bushels, which he liquidated on Jamury 9 , 10. and 11 , assuming on damary 10 a short position of 50,000 bushels in the 192 L septenber corn futhre.

The contracts he had at the begiming of the year had cost bim between 73 and 74 ents per bushel. The market had remained extremely steady from the first of October to the first of January. The price of the July future, for example, did not fall below 71 cents per bushel during this 3 -month perioh, nor did it rise above This. On danmy \geq the high for this future was $501 / 2 / 8$. On Janaury the price went above it cents, and on the 9th the price rose to a high of 681 . This was the day 732 started to liquidate. He disposed of his long position at an average price of about ifion cents per bushel, which gave him a profit of apmoximately $\$ 11+, 000$, after commissions. Trader ibion sermed to think that prices had gone too high, for he sold short in both wheat and corn. He made a gross profit of $\$ 1,000$ on his short sale in wheat. but lost money on his short position in corn. After a minor long trade in May corn he stayed out of the market for 10 days.
In late Tanuary, Tise again went short in com futures, and in Fobruary be also went short in wheat futures. The average selling price on his short position in May corn was $801 / 4$ cents per bushel, and all during Fobruary and early March the price of the future hovered between 793 and $8: 3.1$. Finally he covered at prices ranging from sory to sobs cents per bushel. His short sales in wheat (wheat (ycles and 3) which he corered at approximately the same time were mikdly profitable. Starting on March 11. 'Trader 7732 reversed these short positions and went long in both wheat and corn futures. From this time until the end of the period studied, 7732 was contimonsly long in the com market. He wats atso long for considerable periods in wheat futures, but was ont of the what market from the middle of Λ_{p} ril to the middle of dume.

Three Major Com Futimes Operations

Thader i 322 engiged in three major long operations in com futures. The first began in the middle of March $19 \% 4$, and ended on June 20. The second began on June 27, aud extended to August 2. The thind began on Mugust the next trading day, and was terminated by the final lifulidition of the accome with the firm on October 17, 102. 4 . There three operations will be considered in order.

On March 13. Trader Tine began to acguire his first major long line of com futures at pries in the neighberhoot of \bar{i} and $\overline{8} 8$ cents per buthect. By April $: 3$ his total long line hat reached $1,125,000$

Figune 1.-Positions of Trader 7732 in wheat and corn futures, January 1 to Octoleer 17, 1024.
bushels, and had been acquired at an average price of just over $771 / 2$ cents per bushel. Most of the line, 9225,000 bushels, was in the May future, which closed at $71 / 1 /-1 / 4$ on Λ pril 23 , not far from the acquisition cost of the position. Thercafter prices sagged, and by May 15, the next date on which 732 made a change in the size of his total line, he had a paper loss of approximately $\$ 38,500$ at the closing prices for that day. On May 15 and 16 he built his line up to $1,210,000$ bushels, the additional purchases being made at around $751 / 2$ cents per bushel. From this point prices recovered, and 7732 was able to liguidate his position in the May future between May 20 and May 31 at peices between 78 and $793 / 5$ cents per bushel. This cyele in the May future (No. T) resulted in a protit of $\$ 0,008$. Although he liquidated the May, he built up his position in the July future on May 31 and June 6 by 315,000 bushels at an average price just under 77 cents per bushel. Starting on June 6 a strong upward price movement developed. Beginning on June 13, Trader 7322 reduced his line from the 935,000 bushels to 230,000 bushels on June 26, which completed the first major long operation in com futures.

The principal cycles involved in this first major corl futures operation were Nos. 7, 9, 10, and part of 14, in which, however, a position of 200,000 still remained open on fune 2et. The important characteristics of these cydes are summarized in table 12.

Table 12.-T'raler 7732: First major corn futures operation

$\begin{aligned} & \text { Cycle } \\ & \text { No. } \end{aligned}$	Future	First trade	Last trade	䓂			苟
		[$u^{\prime \prime}$			1,000	1,000	Dollars
	May--	Matr, 13, 1924	May 31, 109-4		925	025	0,008
	September	Apr, 15, 199.t	June 18, 1924	53	200	200	8,854
10.....) cememer	June 12, 192.1	June 26, 192.4	12	400	500	23,58357,049
1-.... July Total.		Apr, 13, 1024	-...-do		${ }^{1} 635$	${ }^{1} 635$	
							98, 794

Abstract

1 These fegures upply to that part of the evele from April 15 through dume 26 . The profit is emquted on the assumption that the 200,000 -bushel position hed on Jone 26 could have been lignidated at the average of the high and low prices for that date. The total line of 230,000 bushels hed by 7732 on Jume 26 also inchadeth a small prosition in the teptember future reflected in eyele 16.

In cycles 7,0 , and 1.f, Trader 732 was at one time faced with substantial losses. He held his positions, however, until he was able to liguidate them at a profit. The most prolitable cycles in the operation were the last to be liquidated. In these cycles ar32 benefited from the price admane toward the end of the operation.

Up to this point the trading behavior of 7733 was that of a norm trader. He bought at one price level, and increased his position as prices declined. He hek the position even when prices sagred and liquidated when prices rose. But immediately theretfter his opera-
tions were those of the movement trader. He had liquidated his December future position on June 20 at slightly more than 81 cents per bushel. The hext day in a rising market he began his second major operation by accumulating another long lime in the sane (December) tuture at a price I cent a bushel higher. He continued to buike up this position to a maximum of 915,000 bushels, at an average cost of st cents per bushel.

As prices adraneed he bought other futures until on July 9 his total line reached $1,7 \mathrm{t}, 000$ bushels. He began to liquidate on turther rises in prices, and by July 16, whien a peak in prices was reached, he had reduced his tofal long line to $\$ 95,000$ bushels. He held this position, ath even increased his total line to 995,000 bushels as prices sagged between the 17 th ind the 22d. When a shavp rise occured on July 23 he sold 200,000 bushels. Practieally all his long position was liquidated on the rising market which followed. By August 2 his long position was reduced to 50,000 bushels and his second largeseale operation in com futures was completed.

Thete were five eyeles, mumbered 11, 12, 1:t, 15, and 16 , involved in this operation. Their chiet chameteristics are shown in table 13.

Tham 13.-Trader 7733: Second major com futures operation

Cyele	Future	First trade	Last trade	哥			Pront
	1929 May--		$\begin{aligned} & \text { Datc } \\ & \text { Juy } 23,1924 \\ & \text { July } 26,1924 \end{aligned}$	Days		$\left\{\begin{array}{l} 1,000 \\ 6200 \\ 2,3100 \\ 1,310 \end{array}\right.$	
	102. Juh.	June ${ }^{27}$ July 30,1992			${ }^{100}$	300	, 500
16	$\begin{aligned} & \text { ber sep- } \\ & \text { tenaber } \end{aligned}$	Jume 24, 192.4		32	550	7 SO	65, 124

 whe a ecmplex cyele extembing over both the first and second major operations. The position which hat been reduced to 200,000 bushels on Jume 20 was subsequenty inereased to a maximam of $: 100,000$ in the seeond ojeration.

In this second major long opention Ti3:'s actions were predomimantly those of a morement trader. Me acguired it long line in the mithle of a price rise. Most of it was liquidated on rising prices after a slump, some of it at prices below those prevailing before the slump. This suggests that the interruption of the npward price movement was looked upon as a signal to liquidate. The reduction of the long line to 30,000 buskels could hardly have been due to a conviction that prices had misen above anom, for on the next trating day atter the completion of the second major com futures operation, 7732 began to build up his long position again at prices above those at which he had liquidated just ia few days previously.

The thited long corn futures operation began on August 4, and ended on October 17, 1024, the dity on which he closed out his account with the firm. As indicated above, the accumulation of this long line began with a continuation of the price adrance. It proceeded rapidly during th slight dip in prices, and the maximum long position of 1,095,000 was reached on rising prices on August 13. Prices continued sharply upward and in 2 days 7732 liquidated 675,000 bushels. Shortly therenter a price decline set in which reached over 10 cents per bushel. Trader 7732 increased his line somewhat near the ond of this deeline, wad reduced it considerably when a strong recovery began. His final liquidation was on strengthening prices atter another substantial decline.

There were four cycles in the final long futures operation, the principal features of which are shown in table 14.

Table 14.-Trader 775S: I'hivel major corn futures operation

$\begin{aligned} & \text { Cycle } \\ & \text { No. } \end{aligned}$	Future	First trade	Last trade	会			苍
$18$$19$$20 .$	$\begin{aligned} & 192.4 \text { Sep- } \\ & \text { fember } \\ & 1996 \text { May. } \\ & 1024 \text { De } \\ & \text { comber } \\ & 1924 \text { Octo- } \\ & \text { ber } \end{aligned}$	$$	$\begin{aligned} & \text { Dute } \\ & \text { Aug. } 15,1024 \\ & \text { Aug. } \\ & \text { Sopt. } 11,192 \cdot 1 \\ & \text { Oct. } 17,192.1 \end{aligned}$	$\begin{array}{r} \text { Days } \\ 9 \\ 22 \\ 32 \\ 54 \end{array}$	1,000$b 16$300200480120		$\begin{array}{r} \text { Dollars } \\ 15,437 \\ 25,237 \\ 49,698 \\ 0 \end{array}$
	Total.						00,372

Cycle 21 is an unusual case. The buik of the position in this cycle was acquired just at the peak of the operation, and immediatcly before 7732 began to liquidate on a large scale. Shortly thereafter a substantial decline in prices occurred, and subsequent recoveries did not carry prices of the October future much above the level at which this position had been acquired. The purchases had been made on August 13 and 29. The position was liquidated by salles on four different days, October 1.4 to 17 , and the average price at which the sales were made exactly equalled the a erage price of the purchases.

Trading Patterns of 7732

The difliculties encountered in annlyzing the behavior of 7732 in this third operation illustrate the problems which arise in attempting to infer tracting motivation from a study of trading behavior taken by itself. There is the possibility that two different types of motivation are consistent with a given patiem of behavior. There is the even more obrious fact that in situations of this sort most people act not in a direct and simple fashion according to a clear pattern but in a vacillating maner and as a result of complex and diverse influences. Consequently, in classifying behavior as that of a norm trader or of
a movement trader, there is certainty of an oversimplified picture of the factors which determine trading behavior, and also the danger that mistakes may be made in inferring the principal type of motivation.

In the third major long operation in corn futures, 7732 made his principal acquisitions on August 5 and 6, when prices were declining. At Gist glance it might appear that these purchases were the actions of a norm trader who was convinced that prices had sagged below their normal level. But only a few days earlier '732 had been liquidating heavily at considerably lower prices, and his reentry into the market at higher prices suggests the action of a movement trader. Of course, if the trader had changed his mind as to the appropriate level of prices, he conld have beon buying because prices were still below this new level. If he did have a new level in mind, however, it seems highly probable that it was the upward price movement of the previous few days which changed his mind. To the extent that price movement itself was the determining factor, his action was that of a movement trader.

Turning to the pattern of liquidation in the third operation, the fact that 7732 began to liquidate a long position while prices were rising rapidly suggests the action of a norm trader. However, it is possible that 7732 began the liquidation because he interpreted within-the-day price fluctuations as signaling the end of a price movement. Moreover, if he was not a morement trader, why did he liquidate a part of his position on rising prices on August 14 and 15 but stop liquidating on August 16 when prices rose still higher? While the remainder of his line was liquidated on price upswings following price declines, the liquidating prices in all jnstances were lower than prices which had previously prevailed but had not stimulated liquidation. This has the appearance of movement trading.

In wheat futures also there are difficulties in interpreting the trading operations of 7732 . Because his trading during this period was generally so profitable, special interest attaches to wheat futures cycle No. 4 , his most umproftable cycle. On March 11, 1924, he began to acquire a long position in the May wheat future. Prices were declining. and as they continued to clecline he built up his long line to 250,000 bushels. When an interruption of the decline occurred he stopped buying. But the price decline was resumed, and 7732 "averaged down" the cost of his position by buying 50,000 bushels on March 25 at $\$ 1.021 / 8$ per bushel. His line had cost him $\$ 1.077 / 8$, and this trade reduced the average cost to just under \$1.07. For three weeks prices fuctuated between $\$ 1.001 / 4$ and $\$ 1.031 / 2$, and on April 15 and 16 , Trader 7732 liquidated his line at an average price just over $\$ 1.015 / 8$. His loss on this cycle was $\$ 15,900$ plus commissions of $\$ 750$.

On this loss cycle 7732 conformed exactily to the pattern of the norm trader. He brought on declining prices, and increased his purchases on still further declines. He eventually came to the conclusion that his estimate of the nomal price level was in error, and liquidated his position at a loss.

The picture is not so clear in his major long operation in wheat futures which extended from J une 19 to September 30 . A very evident pattern was followed in acquiring the long positions in this operation. With the single exception of the purchase of 100,000 bushels of the 1924 December future on June 19, every increase in total long commit-
ments was made on a day on which prices declined. In this manner a total long position of 550,000 bushels was built up by July 22 . This line was partially liquidated on a sharp price rise following a pronounced downward dip in prices. A second peak in long wheat futures holdings of 975,000 was reached on August 21. A continuation of the price decline on which the last part of this line was accumulated, however, resulted in the liquidation of 250,000 bushels on August 22 . The position was finally liquidated on the strong upward price swing which developed late in September.

The purchasing on price dips would seem to connote the norm trader. However, the fact that the line of 550,000 bushels was partially liquidated on a price decline, and not further liquidated on an upswing which carried prices well above the level at which partial liquidation occurred, does not fit well into the pattern of the trader who has a normal price in mind. But the final liquidation on a strong price rise seems to fit the mold of the norm trader. \&

Summary of 7732's Operations

The trading of 7732 during the period covered was very profitable, even though it does not fit closely into preconceived or stereotyped patterns of trading behavior. It may be that 7732 was less successful at other times during the 9 -year period covered in this study, but he did demonstrate an ability to trade profitably during the first three-quarters of 1924 . From the general summary of the trading experience of 7732 presented in table 10 , it is apparent that he favored the long side of the market. He engaged in trading through 26 long cycles and only 7 short cycles. The striking price movement of the 1924 period, of course, was the rise that started in early June, but his trading prior to that time also seemed to favor long positions.
Table 15.-Trader \%7SS: Trading experience, by type of cycle

Grain and type of cycle	Cyeles	Average duration	$\begin{aligned} & \text { Aver- } \\ & \text { nge } \\ & \text { maxi- } \\ & \text { mum } \\ & \text { posi- } \\ & \text { tion } \end{aligned}$	Averas: buantity	Total profits or losses	Average profit or loss per bushe: traded
Corn futures:	Number	$\begin{gathered} \text { Days } \\ 32.7 \\ 1.0 \\ 54.0 \end{gathered}$	$\begin{aligned} & 1,000 \\ & b 2 . \\ & 327.2 \end{aligned}$	$\begin{gathered} 1,000 \\ b u . \\ 422.5 \end{gathered}$	$\begin{array}{\|c\|} \text { Dollars } \\ 374,903 \end{array}$	$\begin{gathered} \text { Dollars } \\ 0.055 \end{gathered}$
Profitable cycles:						
Short			$\begin{array}{r} 327.2 \\ 50.0 \end{array}$	$\begin{array}{r} 422.5 \\ 50.0 \\ \hline \end{array}$	1,407\|	+ 028
Profikless long eycle			120.0	120.0		. 000
Unprofitable cycles: Short		$\begin{gathered} 19.0 \\ 0 \end{gathered}$	$\begin{gathered} 125.0 \\ 0 \end{gathered}$	$\begin{aligned} & 150.0 \\ & 100.0 \end{aligned}$	1, 313	
In-and-out.						. 011
Wheat futures: Profitable cyeles:						
Long------		37. 2	265.0	285.050.0	$\begin{gathered} 46,681 \\ 2,925 \end{gathered}$	$\begin{array}{r} .033 \\ .020 \end{array}$
Short-----		13.734.5	50.0			
Unprofitable cycles:			230.0	255.0	16, 424	. 032
Rye futures:		15.513.0	05.0		12, 676	$.067$
Profitable long cyeles				$\begin{aligned} & 95.0 \\ & 10.0 \end{aligned}$		

In general the profitable cycles of 7732 were of longer duration than his unprofitable cycles. He let his profits run until they reached substantial proportions in a number of cases, and although on occasions he let his Josses run, he demonstrated much more capacity than 7830 for recognizing errors and for dropping untenable positions. Ferhaps the most striking feature of his trading was his tendency to build up large positions when trading was profitable and hold his commitments to smaller figures when the market movenent was against him. This is clearly seen from the comparison of both the average maximum positions and the average fuantity bought in profitable cycles as rompared with unprofitable cycles. This characteristic and the ability to terminate unprofitable cycles before substantial losses had been suifered ${ }^{3}$ account for the clear tendency for average profits per cycle to exceed average losses.

What was the influence of Trader 7732's trading on prices? Because of the varicty of his tradiog activities it is not possible to give a categorical reply to this question. Dominant in his trading, however, was a tendency to buy on reversals in price movement during upward price swings. Another frequently encountered action was to sell on upswings that followed declines in prices. Both of these types of trading behavior tended to reduce price flactations rather than to accentate them. This. of couse, was not true of the less frequent occasions when he liquidated on a declining market, or made purchases when prices were rising.

STATISTICAL ANALYSIS: NATURE OF THE SAMPLE

The examination of the market activities of two large traders provides a background against which the trading of the other custoners in the sample may be presented. The transactions to be analyzed occurred in the period of 9 years extending from January 1, 192.t, to December 31, 1932, and included the trades made by 5,922 different persons through the firm which supplied the information. These traders were mostly small speculators. There were some speculators who may properly be classifice in tu intermediate group with respect to scale of perations, and a tew speculators like Traders 7830 and 7732 who traded on a large scale. The sample also included a few hedgers.

Problemis for Analysis

The statistical analysis was designed to obtain answers to a number: of questions. The most important of these are:

1. What were the occupations of persons engaged in speculation on grain futures markets?
2. What relation was there between occupation and success or failure in grain futures speculation?
3. What relation was there between the magnitude of the trading operations and profits or losses?
4. Was there any relation between the length of time persons heid commitments in the futures markets and the profitability of their trading?

[^4]5. What was the relation between the typical position taken, long or short, and the results of trading?
6. What relation existed between the period during which traders were active in the maket and the outcome of their trading operations?
7. How did different classes of traders react to price swings? Did their trading accentuate or reduce price fluctuations? Did they enter the market early or late in a given price movement? Was there evidence that their trading was primarily reaction to price levels or to the rate of change of prices?
8. What conclusions can be drawn as to the profitability of trading by speculators in the futures makets?

General Features of Sample

In a study of this kind the validity of any generalizations drawn from the dita depends on the representativeness of the sample used. For this reason it is worth while to consider in some detail the characteristics of the sample on which this study is based.
The duta relate to trading on the Chicago Board of Trade, the largest grain futures market in the world. The commodities considered here are wheat, com, outs, and rye, the principal grains traded on that market in the survey period. The characteristics of trading in futures undoubtedly differ from commodity to commodity and from market to market, but it seems likely that futures trading in other commodities and on other markets has many characteristics in common with the subject of this study, i. e., trading in grain futures on the Chicago Botrd of Trade.
The commission merchant from whose records the information was taken wats one of the largest brokenage firms on the Chicago market. This firm had leased-wite comections with branch offices in various parts of the United States and Canada. During the period covered, however, branch offices were opened and closed, and leased-wire services were inangurated and discontinued. The firm maintained customer ledgers in two principal offices, Chicago and New York. The accounts of persons trading through eastern branches were maintained in New York, and the Chicago office matintained only an omnibus account for trading done by these customers on the Chicago Board of Trade. This study was confined to the accounts maintained in the Chicago office, and therefore did not consider the trading of customers in the eastem part of the country whose accounts were fept in the New York office. Furthermore, the firm did business both through branch offices and corvespendents, and did not ordimarily establish branch offices in areas actively cultivated by correspondents. Omnibus accounts were maintained in the names of correspondents, and therefore information was not available in the Chicago office on the trading of the individual customers served in this manner.

The result is that the sample contains a large number of traders who lived in certain cities or towns, and fow or none in other localities. Seattle, Wash., where the firm maintained a branch office, is an illustration of a city in which there was a large number of traders, while Portland, Oreg., where a correspondent maintained an office, contributed very few traders to the sample.

Geocraphical Locafion of Traders

The accompanying dot map (fig. 2) shows the geographical distribution of the traders in the sample. It is at once apparent that, with respect to geographical distribution, the sample is quite different from that which would have been obiained by a sampling technique designed in advance to give a representative geographical coverage. Most of the customers were residents of a few la'ge cities located in a small number of States.

Figure 2.-Geographical distribution of traders in sample.
Table 16 lists all the cities in which there were more than 50 customers and shows the percentage of the customers in each city who traded in each of the four grains. In all, 21 commmities are listed, and these commanities contained 6,194 , or almost 70 percent, of the 8,922 customers in the sample. These 21 cities were located in only IStates and 2 Canadian Provinces. Seven of the communities were in Califomin and ${ }^{5}$ were in the State of Washington. In some of the States almost all the traders resided in the communities listed in table 16, or in closely adjacent communities. The major exceptions are to be found in the large numbers of traders residing in southwestern Towa, and the wide scatter of traders-particularly when related to population distribution-in Montana and Washington.

By far the greatest geographical clistortion in the sample arises out of the disproportionate representation of the State of Washington. Not only did the city of Seattle inchede more traders than any other city, but the total number of traders in Washington, 2,522, constituted over 28 percent of the entire sample. California, which had a total of 2,457 traders, was only slightly behind Washington in total number of traders, but because of the marked difference in population the

Washington sample was proportionately much larger. Washington and California contributed over 55 percent of the traders in the sample.

Table 16.-Number of traders living in cities with over 50 oustomers and percent trading in different grains

Becanse of the geographical distortion in the sample, little signiticunce can be attached to the proportions of the traders in the total sample trading in different grain futures. There is a definite relation between geographical location and the commodity, or commoditics, most preferred by traders in the area. This is shown by table 16 which gives the percentage of traders in each community who traded in the different grains. In ail the communities in Washington, which is a wheat-growing State, more than 90 percent of the traders in the sample traded in wheat futures. This is also true of the two communities in Montana. The only other community which showed so high a proportion of wheat futures traders was Hollywood. In corn futures, on the other hand, the only cities; with more than 50 percent of the accounts trading in this commodity were Omaha, Mimeapolis, and Chicago, all located in heavy corn-producing areas. These contrasts are undoubtedly related to the different importance of the two grains in the economies of the different parts of the country, but for present purposes they are particularly important in indicating that the present sample contains a disproportionate number of wheat traders. This is the result of the undue weighting of Washington
and Montana in the sample, and the rery high proportions of wheat futures traders found in theso two States.

Refatiye Stze of tue Sample

A total of $\mathrm{S}_{2} 2 \mathrm{y}$ traders are included in the sample. A number of customers who are believed to bave traded throush other firms were excluded from the sample. It was not possible to determine from the a araihble records whether partienlat customers of the sample firm had previously traded through other firms, whether they traded simultancously through other fiems, or whether they confmed to trade through other fimus after disappearing from the books of the sample firm. Foweyer, in the opinion of a former member of the sample firm, a number of customers did trade through other firms at die same time, and the atcoments of these traders were eliminated. It is possible that some of the more expert traders were thas exeluded, but this deffecency is less serious than to inchede only a part of the trading in which a customer was engisged. It is likely that some of the traders daring the period carried aceoms with other futures commission firms be fowe and after they traded through the sample firm, and that this resulted in an inadequate representation of the latree traders, since such traders are more likely than small traders to dhange their atomuts from one tutures commission merehant to another.
It is impussible to determine what proportion of the total mumber of persons who engaged in grain futures trading on the Chicago Board of Thate daring the period covered is induded in the sample. Other measures, howerer, give some idea of the relative importate of the trading parred on by the group studied. In table 17 data are presinted showing for enth rrain the number of taders in the sample, the number of cransactions, the volume of trating in bushels, and Whe average total open position boil long and short. A total of 417.000 tranketions were stantied, of which over two-thirds were in wheat fatures. The fralers in the sample bought a total of almost ! $31,0100,060$ busibels of whent fintures, fund a total of $1,320,000,000$ bushels when the figeres for ald four grains are combined. Thronghout the prowiod studtied, the total open positions (fong phas short) a rerated 2.960 .00 bushels of wheat futures, 1.055 .000 bushels of cotn futures, 4 (0.forn bushels of oat futures, and 215,000 bushels of rye futures.

Tasbe 17.--Yumber of tralers, number of transuctions, total rolume of trading. and areruye total position for traders in sumple

Tlem

Data are not arailable to show the total number of transactions in grain futures on the Chicuso Board of Trade during the period covered. Data on the total volume of trading in bushels are available, however, and may be compared with the volume of trating of the persons in the sumple. When this is done it is found that the sumple traders accounted for somewhat less than 1 percent of all trading in wheat and corn futures. The percentages are 0.91 and $0.6 \pm$ for what and corn, respectively. A comparison of average open positions with the total ot open commitments (on both sides) gives somewhat higher figures, the pereentages being $1.2+$ and 0.91 for wheat and corn, respectively. The higher proportion for open positions presumably rellects the fact that no scalpers were inchuded in the study, and therefore positions held were relatively more substantial than the volume of traling done.
From the figures given above it may be concluded that the sample studied was approximately 1 percent of the total activity in grain futures on the ('hicagro Board of Trade.

Hedeers in tile Sample

The traders in the sample included grain firms and grain-processing companies suth ats flour millers thed corn-products prolucers, as weil as individuals from many walk of life. Many of the latger grain fiams carty on their futures trading operations theough a number of diflerent commission merchants, and consequently the tarding of stech concerns with the firm from which this sample is drawn was not necessarily tepresentative of their trading operations generally. For this reason the trades of such hedging ateounts were excluded from the sample, and only those accounts were included which in the opinion of a partner of the futures commission house constituted all of the trudes of the hedger in question for the period during which the account appeared on the books. Since the futures operations of some of the largest hedgers are thus exclubed, the sample cannot, be looked upon as representative of all hedgring operations. It is possible, howprer, that it represents with reasonable accuracy the trading of mediun-sized and smaller hedging concerns.
The hedgers in the sample were distributed between members and nommembers of the Chicago Board of Trade, and the different segments of the grain trade as shown in table 1 S .

> Thane 1s-Orcupational distribution of hedgers in sample

"The "dil grains" figure is less than the sum of the figuris for the individual grains becanse many of the tirms traded in more than 1 grain.

The sample includes 140 hedging firms, which is a considerable number. One-third of these were processors and two-thirds were engaged in the grain business. Twenty-eight were substantial enough to be members of the Chicago Board of Trade. Members trading through other members pay only one-half the regular commission rate. The trading of these members was presumably in sufficient volume so that the 50 -percent saving in commissions justified the expense of maintaining membership on the exchange.

It is not certain that all of the transactions recorded for the firms classified as hedgers were hedging in the strict meaning of the tarm. We can be reasonably sure, on the other hand, that the trading of the other groups included in the sample were speculative in nature. They did not include all types of speculators, since scalpers were not included, and it is doubtiful whether spreading operations were adequately represented. (In any event the nature of the study precluded any examination of spreading between markets.) The bulk of the traders in the sample, therefore, consists of nonprofessional speculators.

Occulational Dismindtion of Other Tradens

A detailed presentation of the occupational distribution of traders in the sample is given in table 10. Businessmen were the largest occupational group included in the sample. More than 3,000 traders were engaged in business in the capacity of proprietors or managers, and more than one-third of these were engaged in retail trade. Persons engaged in the real estate, insurance, or securities businesses were also numerous, as were business managers and proprietors of a harge variety of nontrade types of business activities-mostly manufacturing. There were 316 persons engaged in the grain business who carried personal, speculative accounts with the firm from which the sample was obtained. There were also $13 \pm$ men who were engaged in business directly rehated to agriculture, such as farm machinery, the seed business, the livestock commission business, or meat packing.
Farmers were an important segment of the sample, but manual workers, mostly foremen and skilled workers, also appear in considerable numbers. A surprisingly large number of retired persons, 954 in all, were found in the sample. Professional occupations accounted for 768 traders, and there were 554 persons who were engaged in clerical work. Semiprofessional occupations such as commercial artists and designers, laboratory technicians, aviators, and radio operators, were relatively unimportant.

The significance of the occupational classification is impaired by the relatively large number of persons whose occupational status could not be determined from the records kept by the firm. There were 971 such persons altogether, and they constituted almost 11 percent of the entire simple.

Table 19.-Ocoupational distribution of all traders in sample

Occupation	Wheat	Corn	Oats	Rye	$\underset{\text { grains }}{\text { All }}$
Business managers, grain business: Country	Num. ber 114	Number 65	Number 33	Number 21	Number 133
Terminal and subterminal grain business.	158	65 107	33 44	21 38	138 183
Total	272	172	77	59	316
Business managers, other:	112	4.4	16	8	
Retailers.--	937	452	201	179	1, 044
Bankers.	16	5	4	3	19
Miscellaneous other than trade	733	364	161	143	824
Real estate, insurance, securitio	749	427	178	130	885
Capitalists and financiers.	44	19	5	4	50
Business re agriculture.-.	105	73	33	27	134
'otal_	2, 696	1,384	598	504	3, 087
Professional:					
Accountants and nuditors.	80	35	15	10	91
Artists, actors, and musicians	24	11	1	1	26
Clergymen.	10	7	4	${ }_{0}$	12
Educator3	53	30	9 12	${ }^{9}$	58
Dentists.-----7------1	73	26	12	11	77
Engineers and arehitects	105	55	17	20	120
Lawyers and judges---..-	111	56	20	17	129
Physicians and surgeons_--.-.-.....-----	133 88	82 52	24 17	27 10	103
Total.	677	354	119	114	768
Semiprofessional: Semiprofessional occupations	74	30	12	11	83
Students.-...-...-..--	15	,	2	3	19
Total.	89	34	14	14	102
Clerical:					
Clerical and kindred occupations-----	225 146	114 66	38 25	41 18	168
Sales persons and kiudred oceupations Inspectors, estimators, etc.	146	50	22	23	119
Municipal and State employces.	- 3	2			3
Federal employees....-------.	2	2	1		2
Total	478	234	86	82	554
Farmers:					
Farmers, general.	779	365	150	121	900 128
Farmers, specialty	118	47	19	16	128
Total.	897	412	169	137	1,028

[^5]Table 19.-Ocoupational distribution of all traders in sample-Con.

Comparative Occupational Distribution

One test of the representativeness of the sumple is the extent to which the occupational distribution of traders is similar to those found in other studies. There have been scveral other compilations of futures traflers by occupations, but most of them are not closely comparable with the list shown in table 19, because of differences in commodities and diates covered and in the nature of the occupational classifications used. The most nearly comparable tabulation is that given in a study by D. B. Bagnell entitled, "Analysis of Open Commitments in Wheat and Com Futures on the Chicayo Board of Trade, S'ptember 20, 10.3.". This amalysis applied to a date 21 months after the final dite of the present study, and was a cross

[^6]section of the traders in the market at a point in time, in contrast to the present stidy which relates to the eustomers of a given futures commission firm who traded in grain futures at any the during a 0 -year period. Furthermore, a different classification of oceupations was used.
In the present study the Dictionary of Occupational Tittes published by the United States Department of Labor and the United States Lmployment Service was used as a guide, and an eflort was made to adhere as closely as possible to the occupational classifications presented in this dictionary. The definitions used, and the groupings made, differ from those in the Bagnell study which was mate prior to the publication of the Dictionary of Occupational Pitles. As a result, these two studies are comparable only on the broadest basis.
Tho sample obtained by Bagnell gave the following occupational distribution of accounts. ${ }^{5}$

The most important differences between the above distribution and the distribution presented in this amalysis are: (a) the former included housewives; (b) listed speculative corporations; and (c) merged all occupations other than famers and housewives in two caterories, "Clerks, small merchants, etc.," and "Executives, financiers, ete." These three differences will be considered in order.
Most traders on futures exehanges are men, but a considerable number of women do participate in tutures trading. In this respect the present sample is not representative, since the sample firm, as a matter of policy, did not aceept the accounts of women. Employees of the inm oce asionally accepted orders from women, customarily concealing the sex by giving initials only for the first names. When these were diseovered by the head office. the accounts were closed, and the trading experience shown on the books is consequently in no sense representative of women's trading generally.
The classification "speculative corporations" was not used in the present analysis but it is believed that few, it any, corporations which might be so classified were included in the sample. In Bagnell's study they represented about one-third of 1 pereent in number of traders, and it is unlikely that they are included in much larger proportions in this study.

[^7]Bagnell attempted to classify the bulk of the speculative traders in his study so as to distinguish between traders of small means and traders in the "executive professional class." There does not seem to be any combination of the subclasses used in this study which would come reasonably close to Bagnell's classification. Consequently, for purposes of comparison, it seemed best to merge all speculators other than farmers in a single group.
Another adjustment which was unfortunate but necessary was the subtraction of the group whose occupational status was unascertainable in this study. This was the situation for 735 traders in wheat futures and 396 traders in corn futures. A number of these traders in all likelihood were farmers, but since there was no way to determine their number the entire "Status unascertaimable" classification was excluded from the comparison. Bagnell's study did not contain the "Retired" classification, but it has been assumed that in his study retired farmers were classified as farmers. Therefore, the data from this study for farmers and retired farmers have been merged, thus placing the data from the two studies on at more comparable basis. A further step which was designed to improve the comparability of the two studies was to subtract the housewives and speculative corporations from Bagnell's figures. The results are shown in table 20 .

Table 20.-Comparison of classes of traders in wheat and corn futures in analysis of Sept. 29, 1994, and in present study

Class of trader	Analysis of Sept. 29, 1934				Present study			
	Wheat		Corn		Wheat		Corn	
Farmers and retired farmers. \qquad	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 1,492 \end{gathered}$	Percent 12. 6	Number 1, 047	Percent 14. 2	Number 1,072	Percent 15. 5	$\left.\begin{gathered} N u m \\ b e r \\ 524 \end{gathered} \right\rvert\,$	Percent
	9, 305	78. 6	5, 606	76. 3	5, 734	82.8	3, 008	14. 8
	738	5. 2	572	7. 8	78	1.1	46	1. 3
Total	11, 844	100.0	7,347,100.0		6:928	100.0	3,593	100.0

It is apparent from this table that the proportion of hedgers in the present sample is significantly less than in the Bagnell study. Almost 9 percent of the whent traders, and over 9 percent of the corn traders in his analysis were hedgers. In the sample on which the present study is based hedgers constituted less than 2 percent of the total number of traders in both wheat and corn futures. This contrast would be even more striking if the traders whose occupational status wa; unascertainable were included in this study. These traders were almost certainly not hedgers, and consequently the proportion of hedgers in the entire sample was even smaller than indicated above.

Two considerations may be cited to explain the smaller number of hedgers in the present study. The first is the exclusion from this study of larger hedgers who put their trades through two or more different futures commission merchants. The second is the fact that some large hedgers are clearing members of the Board of Trade but do not
solicit or accept orders from the public and consequently are not commission merchants. As clearing members they earry positions for themselves, which would not be shown on the books of a future commission merchant. Bagnell's study, which was based on teports from all clearing members of the Bourd of Trade, covered all positions in the market on the day studied.
It may be concluded from the above eomparison that hedgers as a general group are underrepresented in the present stady. There remains, however, the question of the distribution of the larger classification of hedgers between processors and geain merchants (or elevators). To test whether these two components of the hedging group were present in similar proportions in the Bagnell sample andin this study, the proportions of the two types of hedgers in the two studies are shown for wheat and com in table 21 .

Table 21.-Number and proportion of different types of hedgers in analysis of Sept. 20, 1034, and in present study

Grain and type of hedger	Auatrais of Sept. 20, 1034		J'resent study	
Whent:	Number	Percent	Number	Percent
Processors	309	29. 5	44	36.1
Grain therehant	738	70.5	78	63. 9
Toth	1, 0.17	100.0	122	100.0
Corn:				
${ }_{\text {Processors }}$	122	17.6	15	24.6
Grain merehants	572	S2. 4	46	75. 4
Tolnt	69.4	100.0	81	100.0

At first glanee $j t$ might seem that processor hedgers are significantly more numerons in the present sumple, since almost 25 perecnt of the com hedgers and 36 percent of the wheat hedgers were jrocessors. Bagnell's ligures were 18 percent, and 30 percent, respectively. These differences, hovever, are not significant. ${ }^{\text {D }}$

[^8]One further comparison may be made between the Bagnell sample and the present sample. This is a comparison of the relative numbers of farmers in the two samples. The data are shown in table 22.

Table 22.-Number and proportion of farmers and other speculators in analysis of Sept. 29, 1034, and in present study

Class	Analysis of Sept. 29, 1934		Present study	
Wheat:	Number	Percent	Number	Percent
Farmers and retired farmers.	1,492	13.8	1, 072	15.8
Other speculators.	9,305	86.2	5, 734	84.2
'Fotal	10,797	100.0	6, 806	100.0
Farmors and rotired farmers	1,047	15. 7	524	14.8
Other sfleculators.	5, 600	\& 4	3,008	85.2
Total.	6,653	100.0	- 3, 532	100.0

In com futures trading there is no significant difference between the proportions of farmers in the two samples, but the present stady contains a siguificantly larger proportion of farmers trading in wheat futures than did the Bagnell study. The distorted geographical distribution of the present sample may be the explanation for this difference. The sample iucluded considerable numbers of persons whose addresses were small towns in the wheat-growing areas of Washington and Montana, and relatively fewer persons with small-town addresses in the com beit.

The Federal Trade Commission also made a study of the occupational distribution of grain fatures traders based on the customers of eight Chicago fatures commission merchants about 1916-18. The results are published in the Report of the Federal Trade Commission on the Grain Trrade, Vol. VII, Effects of Future I'rading (p. 196). The occupational classification applies to all traders in the sample and does not distinguish between traders in the different grains. The study was confured to wheat, com, and oats. The present study covers wheat, com, oats, and rye. Since it was not feasiole to determine the oceupational distribution of a sample which would correspond fully with the sample of the Feceral Trade Commission in terms of commodities, the next best solution was adopted. The data of the Federal Trade Commission were compared with the data on occupational distribution of all traders in the present sample, regardless of the grain or grains traded. Such a comparison, for farmers and for other traders, is given in table 23. Since the Federal Trade Commission data, Jike Bagnell's study, did not distinguish between farmers and retired famers, the combined classification is used here also,

[^9]Tabie 23.--Number and proportion of farmers and other traders in Federal Trade Commission study and present study

Class	Federal Trade Commission study		Present study	
Farmers and retired farmers Other traders.	$\begin{array}{\|} \text { Number } \\ 807 \\ 4,064 \end{array}$	Parcent 10.6 83.4	Number 1,246 6, 705	Percent 15. 7 84.3
Total.	4,871	100.0	7,951	100.0

Table 23 shows that farmers constituted 16.6 percent of the Federal Trade Commission sanple and 15.7 percent of the present sample. This difference is not significant. ${ }^{8}$

It is diflicult to interpret this result in conjunction with the results from the comparison with Bagnell's study. The three studies differ in so many features that little would be gained from conjecture as to the reasons for the higher proportion of farmers trading in wheat futures in this stady than in Bagnell's study, while the proportion of farmers in the total sample is not significantly different from that shown by the Federal Trade Commission. It is perhaps sate to conclude that in general farmers are included in this sample in roughly the same proportions as in the other studies, except that there is an unduly harge proportion of farmers who traded in wheat futures.

A summary of the numbers of traders in the major occupational groups for all four grains and for the total sample is given in table 24. The percentages found in the different occupational groups are also shown. If the proportion in the different occupations in the entire sample is taken as the standard, significant differences in the occupational distributions tor the different grain fatures are found. While these diflerences are statistically significant, they do not appear to be of great importance. They consist primarily of fewer traders than would be expected in the "Unknown" group for wheat and rye futures: and more than would be expected of businessmen engaged in the grain trade who traded in com, oat, and rye futures. There are also more retired persons trading in corn futures than would be expected, and more oats hedgers.

The conclusion from the analysis of the occupational distribution of traders covered by this study may be summarized as follows: Housewives and other women are not represented at all; hedgers are underrepresented, but there is no evidence that the proportion of the different types of ledgers is distorted; farmers scem to be overrepresented among traders in wheat futures, but the analysis does not show this to be the case for farmers in the total sample. These conclusions emphasize the necessity of distinguishing between hedgers and speculators

[^10]Table 24.-Number and percent of traders in each grain and in all grains, ${ }^{1}$ by major occupational groups

Occupational group	Wheat		Corn		Oats		Rye		${ }^{\text {- All grains }}$	
	Num-	Per-								
Business managers:	ber	cent	ber	cent	ber	cent	ber	cent		cent
Dut Grain business.	, 272	3.5	${ }^{172}$	4. 3	77	4.7	59	4.4	316	3.5
${ }^{12}$ Other	2,696	35. 2	1,384	34.7	598	36. 9	504	37.6	3, 087	34.6
Professional	677	8. 8	354	8. 9	119	7. 3	114	8. 5	768	8. 6
Semiprofessional	89	1.2	34	9	14	. 9	14	1. 1	102	1.2
Clerical	478	6.3	234	5. 9	86	5. 3	82	6. 1	554	6.2
Farmers.	897	11, 7	412	10.3	169	10.4	137	10. 2	1,028	11.5
Manual workers	835	10.9	452	11.3	161	9.9	140	10.5	948	10.6
Retired.	815	10.6	468	11.7	180	11.1	141	10.5	954	10.7
Unknown-	782	10.2	418	10.5	182	11.2	122	9.1	1, 025	11.5
Hedgers.	122	1.6	61	1. 5	37	2.3	27	2.0	140	1. 6
Total	7, 663	100.0	3, 989	100. 0	1,623	100.0	1,340	100. 0	8, 922	100.0

1 The figures on number of traders in the "All grains" column are not the sums of the figures for the different grains because many traders traded in more than 1 grain.
in the following amalysis, and the desirability of examining the differences between farmers and other speculative traders to see whether overrepresentation of farmers in wheat fatures trading might seriously affect the conchasions that would otherwise be drawn.

Characteristics of the Period Studed

A fimel problen to be considered with respect to the possibility of generalizing from the present study is the period of time to which the study refers. It extended from Janary 1, 1924, to December 31, 1932. The most striking teature of this period for a study appearing at the present time is that it was ternimated more than 15 years ago. This delay was occasioned by a number of factors and was largely mavoidable. ${ }^{10}$ Undoubtedly a stuly of this type would be of greater value if it applied to a more reent period. Changes mast be continually taking place in the number and nature of the traders in the markets, and in their reactions to prices and other market situations. On the othor hand it is highly probable that there are characteristies of the speculative tradiag situation which, while not invariant, are sufficiently stable to provido the basis for genemaliations which are not entirely inapplicable to the current scene.

Another important guestion with respect to the time period to which this study applies is its representativeness with respect to price and macket conditions. In terms of general economic conditions the period does not seem to be a bad choice. It ineluded the relatively prosperous years of the late 1020 's and the dee line to the depths of the depression of the early 1930 s . But agriculture did not share fuily in the prosperity of the 1920 's and 1924 was much the best year in the period eovered in terms of prices received for the prineipal grain crops.

The price situation for the period covered may be seen from figure 3 which presents the average monthly closing prices of the dominant grain futures on the Chicago Board of Trade for the four grains sturdich. In cach case there was a bull market in the last balf of 1024 which culminated early in 1025 and carried prices to the highest levels reortend during the 9 -year period. After the price decline that followed, the four athres markets exhibited some diversity, but in cvery case pricts somo time in 1930 rached levels as low as those at the berimaiug of the period and then continned to decline to now lows. In tetns of price level the period may be looked upon as faimy representative up to the end of 1920 , but the inclusion of the last 3 years refarly oreweights the period in the direction of low prices.

In total mice morement during the period covered, declining prices outweighed rising prices. A rough indiration of the divection of price changes, as distinet from the nmount of such changes, is found in the number of inereases or decreases in the monthy arerage clozing prices of the dominant futures. Table 25 shows the number of such changes

[^11]

Figure 3．－Monthly average closing prices of the domidant futures in wheat， corn，oats，and rye，Chicago Boarci of Trade，1924－32．
in each third of the period studied．It may be seen that，with the ex－ ception of oat futures，price increases were more frequent than price decreases in the first 3 years．The middle 3 years has a surprisingly even balance of increases and decreases．The last 3 years show a preclominance of decreases．

The representativeness of the sample period in terms of price levels and movements is obviously of great importance when attention is turned to the outcome of trading activities．In the discussion that follows a description of trading results will first be given in general terms．Later an attempt will be made to relate these results to price movements．

Table 25．－Number of increases and decreases in the monthly average closing price of the dominant grain futures，Junuary 1924 to Decem－ ber 1932，by 3－year periods

Period	Wheat		Corn		Onts			Rye		
	Number with－		Nurnber with－		Number with－			Number with－		
		乫					$\begin{aligned} & 0 \\ & \text { ? } \\ & \text { E } \\ & \text { E } \\ & 0 \\ & 0 \end{aligned}$	呂	U ¢ ¢ St ¢	㫛
102．4－2G	22	$1 \cdot \frac{1}{4}$	19	17	12	23	1	21	15	
1927－20	18	18	19	17	17	19		19	16	1
1930－32．	13	23	8	28	6	29	1	12	23	1
Total	53	55		62	35	71	2	52	54	2

PROFITS AND LOSSES BY CLASSES OF TRADERS

The over-all results of the futures operations of traders in the sample are shown in table 26. The most striking feature of the table is the great preponderance of speculative tracders whose operations resulted in losses, and the great excess in amount of losses over profits. In wheat, loss traders were 2.7 times as numerous as profit traders, and their losses were 6.2 times the profits realized by the more fortunate speculators. Losses exceeded profits for all four grains, but the contrast was most striking for wheat. The ratios were as follows:

Ratio of numbers of loss traders to profit
traders. -............-....................- -
Ratio of net losses inemred to profits realized.

Traders h -				
Wheut	Corn	Oats	Rute	$\begin{gathered} -1! \\ \text { grains } 1 \end{gathered}$
) 7				

${ }^{1}$ see uote to table 26.
The contrast between profits and losses was so clear-cut and consistent that it must be concluded that the classes of speculative traders represented in the sample were on balance unsuccessful in their trading activities. For all grains there were three times as many loss traders as profit traders, and the net losses-not counting commissions-were almost six times the net profits. The average loss per trader, amounting to $\$ 1,812$, was almost twice the average profit- $\$ 945$ per trader. In later sections the distribution of these profits and losses will be considered, and an attempt will be made to discover their relation to trading patterns and the time tie futures trading was done.

Table 26.-General results of futures trading

Type of trader and commodity	Profit traders			Loss tralers		
	$\underset{\text { ber }}{\substack{\text { Mun- }}}$	Thotnl net profits	Average profit per trider	$\underset{\text { ber }}{\text { Num- }}$	Totnd net losses	Average loss jer rader
Speculators:		Dollars 50S 407	Dollars 738	5, 490	Dollars	$\begin{aligned} & \text { Dollars } \\ & 1,712 \end{aligned}$
Corn	1, 025	1, 133, 993	776	2, 403	2, 222, 602	92.5
Outs.	1, 589	124, 03S	211	997	772, 132	77.
129e.	497	393, 042	590	816	\$2, 838	1,012
Alıl grains	2, 18:1	2, 06-1, 800	945	6, 598	11, 958, 200	1, 812
Hedigers:						
Wheat	49	773, 057	15, 717	73	1, 253,209	17,167
Corn	$3 \cdot$	235, 239	6, 919	27	59, 789	2, 214
Ryo	1	118.838	8,488	13	250, 520	10,903
Nif grain	59	970, 100	16, 4.12	S1	1,350, 000	17, 037

[^12]An examination of the data for traders in the sample classified as hedgers leads to different conclusions for the various grains. In wheat futures, for example, 73 hedgers sustinined losses, while only 49 had prolits. This preponderance of hedgers with losses is statistically significant. For the other grains, however, there is no significance in the differences between the number of profit traders and the number of loss traders. ${ }^{11}$

If a grain merchant or processor follows the practice of hedging all his cash grain operations, his purechases and sales of futures should bear no direct relation to expected changes in futures prices.' ${ }^{\prime 2}$ An adequate sample of such traders, thecetore, would presumably contain upproximately equal numbers of protit and loss traders. In the present instance only the helgers in wheat futures fail to meet this test. Two possible explanations of the discrepancy for wheat futures may be considered: (1) Upswings and downswings in prices were not well enough batancud during the period covered to give a representative sample of pribe sithations, ath ((\underline{y}) the futures operat tions of traders chassified as hedgers were not all hedging trausutions, but included some speculative operations.

It is true that upswings and downswings in wheat futures prices wero not equally represented in the period covered. Prices at the end of the periwd were considerably lower than at the begrinning, and the proportion of the sumple period during which prices were declining was greater than that in which prices were rising. In declining markets, if hedging operations are chieffy long purchases, the losses of hedgers might be expected to exceed profits. In the sample here considered, however, hedgets were predominantly grain merchants, for whom the nomal hedge is the short sale. The importance of grain merchants as contrasted with processors is shown in table 27. In wheat futures the sample contained is grain merchants as compared with of processors. Futhemore, the volume of trading done by grain merchants was more than tuice the volume of wheat futures trading by provessors. The predomintine of loss traders, therefore, camot be exphined in terms of price movements inimical to protits on the futures operations of the majority of the hedgers.

The second posibitity is that traders ethasified as hedgers act nally engraged in a considerable nomont of speculation. Some grain merchants may cary on mormal hedging operations in certain situations, but in oher sithations they may sperulate by carring inventories unhedged. 'dhan, they would bedge only when they expect adverse price moventents, or when they are umerain ats to the direction of prices for cash grain. When they are confilent that prites are going up they would not make heriging sales in futures. As a consequence,

[^13]Table 27.-Number and summary of operations of different types of hedgers in wheat futures

| Iten: |
| :---: | ---: | ---: | ---: | ---: |

their futures operations are not independent of the expectations as to price movements. If the grain dealer is successful in his predictions, his over-all futures operations should show a preponderance of profits. Loss bahnces on intermittent hedging operations would indicate a tendency to misjudge future price movements. Furthermore, it is possible that some grain merchants, although systematically hedging their cash operations, may also have some futures transuctions which are wholly speculative in character. If such trades are classified as hedges-as would be the case for such activities in this study-speculative trading by grain merchants would be partially responsible for the outcome of trading which is reported as hedging. Here again the predominance of losses does not speak well for the forecasting ability of the grain dealer in the futures market.
Of the two possibilities here considered, preponderantly adverse price movements and speculation by persons classified as hedgers, the latter seems to accord more closely with the facts. Apparently, the operations of those assumed to be hedgers in wheat futures included some speculative transactions. Since a similar problem does not arise with repect to hedgers in the other grains, it seems desirable to retain the division of traders in the two major classes, i. e., hedgers and speculators. It should be borne in mind, however, that this distinction is of doubtful validity with respect to wheat futures operations.

Size Distribution of Profits and Losses

The distribution of individual traders according to the size of their profits or losses is shown in tables 28 and 29 , the former for speculative traders, the latter for hedgers. The smallest size group is for traders
having profits or losses of less than $\$ 100$ ，and the largest is for those having profits or losses of $\$ 300,000$ or more．The only trader whose activities resulted in profits in excess of $\$ 300,000$ was Trader 7732. His operations have already been discussed．Trader 7830 was one of the two traders in the sample who had losses in excess of $\$ 300,000$ ．

Table 28．－Frequency distribution of speculative traders，by amount of profit or loss，and by grain

Amonnt（1，000 dollars）	Number of traders									
	Wheat		Corn		Oats		Rye		All grains＇	
	愛	哭	信	䍖	号	哭	䓂	䓓	号	售
$0.10-0.19$	325	728	239	390	102	154	67	130	33 ！	$8+9$
$0.20-0.29$	186	490	133	257	27	108	57	91	19.	568
0．40－0．49	127	379	S8	199	35	71	27	59	126	481
0．50－0．59	78	241	$\stackrel{66}{46}$	13 9 1	18	49	19	52	87	403
$0.60-0.69$	72	217	40	${ }_{81}^{97}$	19	49	10	31	S4	296
0．70－0．79	33	165	20	63	8	3	10	21	6	267
0．80－0．89	33	159	22	55	2	23	4	19	48	22
0．90－0．99	28	122	24	59	f	15	4	22	27	158
1－1．9	134	726	97	224	14	91	23	72	168	${ }_{912}$
2－2．9	55	331	30	57	2	28	11	37	61	385
3－3．9	32	157	18	42		21.	5	21	33	200
5－5．9	17	102	10	2 O	1	9	1	5	24.	136
6－6．9	9	49	${ }_{3}^{6}$	17	1	8	2	5	11	93
7－7．9	8	42	3	18		1	1	$\stackrel{3}{5}$	${ }^{6}$	63
8－8．9	1	20	3	11		2	1	$\stackrel{5}{2}$	13 3	47
$9-9.9$		28	1	3		3		1	4	
10－19．	11	94	9	12		5	2	1	14	109
20－29－	3	32	1	3		2	1	2	8	39
$40-49$	4	6	1	3			1	2	1	11
50－59	1	3							1	5
$\begin{aligned} & 60-69 \\ & 70-79 \end{aligned}$	1			1					1	
$300 \text { and over }$										

[^14]Tasle 29．～Frequency distribution of hedgers，by amount of profit or loss，and by grain

Amount（ 1,000 dollars）	Number of hedgers									
	Wheat		Corn		Oats		Rye		$\underset{\text { grains }{ }^{\text {All }}}{\text { All }}$	
	等	咢	范	㓪	突		嵒	苞	管	
0－0．09	8	4	4	5	3	3		1	8	7
0．10－0．19	3	4	1		－－	2	2	1	$\stackrel{2}{3}$	3 3
0．20－0．29－	3 1	${ }_{2}^{2}$				1	2	$1-$	1	1
0．30－0．39	1	2	${ }_{3}^{2}$	1	2		1		1	1
$\begin{aligned} & 0.40-0.49 \\ & 0.50-0.59 \end{aligned}$		1	1	1	2	$1-$				2
$0.60-0.69$	1	2		1					3	1
$0.70-0.70$	2	2	2	1					4	1
$0.80-0.89$		1	1			1	2	1	1	3
0．90－0．99	8	${ }^{1} 1$	$\frac{1}{5}$				2		7	12
${ }_{2-2.9}^{1-1.9}$	8	9	1	1	1	1	3	2	4	9
3－3．9	4	3		1		2	1	1	4	2
$4-4.9$	3	4	2	1	1				4	4
5－5．0	1	5	$\stackrel{2}{1}$	1		1	1	1	3	7
6－6．9	1	$\stackrel{2}{2}$	1	1					1	3
7－7．9．		2	1						1	1
8－8．9．						2				
$\frac{9-0.9}{10-10}$	${ }_{2}$		2		4			${ }^{-}$	$\overline{2}$	7
$\begin{aligned} & 10-19 . \\ & 20-29 . \end{aligned}$	2	2	2							3
30－39．	2		－				1		2	1
$40-49$	4		1				1		3	
$50-59$		1	1				1	－	1	2
60－60		1	1							1
70－79－－	$\frac{1}{1}$								1	
S0－30	1	2							1	1
$\begin{aligned} & 00-99 \\ & 100-199 \end{aligned}$		5						1	${ }^{-}$	3
200－299．									1	1
	49	73	34	27	14	23	14	13	59	81

t See footnote，table 28.
The most striking feature of table 2 S ，which presents the clata for speculators，is that the great majority of traders had relatively small profits or losses．The column＂ 111 grains＇s shows a total of $2,18 \mathrm{t}$ profit traders．Of this number， $8 \overline{0} 6$ ，or 39 percent，had profits of less than $\$ 100$ each，and 1,835 ，or 84 percent，had profits of less than $\$ 1,000$ each． Although the averuge loss was considerably larger than the average profit，there were 1,080 loss traders，or 16 percent of the total loss traders，whose losses were less than $\$ 100$ each，and 4,508 ，or 68 percent， with losses of less than $\$ 1,000$ each．It is apparent that a very large pereentage of traders in the sample operated on a small scale，and also that many of them discontinued trading before either large profits or losses had been aceumulated．

Tradinc Reselfs and Occupation

It is of interest to discover whether there is any relation between traders' occupations and results of trading. Are traders in some occupations notably successful, and those in other occupations unsuccessful? Evilence on this point for the various grains is found in table 30, which shows by major occupational groups the number of speculative traders making profits and the number suffering losses. In figures 4, 5, 6, 7, and S, the number of profit traders is plotted against the nmber of loss traders in each occupational group, the data being presented for each grain and for all grains combined. On these charts the broken lines represent equal numbers of profit and loss traders. The lower sloping lines represent the relation between the number of profit and of loss traders in the particular grain for the speculative group as a whole.

Figurn f.-Wheat futures: Distribution or traders with protits and with losses, by major vecupational groups.

The first point that stands out from the data presented in table 30 and the chats is that in no major occupational group were there as many profit tradors as loss traders. In terms of the number of traders making profits or losses there was no occupation that was able to break even. Even more striking is the surpeising uniformity in the propertion of profits and losses anong the various occupational groups in each grain and in all grains combined. There is one interesting difference between wheat and the other grains. Twanty-seven ont of every 100 traders in wheat futures made profits. In com futares, however. the proft traders were 38.8 perent of the total, in oats, 37.1 pertent, and in rye, 37.9 percent. Wheat seens defimitely less profitable than the other three grains, but among the latter there seems to be little difference in the prospects of sucessful trading results. For all grains

Fhous b.-Corn Puthres: Distribation of traders with profits and with losses, by amjor wectupational groaps.
combined, 24.9 percent of the traders, or only one in four, made a profit. It appears that when trading in all grains is taken into consideration, the combination of profits in one grain with losses in another resulted in net losses more frequently than in net profits.

Woome G.-Oat futures: Distribution of traders with profits and with losses, by major vecupational gronas.

Fioure 7.-Rye futures: Distribution of tualers with profits and with losses, by major occupational groups.

For all grains combined only those persons whose occupations were "unknown" showed a significantly higher than arerage proportion of traders with profits. This group was not masually successful, however, in corn and rye futures. Farmers seemed to be somewhat less

Frodne S.-All grain futures ; Distribution of traders with profita and with losses, by major occupational groups.
'lusue 30.-Number of speculative traders with profits and with losses, and percent with profits, by grain and major oocupational group

Commodity and occupational group	Praders with-		Total	Percentagewithprofits
	Profits	Losses		
WHEAT	.			
Business managers:	Number	Number	Number	Percent
Grain business	88	189	272	30.5
Other-	702	1,993	2,695	26.0
Professional-	170	498	677	26.4
Semiprofessional	$\begin{array}{r}27 \\ 130 \\ \hline\end{array}$	$\begin{array}{r}64 \\ 349 \\ \hline\end{array}$	479	27.1
Farmers.	200	697	897	22.3
Manual workers	214	621	835	25.6
Retired----	240	576	816	29.4
Unknown.	270	500	779	
'Fotal_--..--	2,045	5,496	7,541	27.1
Business managers:				
Grain business. Other	76 577	806	1,383	44.7
Professional.--	133	221	354	37.6
Semiprofessional.	16	20	36	44.4
Clerical-	76	159	235	32.3
Farmers.	151	261	412	${ }_{36.1}$
Manual workers	189	280	469	40. 3
Retired---	14.4	271	415	34.7
Totad.	1,525	2, 403	3,928	38.8
Onts				
Business manayers:				
Grain business.	23	$\begin{array}{r}54 \\ 374 \\ \hline\end{array}$	77 597	29.9 37
Other--	223	374	119	37.4
Professional ---	4	74 7	119	50. 0
Semiprofessional.	37	50	87	42.E
Clarical.-.-.-...	57	1512	169	33. 7
Mannal workers	53	108	161	32.9
Retired....	69	111	180	38.3
Unknown.	75	107	182	41.2
Total	589	997	1,586	37. 1
Businesa managars:				
Crain business.-	22	37	59	(37.3
Other--.....-	201	303	504 114	4 39.9
Professional......-	36 2	78 12	114	4
Semiprofessional.	33	49	$\stackrel{1}{82}$	2 40.3
Firmerso-	43	94	137	7 31.4
Manual workers.	52	88	140	1 37. 1

Tabie 30.-Number of speculative traders with profits and with losses, and percent with profits, by grain and major occupational group-
Continued

Commodity and occupational group	Traders with-		Total	Percentage with profts
	Profits	Losses		
nye-continued				
Retired.	Number 62	Number	Number	Percent
Unknown		79 76	141	44.9
				37.7
Business managers:				
Grain business	92	224	316	
Orther--.	748	2, 339	3,087	24.2
Professional.-.-	185	-583	${ }^{368}$	24.1
Clerical	23	79	102	22.5
Farmers--	121	433	554	21.8
Manual workers	218	810	1,028	\%1. 2
Retired.---.	254	736 700	${ }^{948}$	22.4
Unknown	331	694	1,025	26.6 32.3
Total	2,184	6,598	8, 782	24.9

successful than other persons in their futures market operations. This was especially true in wheat and rye futures. The only group containing a consistently higher than average proportion of profit traders in every grain was that consisting of retired persons. It may be concluded that the chances for success in the futures market were not very much greater for members of one occupation than for members of another, but the chances in all occupations were significantly lower in wheat futures than in any other grain.
The investigation to this point has been in terms of the number of traders making profits or losses. It may be, however, that there were certain occupational groups which did not differ significantly from others in terms of the proportion of successful traders, but in which the scale of trading by those who did make profits differed so greatly from the scale of operations of loss traders that the total trading of the occupational group was exceptionally profitable or unprofitable. Evidence on this point is presented in table 31, which gives the total profits and total lossas of traders in each of the major occupational groups, tor each grain and for all grains combined. The data in table 31 are also presented in graphic form in figures $9,10,11,12$, and 13 .

The most important point demonstrated by table 31 and the accompanying charts is that losses exceeded profits in every occupational group. No consistent pattern among the various occupational groups

Fraure 0.-Wheat futures : Profits and losses, by major occupathonal groups.
is apparent for the individual grains. For all grains the ratios of profts to losses ranged from a low of 0.11 for semiprofessional persons to a high of 0.28 for proprietors and managers in the grain business. Over-all, persons in the grain trade were more successful in speculative trading than speculators in other occupations, but even for them losses were almost four times profits. The other group which

Fravie 10.-Corn futures: Prefits and losses, by major eecupational groups.

Fiaune 11.-Oat futures: Profits and losses, by major oecupational groups.
might be expected to have direct and intimate knowledge of grain is that composed of farmers, but as a group they were among the less successful traders. Neither special knowledge of the commodity traded, nor lack of such knowledge, seemed to have much effect on the outcome of futures trading during the period studied.

Figure 12.-Rye fatures: Profita and losses, by major occupational groups.

Fhours 13.-All grain futures: Prohts and losses, by major occupational gronga.
It has been pointed out, in comparing the number of profit traders with the total number of traders, that the proportion for wheat was much lower than for the other grains. This difference is not so clear when the total amount of profits is contrasted with the total amount, of losses. The ratio of total speculative profits to losses was 0.16 for wheat and the same ratio also held for oats. The corresponding ratios were 0.35 for rye and 0.53 for corn. It is possible that these variations are largely due to differences in the price movements of the respective grains, but it has not been feasible to explore this possibility.

Tradig Results and Scale of Trading

In discussions of the ontcome of futures trading, reference is frequently made to the relative success of large and small traders. It is widely believed that speculative markets are dominated by largescale traders, and that the small traders' prospects of success are relatively slight. An attempt has been made in this study to checle the validity of these general impressions by examining the relation between profits and losses and the scale of trading, as measured by the average position in grain futures.
The average position for each trader is a weighted average of his positions in each cycle, long or short. Consequently it is an average of the positions held in individual futures, and does not add together positions held simultaneously in different futures. It will be recalled that large traders libe 7830 and 7732 generally have positions in two or more futures at the same time. In such cases the total "ling" is the sum of the positions on the same side of the market. The average position figure used in this study is not the average of such lines, but is the average position held in the individual futures

Table 31.-Aggregate profits and losses of speculators and ralio of profits to losses, by grain and occupational group

comprising the line. Whether the position was long or short was ignored in these caleulations. Consequently the average position of a trater whe hat bought 10,000 bushels in on futare and sold 10,000 bushels in another, would be 10,400 bushels, although he might describe his position in the maket as "even."
Because of the anits in which futures trading is carried on there is a tendency for average-position tigures to cluster around certain values. The position assigned an in-and-out cycle was zero. Consequently traders who operated exclusively in in-and-out cycles had average positions of zero. There were enough of these to justify a separate eategory. Job-lot traders whe bought and sold only 1,000 bushels in any cycle would have average positions of 1,000 bushels. They also constitute a special group. A number of traders had arerage positions of exactly 5000 bushels-representing a cycle in which one round lot was bought and sold, and there was also a considerable group with average positions of exactly 10,000 bushels. The classification adopted for average positions established separate classes for each of the above groups. Adeditional classes consisted of traders whose average positions fell within certain ranges. The distribution of traders in these size classes for each gram, and the total profits and losses of taders in each class, are shown in table 32.
Taber 32.-Tamber of speculative traders and aggregate profts and losses, by grain und size of average position

Commodity and averase position (1,000 bar.)	Profits		Losses	
	Traters	Total amount	Traders	Total amount
Wheat	Number	Dollars	Number	Dollars
0.0.-	123	8,782	50	3,860
1.0.-	287	17, 184	+ 724	-97, 743
1.1-1.9	685 340	266,215 81,047	2, 201	1,562, 403
5.0	340 326	327, 164	897	1,766,462
5.1-9.9	${ }^{3} 73$	36, 03	163	188, 295
10.1-2.4.9	161	429, 205	492	2, 423, 358
25.0-49.9	38	223, 950	120	1, 258, 164
$50.0-99.8$	7	67, 272	36	644, 926
99.9 and over.-.-Total.-...con	-	51, 083	10	1, 0̄2, 288
	2, 045	1, 508, 407	5, 496	9,411,620
0.0.	111	12,701	37	1.999
1.0	187	7,646 17,062	314 879	25, 314
1.1-4.9	498	117,002 58,617	88	105, 483
$5.0-7$	211	205, 5.41	389	530, 306
10.0	82	33, 262	S5	58, 188
10.1-2.9.9......	115	2S1, 106	187	479, 303
25.0-49.9--... - . . - ..	$2 \cdot \frac{1}{4}$	76, 777	39	239, 422
50.0-90.S.	6	12, 680	21	143, 737
99.9 and over	5	378, 595	6	${ }^{258.657}$
Tolal.	1, 325	1, 183, 993	2,403	2, 222, 602

Table 32--Number 'of 'speculative !traders and aggregate profits and losses, by grain: and size of average position-Continued

Commodity and average position (1,000 bu.)	1'rofits		Losses	
	Traders	Total amount	Traders	Total amount
oaxs	Number	Dollars	Number	Dollars
0.0	22	1,177	16	1,147
1.0	54	1,016	60	2,984
1.1.4, ${ }^{\text {a }}$	136	11, 137	229	47, 038
5.1-9.9	183 80	-27,683	254	67, 972
10.0	42	8,040	81	131, 598
10.1-24.9	57	34, 089	124	203, 229
25.0-49.9	11	11,587	34	95, 093
50.0-99.8	4	7, 829	12	73, 297
99.9 and			6	95, 636
Total	589	124, 038	997	772, 132
0.0..	19	987	17	1,553
1.0	71	2, 790	140	15, 114
1.1-4.9	124	29, 824	225	96, 233
5.0	133	25,827	190	91, 726
5.1-9.9	70	36, 411	117	143, 891
10.0-	30	10, 284	40	29, 553
10.1-24.9	41	103, 587	68	186, 667
25.0-49.9	5	41, 949	11	39, 052
50.0-99.8	4	41, 383	7	112,077
99.9 and over			1	109, 972
'Total	497	293,042	816	825, 838

Examination of this table will reveal ondy one class of positions in which the number of profit traders consistently exceeds the number of traders with losses, and in which profits are generally greater than losses. This is the size class with an average position of 0.0 . This group consists exclusively of traders who never carried a position overnight. The trading of the members of this group was made up entirely of in-and-out cycles. For the four grains the results for in-and-out speculators were as follows:

In-and-out traders

	Profit traders Number	Lose traders Number	Profits Dollays	$\begin{aligned} & \text { Losses } \\ & \text { Dollsra } \end{aligned}$
Wheat:	123	56	8,782	3, 860
Corn	111	37	12,701	1,909
Oats	22	16	1,177	1, 147
Rye	19	17	-987	1, 553

These results are in decided contrast to the outcome for other aver-age-position groups. In all the other categories loss traders consistently exceed profit traders in numbers, and the amount of losses greatly exceeds profits. It should be noted, however, that the average profit per trader of the zero position traders is not large. It amounted to \$ $\$ 70$ in wheat and $\$ 114$ in corn. Some special circumstance must have been present to explain the generally favorable outcome of in-and-out trading in contrast to the predominance of losses by traders in other groups. The most likely hypothesis is that the in-and-out traders were mostly purchasers of privileges who had them made good at a profit. Privilege trading was described in the discussion of the activities of Trader 7830. Direct evidence on privilege trading by customers in the sample is not available, but the fact that privilege trading was not permitted in the sample period prior to Jumary 13, 1926, suggests that an analysis of the trading activities of zero-position traders before and after that date may indicate whether privilege trading contributed to the exceptional results which such traders achieved. This amalysis will be limited to traders in wheat futures.

The great majority of zero-position traders in wheat futures traded in one cycle only. There were 138 of these traders in whent futures, 94 of whon made profits while 44 sustained losses. Before privilege trading was permitted profit and loss traders were approximately the same in number. After privilege trading was resumed the number of these traders making prohts was three times the number of loss traders. A direct comparison of the results of such traders' activities before and after January 13, 1926, is shown below:

	Zero-position wheat traders with one cycle only		
	Profit tradera	Loss traders	Total
Period: ${ }_{\text {Before Jan. }}$ 13, 1926	10	18	34
After Jan. $13,1926$.	78	26	104
Total-.....	94	44	138

Another comparison relates the results of trading by zero-position traders in wheat futures to the date January 13, 1006 . In the comparison below a distinction is drawn between traders whose first trades were made before privilege trading was resumed, and those whose first trades were made thereatter:

trades were made thoreatt.	sll tero-posilion wheut trders		
First trade before Jan. 13, 1926, and-	Profit iralers	Loss traders	Total
First Last trade before Jan 13, 1926.	18	24	42
Last trade after Jan. 13, 1926...	1	3	4 133
First trade after Jan, 13, 1926...	104	29	133
	123	56	179

It may be seen from the above data that 18 out of the 42 traders, or 43 percent, who confined their activities to the period prior to January 13, 1926, made profits, whereas $10 \pm$ out of 133, or 75 percents of those trading only after that date were successful. These results support the hypothesis that privilege trading contributed to the unusual proportion of profits for the in-and-out traders.

It should be remembered in this comection that the hypothesis with respect to privilege trading involved the assumption that these traders had purchased privileges which they required the seller to make good. It the assumption is correct the figures given for profits are an overstatement. Not only are commissions and the cost of the privileges not considered, but many of these traders undoubtedly bought privileges which were not made good. The cost of these privileges should also be subtracted from their profits to determine the net outcome of their trading.
The numbers of persons with profits and with losses in wheat futures are shown in figure 14. In addition to the zero-position traders almeady discussed, the groups with average positions of exactly 5,000 busheis, 1,000 bushels, and 10,000 bushels had a higher-than-average proportion of profitable traders. All the other size classes had relatively fewer than the average proportion of successful traders. The most populous group cousisted of persons with average positions of from 1,000 to 5,000 bushels. This group contained distmetly less than the average proportion of traders with profits.

Fiacme 14.-Wheat futures: Distribution of traders with profits and with losses, by size of average position.

Figures 15, 16, and 15 present comparisons in number of profit and loss traders in corn, cits, and rye, respectively. Although the 1,000 -to-5,000 size class gencrally has an undue proportion of loss traders, other small trader groups, such as those whose average positions averaged exactly 1,000 and $\overline{5}, 000$ bushels, do not fare badly. There is no evidence that the hagest size classes inclute a higher proportion of surcessful traders than the groms with smaller average positions.

Figure 15.-Corn futares: Distribution of traders with profts nud with losses, by size of average position.

Pagune 16.-Oat futures: Distribution of traders with prolits and with losses, by size of average position.

Eteone 17.-Rye futures: Distribution of traders with prolits ant with losses, by size of average position.

When the relation between total profits and total losses is used as the basis for comparison, the picture is somewhat changed. Figures 18, 10, 20, and 21 show the total profits and total losses of traders in the different size classes for the four grains. Comparing the various size groups (other than the zero-position class) on all four figures, it will be found that the group with average positions between 10,000 and 25,000 bushels had it higher-than-average proportion of profits to losses for each grain. No other size group has a similarly consistent record. The variations in total profits and losses of the "Over 100,000 bushels" average position class are not significant, since this size class contained so tew traders. Trader 7732 , for example, is largely responsible for the high ratio of profits to losses of this size class for com futures. His large profits also pull the line of average relationship up above the relation which is characteristic of most of the size classes. In a similar fashion the losses of Trader 7830 are largely responsible for the low ratio of profits to losses of the largest size class in wheat futures.

The cvidence available here with respect to the relation between scale of trading and trading results is that small and large traders alike were generally unsuccessful in their trading. The sample contains too few traders in the largest sizo class, however, to warrant any generalization with respect to their relative success. There is some indication that more than the average proportion of traders with average positions of exactly $1,000,5,000$, and 10,000 bushels managed to obtain profits, and that the group with average positions of from 10,000 to 25,000 bushels must have contained some unusually successful traders, since the ratio of profits to losses for this group is distinctly favorable, although the relation between number of profit-and-loss traders is not.

Graune 1s. Wheat futures: Profts and losises, by slze of average position.

Fieure 19.-Corn futnes: Profts and losses, by si\%e of average position.

Figder 20.-Oat futures: Profits and losses, by size of average position.

Froune 21.-Rye futures: Profts and losses, by size of average pesition.

TRADING CHARACTEHISTICS, BY SIZE AND TYPE OF POSITION

The statistical analysis of trading and its outcome has thus far been concemed primarily with the rehation between trathing and the various types of traders in the sumple and the scalo of their operations. There follows a more detailed analysis of trading cyeles of speculators, including duration and type of cyele, long on short.

The chief chameteristies of trading in wheat futures by traders in the different size groups are shown in table $t y$. In this table the size groups are the same fos those in the table of profits and losses immediately preceding. Duration, it will be recallef, is the length of time betweon the first and hast day of a fraching cycle. The dotat duration for a trader is the sum of the durutions of all the cycles in the grata in which he traded. The figures shown in table 33 mader "Duration per tader" give the averase duration of traders in the indiated size broup. The duration of in-mal-out cycles is zero, and consequently the duration per trader of those engaged exclusively in in-and-out trading is zero.

Tendency for Longer Duration of Loss Cycles

For all but one of the size groups the duration per trader of the loss traders is greater than the duration per trader ot the proft traders. It will also be noted that those groups in which traters held average positions of exactly $1,000,5,000$, and 10,000 bushels, generally had shorter durations per trader than the other size classes (with the exception, of conse, of the \%ro-position traders). These were the size groups which contained relatively high proportions of profit to loss traders. If attentiont is turned to the columns in table 33 showing duration per cycle, it will be sete that the lower duration per trader for the groups with exnetly $1,000,5,000$, and 10,000 bushels was not bectuse they hat shorter eycles that other teaders. The explanation is to be found rather in the sumber number of cycles traded by persons in these size chasses. It is interesting to note that the average nttuber of eycles are the same for the profte taders and the loss traders in the 1,000 and 5,000 bushel groups. Profit traders with average positions of 10,000 bushels enguged in more cycles than loss traders in the same category. The higher proportion of profit traders in these groups, therefore, cannot be atiributed to the smaller number of eycles per trader, although this is the trading characteristic in which these croups atremost sharply diferentiated from the others. Although further investigation of this point has not been matle, it may be surmised that prifilege trading contributed to the special trading chavneterisites of these groups.

One of the most significant terding featares revented by table 33 is the consistently longer durations of the trading cycles of loss traders. These traders appear to have been inelined to "let their losses run." Perhaps it would be more aceurate to say that they "let their cycles run" since the figures shown are the averages of ail the cycles, both proftable and unproftable, of the tanders who ended with act losses

Table 33-Wheat futures: Trading characteristics for profit traders and loss traders, by size of average position

Ascrage position ($1,000 \mathrm{bu}$.)	Duration per trader		Active days per trader		Cycles per trader		Duration per cycle		Active days per cycle	
	Profit	Loss								
0.0	Days, 0.0	Days ${ }^{\text {0. }}$	${ }^{\text {Days }}$	Days	Number	Number	Days	Days 0	Days.	Days
1.0	115.9	85.2	7.2	8. 1	4. 1	4.1	12. 1			
1.1-4.9	154.6	222.7	21.7	22. 5	14. 6	13. 7	12. 6	20.6 16.2	1. 1.8	1. 1.6
5.0	39.3	61.9	6. 4	6.3	3. 6	3. 6	10.8	17.1	1. 8	1.7
5.1-9.9	175.0	228.0	27. 9	25. 6	18. 5	15.3	9.5	14.9	1.5	1. 7
10.0	42.2	69.7	5. 6	4.2	3. 7	2.1	11.5	32. 9	1. 5	2. 0
10.1-24.9	199.6	275.6	27.1	28.1	16. 8	16. 1	11.9	17.1	1. 6	1.7
$25.0-49.9$	190.6	218. 1	28. 1	24.3	15. 3	14.7	12.5	14. 8	1. 8	1.7
50.0-99.8	167.4	268. 7	31.7	30.8	15.9	20.4	10.6	13. 1	2. 0	1.5
99.9 and ove	95.0	486.1	26.0	31.9	4. 0	21.2	23. 8	22. 9	6. 5	1. 5
Total_	114.8	182.5	16. 9	18.8	10. 9	11.2	10. 5	16.3	1.6	1.6

in the one case, or with net profits in the other. The tendency toward shorter cycles on the part of the traders with net profits is clear. There is no evidence at this point, however, to indicate which way the causal connection mins, i. e., whether traders made profits because they cut their cycles short, or whether their cycles were short because they were profitable.

The mumber of active day's per trader is the average number of days on which traders in a given size classification mate trades. The special siluation of the zero-position traders is evident in these figures. For in-and-out traders the momber of active days is necessarily equal to (he number of cycles. In simple cyeles (other than in-and-out cycles) there are always at least two active days per cyche. It is surprising to find, therefore, that there is no size group for which the number of active days per cycle of loss taters is more than two, and only one group in which prolit traders exceed this ratio. This means that in overy size group there must have been traders who inchuded a mabler of in-and-out cyeles in their tadim. It happens abso that in the case of what futurs the nomber of ative days per cycle for the entime gromp was the same for protit traders as for loss traders.
 fures. Many of the generalizations mate with respect to wheat futures apply here also. One exeption is that the number of active thay per aycle a veares distincty higher for profit traders than for loss traders. There are also two groups, the e5, (10)-fo-50, oo -bushel gronp, and the group with 100,000 bushels and over, in which the dumation per cycle of traders with profits is disthacty longer then for the traders with losses. The long thation for the lategest group is largely due to Trater 7 T32, but no explanation is available for the longer duation of eycles of proft tateders in the 25,000 -to- 00,000 -bushel size group.

The trading chatachersios for oat and rye tutnees are siown in tables 37 and 30 . The chief diflerences shown for these grains are the longer cyeles and more active clays per cycl:. Presumably both of these differences arise from the less active nature of the out and rye futures markets, and the less trequent occurrence of the in-and-out cycle. The larger the relative number of in-and-out cycles the lower the average dutation per cycle, and the lower also is the number of atetive days per cycle.

Analisis of Tradinc uy Type of Posithon

Specolators are frequenty referred to as longs and shorts (or as "bulls" and "bears"), not only with reference to their short-term trading activities, but with the inplication that cortain speculators chatacteristically assume long posithons, white others habitually take the short side of the market.

It is possible to elassity the speculators in the sample according to the type of trading in which they engaged, as follows: (1) Th-andout trading only, (2) alway long, (3) always short, and (4) sometimes long and sometimes short. The results of this classification for the four grains are shown in table 37.

Table 34.-Corn futures. Trading characteristics for profit traders and loss traders, by size of average position

Average position ($1,000 \mathrm{bu}$.)	Duration per trader		Active days per trader		Cycles per trader		Duration per cycle		Active days per cycle	
	Profit	Loss								
0.0	Days ${ }^{\text {0. }} 0$	Days ${ }^{\text {0, }}$	Days ${ }^{\text {d }}$	Days	Number	Number	Days	Days	Days	Days
1.0	37.4	62.0	1. 4	1. 6	1.8	1. 1	00	0.0 17	1. 0	1.0
1.1-4.9	120.3	172.4	17. 6	7. 4	9. 8	10.1	12.3	17.1	1. 8	1.9 7
5.0	27.7	58.5	5. 5	5. 9	2. 9	3. 0	12.3 9.3	19.0	1.8	1.7
5.1-9.9	114.7	209. 9	22.8	23. 2	12.1	12.9	9.5	16. 3	1.8	1. 8
10.0	26. 2	47.0	3. 9	4. 2	2. 0	1. 9	12.8	24.1	1.9	2.2
10.1-24.9	160. 5	197. 5	26. 3	21. $\frac{4}{3}$	11.1	10.9	14.5	18. 1	2. 4	2.0
$25.0-49.9$	158.3	176. 8	22.8	19.3	6.5	12.5	24.2	14.1	3. 5	1.5
50.0-99.8	108.7	83.7	12.8	16. 5	11. 7	6. 0	9.3	13. 9	1. 1	2. 7
99.9 and	136. 4	263. 3	16.4	30. 0	5. 6	21. 8	24.4	12.1	2.9	1.4
Total	81.4	137. 3	13.5	10.8	7.2	8.1	11.4	17.0	1.9	1.3

Table 35.-Oat futures: Trading characteristics for profit traders and loss traders, by size of average position

Average position ($1,000 \mathrm{bu}$.)	Duration per trader		Active days per trader		Cycles per trader		Duration per cycle		Active days per cycle	
	Profit	Loss								
0.0	Days 0	Days ${ }_{0}$	Days ${ }^{\text {a }}$	Days	Number	Number	Days	Days	Days	Days
1.0		0.0	1. 0	1. 0	1.0	1. 0	0. 0	0. 0	1. 0	1. 0
1.1-4.9	33.2	47.7	3. 7	4. 4	1. 9	2. 1	17. 4	23. 1	2. 0	2. 0
5.0	62.2	122. 1	7. 5	10.8	3. 4	4. 5	18. 4	26.9	2.2	2. 4
5.1-9.9	26. 8	63.5	4. 1	4.4	2.2	2. 3	12. 3	28. 1	1. 9	1. 9
10.0	109.2	167.6	16. 0	13.2	7. 3	6. 0	15.1	28.0	2.2	2. 2
10.1-24.9	34.1	57.4	2. 6	3. 0	1. 4	1. 5	25.1	37.8	1. 9	2. 0
25.0-49.9	81.4	1515	9. 6	13. 3	3. 6	4. 3	20. 1	35. 3	2. 7	3. 1
50.0-99.8	87.2 65.6	13:	11.7	14.3	3. 3	3. 9	26.6	33.5	3. 6	3. 6
99.9 and over		51.\%	21.0	10. 0	6.8	3. 6	9.7	14. 6	3.1	3.9 2.9
Total	52.0	108. 0	7.1	8. 7	3.2	3. 7	16.?	29. 1	2. 2	2.4

Table 36.-Rye futures: Trading characteristics for profit traders and loss traders, by size of average position

Average position (1,000 bu.)	Duration per trader		Active days per trader		Cycles per trader		Duration per cycle		Active days per cycle	
	Profit	Loss								
	Days. 0.0	Days 0.0	${ }^{\text {Dayo }}$	${ }_{\text {Days }}{ }_{1.1}$	Number 1.1	Number 1.1	Days 0.0 0.0	Days. 0.0	Days 1.0	${ }^{\text {Days }} 1.0$
1.0	17.6	58.6	2.7	4.1	1. 4	2.1	12.7	28.4	1.9	2. 0
$1.1-4.9$	59.6	108.0	10. 2	10.1	4. 3	4. 1	14.0	26.2	2.4	2.4
5.0	22.0	40.3	3. 8	3.9	1. 9	1. 9	11. 2	21.0	1. 2.5	2. 2.4
5.1-9.9	57.6	112.8	11. 4	15. 1	4. 6	6. 4	12. 6	17.7	1. 8	2.1
10.0	10.6	28.2	2. 9	18.9	1. 1	5.8	12. 15	15. 6	1. 4	3. 1
10.1-24.9	79.2 139.4	147.8 95.4	17.3 24.2	13.5	8. 4	4. 1	16. 6	23.3	2. 9	3. 3
$25.0-49.9$ $50.9-99.8$	139.4 134	245.6 6		13. 3	3. 5	9. 0	38. 4	27.6	3.5	3. 7
99.9 and over		83.0		18.0		2.0		41.5		9.0
Total	41.0	82.6	7.5	8.8	3.1	3. 6	13. 3	23.1	2. 4	2.5

'Traders who confined themselves exclusively to in-and-out trading . were of minor importance, amounting to only 2.4 percent of the speculators in wheat, 3.8 percent in corn, 2.4 percent in oats, aid 2.8 percent in rye. In number of cycles and volume of trading, they are still less important. Since in-and-out traders were discussed separately in an earlier section in connection with the scale of trading, they are excluded from further consideration here. The remainder of this disenssion is devoted ouly to the other classifications.

Thale: 37.-Number and percent of speculators, by grain and lype of cycle

lype of eyute	Wheat		Corn		Onts		Rye	
It-and-out onty \qquad Long only \qquad Short only Both long and short	$\begin{gathered} N_{u m-1} \\ b e r \\ 179 \\ 3,433 \\ 3,53 \\ 3,506 \end{gathered}$	Percenl 2.44.54 4. 5 47. 7	$\begin{array}{\|c\|} \hline \text { Num- } \\ \text { ber } \\ 1,48 \\ 1,529 \\ 1,433 \\ 1, ~ S 38 \end{array}$	Percent 3.8 38.910.5 46. 8	$\begin{array}{\|r\|} \text { Num- } \\ \text { ber } \\ 38 \\ 1,023 \\ 123 \\ 397 \end{array}$	Percent 2.4 64. 5 25.0		
Total	7, 541	100. 0	3, 928	100.0	1,586	100.0	1,313	100.0

There clearly were taders who confined their activitics to one side of the market. But there were significant differences in the proportions of such traders in the different prains. Consistent "bulls" in wheat constituted 45.4 percent of the traders in that grain. In corn only 38.9 percent were always long, while the percentages for oats and rye were 64.5 aud 68.6 , respectively.

The common impression that the amateur speculator is more likely to be long than short is confirmed by the contrast between these figures and the proportion who held short positions only. Only 4.5 percent of the speculators in wheat confined themselves to short sales. The largest proportion of consistent short sellers was found in corn futures, in which 10.5 percent of the traters held short positions only. About half the traders in wheat and corn futures had both long and short trades at some time daring the survey period, but in oats and rye the number of speculators trading on both sides amounted to ouly about it guarter of the total. The situation in onts and rye coincides more elosely with the general impression that sinall speculators are predominantly bulls than cloes the situation in wheat and com in which sloort selling accounted for a substantial proportion of the total trading by speculators in the sample.

The comparison in terms of number of traders overemphasizes the importance in the market of speculators who were consistently on one side of the market. The more active traders, and those who assumed larger positions, made both long and short trades. This is shown in table 38 , which, in addition to the number of traders, shows the number of cycles and the volume of trading of persons with different trading patterns. "It may be seen at once that the relative importance of the "long only" and the "short only" trader is much less when thie number of cycles and the volume of trading are considered rather than the

Table 38.-Number of traders,' number of cycles, and quantity traded, by grain and type of position
number of traders. Nthough the "long only" caterory included 46.5 percent of the total number of wheat traders and 40.5 percent of the com traders, it included only 11.6 percent of the wheat cycles and 11.8 percent of the com cyeles, and accounted for only 9.4 percent and 11.3 percent, respectively, of the volume of trading in these grains.

The contrast between wheat and corn on the one hand, and oats and rye on the other, is even more striking for number of cycles and volume of trading than for number of traders. Although "long only" traders accounted for less than 19 percent of the total cycles in both wheat and corn, hey were responsible for 40.6 percent and $46 . \overline{7}$ percent, respectively, of the oat and rye cycles. A similar contrast is found when the comparison is made in terms of the volume of trading. Here the percentages are 9.4 and 11.3 for wheat and corn, but are 47.1 and 41.3 tor oats and rye. The "long only" traders are of minor significance in the wheat and corn futares markets, but account for an important part of the trading by shall speculators in oats and rye. In atl markets the bear teader who was consistently short was of negligible importance, accounting for less than one percent of all wheat cycles and only $3 . t$ pereent of till oat cycles. In volume, the "short only" traders in no case accounted for more than 2.5 percent of the total.

Although the speculators who confined themselves to long trades only were not predominant in the sample studied, long cycles were much more common than short eycles in the total trading pattern. This may readily be seen from table 39 which gives the number of long and short cycles traded in the different grains. Specalators in the sample did exhibit a preference for the long side of the market, but this preference was not so great as may observers would have expected. There were also significant differences among the four grains. The preference for long positions was least pronounced in corn futares where long cycles constituted ss. 1 percent of the total. For the other grans the percentages of long cycles were 60.3 for wheat, 75.9 for oats, and so.f for rye. In no case was short selling as popalar as long buying, although it was substantial in corn and wheat futures. The great predominance of long cycles in ont and rye futures indicates that for these mans there is valitity in the genem! view that the small speculator is typieally a bull.

Thuse 30.--lumber and percent of long and short cycles, by grain

Grain	Long	cycles	Short eycles		Total	
	Niumber	Percent	Number	Percent	Numbcr	Percent
Wheat	4S, 780	63.3	28, 261	36.7	77, 041	100.0
Cora.	15, S44	58.1	11,442	41.9	27, 286	100.0
Oats.	3, 380	75.9	1, 26:	24.1	5, 244	100. 9
Ryc.	3, 2.54	S0.6	702	19.4	4,076	100.0

Profys ano Losses, Love ano Shont Cyctes
The ontcome of tuating aetivities may be related to the tanding pattern. It hats already been shown that the mumber of traders suffering net losses was considemably greater than the manber whose trading was profitable, and that total losses greatly exceeded total profits.

In table 40 , further information is given which relates the number of profitable and umprolitable eycles, and the profits or losses realized on such cycles, to the type of trading. Except for rye futures, speculators who confmed themselves to the long side of the market had more loss cycies than profit cycles. Consistent shorts, on the other hand, had more profitable than unprofitable cycles. These results in part reflect the characteristics of the time interval studied, in which periods of falling prices exceeded in length periods of rising prices, and price declines were greater in amont than price increases.
In spite of the prediominance of profitable cycles for traders with short cycles only, their prolits exceded losses only in the case of out futures. Shorts in alt the grains had more prolitable than unprofitable cycles, which indicates that they were more fiequently right than wrong in their foreasts of priee movements. In spite of this, their trading was for the most part unprolitable. The sitmation of the traders who had both long and short eveles is similat. The number of profitable cyeles exceded the unprofitable cycles by from 29 to 42 percont for the different rrain futures. But in every case tofal prolits were considembly less than losses. This sugrgests that trading characteristics other than the preference for the long side must have contributed to the heary losses incurred.

Belore exploring this suggestion further the operations of traders with both long and short cyefes should be examined in greater detail to determine more fully the redalion between type of position and the outeone of trading. Table 11 gives the number and percent of profitable anal unprofitable cecles of this aroup), chassified by type of position, longor short. For every grain a majorty of the short cycles were prolitable, the perentage of profitable cyeles ranging from 50.0 percent for rye to $6-\mathrm{t} . \mathrm{S}$ percent for oats. Profitable cycles were in every case relatively more frequent for the short cyeles than for the long cyeles. But even the long cyeles were more frequently profitable than inprofitable. Nevertheless. the profits realized were less than the losses for erery classification shown in table 41 exeept the short wheat eycles, in which profits exceeded losses by approximately 5 per cent, and short oat eycles, in which profits were 25 percent greater than losses.
Since profitable cycles outmumber unprofitaible cycles but losses exceed profits, the arerage loss per cycle must be greater than the average profit per cycle. This conclusion is confrmed by the figures on average profits and losses. as shown in table 42. In this table comparisons are made of average profits and losses for different. tracling eycles, with a classifeation of traders which makes detailed comparisons possible. For example, in wheat futures there were 586 long traders who had profit cycles only. Their average profit was $\$ 226$ per cycle. There were 1,618 long traders who lost money on every cycle traded, with an a merage loss of $\$ 631$. But there were 1,219 long traters who had bolh profit and loss cycles, with average profits of $\$ 278$ on the profitable eyeles, and averare losses of $\$ 66 \pm$ on the unprofitable cycles. Thus, the differences between average profits and average losses appear to be due both to differences between traders who hat profits only and those who hat loses only, and to differences between the profit and loss cyeles of traders who had both profits and losses.

Table 40.-Number and ratio of profit and loss cycles and amount and ratio of profits and losses, by grain and type of position

Table 41.-Speculators having both long and short cycles: Number and percent of profitable and unprofitable cycles,

Grain and type of position	Cycles						Outcome		
	Profitable		Unprofitable		Total		Profits	Losses	Ratio
Long WHEAT	Number 21,241 17,466	Percent 53.3 63.1	$\begin{array}{r} \text { Number } \\ 18,579 \\ 10,226 \end{array}$	$\begin{array}{r} \text { Percent } \\ \therefore \quad 46.7 \\ \quad 36.9 \end{array}$	$\begin{array}{r} \text { Number } \\ 39,820 \\ 27,692 \end{array}$	$\begin{array}{r} \text { Percent } \\ 100.0 \\ 100.0 \end{array}$	Dollars $\begin{array}{r} 4,935,577 \\ 3,072,799 \end{array}$	$\begin{gathered} \text { Dollars } \\ 10,764,974 \\ 2,929,849 \end{gathered}$	$\begin{aligned} & 0.46 \\ & 1.05 \end{aligned}$
Total_------.---	38,707	57.3	28,805	42.7	67,512	100. 0	8, 008, 376	13, 694, 823	. 58
Long_ Cons	7,036 6,627	55.7 62.1	5,596 4,046	44.3 37.9	12,632 10,673	100.0 100.0	$1,764,499$ 951,524	$2,073,697$ $1,297,850$.85 .73
otal	13,663	58. 6	9, 642	41. 4	23, 305	100.0	2, 716,023	3, 371, 547	. 81
Long_- OATS	951 703	51. 4 64.8	900 382	48. 6 35.2	1,851 1,085	100.0 100.0	130,227 75,154	$\begin{array}{r} 294,251 \\ 60,200 \end{array}$	1. 44
Total...-.-.	1, 654	56.3	1,282	43. 7	2,936	100.0	205, 381	354, 451	. 58
Long. ${ }_{\text {SYE }}$	755 404	54.6 50.9	627 270	45.4 40.1	1,382 674	100.0 100.0	$\begin{array}{r} 325,341 \\ 56,885 \end{array}$	$\begin{aligned} & 570,218 \\ & 116,059 \end{aligned}$	444 .57 .49
To	1,159	56. 4	897	43.6	2, 056	100. 0	382, 226	686, 277	. 56

Tabre 42.-Number of speculative traders, number of cycles, and average proft or loss per cycle, by grain and type of cycle

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} \& \multicolumn{4}{|c|}{Traders} \& \multicolumn{4}{|c|}{Cycles} \& \multicolumn{4}{|c|}{Profit or loss per cycle}

\hline \& Wheat \& Corn \& Oats \& Rye \& Wheat \& Corn \& Oats \& Rye \& Wheat \& Corn \& Oats \& Rye

\hline Long cycles only:
Profit cycles only \& Number
586 \& N $u m b e r$
453 \& Number

276 \& Number

267 \& Number
770 \& Number
627 \& Number

$\mathbf{3 5 0}$ \& ${ }_{\text {Number }}$ \& | Dollars |
| :---: |
| 226 | \& | Dollars |
| :---: |
| 247 |
| 18 | \& Dollars 97 \& | Dollars |
| :--- |
| - 219 |

\hline Loss cycles only \& $$
\begin{array}{r}
580 \\
1,618
\end{array}
$$ \& 641 \& 443 \& 369 \& 2, 301 \& 805 \& 568 \& 441 \& 631 \& 416 \& - 562 \& \[

1442
\]

\hline Both profit and \& 1,219 \& 435 \& 304 \& 265 \& 2, 875 \& 962 \& 605 \& 598 \& 278 \& 300 \& 211 \& 430

\hline Loss cycles \& 1, 219 \& 435 \& 304 \& 265 \& 3, 014 \& 818 \& 606 \& 498 \& 664 \& 526 \& 581 \& 728

\hline | Short cyeles only: |
| :--- |
| Profit cycles only | \& 140 \& 178 \& 76 \& 40 \& 178 \& 233 \& 98 \& 51 \& 167 \& 148 \& 100 \& 136

\hline Loss cycles only \& 137 \& 141 \& 37 \& 41 \& 159 \& 163 \& 40 \& 43 \& 290 \& 295 \& 156 \& 275

\hline Both profit and loss cycles: Profit cycles. \& 66 \& \& 15 \& 10 \& 138 \& \& 24 \& 12 \& \& 287 \& 179 \& ${ }^{2} 345$

\hline \therefore Loss cycles. \& 66 \& 94 \& 15 \& 10 \& 138
94 \& 162 \& 17 \& 12 \& 305 \& 513 \& 261 \& [414

\hline Both long and short cycles: Long cycles of traders: \& \& \& \& \& \& \& \& \& \& \& \& - .-

\hline Profit cycles only- \& 87 \& 93 \& 26 \& 15 \& 166 \& 164 \& 37 \& 29 \& 170 \& 143 \& 75 \& 532

\hline Loss cycles only. \& 128 \& 94 \& 22 \& 27 \& 196 \& 131 \& 30 \& 42 \& 426 \& 283 \& 432 \& 329

\hline Short cycles of traders: Profit cycles only \& 87 \& 93 \& 26 \& 15 \& 127 \& 150 \& 34 \& 20 \& 129 \& 100 \& 88 \& 114

\hline Loss cycles only - \& 128 \& 94 \& 22 \& 27 \& 154 \& 119 \& 25 \& 35 \& 178 \& 167 \& 171 \& 165

\hline Both profit and loss cycle \& \& 1,420 \& 268 \& 205 \& 21, 075 \& 6.872 \& 914 \& 726 \& 233 \& 253 \& 139 \& 427

\hline Long loss cycles. \& 3, 177 \& 1, 444 \& 311 \& 215 \& 18, 383 \& 5,465 \& 870 \& 585 \& 581 \& 373 \& 323 \& 951

\hline Short profit cycles \& 2, 928 \& 1,389 \& 282 \& 197 \& 17, 339 \& 6, 477 \& 669 \& 384 \& 176 \& 145 \& 108 \& 142

\hline Short loss cycles \& 2, 697 \& 1, 284 \& 205 \& 145 \& 10,072 \& 3,927 \& 357 \& 235 \& 288 \& 325 \& 157 \& 469

\hline
\end{tabular}

Only one comparison in table 42 shows average profits greater than average losses. In rye, traders with both long and short cyeles who made profits on every cyele hatd average profits of $\$ 532$ per cycle on their long cycles. The entirely different group of traders who were both long and short, but lost on every cycle traded, hat average losses of \$329 on their long cycles. This singlo exception is not sufficient to invalidate the generalization that average losses per cycle tend to exced average profts.

Table 42 was arranged to facilitate comparisons betweon profi and loss situations. It is possible alse to make comparisons between long athl short positions. For example, the average profit por cycle of wheat speculators who had long cyeles only and profit cyeles only was $\$ 220$, while the arerage for traders who had short cyeles only and proft eycles only was $\$ 10 i$. Tf the other comparisons of this type are anded from the thata in table fe it will be fome that in all bat fwo cases the arerage profit or the arerage loss for the short situation is smather than for the long. The ewo exceptions are both found in out futures, and nay be smmarized as follows:
Prollt cycles:

The great predominate of situations in which average profits (or average losses) for loug (yedles exeed the corresponding figures for short cyeles indicates that here is a differene in trading behavior as between short and bong tades which is simila to the differenee fommel betweon profitable and mprofitable cyeles. In broad torms the contrasts to be explaned are set forth in table 43 . For every type of trading, losses per cycle exceed profits; and in wery grain both the prohts and the losses for the long cyeles exeed the corresponding higures tor the short eycles.

Duramon of Lonc and Shomp Creaes

Table 43 atso gives the average daration in trading days of the cyeles in the diflevent categories. Win the exception of the comparison between the loug and short proftable cycles in corn futares, the variations in daration per eyele are simiar to chose for profts or losses per cycle. C'mprohtahle eycles in genemb covered more trading days than protitable eydes, and the daration of short cyeles was less, on the average, than that of long cyeles. Comparisons to different trading patterns are shown in table 4. Two exceptions to the finding just stated with respect to prolit and hoss eycles will be observed ; these are the eases of the averare duation in wheat and com futures of the short cyeles of traters with profit eycles onls as compared with the short cyeles of traders with loss cycles only. 'Therearealso two exceptiens to the fiading that short eycles have shorter duration than long cyedes. They are fond in corn and oat futures in the comparison of the average duration of the long ame short eycles of thaters with profitable cyeles only who had hoth tong and short eycles.

Table 43.-Speculative traders: Outcome of trading, by grain and type of position

Grain and type of position	Profitable cyeles				Unprofiable cycles			
	Cycles	Total profits	Profits per cycle	Duration per cycle	Cycles	Total losses:	Losses per cycle	Duration per cycle
mheat	Number	Dollars						
Long	- 24,886	5, 907, 550	$\begin{array}{r}\text { Dollars } \\ 237 \\ \hline 170\end{array}$	${ }^{\text {Days }} 11.7$	Aumber 23,894 18	14, Dollars	Dollars 5	$\begin{array}{r} \text { Days } \\ 28.5 \end{array}$
Short	17, 782	3, 128, 229	176	8.6	10,479	3, 004, 957	287	10. 7
Lonr Cons								
Short	S 7 7	1, 2046,588	256	11.6 14.1	7,219 4,371	$2,838,495$ $1,429,126$	393 327	27. 16
OATS								
Long	1,906	291, 964	153	17.7	2, 074	965, 097	465	41.1
Short	825	89, 213	108	13. 4	439	70, 864	161	18.7
Long...are	1,718	662864	386	14.9				
Short	1,467	67, 951	146	11.0	1, 325	1, 132,837	409	19.1

The first conclusion drawn from these observations is that there was a clear tendency for speculators in the sample to "take their profits and let their losses run:" The result was that profitable cycles were bricfer than umprofitable cycles, and that average profits were smaller than average losses. The second conclusion is that the duration of the cycles of traders on the short side of the market tended to be briefer than the dunation of the cycles of traders who were long. The reasons for this are not apparent. It is conceivable that speculators generally feel less assurance about short positions than about long positions, and consequently tend to terminate them more quickly. If this is the case there is little evidence to indicate that the reaction of large-scale speculators diflers significantly from that of small speculators.

Table 4.-Sppeculative truders: Duration per cycle, by grain and type of cycle

\because Typo	Duration per cycle			
	Whers	Corn	Oats	Rye
Long cycles only:	Days	Days		Days
Proft eycles only	20.2	18.4	19.6	15. 9
Toss cycles only	45.2	35.6	46.4	34.0
Both profit and loss cyeles:				
Profit cycles-	18. 6	14.8	19.3	13.6
Loss cycles.	42.7	33.5	42.4	27.8
Short eycles only:				
Profit cycles only-	10.6	14.0	15. 7	8. 5
Loss cyeles only	11.9	14.6	20.8	18.4.
Both profit and loss cyeles: Profit cyeles.....-				
	11.7	14.0	16. 8	8. 8
Lass cycles-------	13.8	16.8	27.5	17.0
Both long and short cyeles: Long cyeles of triders:				
Long cyeles of traders: Profit eycles only				
Profit eycles only-.	14.9	10.5	11.7	73. 2
Short cyeles of truders:	23.6	29.8	23.1	36. 1
Profiteycties ouly.	9.1	14.8	11.8	13.0
Loss cycles only	9.0	9.5	14.0	20.3
Both profit and loss cyees:				
Long proft ayeles.	10.4	11. 3	16.0	15.5
Iong loss cycies..	24. 2	24.9	37.5	35. 1
Short profit cycles	8. 6	14.1	12. 8	11.3
Short loss cyeles	10.7	16.7	18.4	19.2

Figures $22,23,24$, and 25 (and table 45) show the average duration of cycles (other than in-and-out cyeles) traded in by the speculators in the sample, arranged in subgroups according to the nature of positions, whether long or short, and whether profitable or unprofitable. It can be seen immediately from these charts that in each grain and for traders in every size group the average duration of long cycles was generally greater than that of short eycles. There were a few exceptions-most notably in the prolitable com cycles of traders with arerage positions from 1.1 to $5.0,25.0$ to 49.9 , and 50.0 to 99.9 thousand

Figure 22.-Wheat futures: Average duration of cycles, by size of average position.

Fiodne 23.--Corn futures: Average duration of cycles, by size of average position.

Figuse 25.-Rye futures: Average duration of cyeles, ly size of average position.
bushels ${ }^{33}$-but the general picture was cortainly one of more abrupt temination of short than of long positions. This is interesting in view of the fact that in arain futures the technical difficulties of short selling are no greater than those of long buying. ${ }^{44}$ This is in contrast

[^15]with the problem of short selling of securities. Nevertheless, speculators of every size class seemed more tentative about their trading when they were short than when they were long.

Equally striking in these charts is the contrast for all seales of trading between the lengths of profitable and mprofitable cycles. Both large and small traders tended to take their profits but to let their losses rm.

Table 45.-Average duration per cycle, by grain, size of avcrage position, and type of cyole

Grain and size of position (1,000 bu.)	Long cytles		Short cyeles	
	Profit	Loss	Pront	Loss
whent	Days	Days	Days	Days
1.0	14.7	33. 9	9.1	11.3
1.1-4.9	11. 6	31.0	8.7	10.5
5.0	12.3	29. 7	8.6	10.3
$5.1-9.9$	i0. 5	26.	8. 0	10.8
10.0	16. 0	40.6	13. 8	14.8
10.1-24.9	12. 1	30. 5	9.1	11.6
25.0-49.9	12. 4	28.1	8. 6	9.5
50.0-99.8	12. 5	19.3	10.6	7.9
99.9 and over.	16.3	42.0	11.2	14.0
1.0. cons	11. 4	28.3	10.7	13.0
1. $\mathrm{i}-4.9$	12.4	27.6	17. 2	16.4
5.0	31.5	29.8	10.6	15.6
5.1-9.9	11.5	$2 \pm .7$	10.2	17.0
10.0	17.4	31.9	12. 1	12.3
10.1-24.9	14.0	28.4	13.0	19.2
25.0-49.9	12.9	28.2	16.9	15.3
50.0-99.8.	9.4	21. 7	10. 1	11.3
99.9 and over.	18.7	19.6	7.0	4.3
1.0 Onts			18.0	18.4
1.1-4.9	17.6	40.2	1.4 .7	18.6
5.0	14. 4	39.7	10.8	12.4
5.1-9.9	16.6	40.7	11.5	17.9
10.0	29.1	42.9	5.3	31. 3
10.1-24.9	21. 7	47.3	18.1	25. 9
25.0-49.9	19.2	48.8	: 14.8	${ }^{1} 18.0$
50.0 and over.	19.0	37.5		
nye				
1.0	14.7	35.0	22. 9	23. 4
1.1-4.9	16. ${ }^{\prime}$	34.9	10.0	22. 7
5.0	11.5	28.5	8. 2	8. 3
$5.1-9.9$	13.3	28.1	10.3	18.5
10.0	6.7	18.4	6.3	21. 1
10.1-24.9	17. 2	35.5 29.2	10.8	113.3
25.0-49.9	19.3	69. 2	${ }^{1} 4.4$	${ }^{1} 18.9$
50.0 and ove	19.2	64.7		

${ }^{1} 25.0$ thousand bushels and over.

Profitability and Duration of Cycles, by Size Groups

The tracling behavior of harge and small traders may be compared in other respects. Further questions to be considered are:

What variations are there in the addiction to the tong side ataong traders in the difierent size groups?
 What differences are there anong size classes in the proportion of irofitable cycles, and in the relation between profits and losses?

The number of long and short cycles in each grain is shown by the size of the average positions of the traders in table 46. The proportions of long and short cycles for each size group are also shown. Although there were more long trades than short trades for every size group, there were matked differences among the various size groups. In whent futures, for example, the largest proportion of long cycles (77.6 percent) was found among traders with average positions of exactly 10.0 thousund bushels. The next highest proportion (75.7 percent) was found in the largest size class-traders who had average positions of 90.9 thousand bushels and over. The smallest proportions of long cycles were found among traders with a verage positions of from 50.0 to 99.8 thousind bushels, 09.8 percent of whose cycles were long, and among those with average positions of from 1.1 to 4.9 thousand bushels, for whom the corresponding percentage was 61.4. Similar contrasts can be found between size classes in the other grains. There is no clear progression from large to small traders.

Nevertheless, there was evidence of a pattern. In wheat and corn futures, taders with average positions of $1.0,5.0$, and 10.0 thousand bushels had in each case at arger proportion of long cycles than traders in adjoining groups, or any of the other groups except the one of largest size. In wheat and corn fatures also there seems to be a decline in the propensity for long trading as the scale of trading increases from the 10.0 thousand bushel class, up to and including the class of 50.0 to 99.8 thousand bushels. These tendencies are not so evident in oats and rye, but here there is some support at least for the conclusion that traders with average positions of $1.0,5.0$, and 10.0 thousand bushels are less inclined to make short sales than other traders whose operations are of comparable size.
The data on the number of profitable and unprofitable cycles showed that the excess of profitable cycles was quite general. In wheat and corn futures the size classes with the largest proportions of long cycles had the smallest proportions of profitable cycles. These were the groups with average positions of $1.0,5.0$, and 10.0 and over 09.9 thousand bushels. When all the grains are considered, however, there was no clear correlation between the proportions of long cycles and of unprofitable cycles.
A final comparison relating the outcome of trading to average positions is given in table 47. Here the profits and losses, and the ratios of profits to losses, on long and short cycles are shown for each size class. For all four mrains the long cycles were predominantly unprofitable. This was most strikingly true of oat futures, where profits on long cycles were only 30 percent of the losses. For wheat futures the corresponding pereentire was 42 , and for rye futures, 59 . Relatively the hest record made on long cyeles was by the speculators in
corn futures. For these traders profits equalled 78 percent of the losses on long cycles. In all grains, traders with average positions of $1.0,5.0$, and 10.0 thousand bushels had lower profit-loss ratios than the other most nearly comparable groups.

In two grains, wheat ath oats, the profits of short sellers exceeded their lo ses. In wheat it was the large shorts-with average positions of 25 thousand bushels and orer-who were responsible for this showing. This is the only situation of all those examined in which the large traders showed a clear superiority over smaller traders in trading results. In oat futures; traders with average positions of 5.0 and 5.1 to 9.9 thousand bushels, as well as larger traders, had profits in excess of losses. Except in the case of rye futures, the tendency for traders with average positions of $1.0,5.0$, and 10.0 thousand bushels to do poorly is not so clear when short cycles alone are considered. When profits are compared with losses on all cycles, however, these size classes in every case have lower ratios of profits to losses than adjacent size classes.

This analysis of trading patterns and ontcome in relation to average position indicates that there is no marked contrast between small and large traders. There were three groups of traders, however, who seem to have trading characteristics which distinguish them from other traders. These were the groups with average positions of exactly $1.0,5.0$, and 10.0 thousand busheis. Traders in these groups typically made only a few trades, all of the same quantity, with the result that their average positions were exactly 1.0, ă.0, or 10.0 thousand bushels. Generally, they were even more likely than other traders to choose the long side of the market, and they were more conspicuously unsuccesstul in their trading. They probably included a larger proportion of mexperienced and uninformed traders than the other size groups, and their stay in the market was of briefer duration. There were diflerences between other size classes, but these differences were bot the same for trading in the different grains, and they do not present a simple pattern.

TWO-DAY WHEAT CYCLES AND PRICE MOVEMENTS

The period studied contained 2,705 business days. On the average there was trading each day in three futures in each of the four grains studied. A complete analysis of the relation of trading by speculators in each size class and in each future to every price movement would be a task of overwhelming magnitude. Some aspects of the 1 -day cycles, i. e., in-and-out trading, have already been discussed. To relate such in-and-out tading to price n;ovements would have required detailed information on the time during the trading sessions at which such trades were made and consequently was not feasible. With respect to cycles of more than 11 days duration, it was necessary to limit the analysis to certain broad tendencies revealed by selected trading activities. The following analysis therefore is confined to trading and price changes in the dominant wheat futures and to trading in cycles having two active days.

The 2 -day what cycles consisted of simple trades in which a position was accumulated on one day and liquidated on some other day.

Wable 46.-Number and percent of oycles, by arain, size of average position, and type of cycle

Grain and size of average position (1,000 bu.)	Total ${ }^{1}$	Long		Short		Profitable		Unprofitable	
Wheat	Number	Number	Percent	Number	Percent	Number	Percent	Number	Percent
$1.0 \ldots$				1,191			49.5		50.5
5.0	3, 267	2, 294	70.2	-14, 973	29.8	1, 640	50.2	17,627	44.8
5.1-9.9	18, 011	11, 444	63.5	6,567	36.5	16, 323	57.3	7, 688	42.7
10.0	535	- 415	77. 6	120	22. 4	${ }^{1} 235$	43. 9	300	56.1
10.1-24.9	9, 852	6, 439	65.4	3, 413	34.6	5,606	56.9	4, 246	43.1
25.0-49.9	2, 109	1,333	63.2	776	36. 8	1,173	55. 6	936	44. 4
50.0-99.8	813	486	59.8	327	40.2	- +136	53.6	377	46. 4
99.9 and o	206	156	75.7	50	24.3	102	49.5	104	50.5
All eycles-	77, 041	48,780	63.3	28, 261	36.7	42,668	55.4	34, 373	44.6
1.0	1,556	964	62.0	592	38.0	815	52.4	741	47.6
1.1-4.	12, 648	7, 008	55.4	5, 640	44. 6	7,326	57.9	5, 322	42.1
5.0	1, 898	1,276	67.2	622	32.8	1,024	54.0	874	46.0
5.120 .9	6, 901	4, 025	58.3	2, 876	41.7	4, 073	59. 0	2, 828	41.0
10.0	302	, 205	67.9	97	32.1	, 162	53. 6	140	46. 4
$10.1-24.9$ $25.0-49.9$	3, 039	1, 808	59.5	1,231	40. 5	1,787	58.8	1,252	41.2
$25.0-49.9$ $50.0-99.8$	595	352	59.2	243	40.8	342	57.5	253	42.5
$50.0-99.8$ 99.9 and over	185	104	56.2	81	43.8	101	54.6	84	45. 4
99.9 and over	162	102	63. 0	60	37.0	66	40.7	96	59.3
All cycles.	27, 286	15, 844	58.1	11, 442	41.9	15,696	57.5	11,590	42.5
10,	221	153	69.2	68	30.8	111	50.2	110	49.8
1.14	1, 432	1, 042	72.8	390	27.2	755	52.7	677	47.3
5.0	879	677	77. 0	202	23.0	474	53.9	405	46. 1
5.1-9.9	1,575	1, 198	76.1	377	23.9	851	54.0	724	46. 0
${ }^{10.0} 10.1-24.9$	179 707	154 539	86.0 76.2	25 168	14.0 23.8	72 357	40.2 50.5	107 350	59.8 49.5

$25.0-49.9$ $50.0-99.8$ 99.9 and ove	165 69 17	133 68 16	80.6 98.6 94.1	32 1 1	19.4 1.4 5. 9	68 34 9	41.2 49.3 52.9	97 35 8	58.8 50.7 47.1
All cycles	5, 244	3, 980	75.9	1,264	24.1	2,731	52.1	2, 513	47.9
		286	78.6	78	21.4	157	43.1	207	56. 9
1.0	1,364 1, 369	1, 2856	77.1	313	22.9	734	53. 6	635	46. 4
1.1-4.9	1,369 $\quad 576$	1, 495	85.9	81	14. 1	293	50. 9	283	49. 1
5.1-9.9	945	746	78. 9	199	21. 1	557	58. 9	388	41. 1
10.0	110	94	85.5	16	14.5	49 313	44. 5	61 250	55.5 44.4
10.1-24.9.	563	485	86.1	78	13. 9	313 47	50. 60	- 31	39. 7
25.0-49.9	78	68	87.2 76.8	10	12.8	44	49. 3 49.	35	50. 7
50.0-99.8	69 2	58 1	76.8 50.0	1	50. 0	1	50.0	1	50. 0
All cycles.	4,076	3, 284	80.6	792	19.4	2,185	53.6	1,891	46. 4

1 For cach size group the total is the sum of long plus short cycles; it is also the sum of profitaible and unprofitable cycles. For each size group the percentage of long cycles plus the percentage of short cycles necessarily equals 100 and is not shown. The percentage of profitable plus unprofitable cycles also necessarily equals 100.

Table 47.-Profits and Zosses and profit-loss ratios, by grain, size of average position, and type of cyele

Grain and size of average position ($1,000 \mathrm{bu}$.)	Long cycles			Short cycles			All cycles		
	Profits	Losses	Matio ${ }^{1}$	Profits	Losses	Ratio ${ }^{1}$	Profits	Losses	Ratio ${ }^{1}$
1.0. WhEAT	Dollars 37,105	Dollars		Dollars.	Dollars		Dollars.	Dollars	
1.1-4.0	996, 832	2, 379, 301	0.32 .42	18,772 619,862	23, 149	0. 81	55, 877	139,664	0. 40
5.0	150, 518	- 478,602	.31	69, 655	628,935 79	89 87 8	1, $\begin{array}{r}\text { 616, } \\ 21994 \\ 219\end{array}$	3, 008, 236	54
10.0	1,325, 025	2, 772, 960	. 48	686, 164	735, 164	93	2, 011,189	3, 508, 124	39 57
10.1024 .9	55, 759	209, 910	. 27	22, 932	23, 314	. 98	78, 691	233, 224	34
25,0-49.9	1, 796, 095	3, 802, 049	- 46	735, 417	760, 950	97	2, 488, 083	4, 562, 999	54
50.0-99.8.	500, 802	1, $1,116,562$. 40	530, 2744	435, 861	1. 22	1, 326, 369	2, 403, 674	55
99.9 and o	312, 748	1, 374, 018	. 23	123, 023	274,370 43,824	1. ${ }_{2}^{17}$	835, 711	1, 390, 932	59
Total	5, 907, 550	14, 217, 790	42	3, 128, 229	3, 004, 957	1.04	9, 035, 779	$17,222,747$	52
Cons									
1.0	10, 497	29, 245	. 36	8,599	7,896	1. 09	19,096	37, 141	
1.1.	267,078 78,059	471,457 177,922	. 57	216,051	231, 499	. 93	483, 129	702, 956	69
5.1-9.9	$\begin{array}{r}\text { 48, } \\ 4029 \\ \hline\end{array}$	171,922	. 64	-43, 347	56, 479	77	121, 406	234, 401	. 52
10.0	35, 688	56, 673	. 63	12, ${ }^{2} 26$	371, 809	75	681, 601	983, 119	. 69
10.1-24.9	507, 444	645, 194	. 79	276, 475	-346, 687	. 74	-48, 114	73, 515	. 65
25.0-49.9	178, 312	306, 426	. 58	119, 863	157, 796	. 76	298, 175	464, 216	64
$50.0-90.8$	99, 414	161, 866	61	58, 680	130, 735	45	158, 094	292, 601	54
99.9 and ov	628, 238	378, 402	1. 66	32, 422	109, 389	30	660, 660	487, 791	1. 35
Total	2, 207, 666	2,838, 4G ${ }^{\text {b }}$	78	1, 046, 588	1, 429, 126	73	3,254, 254	4, 267, 621	76

1.0	1, 161	2, 848	. 41	655	797	82	1,816	3, 645	50
1.1	26, 270	62, 546	. 42	11, 082	11, 368	97	37, 352	73,914	51
5.0	23, 670	77, 234	. 31	11, 474	5, 743	2. 00	35, 144	82,977	47
5.1-9.0	71, 323	180, 948	- 39	23, 924	20, 115	1. 19	95, 247	201, 0007	19
10.0	-9,205	57, 620	- 16	26, 648	- 21,947	1. 21	102, 539	279, 532	37
10.1-24.9	75, 891	257, 585		20,648					
$25.0-49.9$	26,663 45 247	116, 11,020	$\stackrel{.}{41}$	213,105	2 7, 607	1. 72	2 97, 549	${ }^{2} 333,923$	29
99.9 and	12, 534	98, 435	13						
'Tot	291, 064	965, 097	30	89, 213	70,864	1. 26	381, 177	1,035, 961	37
1.0		15, 155	24	1,379	2, 559	. 54	5,014	17, 714	28
1.1 -4.9	68, 273	133, 150	. 51	15, 062	17, 608	- 86	83, 335	150, 758	
6.0	39,569	99, 251	. 40	5, 025	- 10,215	- 76	- ${ }^{446,455}$	230, 057	. 51
5.1-9.9	106, 874	204, 417	. 52	19, 581	-25, 640	76 .17	$\begin{array}{r}126,455 \\ 14,306 \\ \hline\end{array}$	250, 448	. 40
10.0	13, 961	33, 366	$\cdot{ }^{42}$	21, 164	2, 19,600	1.08	275, 311	344, 704	. 80
10.1-24.9	254, 647	- 325,104	1. 16	21, 451	22, 095	. 02	65, 102	77, 726	84
25.0-49.9	111, 754	261, 604	1.46 .43	4,944	33, 038	. 15	116, 698	294, 642	40
Tota	662, 864	1,127, 678	. 59	67, 951	132,837	. 51	730, 815	1,260,515	58

[^16]Excluding in-and-out cycles, speculators in the sample had 77,041 cycles in wheat futures. Of this number 58,135 were 2 -day cycles. ${ }^{16}$ Thus, the characteristics of a very considerable semment of the trading in wheat futures by speculators in the sample will be revenled by an examination of the 2 -day cycles. Cycles in which trading occurred on more than 2 days, not covered in the following analysis, were generally more complex. The results set forth below, therefore, are not applicable to the more complex trading activities.
The first question to be considered is the relation betweon trading on a given day and the price change on the same day. Were persons in the sample primarly movement traders, buying on rising prices and selling on price declines, or were they price levels traders, i . e., "norm traders," who tended to buy when prices fell and sell" when prices rose? To answer this question, the number of long and of short cycles initiated was related to the change in price on the day the cycles were initiated. The measure for price change was the difference between the price of the dominant future at the close of the day on which the cycle was initiated and the price at the previons day's close. A brond picture of the results is given in table 48 .
Table 48.-Two (lay wheat cycles: Number and percent, by direction of initiating-tay price ohange and type of cycle

Price change	Long		Short		Total	
Increaso Deerens	$\begin{aligned} & \text { Number } \\ & 13,7+42 \\ & 22,004 \end{aligned}$	$\begin{array}{r} \text { Percent } \\ 38.4 \\ 61.6 \end{array}$	$\begin{aligned} & \text { Number } \\ & 12,262 \\ & 10,021 \end{aligned}$	$\begin{array}{r} \text { Percent } \\ 95.0 \\ 15.0 \end{array}$	$\begin{aligned} & \text { Number } \\ & 26,00 \mathrm{k} \\ & 32,025 \end{aligned}$	$\begin{array}{r} \text { Percent } \\ 44.8 \\ 55.2 \end{array}$
Total	35, $7 \cdot 6$	100.0	22, 283	100.0	58,029	100.0

Cycles Intiated on Days of Price Increase and Decrease

Of the 58,029 two-day eyeles initiated during the period of the survey, 35,746 were long cycles and 20,283 represented shoet sales. The long cycles were initiated primatily on days of price declines. Almost 62 perent of the long cyeles were initiated on days on which the price of the dominant future fell. A majority of the short sales, 5 p percent to be exact, were made on days on which prices increased. These results indicate that there is a relation bet ween the direction of initiatingday price changes and entry into the futures market of speculators in the sample. The tendency of longs to buy on price declines and for shorts to sell on price rises indicates that traders in the sample were predominantly price-level traders. Longs tended to buy when prices fell below levels which they considered proper, and shorts tended to sell when prices rose above levels which they thought appropriate.

[^17]The purchases on price declines and the short sales on rising prices could have been the result of orders entered at specified prices, i. e., "resting" orders, which were executed later when the prices indicated were reached. Such trades also might have been made by speculators who were watching the market elosely, and gave orders to buy or sell as a result of the price changes observed. In other cases the decision to buy or sell may have been reached as a result of deliberation over a period of time.
It is sometimes suggested that many speculators read financial pages of newspapers or listen to radio market reports in the evening and place orders the next day based on the market action reported. It is of interest, therefore, to see whether the trading studied here was noticeably allected by the price change on the day before the trading occurred. In table 49 the numbers of cycles initiated are shown classified by type of position and the direction of the price change on the previous day. No significant relation was found between price changes on the previons day and the initiation of 2 -day cycles. It is true that the percentage of long cycles initiated on price declines, 52.3 percent, was slightly greater than the proportion of short sales made on price declines, 51.4 percent. This difference was hardly large enough to be statistically significant, and in any event, not largo enough to suggest the existence of an important relationship.
'Wause 49.-T'wo-day wheat cycles: Number and percent, by direction of previous-day price change and type of aycle

Price chnage	Long		Short		Total	
	Number	Percent	Number		Number	Percent
Increase	17,054	P47.7	10,821	P48.6	27, 875	48.0
Decrease	18, 692	52.3	11,462	51.4	30, 154	52, 0
Total	35, 740	100.0	22, 283	100.0	58, 029	100.0

The relation which has been found between cycles initiated and the direction of price changes on the same day is worthy of further investigation. Although the periol covered by the survey was one which included a large variety of price movements in wheat futures, prices at the end of the period were much lower than at the beginning. To determine the significance of the predominantly downward price movement, the survey period was divided into two sections. The first extended from January 1, 1924, to Saturday, May 25, 1929, and included 1,625 trading days, and the second from May 27, 1929, to Decenber 31, 1932, it total of 1,080 trading days. The periods were divited at the end of a week in which prices approximated those at the beginning of the survey period. In the first two trading days of January 1924, the averate of the high and low prices of the July wheat future was approximately $\$ 1.06$ per bushel, and on the first two days of the trading week of May $20-2 \overline{5}, 1029$, the average for the July future was again approximately $\$ 1.06$ per bushel. The second period (May 1929-December 1932) was marked generally by declining prices.

At the end of the survey period, the price of the July whent future was about 45 cents per bushel.
In table 50 the number of two-day cycles started on days of declining and on days of rising prices are shown sepatately for the periods from January 1, 1925, to May 25, 1920, and from May 27, 1929, to December 31,1932 . Although there were substantial differences between the general movement of prices in the two periods, the proportions of long cycles initiated on days of cleclining prices and on days of xising prices were about the same in each period. The proportion of long cycles initiated on price declines was 61.5 percent in the first period and 61.7 percent in the second. A significantly smaller proportion of the short cycles, however, was initiated on price increases in the second period than in the first. The percentages were 52.0 and 57.0 , respectively.

Thise 50.-Two-day wheat cyoles: Number and percent for periods I and II ${ }^{1}$ by direction of initiating-day price change and type of oyole

${ }^{4}$ Period I (Jan. 1, 1924-Ntay 25, 1929). Period II (May 27. 1929-Dec. 31, 1932).

In view of the fact that price declines were relatively more frequent and cxtensive in the second period thati in the first, it is of interest to examine the number of cycles initiated per day in the different price-change sitnations. This is done in table 51 . An interesting point revealed by this table is that the longs were more active in the periorl of preilominantly declining prices. They started cycles at an average rate of 12.4 per day in the first period, and at a rate of 14.4 per day in the second period. The arerage number of short cycles initiated, however, declined from 8.3 to 8.1 per day-a change of slight significance. It may seem perverse that a period of declining prices should stimulate buying, and possibly dampen slightly the activity of short sellers. A possible explanation is that these traders were predominantly price-level traders, and declining prices meant that price levels were frequently being reached which seemed too lov to the longs, and that situations in which shorts considered prices too high were relatively infrequent.
Table 51 also presents ratios comparing the number of cycles initiated per day on price increases and on price decines. For ease in comparison, these ratios show for long and short cycles the ratio of the average number of cycles per day in the dominant situation to the average number in the less characteristic situation. These ratios
are called "dominance ratios." The stronger the tendency of traders to initiate long cycles on price declines, and to initiate short cycles on price increases, the larger the dominance ratio. In both periods the dominance ratio was higher for long cycles than for short cycles, However, the ratio for long cycles was lower in the second period than in the first, and this was also true for short cycles. For long cycles it declined from 1.55 to 1.42, and for short cycles from 1.37 to 1.25 . These differences are large enough to be significant, but the reasons for the shifts shown are not apparent.

Table 51.-Two-day wheat cycles: Number initiated per day for periods I and II, by direotion of initiating-day price change and type of cyole

Price change	Period I (Jan, 1, 1924, io May 20, 1929)			$\begin{aligned} & \text { Period II (May 27, 1929, to } \\ & \text { Dec. 31, 1932) } \end{aligned}$		
	Days	Cycles initiated per day		Days	Cycles initiated per day	
		Lor: ${ }^{\text {a }}$	Short		Long	Short
Increase	Number 709	Number 9.75 150	Number 9.6	Number 504 50	Number 11.8 10.7	Number 9.1
Decrease.	820	15.0	7.0	576	16. 7	7.3
All cycles. Domimance ratiot	1,625	12.4 ${ }^{\text {C. }} 55$	8.3 1.37	1, 080	14.4 1.42	8. 1. 1. 25

[^18]
Cycles Initated, by Size of Postion and Extent of Price Change

In the investigation of the relation of trading to price movements for traders with ditlerent seales of trading activity, it was necessary to grotip speculators in broader size classes than those used earlier in this study, The analysis in the previous section showed that there was a family lesemblance in trading pattern and outcome for speculators with average positions of $1.0,5.0$, and 10.0 thousand bushels. In table 52 these traders were therefore grouped together in a single class called, "size class I." The other very small traders, with average positions of 1.1 to 4.9 , and 5.1 to 9.9 thousand bushels, were included in a second group called "size class II." All the remaining speculators in the sample were included in a single category called "size class III." This class included all traders with average positions of 10.1 thousand bushels or more. It does not properly represent large-scale trading, but the differences between traders with average positions of 10.1 to 24.9 thousand bushels and those with smaller average positions seemed to he greater than the differences between traders with 10.1 to $2 \cdot+.9$ thousind bushels and those with larger average positions. The fact that the lower limit of the size elass representing the largest

[^19]traders in the sample is oniy 10.1 thousand bushels indicates that the statistical analysis in this study is an investigation primarily of the trading of small speculators.

In table 52, the number of cycles initiating under diferent pricechange conditions are shown for the three size classes just described, In their long cycles traders in size class I exhibit the tendency to buy on price declines more clearly than traders in the other two price classes, and there is no significant aiteration in this tendency between the two time periods. Traders in this size cluss also made a larger percentage of their short sales on rising prices than did the other groups, but for all three classes this iercentage was appreciably

Table 52.-Two-day wheat cycles: Number and percent for periods I and II, by major size class,' direction of initiating-day price change, and type of cycle

Size class and priceehange	Long				Short			
	Periocl I		Periodll		Period I		Period II	
	Cycles	Percent ratio	Cycles	Percent ratio	Cycles	Pctcont or ratio	Cycles	per- cent or ratio
Size class I: Incrase. Decrease	$\begin{gathered} \mathrm{Num}_{1} \\ \text { ber } \\ \mathrm{S}_{4}^{4} \end{gathered}$	$\begin{aligned} & 34.7 \\ & 65.3 \end{aligned}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 857 \\ 1,586 \\ \hline \end{gathered}$	$\begin{aligned} & 35.1 \\ & 64.9 \end{aligned}$		$\begin{aligned} & 60.1 \\ & 39^{\circ} \end{aligned}$	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ 434 \\ 361 \end{array}\right\|$	53.4 46. 6
	1,585							
Total.	2, 426	100.0	2,443	100.0	1,310	100.0	775	100.0
Dominance ratio ${ }^{2}$ -		1.83		1. 62		1. 56		1. 30
Size class II:								
Decrease	8,937	60.9	6, 750	60.7	4, 428	56.2 43.8	3, 321	51.7 48.3
To	L4, 673	100.0	13, 126	100.0	10, 10f	100.0	6, 875	100.0
Dominance ratio ${ }^{3}$		1. 51		1. 35		1. 33		1. 22
Size class IIT:								
Increase	1,206	39.0	720	36.5	1,235	58. 8	594	53. 2
Total	3, 001							
Dominance ratio ${ }^{3}$ -								
		1. 51		1. 52		1. 48		1. 30

[^20]smaller from May 27, 1929, to December 31, 1932, the period of predominantly falling prices. There was no signiticant difference in the propensity of size classes II and MI to buy long on declining prices in the earlier period, but this propensity strengthened appreciably in size class III during the second period. This size class had a slightly greater propensity to make short salies on rising prices than did size class II.

For all three size classes the contrast between the two periods is more striking for the shorts than for the longs. A majority of the short sales of traders in every group were made on days of rising prices, but this characteristic situation is much less strong in the second period than in the first. In the period of predominantly falling prices a considerably larger proportion of the short cycles was initituting on days of declining prices. Apparently price-movement trading is contrastel with price-level trading by shorts becones relatively more importand during prolonged bear markets.

The dominance ratios for the three size classes are also shown in table 52 . 'These ratios were generally bighest for the traders in size class I, and were low for size class II. All size classes shared the characteristic of higher ratios for long than for short cycles. The two size classes of smaill-scale traters (I and II) had higher ratios for the carlier than for the later period. The trading behavior of the larger traders, however, differed from that of the smaller traders primarily in the failure of the dominance ratio for long cycles to decline in the second period. The most striking feature shown by the dominance ratios is the strong tendency of the group of speculators with average positions of 1.0, 5.0 , and 10.0 thousand bushels (size class I) to exhibit the price-level reaction, buying long on price declines and selliz; short on rising prices.
A further study of trading behavior in initiating trades may be made by relating the number of cycles initiated to the extent, as well as the diection, of price changes. This is done for the three size classes in table 53. To the extent that traders at a given time have in mind price levels which scem appropriate to them, we should expect the number of long cyeles initiated on price declines, and the number of short cycles initiated on price rises, to increase with the size of the price movement.

In table 53 attention may first be turned to the long cycles. Here in the trading sample analyzed the characteristic behavior was to initiate long cycles on price declines. The figures for cycles initiated per day show that the greater tie price decline the larger the average number of long eycles initiated per diy. Only 2 exceptions to this rule are found in the 30 comparisons which may be made in table 53 , i. e., comparisons between the average number of long cycles per day initiated on a smaller price decline and the average number initiated in the next class interval representing larger price declines. These 2 exceptions are in the price decrease interval of 4 to $47 / 8$ cents for size class I and size class III in the first period.
In short selling also, chatacteristic trading behavior was stimulated by more pronounced price movements. This tendency, however, was not nearly so consistent as for long cycles. In only 21 of the 30 comparisons between adjacent price-change caterories in table 53 was the number of short cycles initiated per day more for a greater price rise than for a smaller one.

Table 53.-Two-day wheat cycles: Total number and number initiated per day for perioas I and II, by direation and amount of price change on initiating day, major size class, and type of cycle

Date and price change (in cents)	Number of days	Size class I				Size class II				Size class III				All classes	
		Number of cycles		Cycles perday		Number of cycles		$\begin{gathered} \text { Cycles per } \\ \text { day } \end{gathered}$		Number ofcycles cycles		$\underset{\text { day }}{\text { Cycles per }}$		Cycles per day	
		Long	Short												
Jan. 1, 1924-May 25, 1029:	402	583	231	1.45	0.57	3, 304	1,791	8. 22	4. 40	635	330	1. 58	0.82	11. 25	
1-1\%	232	434	136	1. 87	. 59	2,640	1, 380	11. 38	5. 95	563	265	2. 43	1. 14	15. 68	7. 85
2-27/3	109	269	89	2. 47	. 82	1, 468	- 663	13. 47	6. 08	341	137	3. 13	1.26	19. 07	8. 16
3-37/	35	127	24	3. 63	69	${ }^{1} 595$	253	17.00	7. 23	130	60	3. 71	1.71	24. 34	9. 63
4-4\%	27	79	29	2. 93	1.07	490	204	18. 15	7.56	94	42	3. 48	1. 56	24.56	10. 19
5 and over	21	93	14	4. 43	. 67	440	137	20.95	6. 52	122	31	5. 81	1. 48	31. 19	8. 67
Total	826	1,585	523	1. 92	63	8, 937	4,428	10. 82	5. 36	1,885	865	2.28	1. 05	15. 62	7.04
$\begin{gathered} \text { May } 27, \\ 1932: \end{gathered}$															
	289	613	158	2. 12	. 55	2, 413	1,287	8. 35	4. 45	410	196	1.42	. 68	11. 89	3. 68
${ }_{2-27 \%}^{1-17}$	194 63	$\begin{array}{r}575 \\ 247 \\ \hline\end{array}$	131 44	2. 96	. 78	2, 1,156	1,260 470	12.45	6.49 7	445 243	186 75	1.29 3 3 8	.96 1.19	17.70 26.13	8. 13
3-378	19	84	16	4.42	84	${ }^{1} 1$	192	22. 58	10. 11	94	45	4. 85 4	2. 37	31. 95	13. 32
4-47\%	7	39	7	5. 57	1. 00	175	70	25. 00	10. 00	38	16	5. 43	2. 29	36. 00	13. 29
5 and	4	28	5	7.00	1. 25	162	42	40.50	10. 50	31	5	7.75	1. 25	55. 25	13. 00
Total	576	1,586	361	2. 75	63	6, 750	3,321	11. 72	5. 77	1,261	523	2. 19	. 91	16. 66	7.31

PRICE INCREASES

Jan. 1, 1924-May 25, 1029:	373	339	240	0.91	0.64	2, 261	1. 791	6. 06	4.80	439	378	1. 18	1.01	8. 15	6. 45
1-17	230	266	260	1. 16	1.13	1,659	1, 862	7. 21	8. 10	374	412	1. 63	1. 79	10.00	11. 02
3-2\%	02	106	135	1. 15	1. 47	- 839	937	9. 12	10.18	167	207	1. 82	2. 25	12. 09	13. 90
3-37/	50	62	66	1. 24	1. 32	456	512	9.12	10. 27	108	96	2. 16	1. 92	12. 52	13. 48
4-478	34	35	56	1.03	1. 65	283	331	8. 32	9.74	64	75	1. 88	2. 21	11. 23	13. 60
5 and o	20	33	30	1. 65	1. 50	238	245	11.90	12. 25	54	67	2. 70	3. 35	16. 25	17.10
Tot	799	841	787	1. 05	. 98	5,736	5, 678	7. 18	7. 11	1,20G	1,235	1. 51	1. 55	9. 74	9.64
May 27, 1929-Dec. 31, 1932:															
0-7/8	275	428	178	1. 56	. 65	2, 063	1, 515	7. 50	5. 51	327	242	1. 19	88	10. 25	7.04
1-17	143	258	132	1.80	. 92	1,330	1, 115	9. 30	7. 80	206	166	1. 44	1. 16	12. 54	9. 88
2-2\%	60	108	76	1. 80	1. 27	641	615	10. 68	10. 25	132	123	2. 20	2. 05	14. 68	13. 57
3-37	12	32	16	2. 67	1. 33	141	129	11.75	10.75	27	23	2. 25	1. 92	16. 67	14. 00
4-4\%		14	8	2. 00	1.14	71	107	10. 14	15. 29	8	22	1. 14	3. 14	13. 28	19.57
5 and over	7	17	4	2.43	. 57	130	73	18. 57	10.43	26	18	3. 71	2. 57	24. 71	13. 57
Total	504	857	414	1. 70	. 82	4,376	3, 554	8.63	7. 05	726	504	1. 44	1. 18	11.82	9.05

A similar distinction between long and short cycles is found if the dominance ratios are computed, Computations for "All classes" ${ }^{2}$ show that in both periods as price declines became more prononnced tho dominance ratios for long cycles increased, except for the comparison between price changes of t to $47 / 8$ cents and changes of 5 cents and over. For short cycles, hovever, as price movements become more pronounced, the dominance ratios decreased just as frequently as they increased. Trading against the current movement of prices was the predominant trading pattern on both sides of the market, but was not nearly so definite for shorts as for longs.

The most reasonable interpretation of the tendency to trade against the market- to buy on price declines and sell on price rises-is that the syecalators exhibiting this behavior were price-level traders. 'Pading with the maket trend, on the other hand, is not susceptible of a similarly unambirtous interpretation. Movement traders will tend to buy on days of rising prices, and to sell on days of falling prices. But it camot be assumed that all, or even most, of those trading in this manner are movement traders. Real or imagimary changes in crop conditions, in demand, or in other factors affecting the market, may lead individual traders to revise their opimions as to the probable course of the market. A considerable number of the traders in the market may revise their opinions about prices at the same time. They may ignore the price movements of the day on which their trades are executed, or find in them nothing more than confrmation of the validity of opinions alretdy reached. Such trading cannot properly be called movement trading. While it is possible that persons trading in this manner may make new purchases in larger volume the greater the price increase, and more extensive short sales when price drops are more prononnced, this is certainly the type of behavior we should expect from movement traders.

These tendencies consistent with movement trading are found in the data shown in table $\overline{0} 3$, but they are not as pronounced as the tendency to expand the scale of trading against the market as price changes increase in magnitude. This is graphically shown in figure 20 which presents the number of - -day wheat cyeles initiated per day by all traders for the entire period stadied. The progressive mature of the average number of cycles initiated as the price change increases is more definite for long cycles with price decreases than with price increases. For short cycles this situation is reversed, the expansion of trating is more pronounced for price increases than for price deereases. But the fact that trading with the market movement also shows signs of expansion with more pronounced price changes suggests that movement trading may be of some importance.

Outcone of Trading: Price Level and Movement Trading Patterys

Another question of considerable interest concerns the outcome of trading with the market as compared with trading against the market. Because of necessary limitations on the tabulating process, it was not

[^21]

Fiouse 96 . Relation of number of 2 -day cycles initiated per day to drection and extent of price change.
possible to explore this question fully. Some suggestive information, however, was obtained. The total profits and the total losses for each category considered here were not ascertained, but the net profits or losses on all the 2 -day cycles in the given classification were computed. These net profit or loss figures can be made comparable between categories by expressing them in terms of net profit or loss per bushel traded. The proft and loss figures per bushel are shown in table of classified by the price-movement situation on the day on which the cyele was initiated. It is at once apparent from this table that the cyeles started under the circumstances which have been assumed to be typical of price-level trating were more mprofitable than the cycles which were stared with trades in the same direction as the current market movement. This is true of every compurison between these two situations shown in table 5 t.

Is it legitimate to conclude that movement trading is normally more profitable-or less unprofitable-than price-level trading? Such a conclusion cannot properly be drawn from the data presented here. In the first place it should be remembered that much of the trading which contorms to what has here been called the movement trading pattern was undoubtedly induced by considerations other than the price movement of the day on which the trades were initiated, and in many cases was the result of orders placed in adyance or in ignorance of such price movement. Furthermore, the price change was measured by the diftrences between closing prices. This would ordinarily mean for price increases that the price at the close was higher than the price at which many of the long purchases were made, without regatd in either case to whether the trades were made according to the pricemovement or price-level pattern. And for price decreases it would metn that the closing price would be below the price at which

Table 54.-Two-day wheat cycles: Profit or loss per bushel for price-level and price-movement trading patterns in periods I and II, by type of cycle and direction of initiating-day price canange,. and major size class
[In cents per bushel]

Trading pattern	Period I				Period II			
	Size class			Total	Size class			Total
	I	II	III		I	II	11 I	
Price level: Long cycle initiated on price decrease. . Short cycle initiated on price increase. -	-2.11-1.04	-0.77-.76	-0.62-.83	-0.81-.80	-4.84+.20	-2.79-.07	-3.22+.09	-3.21+.01
Price movement:		a$+\quad 07$$+\quad 43$	-13+.40	- 06	-4.43+.81	-1.73+.94	+1.19+1.54	+1.78+1.19
Long cycle initiated on price increase.-- Short ey cle initiated on price decrease.--	-. 63							

many of the short sales were executed during the day. In such situations the traders would have an acerued profit at the close of the day on which the position was first assumed. When it is recalled that there was a strong tendeney to take profits, it does not seem surprising that these cyeles were on the arcage less umprofitable than those initiated. against the current price morement.

To the extent that the better showing of the price-movement pattern was due to price movements on the dity trades were initiated it might be expected that the showing for such eycles would improve with increases in the amont of the initiating-day price change. Similaty it wodd be expected that for the price-level cycles the showing would be more unfaroble the greater the amount of the curent-day change in price. Figure $2 \overline{4}$ was designed to present eridence on this point. For the periol from January 1, 1924, to May 2.). 1029, it does appear that the cyeles initiated against the market on the days with the largest price changes were more unprofitable. For the later period this sems to be true of short cyedes but not of long cycles.
In the second part of figure 27 the net profit or loss per bushel is shown tor the eyeles inithted in accordance with the price-movement pattern. In this cate on the initiating day price movements subsefanent to the execution of trades would be more likely to be favorable the greater the amonnt of the price change. Consequently we should expect net losses per bushel to decline and net profits per bushel to incrense with increasing net changes in prices. There is no clear avidence that this is the case, alfhough the lone cycles show some tendency in the direction of the expected pattern (with the striking axeption of the haren net loss on price incerases of 4 to $4 \bar{\pi}$ cents per bushel in the period from May 26.1929 . in December 37, 1932).

Another contrast shown by the data presented in table 54 and figure 27 reflects the differences between the price situations in the envier and the later periods of the study. In the earlier period there was no signifeant difference in the results on the long and short cycles initialed according to the price-level trading pattern, and only a slight adrantage for shor eycles initiated in accordane with the movement trating pattern. In the period of predominantly falling prices, howaver. short redes gave macla more favorable outcomes than long cycles. Even under such auspicious circumstanes for the short seller, the short cyeles initiated on days of increasing prices only broke even om balance.

Ghemation of Two-D.y Whear Cycies

Speculators have dificulty deciding when to enter the market. The question of when a speculative eyele shond be liguidated is still more dificult. The trader not ony hatis on hazard a judgment as on the futare course of prices. but alon mist make hiv decision while faced with an acerued profit or hose at curent prices. Evidence has alreudy been submittet which show that the arerned profit or loss situation has an important effect on the flecision. Tf a profit is a wailable there is a tendence to liguidate. The spernhtor faced with a los is disposed to postpone liguidation, with the renult that the average duration of merofitable cerles is lenger than the areage dumation of proftable

PFICE LEVEL TRADING PATTERN

Figuae 27.-Net brofits or losses per bushet on 2-day wheat cycles for different trading patterns and nmount of intiating-day price change.
inturest to see what the price situations are under which liquidation lakes place.
In table 55 the ammer of the 2 -chay wheat cycles liquidated is related to the uirection of price movement on the day of liquidation. A majority of the long cycles were liquidated on days of rising prices, and a considerably larger majority of the short cycles were liquidated on days of falling prices. There was a tendency for traders to close out their trades on days on which the net price movement was favorable for the position held. For a majority of the cycles, market conditions were improving on the days the cycles were liquidated; profitable cyeles were showing larger accued profits, and accrued losses on unprofitable cycles were declining.

It is not easy to associate these results with a simple pattern of trading belavior. If their expectations remaned the sames, price-level traders would be expected to terminate their profitable cycles when prices renched the levels anticipated. This would accord with the tendencies shown in table in5. Such traders would presumably close out unprofitable positions when they became convinced that their parlier estimates were wrong. This conviction might be reached with litule or no reference to the emrent price change, but genemally a day of adverse price movement seems to be the likeliest time for such a change of minh. Movement traders, on the orher hand, might be expected to liquidate their profitable tates on atverse price movements. They would presumably close out their unprofitable cycles as som as they are willing to concede that they have misjudged the market. Here again such a decision is most likely to be made on a day when the price movement is in the opposite direction to that expected. These a priori assumptions as to thading behatyor do not fit well into the observed pattern with its cmphasis on liquidation on days of favotable price morements.

Tawn man--Tweday whent ryples liquiduted: Wumber and pereent, by ditertion of liquidating-day price change and type of cycle

Further analysis of the liquidation patiern is presented in table $\mathbf{5 0}$, in which a distinction is clrawn between cycles liquidated before and atter May 26,1929 . The tendency to liquidate on days of favorable price movements was still present for short cycles, but for long cycles was found only in the period prior to May 26,1929 . After that date there was no signfient relationship between the number of long cycles liquidated and the direction of price change. This indicates that there are matret conditions under which the generally prevailing pattern does not holu. The period from May 20, 1020, to Decem-

118 TECGNICAL BULLETIN 1001 , U. S. DEPT. of agriculture

ber 31, 1932 , was one of predominantly falling prices. Possibly the departure from the general patern shown for this period was due to the generally unfavorable conditions for longs. Favorable price movements did not disturb the pattern for ligudation of short positions, for the diflerences in the proportions of short cyeles liquidated in the two price change situations were not significant.
'Table 50.-7'wo-day wheut cycles liquiduted: Number and percent for periods I and II, by direction of liquidating-day price change and type of cycle

Lielidation of Profitable and Unprofitable Cycles

Further analysis of the sitmation with respect to long cycles calls for an examination of the liquidation pattern for profitable and umprofitable trades. Such an examination is made possible by table 5%. In this table the liquitation pattern is shown separately for proftable and unprofitable cycles, and it is discovered that there is a remarkable wiformity in the proportitons of long cycles liquidated under the diflerent price conditions, both for size chasses and for the two different time periods. It is true that in the second period, a slightly smaller proportion of the profitable long cyeles were liguidated on days of increasing pries, but this difference does not alter the general picture. The differace found in table is is clearly due primarily to the difference in the number of profitable long eycles in the two periods. Prior to May 26,1929 , there were 11,000 proftable long cycles and $\mathrm{S}, \mathrm{i} 2 \mathrm{~m}$ mprofitable long eycles. In this period, then, 50.6 percent of the long eycles were profitable. In the later period only 7,285 of the long cycles were profitable, while $8.0+0$ resulted in losses. The percentage of proftable cycles declined to 45.5 . Sinee profitable long cycles were liquidated on days of rising prices in at ratio of better than 2 to 1 , and loss cyeles were liquilated on days of falling prices in approximately the same ratio, this decline in the proportion of profitable cycles resulted in the disappearance of the balance in the direction of liquidation of long cycles on days of rising prices.
The favorable conditions for shorts daring the second period did not lead to a similarly striking change in the number of profitable as compared with mproftable cycles. The proportion of profitable short cycles increased from 61.5 percent to 68.0 perent, a shift which did not result in an important change in the general liquidation pattem for short cycles.

Tabse 57.-Two-day wheat cyclesliquidated: Number and percent of proftable and unprofitable cycles for pariods I and II, by type of cycle, direction of liquidating-day mrice change, and major size class

Type of eycle and price change	Period I Jan. 1, 1924, to May 25, 1929								Period II May 27, 1929, to Dec. 31; 1932							
	Size class I		Size class II		Size class III		Total		Size class I		Size class II		Size class 11 I		Total	
Profitable: Long: Increase	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 966 \\ 374 \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { cent } \\ & 71.0 \\ & 29.0 \end{aligned}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 6,096 \\ 2,706 \end{gathered}$	$\begin{gathered} \text { Per } \\ \text { cent } \\ 69.3 \\ 30.7 \end{gathered}$	$\begin{gathered} \mathrm{N}_{1} \mathrm{um-} \\ \mathrm{ber} \\ 1,414 \\ 493 \end{gathered}$	$\begin{gathered} \text { Per- } \\ \text { cent } \\ 74 \\ 25.1 \end{gathered}$	$\left\|\begin{array}{c} \text { Num- } \\ b e r \\ 8,46 \\ 3,573 \end{array}\right\|$	$\begin{gathered} \text { Per } \\ \text { cent } \\ 70.2 \\ 29.8 \end{gathered}$	$\begin{array}{r} \text { Num- } \\ \text { ber } \\ 584 \\ 298 \end{array}$	$\begin{gathered} \text { Per- } \\ \text { cenl } \\ 66.2 \\ 33.8 \end{gathered}$	$\begin{gathered} \mathrm{Num-} \\ \text { ber } \\ 3,647 \\ 1,775 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \\ & 67.3 \\ & 32.7 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \text { Num- } \\ \text { ber } \\ 703 \\ 278 \\ \hline \end{array}$	$\begin{gathered} P c r- \\ c e m t \\ 71.7 \\ 28.3 \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 4,934 \\ 2,351 \end{gathered}$	Percent67.7 32.3\qquad
Decrease-																
Tot	1,290	100.0	8, 802	100.0	1,907	100.0	11, 999	100.0	882	100.0	5,422	100.0	981	100.0	7, 285	100.0
ort: Increase	211	28.2		29.8	340	25.4	2, 405	29.0	162	31.5	1, 412	30. 2	208	27.2	1,782	29.9 70.1
Decrease.-	537	71. 8	4, 364	70.2	996	74.6	5, 897	71.0	353	68.5	3,268	69.8	556	72.8		
To	748	100.0	6, 218	100.0	1,336	100.0	8, 302	100.0	515	100.0	4,680	100. 0	764	100.0	5, 959	100.0
Unprofitable: Long:				1. 4	360	30.4	2,546	31.4	514	34. 8	828	32.7	319	32.8	2, 671	33.1
Decrease	779	67.6	3, 970	68.6	826	69.0	5, 575	68.6	963	65.2	3, 762	67.3	654	2		
Total	1,152	100.0	5,783	100. 0	1,186	100.0	8,121	100.0	1,477	100.0	5,590	100.0	973	100. 0	8, 040	100.
hort: Increasé	364	65.2	2,498	64.6	509	66. 5	3, 371	65. 0	166	63. 4	1,488	67. 9	226	64. 4	1, 880	67.1 32
Decrease.-	194	34.8	1, 366	35. 4	256	33. 5	1, 816	35.0	96	36.6	702	32.1	125	35.6	923	
Total	558	100.0	3,864	100.0	765	100.0	5,187	100.0	262	100.0	2, 190	100. 0	351	100.0	2, 803	100.0

Table 57 reveals that when the liquidation pattern is analyzed in terms of the outcome of trading, it is remarkably uniform for the major size classes, and for the two time periods. The percentage of profitable long cycles liquidated on days of price inereases ranged from 66.2 to 74.1; while the percentages of umprofitable cycles liquidated under the sume type of price change varied from 30.4 to 34.8 . From 68.5 to 74.0 percent of the profitable short cycles, and from 32.1 to 36.6 percent of the unproftable short cycles, were covered on days when prices declined.
It may be recalled that no significant relation was foumd between the number of cycics initiated and the direction of the price change on the previous day ${ }^{17}$ An extmination of the relation between the number of eycles liguidated and the direction of the price change on the previous day indicates that there was a significant relation of the same type as that found for changes in liquidating-day prices. Longs tended to liguidate their unprolitable cyeles on days following declines in the market, and their profitable cycles on days following price rises. For shorts the situation was reversed. Confirmation of these statements is found in table 55 , in which the number of 2 -day wheat cycles liquidated is related to the direction of price changes on the previons business day: The results are quite similar to those shown in table 57 for the relation of liquidation to the grice change for the liquidating day. Table is shows a uniformity of reaction tor traders of different size chasses, and for the time periods before and after May $26,1929$.

The tendency for liquidation to occur according to the pattern deseribed above, however, was somewhat less strong in the comparisons shown in table 58 than in those shown in the previous table. This was particulaty true of proftable cycles. If the two periods shown in table bit are combined it will be found that 69.3 percent of the protitable long eycles were liquidated on days of rising prices. Combining the two periods in table 5s shows that 62.t percent of the profitable long cycles were liquidated when the price had increased on the previous day. Ot the profitable short cycles in the two periods combined, T0.6 pereent were liquidated on days of falling prices, and 63.9 percent on days following price declines. The differences are not is great for the unprofitilble cyeles. The percentages were 67.8 and 66.7 , respectively, for the long cycles liquidated on days when prices declined, and on days after price declines. The corresponding figures for short cycles relate to covering when prices were rising, tud were 65.7 percent for liguidating-day price changes and 63.4 for previousday price changes.

One of the difficulties in interpreting the results described above is that they reflect not only the trading behavior of speculators in the sample, but also the effects of price movements on the profitability of positions held. If traders liquidated a constant mumber of cycles each day we should expect that more than half of the profitable long trades would be closed out on days of rising prices, because with rising prices a larger and larger proportion of the long positions held show profits. In a similar manner during price declines it becomes less

[^22]Tanle 58.-Two-day wheat cyeles liquidated: Number and percent of profitable and unprofitable cycles for periods I and II, by type of cycle, direction of previous-day price change, and major size class

and less likely that long cycles will be licquidated at a profit, and consequently wo shond expect that most umprofitable long cycles wonld be liquidated moder such conditions. A similar situation exists with respect to the short positions. A complete solution of this difliculty would require more elabomate analysis than is possible here.
Some further misight may be gained, however, from a more detailed examination of the conditions under which liquidation takes place. Since this analysis continues to distinguish between profitable and unprofitable cycles it should be keyt in mind that with rising prices an increasing proportion of the long eycles in the market show accrued profits, and more and more of the short cycles have accrued losses. With declining pricest the situations for the longs and the shorts are, of course, reversed. The data to be presented reflect these facts very clearly, but it is also certain that the liquidation of positions does not oceur in a chance mamer, and consequently imbedded in the data are the effects of the trading betavior of the individual speculators. There are in all probability common patterns of trading behavior, and it is possible that some races of such patterns can be discerned.

Cycles Liqumated in Relation to the Extent of Price Change

Futures markets typically are markets in which price changes are frequent, but usually relatively small. With respect to the sample period, this is indicated in table 50, in which the trading days are classified according to the extent of the change in price of the dominant wheat future. There were $6: 8$ days on which prices increased by less than 1 cent a bushel, and only 27 days on which there were price increases of 5 cents or more. Decreasing prices of less than 1
TabLe 59.-T'wo-day wheat cycles liquidated: Total number and number per day, by direction and amount of liquilating-day price change, and type of cycle

Price change in cents	Number of days	mong				Ehort			
		Profitable		Unprofitable		Prontable		Unprofitabla	
		$\mathbf{N u m - ~}^{\text {Num- }}$	$\begin{aligned} & \text { Per } \\ & \text { hay } \end{aligned}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { day } \end{aligned}$	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Por day	Num- ber	Per day
Inerease:									
	648	3, 851	5. 94	2, 567	3. 96	2, 182	3. 37	1, 529	2. 36
1-178	373	4, 093	10. 97	1, 577	4. 23	1,213	3. 25	1, 524	4. 09
2-27	152	2, 654	17. 46	667	4. 39	507	3. 34	1, 048	6. 89
3-37/8	62	1, 148	18. 52	206	-3, 32	170	2. 74	491	7. 92
4-47/8	41	1,906	22. 10	127	3. 10	69	1. 68	350	8. 54
5 and over--	27	708	26. 22	63	2. 33	46	1. 70	309	11. 44
Decreasc:									
0-7/3.	691	2, 912	4.21	[3,512	5. 08	3, 033	4. 39	1, 270	1:84
1-1\%	426	1, 099	4. 69	3, 341	7. 84	3, 351	7. 87	$\bigcirc 874$	2. 05
2-23\%	172	529	3. 08	2, 186	12.71	2, 075	12. 06	310	1. 80
3-37	54	253	4.69	773	14. 31	691	12. 80	156	2. 89
4-47\%	34		4. 68	543	15. 97	463	13. 62	74	2. 18
5 nath over--	25	72	2. 88	509	23. 96	461	18. 44	55	2. 20

cent occurred on 691 days in the sample period, but price declines of 5 cents or more in a single day occurred only 25 times.

Although net price changes in a single day are typically small, futures trading exists only because of price movements; is stimulated by large price changes; and is dampened by price stability. Consequently, it is to be expected that the number of cycles liquidated per day would increase with increases in the extent of the price movement. In table 59 the number of 2 -day wheat cycles liquidated is related to the direction and amount of price change in the dominant wheat future on the day the cycle was closed.
Examination of the table indicates that in certain situations the number of cycles liquidated per day increased consistently with each increase in the size of the price movement. This is clearest in the situations which may be termed "regular": Profitable long cycles associnted with rising prices, profitable short cyeles with falling prices, unprofitable long cycles with falling prices, and unprofitable short cycles with rising prices. In each of these situations a larger price change is associated with a larger number of cycles liqu dated per day. For long cycles the progression is from 5.94 proftable cycles per day for price increases of less than 1 cent to 26.22 cycles per day when price changes tumounted to a cents or more. For umprofitable long cycles and declining prices the runge was from 5.08 cycles to 23.96 cycles per day. Profitable sliort cycles liquidated progressed from 4.39 per day for the smallest price-drop category to 18.44 for the largest. Unprofitable short cycles were liquidated at a rate of 2.36 per day when price increases were less than I cent per day, but at a rate of 11.44 when price increases amounted to 5 cents or more on a single day. These figures indicate that there was a strong tendency to jiquidate profitable cycles while profits were increasing, and unprofitable cycles when losses were growing.

In contrast to the four situations described as "regular" above are the four situations which may be termed "pnomalous." These are: Profitable long cycles liquidated on days of falling prices, profitable short cycles closed out on days of rising prices, unprofitable long cycles liquidated on days of increasing prices, and unprofitable short trades: covered while prices were falling. These situations are called anomalous because the current price movement tends to reduce the number of positions in the market which fall in the specifiec categories. When prices are falling, profitable long cycles and unprofitable short cycles are becoming fewer and fewer. Similarly the unprofitable long cycles and profitable short cycles tend to disappear when prices are rising.

It is also to be expected that the greater the price movement thefewer the number of traders to be found in one of these anomalous positions, and consequently the fewer the number of cycles liguidated. Examination of table 50 will reveal that there is no uniform pattern of this type. There is some evidence of the expected progression in the case of profitable short cycles liquidated on days of rising prices. In this case the number of cycles liquidated declined from 3.37 per day for price increases of Jess than 1 cent to 1.68 per day on days of pricerises of 4 to $47 / 8$ cents, and to 1.70 when price increases were 5 cents or more. In two of the other three anomalous cases the lowest rate of liquidation occurred on days of price changes of 5 cents or more, but there was little other evidence of the expected pattern.

[^23]Some inferences with respect to trading patterns may be derived from table 59. If cycles were liquidated on a chance basis we should expect a positive progression in the number of cycles liquidated per day in the regular situations, and a negative progression in the anomalous situations. The positive progressions actually found were more pronotnced and the negative progressions were much less evident than normally would be expected. This suggests that there was a liguidation pattern in which traders tended to cut profits and losses when they were increasing, but refrained from closing out either profitable or unprofitable trades when price movements were tending to eliminate the accrued profit or loss.
In table 60 a comparison is made between cycles liquidated and price movements on the previous trading day. In this case the expected progressions are again found in the regular sitnations, although they are somewhat less pronounced and consistent than in the comparison with liquidating-day price changes. The results in the anomalous situations were even more ambiguous than those shown in table 50 . In only one of the four cases was the smallest number of cycles liquichated per day associated with the largest price change, and in no case was there more than al suggestion of a negative progression. These results tend to confirm the conclusions drawn from the data shown in table 59. If the effect of the previous day's price movement was to reduce either a profit or a loss there was much less disposition to liquidate than if the eifect was to increase the accrued profit or loss.
Table 60.-Two-day wheat cyeles liquidated: I'otal number and number per day, by direction and amount of previous-day price change, and type of cyole

Price change in cents	Num ber of days	Long				Short			
		Profitable		Unprofitable		Profitable		Unprofitable	
		Num-	Per	Num-	Per	Num-	Per	Num-	Per
Increas $0-1 \%$	048	- ber	${ }^{\text {day }}$ 6. 6	12,604	day		day	ber	${ }^{\text {day }}$
1-11/8	373	3, 774	10. 12	1,585	4, 25	1, 529	4.10	1, 579	4. 23
$2-27$	152	2, 029	13.35	660	4. 34	600	3. 95	894	5. 88
3-3\%	62	862	13. 00	237	3. S2	218	3. 52	436	7.03
4-47/8,--..--	41	5 S 6	14. 29	10 S	2. 63	92	2. 24	278	6. 78
5 and over--	27	484	17.93	93	3. 44	97	3. 59	229	S. 48
Decrease: 0-1/3	691	3, 659	5. 30	13,962	5. 73	3, 421	4.95		
1-17	426	2, 0s2	4. 89	3, 292	¢. 73	3, 050	7. 23	$\begin{array}{r}1,470 \\ \\ \hline 63\end{array}$	2. 14
2-2\%	172	910	5. 33	1,766	10. 27	1,434	S. 34	336	1. 95
3-374	54	289	5. 35	736	13. 63	607	11. 24	127	2. 35
4-4\%	34	165	4. 85	518	15. 24	329	9. 68	$7+$	2. 18
5 and over	$2 \overline{0}$	149	5. 96	510	20. 40	235	9. 40	48	1. 92

Relation of Trading to Short-Tera Price Swings
The analysis of relations between trading and price changes on a single day has dealt with only one aspect of the relation between price movements and trading. Actually trading decisions are related to price movements which are several days in length, and in some cases several weeks. It was not possible to explore all these relations in
detail, but some study has been made of the relation of trades liquidated to short-term swings in prices. A short-tern price swing is defined here ats the total change in price during a period in which the daily close-to-close price changes are all in the same clirection. If prices have been falling and then on 1 day rise by 1 cent per bushel, but fall again on the following day, the upward movement is described as an upward price swing of 1 cent, with a duration of 1 day. If the close-to-close price changes had been upward for 2 days, amounting to threc-quiters of a cent each day, the upward price swing would have anomited to 13 cents, and would have had a duration of 2 days. Because of the mature of price changes on futures markets price swings defined in this way rarely have fong duration. Duting the period covered by this study the arerage duration of the swings in prices of the dominant wheat futures was slightly less than 2 days, and the longest swing lasted for only 0 days. Vudoubtedy, many taders in the sample were influenced by priee trends which were longer in duration than the price swings as defined lere, but in which there were minor interruptions in the sermb of close-to-close price changes. The mateket activities of such traders may show little relation to the shortterm price movements considered here. It is nevertheless of interest to discover whe her trading behovior was in any way rehated to these shoreterm swings in prices.

Presumably the traders objective is to liquidate umprofitable trades-it they camot be avoided entirely-as early as possible in adrerse price movements, and to close out profitable trades as late as possible in favorable price movements. There are a mumber of formulats designed to achieve such an objective. One of them, for example, calls tor the liquidation of unprofitable trades immediately if the market movement is adverse, but the holding of profitable trades until a reversal of the price movement appars. Even with sueh a formula there would be no uniformity in trading behavior, since there is so mach rown for interpretation as to what constitutes a reversal of a price movement. But if most traters actually followed such a formala some discemable effect shouk appear in th: data studied here. Incidentally, it is unlikely that the fomula referred to above deseribes the principal trading pattem of the traders in the sample, since under this fommata all ligudation would have octured on adverse price movements, and on relatively small price movements. The amalysis of truding as related to daily price changes indicates that this was not the prevailing pattern.

In the examination of liquidation during price swings it is of interest to diverer whether positions are closed out early in swings, or whether there is an increasing tendency to leave the market as prices contimue to move in the same direction. Table 61 presents a comparison of the number of eycles liquidated on the first day of the shore price swings describer above, and those liquidated on subsequent clays. The tabilating process did not provide the information for this table directly; The ligures presented are the result of an estimating process in which for eath catyrory it is assumed that the number of eyce liquidated per day on the first day of a price swing of nore than 1 day is the number loguidated in 1-day priee swings in the same diretim. The distinction bet weon regular and anomatous sitations is retained, the chassithation being based on the direction of the price change on the day of liquidation.

Table 61.-Two-day wheat cycles liquidated: Estimated number in different price situations

Item	Price upswings		Price downswings		Total
	First day	Subsequent days	First day	Subsequent days	
Number of days.-.-----	720	574	729	673	2,705
	megriall situa-tions		anomalots sitcations		
Tong profitalite cycles: Number \qquad Percent \qquad Gycles per day	6, 210 !	7, 151	4. $585: 1,33 \mathrm{~S}$		19,284
	32.2 \|	37. 1			7.1
Short inprofitable eycles: Number Percent \qquad	8.5	12. 5	6. 3 2.0		
	2.30628.93.2	2. 945	2.016	$\begin{aligned} & 723 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 7.990 \\ 100.9 \\ 3.0 \end{array}$
		36.9			
Cycles per day-------		5.1	2.5: 1.1		
	ANOMALOTS SITCations		regthar sitctatoons		
Long umprofitable eycles: \quad n					10.161100.06.0
Perecut.	$\begin{array}{r} 3.737 \\ 23.1 \\ 5.1 \end{array}$	1,465 9.1	$\begin{array}{r} 3,909 \\ 24.2 \\ 5.4 \end{array}$	$\begin{array}{r} 7,047 \\ 43.6 \end{array}$	
Cycles per day		2.6			
Short prufitable eycles: Number	3. 286	901	3, 96.4	6, 110	14, 261
Percent.	23.0	6.3	27. S	42.9	100. 0
Cycles per day	4.5	1. 6	5.4	9.1	5. 3

Some of the relations shown in table 61 are those which would be expected to result from the price movement. In every case the number of cycles liquidated in accordance with what has been called the regular pattern was greater on later days in the price swing than on the first day. This is consistent with the fact that the longer a price swing lasts the larger the proportion of open positions which should be found in the regular category. For the same reason it should be expected that the number of anomalous positions would decline with continaed price swings, and consequently the number of cycles liguidated in these categories to be greater on the first day of priee swings than on subseçuent days. This was true for each comparison shown in table 6.1. For later days in price swings the manber of cycles liquidated in the regular situations was greater than those liquidated in the amomalous situations. All of these relations are to be expected as effects of continued price movements on the acerued profits and losses of the open positions in the market.
The pattern of liquidation on the first day of price movements is more diffecult to interpret. The distinction between regular and anomalous situations is continued here, but it is much less certain to be
associated with the assumed predominance of acerued porits and losses than in the case of hater days of a price swing. The lizst day of an upwing, for example, may cone atter a prolonged dectino in prices. If so, most of the long positions in the market wond have aterued losens, and most of the short positions in the market would still show prolits. For this reason more eycles were liquidated in anomalous situations on the first day of price movenents than on subsequent days. But there were some interesting contrasts between protitable and umprotitule cyeles on the first day of price movements that are not so easily explained. For both price unswing and downswings and for both long and short positions the number of proftable cyeles liquidated on the first day was greater than the mon ber of unproftable cycles liquidated. This means that for short cycles on price unswings ath for long eyeles on downswings the nomber of cydes liquidated in the momatous situation on the lirst day of a price swher was greater than in dhe regular situation. This suggests that there was a tementey for both longe and whots to take profits on price reversals, but to let losses run.

The same sithation is shown in another way in figure es in which the ntmber of eyeles liquidated per day is shown for cyeles of varying length. 1n the regulat situations the number of cyeles liguidated tended to increase with the length of the cycle, and in anomalous sitDation the manare tembed to teedine with the lenger of the cyele. ${ }^{18}$ But in 1 -tay priee swings the number of profitable cyeles liquidated was reater than the number of unprotitable eycles liquidated, whether the situation was regriber of anomaghous.

 lape of cycle, and lenth ath directen of price: swing.

[^24]Another comparison of number of cycles liquidated in price swings is given in table 62 ，in which the short－term price swings are classified according to the total change in price during the swing．The pattern that develops is quite similar to that revealed when liquidation was retated to the amount of liquidating－day changes in priees（table 09 ）． For all of the regular situntions shown in table 62 the number of cyeles liquidated incrensed with the amount of the price change．The pro－ gression is umistakable，although less uniform and consistent than was the case with the relation between number of cycles liguidated and liquidating－day price changes．There ras slight evidence in table 62 of negative progression in the anomalous situations of unproftable long cycles and profitable short cycles during upswings in prices，but in both cases the largest number of cjeles liquidated per day came with price swings of to Tre cents．It is possible that the tendency to liguidate prolitable cycles on price reversals tended to obscure the picture for such cycles．This would not explain the lack of the ex－ pected progressions for unprofitable cycles．

Tanes 62．－Two－duy wheat cycles liquidated：Total number and num－ be＇per day，by direction and total cmount of price swing，and type
of cycle

Price change pir nillty （in cents）	Total days in swings	I，oug				Short				
		Profi	tuble	Unprotitable		Prufitubie		Cuprofitale		
		Num－	$P_{P r}$	$\therefore n m-$	Per	Aum	Prr	an	Per	
Incre					tlay		day			
0	26.1	1． 035	3． 93	1． 209	4．is	1，118	－1． 23	39.1	1． 19	
$\begin{array}{ll}1 \\ 0 & 17 \\ \\ 0\end{array}$	310	2.4	7． 31	1． 469	4． 3 3	1． 229	3． lil	930	2． 74	
$\frac{2}{3} 97$	159）	$2,03.5$	10． 77	30	3． 11	629	3.33	77.	4． 10	
33^{3}	160	2， 012	12．95！	（120	3．$¢ \mathrm{~S}$	$\underline{+1} 1$	2． 63	73.5	4． 59	
415	17	1，148	12． 36	295	3． 83	183	$\frac{2}{2} 38$	－119	5.44	
${ }^{5} \mathrm{i} 9$	56	59.3	呺 9	177	3． 16	115	2.05	30 S	3． 50	
if $\mathrm{Br}^{\text {a }}$	11	01 il	15．75	196	3． 21	130	2.13	． 160	7． 5.4	
$7{ }^{-7}$	33	339	1 ii .33	2 m	6． 33	151	4.28	235	7.12	
らい。	21	32.1	1．5． $4 \times$	105	C． 14	19	2． 33	108	S． 00	
919 ${ }^{7}$	20	360	15． 00	4	2． 35	39	1． 9.3	163	S． 15	
10） 100^{7}	19	335	17． 59	21	1． 26	13	．（is	173	O． 11	
$11317{ }^{1}$	31	310	11．713	49	23	3.5	1． 1 i 7	127	6． 05	
11^{12}	312	1， 1.16	1．${ }^{\text {f．}}$	L， 503	3． 46	1， 080	2． 41	（6， 2	2． 13	
22^{27}	217	912	4． 20	1， 1521	7.4	1， 193	6．SS	1.59	2． 12	
33^{7}	15 S		3． S 1	1． 363	7． 69	1,514	S．${ }^{1}$	273	1． 33	
4 tix	13.1	176	3． 5.5	1，369	10． 29	1， 1,368	10． 31	292	1． 66	
$5 \mathrm{~s}^{2}$	95	309	3.15	1，Li3	11． 77	979	9． 99	15.5	1．， s	
66^{6}	（i）	49	1． is	690	11， 13	（i） 9	9．95	82	1． 32	
8	29	¢ 1	2． 79	3 SS	13．35	391	13．48	11 1	1． 11	
$8{ }^{3}$	49	103	2． 10	T1S	1－4． 1.5	316	10． 53	73 ．	1． 49	
$90^{9} 7^{2}$	1.5	12	8.27	195	13．00	16－1	10．93	$+$	2． 93	
$10 \cdot 10^{\text {？}}$	17	57	3． 35 ：	$1+60$	5． 41	$1 \mathrm{I}_{3}$	¢． 12	38	2． 2.4	
$1111 \%_{5}$	11	75	＋．ss	29.1	15．3s	25.	16i． 12	21	1． 31	
12 atatocra	37	136	3．65	008	1．5．sp	165	12． 37	100	2． 70	

SCMMARY

This stady is concerned primarily with the tradiner behavior of small speculators in grain futures, and the results of their trading. Statistics were malyzed on the futures operations of nearly e, (0) traders, extending over a 9 -year period $(192+32)$ and involving more than 400,000 individual futures thansactions. This wenth of diata, set up on punch eards and processed by machine-tabulation nethods, provided comprehensive evidence for the first time on some of the most important questions in the field of futures trading. The study confirms a number of commonly hedo opinions as to the results of saecaJative trading; it tends to disprove others which have also been widely accepted.

The first obvious conclusion from the analysis is that the great majority of small sperabitors lost money in the grain futures maket. There were 6,50s speculators in the sample with net losses, compared with 2,184 with net profits, or three times as many loss traders as profit traders. Net losses of speculators were approximately six times net probits, or nearly \$12.0no(010) of losses. compared with about $\$ 2,000,000$ of profits. Speculative traders in the sample lost money in each of the four grains traded-wheat, com, oats, and rye.

Primarily responsible for the high ratio of losses was the small speculator:s characteristic hesitation in closing out loss positions. An often-quoted maxim for speculative trading is "Cut your losses and let your prolits rum." Contrary to this advice, speculators in the sample showed a clear tendency to cut their profits and let their losses run. Futures positions or cycles resulting in losses were held open for consistently longer durations than profit cycles-average losses were larger than average profits-and long cycles were bept open for a greater number of days than short cycles. In wheat futures, for exanuple, the average duration of profit cycles was only 10.5 days, compared with 16.3 days for loss cycles. The average duration of the profit trader in wheat futures was 114.8 days, compared with 182.5 days for the loss trader.
Specalators who did make profits on individual trades were inclined to cut them short. The tendency on indiridual cycles was to settle for profits which were much smaller on the average than the averare loss on trades closed out unprofitably. With this situation, plus the shorter time cluration of profit cyeles. it is not surprising that there were actually more individual profit cycles that loss cycles.

In what futures, for example, there were 42,668 profit cycles compared with $34.3 \overline{3} 3$ loss cycles. But the average grain on the profitable cycles was only $\$ 212$, while the average loss on those unprofitable was $\$ 010$. Obviously, the outcome was a net loss, not only from the standpoint of the greatest number of traders. but also from the standmant of argeregate profits and losses of the group as a whole. What happencl. of course. was this: When profite on one trade were combinel with losses on other trades, the end result was a net loss for the great naijority of speculators.

The study eonfirms the commonly held impression that the amateur speculator is more likely to be long than short in the futures market. About half of the speculators in wheat and com had positions only on
one side of the market, and of this group, those on the long side only greatly exceeded the number with short positions only: nowever, the one-site-only traders did only a minor proportion of the total trading. The other half of the specthators who had both long and short cyeles accounted for most of the lading in wheat and com. From the standpoint of market activity, the preference for the long side was not as great as is sometimes supposed. In wheat futures approximately 63 percent of the cyeles were lont and 36 pereent short, and in com 5 s percent were long and 42 percent shout. The preference for the long side was more pronounced in oats and rye.

Analysis of the dhata shows that a great majority of speenlators in the stmple had relatively small protits and losses. The prolits of St percent of the profit traters were less that $\$$, whe each, and the profits of 39 percent less than $\$ 100$ ench. The losses of 68 percent of the loss traders were less than $\$ 1,00$ each, ant 16 perent hat losises of less than $\$ 100$ each. Obviously, a very large percentage of the traders in the sample operated on a small scale and many of them discontinued trading before realizing large profits or suffering harge losses.

Short positions of speulators tended to show profits more frequently than long positions. While a majority of the tracles of consistent bulls resulted in losses, consistent bears in all gains hat more profits eycles than loss cyeles. Among tatere who operated on both sides of the maket, there was also a greater freguency of prolits on short cyeles than on long eyeles. In spite of this. however the total losses of short sellers exceeded their total profit--just as in the case of consistent longs.

The representation of large-seale traders in the sample was not
 speculators in grain futures, as compared winh the profits and losses of sinall taders. Thore was no evidence, howerer, that the largest size ciasses incluted a higher proportion of sucecesful traders than the groups with sumaler averge positions. Genembly spaking, the large and smatl traders alike were unsuceest tul in their trating.

Among all the major oceupational erroups losses tron speculative trading in grain futures greatly exceeth prohts. Lmong managers of businge concerns. for example, there were swo proft traders, compared with 2.56 hos traters. The agegegate profits of this orenpational group amounted to $\$ 1,0$ a $(3,30$, againet loses of $\$ 6,210.20$. Persons with occupations "unknown" hat the greatest propertion of profit traders- W. 3 percent. Fumers had the lowest proportion of profit traders-21.2 peacent. "Retired" persons made up the only group having a better-than-average proportion of profit taders in cath of the four grains covered by the survey.
From the stampoint of aggegate prohts and losses for overupatiomal gremp, managers in the grain business were somewhat more successfal in speculative trading than other eroups. But even with this class aggregate profits in doliars were only $2 s$ perent of aggrecgite losses. Semiprofessional workers showed the lowest profit ratio in agerecgate dollar amonts-1t per cent. The profit matio for tarmers on this basis was 13 percent. In renemt, the chances for sutecess in grain futures tradiag did not difler greaty from one octapation to another. Special knowledge of the commodity traded seemed to have little eflect on the outcome of speculative trading during the period studied.

The study clearly shows the tendency of long speculators to buy on days of price declines, and for shorts to sell on price rises. Amalysis of 5 s. (60) two-diay cyeles showed that almost 62 percent of the two-day long eycles were initiated on days of decine in the price of the dominant futhre, and that 55 percent of the two-day short cycles began on days of advaneing prices. Furthermore, the greater the price decline on th given day the larger the number of long cy cles initiated. Trading against the current movement of prices was the dominant pattern on both sides of the matriet, but was not nearly so definite for shorts as for longs.
'Ile tendeney of longs to buy on priee declines and for shorts to sell on price rises indicates that traders in the sample were predominmetly pricelevel traders. Longs tended to buy when prices fell below hewels which they considered proper and shorts sold when prices adranced above lerels which they believed justificel. The inclination to trade accordine to predetermined priec opinions apparently was not disturbed by the long period of declining puices from 1920 to 1932. However perrerse it may seem. this period of deelining prices stimulated speculative buying by smath speculators, although the aetivity of shert sellers was dampened slighty.

It has not beem possible in this study to explore all the aspects of speculative trating on grain futures makets, nor to answer all the questions which have been raised. A final comment should be made involving a most important question. As already indicated, the loses of traders in the sample were much greater than their profits. If these results are representative of trading by small speculators gencrally, there must be other groups-harge speculators; scalpers, spreaders. or hedgers-which make very large profits.

There is no known empirical study. however. which reveals other groups of traders with aet profits subticient to balance such large losses as those sulfered by small speculators in the sample. Yet the nature of hatures trading is such that all losses are bakneed by profits. This rases the most important question left unanswered by this study. Wan the sample in this respect not trpical of small speculative traders? There is no appurent reason for pronounced bias in the direction of lusses. Ti the sample is representative, is there another group of taters who emsistent make prolits latge enongh to batance the losses of small sperulators! There is no convineing evidence that such lame prohts are made by any chass of traders." These are questions which can be answered only by futher studies of the results of futures trading.
APPENDIX
L1ST OF TABLES

1. Trader 7830: Principal characteristies of individual Irading eycles,
Page
listed be date of completion.
2. Trader 7530: Summary of in-and-out" "veles ε 12
3. Truder 7830: Characteristics of complex eyeles
4. Truder 7830: Characteristics of complex eyeles
5. Trader 7830: Number of wheat futures cyeles classified by typenad 14profitability.
14
6. Trader 7830: Summary of within-cyele in-and-oul trading in wheat futures.
16
16
7. Trader 7830: Daration of cyeles, by grain and type of eyele 18
8. Trader 7830: Trating exparienes, by yrain and trpe of cuede 20
9. Trader 7830: Over-atl summary of trading operations
21
21
10. Trader 7830: 'lrading patern of wheat futures eycles of -day dura- tion.
24
24
11. Trader 7830: Trading pattern of whent futheres eycies of 2 io 9 days durntion.
25
25
12. Trader $\overline{7} 32$: l'rincipal characteristies of individual trading cyeles, listed be diate of completion 31
13. Trader 7732: First major corn futures operation. 35
14. Trader 7732: Siecoml major corn futures operation 36
15. 'Iruder 7732: Third major corn futures operation 37
16. Trater 7732: Trading evperiener, by type of erede
39
39
17. Number of traders living in cities with over so customers and pereent truling in diiferent grains
43
43
18. Number of traders, number of trnasactions, total volume or trading, and average dotal posilion for traters in sample
4.4
4.4
19. Oeenpational distribution of hedeers in sannie $4 \overline{3}$
20. Oceupalional distribution of all traders in samplo
47
47
21. Comparison of elasses of truders in wheat and corn futures in analysig of Sipyt. 20, 1931, and in present study
50
50
22. Number and proportion of differ ollt trpes of hedgers in analysis of Sopt. 20, 1934, and in present stmy
51
51
23. Number thd proportion of farmers and other speculators in analysis
52
52
24. Number nud proportion of farmers and other traders in Federat Trade Commission study and present study...
53
53
25. Number and pereent, of Lraders in each grain and in all grains, by major oceupational groups
54
54
2in. Number of increnses and decremses in ine monthie averure cosing priee of the dominant grain futures, Janary 1924 to December 1932, ly 3-year periods.
56
56
26. Genoral resulis of tubures trading
57
57
27. Number and summary of operations of different lyper of hedgers in whent futures 59
28. Frequency distribution of ijeculative traters, by amount of profit or loss, and by grain 60
29. Frequency distribution of hedgers, by imount of profit or toss, and by 61
30. Number of speculative traders with profits and with losses, and percent with profist, by grain and major orempational group
65
65
31. Aggregate profits and loses of speculators and ratio of profils to losses, by gram and occupationsi group
70
70
32. Number of speculative traders and ngereqate profiss and losises, by grain and size of averace position
71
71
33. What fatures: Trading characteristice cor pront traters and loss traders, by size of average posilion So
34, Corn futures: Trading tharacteristies for profit traders and loss traters, by size of aserage position. 82
34. Ont futures: 'lrading characteristies for profit traders and loss taders,
by size of average position
by size of average position
35. Ryc futures: Trading elarateristics for profit Gaders and loss braders, by size of average position 84
36. Number and yercent of specabators, be grain and bype of cyele 85
37. Number of traders, number of eycles, and quantity traded, by graia and type of position 86
38. Namber had pereent of tons and short exeles, by qrain. 87
39. Number and ratio of proft and loss cyeles and amont and ratio of profits and losses, by graite and type of position. 89
40. Speculators haring both long and short eycles: Number and percent of profitatle and unprofitable eycles, and amount and ratio of profits and losses 90
41. Number of specuhative traders, number of eycles, and nverage pront or loss per exde, by grain and type of eycle 91
42. Spectative traders: Outcome of trading, by grain and type of position. 93 93
43. Specuhative traders: Duration per ayele, by gram and trpe of eycle- 94
44. Average daration per eycle, by grain, sive of average position, amd type of eyele 97
45. Number and percent of eycles, by grant, size of average position, and type of eycle. 100
46. Profits and loses and proftiloss ratios, by grain, size of average posi- tion, and tye of eycle. 102
47. Two-day wheat eyeles: Number and percent, by direction of initiat- ing-diny priee change and type of eycle 104
48. 'Two-day' wheat eycles: Number and pertent, by direction of previous- day price change and type of eycle 105
49. Two-day wheat eyeles: Number und percent for periods aud $\overline{1},-\overline{\text { b }}$ direction of initiating-day price change and type of eyele. 106
50. Two-day wheat eyelest Number initinted per day for periods and If, by direction of mitinting-day price change and type of cyele.-.
51. Twoday wheat eyeles: Number and percent for periods I and II, by major size class, direction of initiating-day price change, nad type of evele. 108
52. Two-day wheat eycles: Total number and number initiated per day for periods i and H^{1}, by direction and amount of price change on initinting day, major size chass, and type of cyele- 110
53. Two-day whert eycles: Profit or loss per bushel for price-terel and prier-movenent trading patterns in periods 1 and $I N$, by type of cycle and direction of intiating-day price change, and major size chas. 114
54. Tus-day whent eyeles liquitated: Number and percent, by direction of Hituidating-day price change and type of eyele 117
55. Two day whent eycles liquidated: Aumber and percent for periods a and il, by direction of liguidating-tay price change and type of eycle 118
56. Two-day wheat cycles liguinted: Number and percent of profiable and unprotitable eycles for poriods I and II, by type of eycle, direc- tion of hiphidating-day price change, nad major size class 119
57. Two-day whent eyeles lidudated: Number and percent of proftable and uaprofitable eycles for periods I and II, by type of eyele, direc- tion of previous-day price change and major size elass 121
58. Two-thy whent eyedes liquidated: Total number and number per day, by direction and amonat of liquiflating-day priee change, and fype of erele 122
59. Two-diay whet eycles hyduthed: Total number and number per day, by difection and amonat of previous-day priee chatge, and type of eyno 124
60. Two-day wheat eycles ligudated Jstimated number in diferent priee situations 120
61. Two-day whent cecles liguidated: Totai number and mamber jer day, by direction and total anount of price swing, and type of eycle. 128

LIST OF FIGURES

1. Positions of Trader 7732 in wheat and corn futures, January 1 to Octo- Pastber 17, 1924
2. Ceographical distribution of traders in sample 34
3. Monthly average closing prices of the dominant futures in wheat, corn, 42
oate, and rye, Chicago Board of Trade, 1924-32
4. Wheat futures: Distribution of traders with profits and with losses, 56
by major occupational groups
5. Corn futures: Distribution of traders with profits und with losses, by 62
major occupational proups
6. Out futures: Distribution of traders with profits and with losses, by 63.
major occupational groups
63
63
7. Rye futures: Distribution of traders with profits and with losses, by major occupational groups
64
64
8. All grain futures: Distribution of traders with protits and with losses, by major oceupational groups
64
64
9. Wheat futures: Profits and losses, by major occupational groups. 67
10. Corn futures: Profits and losses, by major occupational groups 67
11. Oat futares: Profits and losses, by major occupational groups 68
12. Diye futures: Profits anki losses, by major occupational groups 68
13. All graitt futures: Profits and losses, by major occupational groups 69.
1-1. Wheat futures: Distribution of traders with profits and with losses, by size of average position
74
74
14. Corn futures: Distribution of traders with profits and with losses, by size of average position 75.
15. Oat futures: Distribution of traders with profits and with losses, by size of average position
16.
17.
18. Rye futures: Distribution of traders with profits and with losses, by size of average position 76.
19. Wheat futurus: Profits and losses, by size of average position 77
20. Corn futures: Profits and losses, by size of average position
77
21. Oat futures: Profits and losses, by size of average position 78.
22. Rye futures: Profits and losses, by size of average position 78
23. Wheat futures: Average duration of cycles, by size of average position. 95.
24. Corn futures: Average duration of eycles, by size of average position- 95
25. Oat futures: Averago duration of cycles, by size of average position_ 96.
26. Rye futures: Ayerage duration of eycles, by size of average position_
27.
28.
29. Relation of number of 2-day cyeles initiated per day to direction and extent of price change 113.27. Net profits or losses per bushel on 2 -day wheat cycles for different trad-
ing patterns and amount of initiating-day price change
30. Number of cycles lipuidated per day during price movements, by type of cyele, and length and direction of price swing 116. 127,*

END

[^0]: ${ }^{3}$ Many persons collaborated in making this study possible, so many that it is not possible to list them all by namie. Special mention, however, should be made of W. Edwards Beach, Willism T. Euster, Louise Freeman, Itobert B. Jory, snna Sultran, Donald V. Weaver, and Holbrook Working.

[^1]: ${ }^{2}$ By these definitions a simple cycle could insolve in-and-out trading on the day the maximum position was reached if the trades increasing the position were made before those reducing it. Other pessibilities are that an la-and-out eycle is followed by a simple eycle starting on the same day, or a simple cycle is followed by an in-and-out cycle on the final day of liquidation of the simple eycle. In these cases a simple crele plas an in-and-out cycle looks like a single complex cyele. Since it is impossible from the records to distinguish these situations from true complex cycles, all cases of creles with duration of one day or more with in-and-out trading are classified as complex cycles.

[^2]: ${ }^{2}$ Judged by the Chi-square test of independence, results differing as much as these from a proportional distribution of protitable and unprofitable eycles between the difierent types of cycle would arise by chance less than once in a hundred times.

[^3]: 848297-49-3

[^4]: ${ }^{3}$ The one exception to this was wheat eycle No. 4 , in which a loss of $\$ 10,900$ was sustained.

[^5]: ${ }^{1}$ The numbers of traders in the "All grains" column generally are not the sums of the figures for the individual grains because many traders traded in more than 1 grain.

[^6]: 'C'nited States Depirtment of Agriculture, Gircular No. 397.

[^7]: ${ }^{5}$ Op. cit. p. 1 i .

[^8]: "This conchusion was reachel after applying the Chisquare test of independence. In this tost the number of traders it each classilication for each stady was eompared with the mumber wheh woud have bern in the elasslfication if the trader's hak been distributed th the proportions shown when the data for both stadies are mombint, By use of the Chi-sfunce ledmique it is possible to tiscover the probathity that discreparies as great or greater than those observed womb nrise by chance.
 'Jhas probablity is related to the momber of uservations involved; the larger the mamber of obscrations the more signifient at given diference in proportions. For example, the probabilities of dimerences in the moportlons of the 2
 percent tor the com pracessing hedgers, and the afference between 36.1 percent and 20.5 percent tor whent processateg hedgers, in both cases fath between 1 in 10 and 1 in 5. The mumber ot traters immbed was 61 and (94 for the 2 stutles of com hedgets, and 122 and 1,017 for whent hedgets. In contrast, the diference between 70.5 peredit and 13.8 bereent, the proportions of fromers trading in whent futures, as shown in table 22 , seems at first gitace to be smaif, bat such a difference would arise by chance tess than once in a thoustmel times. In this case it will be noted that the number of traters is mach larger, amounting to 6,506 for the present study, and 10,597 for the Baguell study.

[^9]: THe probability of discrepancies as great as those shown for coan futures arising by chance is abont 1 in 4 , bat fox wheat the corresponding probability is less than 1 in 1,000 .

[^10]: * Application of the Ohi-square test of independence to the data in table 23 indicates that the probability of obtainlug by chance differences as great as those shown is abont 1 in $\overline{3} 1 / 2$.
 ' Results for the entire trable difering as mach as those shown from the expected results would appenr by chance under the hypothesis used less than once in a thousand tmes.

[^11]: "At the the the busie dath were nbtaned over ? yeners hat elapsed shee
 the data was extremely theoremsmons. The seomd Worid war cansed a complete cessation of work th the project for several years. Exam time and offort were revimeti tor aick un work whith had been atandoted fer such a loug period.

[^12]: 1 The "All grains" figures are not equal to the tolals of the figures for the individual grams becanee some traders made profits in one or more grains but lost on their futures transactions in one ar more of the other grains.

[^13]:
 in ixass uf prolit traders as made or more than that shown for wheat and oats under this hepothesis ture 0.015 and 0.0st respertively. The problabltios for

 whathenged only in the ense of whent for tares.
 promintus betwan eash grain tad futures.

[^14]: ＂The figures in the＂All grains＂column were derived from the combined out－ come of tradiny in all grains．Since many traders had transactions in more than one grain，the＂Ali grains＂figures are not the sums or figures for the individual grains， For example，a trader with profits of $\$ 00$ in wheat and $\$ 60$ in corn would appear in the smallest size class under eachi grain，but for all grains his combined profits of $\$ 120$ would place him in the second size class．A trader with a profit of $\$ 150 \mathrm{in}$ whest and a loss of $\$ 500$ in corn would appear in one size class in wheat，another in corn，and in still a third size class in＂All grains．＂

[^15]: ${ }^{13}$ It may be recalled from table 39 that short selling was more nearly on a par with long buying in corn futures than the futures of any of the other grains studled.
 "WIth the possible exception of short positions held in the delivery month.

[^16]: ${ }^{2}$ Ratio of profits to losses.
 225.0 thousand bushels and over.

[^17]: ${ }^{15}$ This total for 2 -itay sycles difiers slightly from two tolals whiel will be pre-
 the sample neriod, bat wacluding cycles infthated prior to Jumary 1,3924 , and Hquidated fater that duta. The other is the total of 08,210 onday eycles which were ligathated duriner the sample merioht. Thes total exchuded cycles thtiated

[^18]: I Iatio of average number of long cyeles per day initiated on price decreases to number initiated on price increases, and the ratio of average number of short cycles per day initiated on price increases to number initiated on price decreases.

[^19]: $8+3297-49--8$

[^20]: ${ }^{1}$ Size class I, average positions (in thousand bushels) of $1.0,5.0$, and 10.0 . Size cinss II, average positions (in thousand bushels) of 1.1 to 4.9 and 5.1 to 9.9 . Size class III. average positions (in thousand bushels) of 10.1 or more.
 ${ }^{2}$ Dominance ratio 10 long cycles is the number of cycles initiated per day on price decreases divided by the number of cyeles initiated per day on price increases. For short cycles, the dominance ratio is the number of cycles initiated per day on price increases clivided by the number of cyeles initiated per day on price decreases. Number of cycles initiated per day is shotsu in table 53.

[^21]: ${ }^{4}$ The dominance ratios (computed from table 33) arranged from smatl to large price changes for lont cyeles vere, in the first period, $1.38,1.57,1.58,1.94$, 2.19 and 1.3^{2}, and th the second periof, 1.10, 1. $41,1.75,1.92,3.21$ and 2.24 , For short cscles they were, In the first period, 1.10, 1.43. 1.50, 1.-10, 1.33 and 1.97 , and in the second periot, $1.24,7.22,1.46,1.05,1.57$ ind 1.04 .

[^22]: ${ }^{13}$ It Is possible that signiticant reiations would have been found if profitable and unprofitabie eycles hat beet studed semataty, as was done for liquidition. Limitations on the tabulating process precluted such a swaty with respect to the inltation of eday cyeles.

[^23]: $5+3297-40-9$

[^24]:

