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Pesticide Productivity:
What are the Trends?

Mark L. Teague and B. Wade Brorsen*

Abstract

Obtaining estimates of pesticide productivity is an economic response to the growing
public concern about thesteady increase ofpesticide useinthe United States. Thistypeofrcsearch
indicates the cost of Iimiting pesticide use in terms of foregone output. Previous empirical studies
give a “snap-shot”, or “avemge”, look at pesticide productivity. This research effort employs a

random coefficient model to determine the trend of the marginal value product of pesticides in
agrictdturc in the United States. Results show a distinct downward trend in two states, Iowa and
Texas. California, however, shows noevidence ofa downward trend.
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Introduction

Pesticide use has been increasing steadily
in the United States. In 1935, just prior to the

discovery of DDT, about 50 million pounds of
pesticides wcreapplied (Prokopy). Approximately
55 thousand pesticide products were formulated
from about 600 active ingredients in 1986 (U.S.
General Accounting Office). In 1991, corn and
soybeans alone received 210.4 million pounds and

63.5 million pounds of pesticides, respectively
(United States Department of Agriculture 1992).

Public concern over pesticide use has
increased due to the possible external effects of

pesticides, including negative public health effects
through groundwater and surface water

contamination, negative environmental impacts,
reduced farm worker safety, and increased pest

resistance. A natural response of economists is to
conduct research on the productivity of pesticides.
This type of research provides useful information,
such as indicating the cost of limiting pesticide use
in terms of foregone output (Campbell).

Headley produced the first study of
pesticide productivity using cross-sectional (state)
data from a single year, 1963. He concluded that

the marginal value product (MVF’) of pesticides

exceeded its marginal factor cost (MFIC) $4.00 to
$1.00. Other studies give similar results, indicating
a general range of $3 to $6 for pesticide MVP.

This suggests that pesticides are under used
(Campbell, Carlson, Pimentel et al., Lichtenberg and
Zilberman, Carrasco-Tauber and Moftit).

These empirical studies determine the

pesticide MVP, but they do not show changes in
MVP over time. Studies using cross-sectional data
for a single year, or a few select years, give a
“snap-shot” look at the A4VP of pesticides. Studies

that use a substantial time-series only serve to give

an “average” estimate of the pesticide MVP over the
time-series. Roth, Martin, and Brandt show that

estimates of pesticide MVP from cross-sectional
studies using state data for a single year are
sensitive to the year chosen, suggesting the
possibility of a time-trend in pesticide productivity.
Increasing pest resistance would cause the MVP of
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pesticides to decrease over time (Osteen and .... ~~)’, and the covariance matrix of the
Suguiyama; Carlson). Other factors, such as disturbance vector v,, E(v,v,’) = Z. v, contains the
technological breakthroughs that increase efficacy, elements (V,l, .... p,~)’ from equation (2), and is a (K
may cause the productivity of pesticides to increase x 1) vector where T of these vectors exist. The
over time, The purpose of the research reported in covariance matrix Z is a K x K matrix with
this paper is to determine the trend of the marginal individual elements from equation (3) of cx~,,k,l = 1,
value product of pesticides in agriculture in the ,.., K (Judge et al. 1988).
United States.

The estimat~d generalized least squares
Theory (EGLS) estimator of ~ is given by

Random coefficient models allow each ; = (x’@ -’x) -’x’cl-’y (4)
observation of an independent variable to have a
unique slope coefficient. This can bc useful for

evaluating the time trend in a coefficient such as the with covariance matrix of
marginal value product of pesticides. One type of
random coefficient model takes the form:

()
(yJ” ; = (x/&x)-l (5)

Y, = P,,+5 P,k-~,i t = 1, ,.,, T (i)
k=2

where t is the individual observation; cross-section,

time-series, or a combination of both, and T is the

total number of observations (Hildreth and Houck,
Judge et al. 1988).

Each ~,~ is a random coefficient, so that

P(k= ii + w, k = 1, .,., K (2)

where K is the number of independent variables, ~~
is a nonstochastic mean response coefficient, and v,*
is a random disturbance with

E[p,,] = O

var(~,k) = a:
(3)

f

Let ~, be the (K x 1) vector of random

coefficients from equation (2), so that T of these
vectors exist. Rather than estimating ~,, it is more

accurate to say that ~( is predicted. “Predicted” is
preferred to “estimated” because the p,k’s are

random variables drawn from a probability
distribution. In order to predict ~,, two things must

be estimated: the mean response vector ~ = (~,,

where @ is a diagonal matrix with estimated
elements 6,2, 622, ....6T2. After obtaining the

estimated covariance matrix ~, with the method

shown below, the elements of & are given by 6,2 =.
x,’ Z x,, where x,’ = (1, X,2,X,3, .... x,~) is the tth row
vector of X. & is tanalogous to the variance-
covariance matrix for the EGLS model when IS,2is
assumed to be a function of a set of explanatory
variables (Judge et al. 1988).

[n order to obtain the estimate ~, let N =
K(K + 1)/2, and IXbe an (N x 1) vector containing
the distinct elements of X For example, if K = 3,

then c.t’ = (ct12, U,2, u,,, et22, a2,, et,’). Let X bc
defined as above, the matrix of independent

variables, and let Z be defined as a (T x N) matrix
with tth row vector of z,’ = (1, Z,2,Z,l, .... z,~). z,’ is
found by calculating x,’ @ x,’ and combining
identical elements. Using the example of K = 3, z,’

= ( 1, 2X,2,2X,3,X,22,2%%, ~/3 2). Based upon this,

E(82) = Fcx (6)

where 62 is a vector containing the squares of the
least squares residuals from the model y = X~ + e.
F = fiZ, where ~ contains the squares of the

elements of M = Ik - X(X’X)”i X’ (Hildreth and
Houck, Judge et al. 1985).

It is evident from equation (6) that the least
squares estimate of a, and therefore of Z, is & =
(F! F)-lF,& This estimate is unbiased, but
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unfortunately, it is not guaranteed to produce a i
that is positive semidefinite. This is an essential

property for any variance-covari ance matrix.
Froehlich and Dent and Hilcireth show through
Monte Carlo studies that it is better to impose these
properties when estimating X. This can be done

through nonlinear programming with nonlinear
inequality constraints (Judge et al. 1985). The

estimated & is the solution to the problem

‘in:mize (~’ - Fct)’(&2 - Fa)
(7)

subject to I A, [ 2 0, i = 1, .... K

where IA, I is the determinant of the ith principal
minor of ~. Using this method, d is essentially the

restricted least squares estimate of w

Finally, an appropriate predictor of the
disturbance vector v, = (~,1, .... p,~)’ must be found.
Equation (8) gives such a predictor (Griffith).

Combining equations (2), (4), and (8), the prediction
of (3,becomes

(9)

Before predicting ~, in a random coefficient
modelling framework, a good question to ask is
whether or not the coefficients arc random. Since

this type of model is based upon heteroskedastic
error terms, a Breusch-Pagan type test ISappropriate
to use in testing for randomness in the coefficients
(Judge et al. 1988, Judge et al. 1985). The
implementation of this test is described below.

Data Description and Procedure

All data on agricultural output and inputs

are from the United States Department of
Agriculture, Economic Research Serwcc for the

years 1949-1991. Specifically, the dard correspond
to Table 4--Farm Income Indicators in recent
versions of Economic Indicators of the Farm Sector,
State Financial Summary, USDA-ERS. All
variables are reported by state. In order to keep the

size of the data set manageable for matrix
manipulations, the top ten ranking states in cash
receipts were used to estimate the model. These
states are California, Florida, Illinois, Indiana, Iowa,
Kansas, Minnesota, Nebraska, Texas, and

Washington. Forty-three time periods and ten states
yield 430 observations. After model estimation, the

trend of pesticide MVP can be compared across

states for the time period 1949-1991.

Aggregate output, the dependent variable,

is the market value of all crops sold plus
government payments and the value of home
consumption, divided by the Index of Prices
Received by Farmers, base year equal to 1991

(Agricultural Prices, USDA-NASS). This leaves
aggregate output as a value in constant 1991 dollars.

The inputs are seed, fertilizer and lime, pesticides,
fuel and oil, electricity, repair and maintenance,

miscellaneous (includes machine hire and custom
work, marketing, storage, transportation, and other
miscellaneous expenses), non-real estate interest,
and hired labor (includes contract labor, wages,
Social Security payments, and labor perquisites).
The inputs are not adjusted for the amount spent on
livestock enterprises, which may result in a bias in

the parameters. All of the independent variables are
deflated to the base year of 1991 by the Index of
Prices Paid by Farmers (Agricultural Prices, USDA-
NASS), leaving inputs as a value measured in

constant 199 I dollars.

The nonlinear constraints of equation (7)
make it necessary to have a small number of
coefficients in the model. This requires a small K,

the number of independent variables, and a
relatively simple functional form to represent

production technology. In order to reduce K to a

reasonable number, the independent variables are
grouped into three categories: pesticides, other
material inputs (seed, fertilizer and lime, and hired

labor), and machinery costs (miscellaneous,

electricity, fuel and oil, repair and maintenance, and
non-real estate interest). These three independent

variables, along with a constant term, make K = 4.

Assuming that aggregate technology in
agriculture takes a Cobb-Douglas form, and

transforming all variables to natural logs, the
production function becomes linear and compliant
with the conditions mentioned in the paragraph



J, Agr. and Applied Econ., July, 1995 279

above. A major limitation of the Cobb-Douglas
function is constant elasticities of production for
each observation, and therefore constant matginal
value products for a given level of production and
output price. This assumption is relaxed in the
random coefficients framework by regarding the

coefficients as a random_drawing from a probability
distribution with mean ~ and covariancc matrix Z
(Griffiths et al.).

Although the input aggregation discussed
above and the specification of Cobb-Douglas
technology enable model estlmatlon, these
assumptions impose certain relationships on the
data, For example, an input within an aggregate
variable is assumed to be a perfect substitute for
any other input within the same aggregate variable.

Also, aggregate variables are assumed to be
technically complementary in the Cobb-Douglas
specification. This implies that inputs within an

aggregate variable are technically complementary
with inputs in another aggregate variable.

The elasticity of production for input i at
observation t,E,,,,,is ~,,. This is the percentage
change in the value of output associated with a one

percent change in the amount spent on input i.

Since outputs and inputs are measured in dollar

units, the marginal value product of input i at
observation t is @Jdx,l = f3,,(yjx,,), The A4VP has
units of dollars of output produced per dollar spent
on input i, measured in constant 1991 dollars.

The null and alternative hypotheses for the
Breusch-Pagan type test are HO:o,* = cr2and H,: o,*

= z,’y, respectively. z,’ is defined as above and y is

an N x 1 vector of unknown coefficients. This test

is implemented by regressing 42, the vector
containing the squares of the residuals from a least

squares regression in equation ( 1), on Z, the (T x N)
matrix with z,’ as the tth row, and testing for the
joint significance of all slope coefficients. This is
done using a Wald %Zstatistic, which has degrees of
freedom equal to the number of restrictions. All
matrix manipulations and hypothesis tests are done
using the SHAZAM econometrics package (White),

and the nonlinear optimization from equation (7) IS
accomplished using GAMS (Brooke et al.).

Resuits

Table 1 reperk the EGLS estimates of ~,

the mean response vector, from equation (4). All
coefficients have the expected sign, and all are
highly sigriificant. The Wald X2test for randomness
in the coefficients has nine degrees of freedom and

a test statistic value of 64.024. The critical value
for a five percent confidence level is 16.919.
Therefore, the nuli hypothesis of non-random

coefficients is strongly rejected at the five percent
level.

Table 2 reports the production elasticities
and matglnai value products of pesticides. The
pl oduction elasticities are based on equation (9), and
the marglna] value products follow directly from the
method outlined in the data description and

procedure section. Pesticide MVP reflects dollars of
output produced per dollar spent on pesticides, in
constant 1991 dollars.

The results are reported for three states:
California, Iowa, and Texas. These states were
selected because they have consistently been the top
three ranking states in cash receipts from
agricultural sales (U. S.D.A. Economic Indicators of

the Farm Sector, State Financial Summary). Only
the odd years are reported for the time period 1949-
1991. This limits the results to a reasonable
amount, and is sufficient to accomplish the original
intent: determine the tlmc trend of pesticide MVP.

The states of Iowa and Texas reflect a
definite downward trend in pesticide MVP. The
pesticide MVP in Iowa drops from $32.79 in 1949

to $3.19 in 1991, with a low of $1.85 in 1979. The
pesticide MVP for Tcxds dcclincs from $15.87 in
1949 to $3.32 in 1991, with a low of $2.86 in 1971.

The pesticide MVP for California, however, shows

no discernabie trend. Except for the years 1949 and

1951, the MVP holds steady between the
approximate range of $3 to $9 over the entire
period.

Conclusions

Pcsticidc use has incrcascd steadily in the
United States, along with concerns about the
negative impacts of pesticides. This situation calls

for economic analysls of the value of pesticides in
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Table 1. Estimates and T-Ratios of Mean Response Coefficients from a
Hildreth-Houck Random Coefficient Model for United States Agriculture 1949-
1991

Variable Coefficient t Ratio

Estimate a

Constant 2.0970 17.851

Other Material Inputs 0.3305 18.363

Pesticides 0.2348 20.865

Machinery Costs 0.3376 16.209

‘ All coefficient estimates are highly significant at the five percent level.

Table 2. Estimated Random Production Elasticities (GP)and Marginal
Value Products (MFT) of Pesticides for California, Iowa, and Texas,
1949-1951, Odd Years Only

California Iowa Texas

Year % MVP “
EP

MVP “
&P

MVP “
—

1949 0.0356

1951 0.0597

1953 0.2727

1955 0.3098

1957 0.2719

1959 0.2365

1961 0.2151

1963 0.2702

1965 0.2686

1967 0.2220

1969 0.2053

1971 0.2223

1973 0.2346

1975 0.2632

1977 0.3491

1979 0.2585

1981 0.2847

1983 0.2870

1985 0.3240

1987 0.3788

1989 0.3491

1991 0.3300

0.85

1.43

9.36

9.01

8.33

6.02

5.69

8.19

8.29

4.41

3.32

3.48

3.89

5.22

8.92

4.66

5.25

5.82

6.72

8.70

7.03

5.96

0.2340

0.4039

0.2413

0.2631

0.3095

0.3523

0.2757

0.249 I

0.2407

0.1825

0.1974

0.1922

0.2582

0.1462

0.1785

0.1665

0.2126

0.2450

0.2744

0.3232

0.2386

32.79

26.00

30.62

22.19

19.80

13.98

11.72

10.71

7.01

2.87

3.10

2.86

4.82

2.22

2.75

1.85

2.82

3.93

4.69

6.29

2.96

0.1756

0.2541

0.2018

0.1842

0.1903

0,1711

0.2176

0.2339

0.2330

0.2163

0.2040

0.1840

0.2359

0.2080

0.2303

0.2126

0.2253

0.2304

0.2354

0.2369

0.2365

15.87

13.62

17.16

15.62

18.85

13.76

11.19

8.74

6.65

4.35

3.82

2.86

4.77

3.84

5.15

3.49

4.01

5.33

4.83

4.36

4.02

0.2570 3.19 0.2240 3,32

a Marginal value product of pesticides in dollars per dollar spent on
pesticides, constant 1991 dollars.
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use. This paper provides such an analysis, and
extends beyond other research by determining the
trend of the marginal value product of pesticides

over time. A random coefficient model is outlined
and used with data from ten states and 43 years
( 1949-1991 ) to accomplish this.

A distinct downward trend in pesticide
MVP is shown in two states, Iowa and Texas.
California, however, shows no evidence of a

downward trend. Pesticide A4VP in this state
fluctuates in a steady range of $3 to $9 over the

entire time period, These results give economic
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