The Sources of Measured Agricultural Productivity Growth

Robert G. Chambers

Selected Paper prepared for presentation at the International Agricultural Trade Research Consortium’s (IATRC’s) 2013 Symposium: Productivity and Its Impacts on Global Trade, June 2-4, 2013, Seville, Spain

Copyright 2013 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Source: Economic Research Service, United States Department of Agriculture
Fact 2: US Agricultural TFP
US aggregate agricultural input has been remarkably stable for almost a century.
Thinking about Facts 1 and Fact 2

- US aggregate agricultural input has been remarkably stable for almost a century
- Aggregate output per unit of input has also grown dramatically over that period, an empirical regularity noted by Barton and Cooper as early as 1948
US aggregate agricultural input has been remarkably stable for almost a century.

Aggregate output per unit of input has also grown dramatically over that period, an empirical regularity noted by Barton and Cooper as early as 1948.

Schultz-Griliches ideal input-output "...one where output over input, excluding of course, changes in their quality, stayed at or close to one" (Schultz, 1956)
US aggregate agricultural input has been remarkably stable for almost a century.

Aggregate output per unit of input has also grown dramatically over that period, an empirical regularity noted by Barton and Cooper as early as 1948.

Schultz-Griliches ideal input-output "...one where output over input, excluding of course, changes in their quality, stayed at or close to one" (Schultz, 1956).

Griliches (1963): corrections for factor quality and increasing returns appeared to eliminate residual.
US aggregate agricultural input has been remarkably stable for almost a century.

Aggregate output per unit of input has also grown dramatically over that period, an empirical regularity noted by Barton and Cooper as early as 1948.

Schultz-Griliches ideal input-output "...one where output over input, excluding of course, changes in their quality, stayed at or close to one" (Schultz, 1956).

Griliches (1963): corrections for factor quality and increasing returns appeared to eliminate residual.

Residual remains.
Fact 3: US Agriculture TFP Change (1949-2008)

Source: Computed from ERS/USDA official statistics
Thinking about Fact 3

- It’s the weather?
Thinking about Fact 3

- It’s the weather?
- Is productivity a weather index? Or is productivity a measure of input effectiveness or state of technology?
Thinking about Fact 3

- It’s the weather?

- Is productivity a weather index? Or is productivity a measure of input effectiveness or state of technology?

- We actually want something like the following for a technical-change index

\[
(\frac{f(x_{t+1}, W_{t+1}, t + 1)}{f(x_{t+1}, W_{t+1}, t)} \cdot \frac{f(x_t, W_t, t + 1)}{f(x_t, W_t, t)})^{\frac{1}{2}}
\]
Thinking about Fact 3

- It’s the weather?
- Is productivity a weather index? Or is productivity a measure of input effectiveness or state of technology?
- We actually want something like the following for a technical-change index:

\[
\left(\frac{f(x_{t+1}, W_{t+1}, t+1)}{f(x_{t+1}, W_{t+1}, t)} \right) \frac{f(x_t, W_t, t+1)}{f(x_t, W_t, t)} \right)^{\frac{1}{2}}
\]

- Instead we get:
What Are We Measuring?

\[f(X, W^G, t^1) \]

\[f(X, W^B, t^1) \]

\[f(X, W^B, t^0) \]
Simple Goal

- Incorporate stochastic nature of agriculture into productivity measurement, while allowing for inefficiency.
Random variables (acts) \(\Omega \rightarrow \mathbb{R} \), so they can be viewed as elements of \(\mathbb{R}^\Omega \)
Random variables (acts) $\Omega \rightarrow \mathbb{R}$, so they can be viewed as elements of \mathbb{R}^Ω.

$T(t)$ is the collection of random variables and the inputs that can produce them:

$$T(t) = \{(\tilde{z}, x) : x \text{ can produce } \tilde{z} \text{ at time } t\}.$$
A Simple Model

- Random variables (acts) $\Omega \rightarrow \mathbb{R}$, so they can be viewed as elements of \mathbb{R}^Ω

- $T(t)$ is the collection of random variables and the inputs that can produce them

 $$T(t) = \{(\tilde{z}, x) : x \text{ can produce } \tilde{z} \text{ at time } t\}.$$

- Approximate it with

 $$T^\Omega(t) = \{(\tilde{z}, x) : z(s) \leq g(x, s, t), s \in \Omega\}$$

 $$g : \Omega \rightarrow \mathbb{R}_+, \tilde{g} = (g(x, s_1, t), g(x, s_2, t), \ldots) \in \mathbb{R}^\Omega_+ \text{ is a random variable.}$$
Random variables (acts) $\Omega \rightarrow \mathbb{R}$, so they can be viewed as elements of \mathbb{R}^Ω.

$T(t)$ is the collection of random variables and the inputs that can produce them

$$T(t) = \{(\tilde{z}, x) : x \text{ can produce } \tilde{z} \text{ at time } t\}.$$

Approximate it with

$$T^\Omega(t) = \{(\tilde{z}, x) : z(s) \leq g(x,s,t), s \in \Omega\}$$

$g : \Omega \rightarrow \mathbb{R}_+, \tilde{g} = (g(x,s_1,t), g(x,s_2,t),) \in \mathbb{R}^\Omega_+$ is a random variable.

Huge number of conceptual problems (Chambers and Quiggin, ad nauseam) but does have advantages: Implementable and easily comparable.
Productivity Index

- Standard Malmquist-type productivity index:

\[
\left(\frac{z^0}{g(x^0, s^1, t^1)} \frac{g(x^1, s^1, t^1)}{z^1} \right)^{\frac{1}{2}} \left(\frac{z^0}{g(x^0, s^0, t^0)} \frac{g(x^1, s^0, t^0)}{z^1} \right)^{\frac{1}{2}},
\]

easily decomposes as

\[
E_{s^0, s^1, t^0, t^1}^s(z^0, x^0; z^1, x^1) \ H_{s^0, s^1, t^0, t^1}^s(z^0, x^0; z^1, x^1),
\]

and \(E_{s^0, s^1, t^0, t^1}^s(z^0, x^0; z^1, x^1) \) is a standard Färe et al. (1994) efficiency change index.
Standard Malmquist-type productivity index:

$$
\left(\frac{z^0}{g(x^0, s^1, t^1)} \frac{g(x^1, s^1, t^1)}{z^1} \right)^{\frac{1}{2}} \left(\frac{z^0}{g(x^0, s^0, t^0)} \frac{g(x^1, s^0, t^0)}{z^1} \right)^{\frac{1}{2}},
$$

easily decomposes as

$$E^{s^0, s^1, t^0, t^1} (z^0, x^0; z^1, x^1) H^{s^0, s^1, t^0, t^1} (z^0, x^0; z^1, x^1),$$

and $E^{s^0, s^1, t^0, t^1} (z^0, x^0; z^1, x^1)$ is a standard Färe et al. (1994) efficiency change index.

$H^{s^0, s^1, t^0, t^1} (z^0, x^0; z^1, x^1)$ is a combination of technical change and state of Nature change. Its decomposition is path dependent (standard problem, but see Henderson and Russell (2005))
\[H^{s_0,s_1,t_0,t_1} = \Omega^{s_0,s_1} (x^0, x^1, t_0, t_1) \times T^{t_0,t_1} (x^0, s^0, x^1, s^1), \]

where \(T^{t_0,t_1} (x^0, s^0, x^1, s^1) \) is technical change of the form

\[
\left(\tilde{T}^{t_0,t_1} (x^0, s^1) \tilde{T}^{t_0,t_1} (x^0, s^0) \tilde{T}^{t_0,t_1} (x^1, s^1) \tilde{T}^{t_0,t_1} (x^1, s^0) \right)
\]

and \(\Omega^{s_0,s_1} (x^0, x^1, t_0, t_1) \) is state-contingent effect of the form

\[
\left(\tilde{\Omega}^{s_0,s^1} (x^0, t_0) \tilde{\Omega}^{s_0,s^1} (x^0, t_1) \tilde{\Omega}^{s_0,s^1} (x^1, t_0) \tilde{\Omega}^{s_0,s^1} (x^1, t_1) \right)^{\frac{1}{2}}
\]
Operationally speaking

- $\Omega \subset \mathbb{R}_+^2$ defined empirically by observations on degree days between 8° and 32° C and precipitation

Follow Banker and Morey (1986) and (implicitly) O'Donnell and Griffiths (2006) and approximate $\hat{T}_\Omega(t)$ with CRS hull $\hat{T}_\Omega(t) = \begin{cases} \ldots & \text{if } \lambda_k, \nu_k, z_k, x_k, s_k \end{cases}$

where the z_ks are taken from V. Eldon Ball's state panel (1960-2004) and the s_ks from Schlenker and Roberts (2005)
Operationally speaking

- $\Omega \subset \mathbb{R}^2_+$ defined empirically by observations on degree days between 8° and 32° C and precipitation

- Follow Banker and Morey (1986) and (implicitly) O’Donnell and Griffiths (2006) and approximate $\hat{T}^\Omega (t)$ with CRS hull

$$\hat{T}^\Omega (t) = \left\{ \begin{array}{l}
(z, x, s) : z \leq \sum_{k=1}^{48} \sum_{v=1}^{t} \lambda_{kv} z^{kv}, \\
x \geq \sum_{k=1}^{48} \sum_{v=1}^{t} \lambda_{kv} x^{kv}, \\
s = \sum_{k=1}^{48} \sum_{v=1}^{t} \lambda_{kv} s^{kv}, \\
\lambda_{kv} \geq 0
\end{array} \right\},$$

where the $(x, z)'s$ are taken from V. Eldon Ball’s state panel (1960-2004) and the $s’s$ from Schlenker and Roberts (2005)
California Aggregate Output and Input (1960-2004)

Source: ERS/USDA
Efficiency Change Index for California as calculated with and without Weather
California Productivity and H-Index: The Efficiency Residual Disappears
Just about every agricultural productivity study assumes that agricultural production is not stochastic or trivially stochastic.
Some Final Remarks

- Just about every agricultural productivity study assumes that agricultural production is not stochastic or trivially stochastic.
- **Do we learn anything from trying to relax that premise?**
Some Final Remarks

- Just about every agricultural productivity study assumes that agricultural production is not stochastic or trivially stochastic.
- Do we learn anything from trying to relax that premise?
- Maybe, maybe not! But we should definitely check.
Some Final Remarks

• Just about every agricultural productivity study assumes that agricultural production is not stochastic or trivially stochastic.
• Do we learn anything from trying to relax that premise?
• Maybe, maybe not! But we should definitely check.
• Too simple minded?
Some Final Remarks

- Just about every agricultural productivity study assumes that agricultural production is not stochastic or trivially stochastic.
- Do we learn anything from trying to relax that premise?
- Maybe, maybe not! But we should definitely check.
- Too simple minded?
- For sure, but that’s why I’m trying to raise the issue for the experts.