El Niño Southern Oscillation Impacts on Crop Insurance

Jesse B. Tack ∗ David Ubilava †

Copyright 2013 by Jesse B. Tack and David Ubilava. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.

∗Assistant Professor. Department of Agricultural Economics, Mississippi State University.
†Lecturer. Department of Agricultural and Resource Economics, University of Sydney.
El Niño Southern Oscillation Impacts on Crop Insurance
Jesse B. Tacka and David Ubilavab
aDepartment of Agricultural Economics, Mississippi State University
bDepartment of Agricultural and Resource Economics, The University of Sydney

Motivation: ENSO
- The U.S. drought of 2012 has served as a global reminder that extreme weather events do occur.
- Extreme weather events are “teleconnected” with El Niño Southern Oscillation.
- If the frequency and intensity of ENSO anomalies increase parallel to climatic change extreme weather events are more likely in the future.

Motivation: Crop Insurance
- The underlying assumptions of the actuarially fair area-based crop insurance programs are that: (i) yield distributions are “properly” determined; and (ii) agents have no superior information about the determinants of this distribution.
- However, when the assumptions are violated the rates may no longer be actuarially fair and possibilities of mis-priced premium rates emerge.

Main Findings
1. Extreme ENSO events alter cotton yield distributions in the Southeastern U.S., and these impacts translate into economically meaningful effects on crop insurance premium rates.
2. Commercial insurers can use publicly available information to determine if government-set premium rates are mis-priced, and in turn extract economic rents via the federally mandated Standard Reinsurance Agreement.

The ENSO Impact on Indemnities

CONCLUSIONS
This research contributes to the burgeoning scientific literature linking climatic phenomena to insurance program-design and decision-making. The main conclusions are:
- there are more than just mean ENSO effects on crop yields, which in and of itself suggests premium rate deviations across ENSO events.
- opportunities to cede mis-priced policies back to the U.S. government do exist for area-triggered cotton insurance programs.
- future work might consider whether these results extend to other crops and/or farm-based products.

Empirical Framework
The regression based model for the \(j = 1, 2, 3 \) raw moments of the cotton yield distribution is:

\[
y_{ij}^t = \alpha y_i + \beta_1 t + \beta_2 t y_i + \beta_3 t y_i^2 + \varepsilon_{ijt} \tag{1}
\]

For an arbitrary county \(i \) and regime \(r \), the maximum entropy distribution is defined by:

\[f_{it}^r = \arg \max f (y) \ln f (y) dy
\]

subject to the moment constraints

\[
\int f (y) dy = 1 \quad \text{and} \quad \int y f (y) dy = \mu_i^r, \quad j = 1, \ldots, 3
\]

The associated Lagrangian for this maximization problem is:

\[
\mathcal{L} = -\int f (y) \ln f (y) dy - \gamma_0 \left[\int f (y) dy - 1 \right] - \sum_{j=1}^3 \gamma_j \left[\int y^j f (y) dy - \mu_i^j \right]
\]

and the implied solution is the maximum entropy density:

\[
f_{it}^r (y) = \frac{1}{\psi (\gamma_i^r)} \exp \left[-\sum_{j=1}^3 \gamma_j^r y^j \right]
\]

where \(\psi (\gamma_i^r) = \int \exp \left[-\sum_{j=1}^3 \gamma_j^r y^j \right] dy \).

The performance of the insurance company’s decision rule is evaluated using the realized yield observations \(y_{it} \), such that:

\[
\text{indem}_{it} = \max \left\{ \frac{\gamma_{it} - y_{it}}{c}, 0 \right\}, \quad t = 1, \ldots, 38, \quad c \in \{50, 60, 70, 80, 90\}
\]

Selected References: