Perspectives for individual livestock farms in post-Soviet agriculture – Evidence from Kazakhstan

Mimako Kobayashi
The World Bank, mkobayashi@worldbank.org

Martin Petrick
IAMO, petrick@iamo.de

Katharina Vantomme
IAMO, vantomme@iamo.de

Lovell Jarvis
University of California, Davis, lsjarvis@ucdavis.edu

Copyright 2013 by Kobayashi, Petrick, Vantomme, and Jarvis. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Perspectives for individual livestock farms in post-Soviet agriculture – Evidence from Kazakhstan
Mimako Kobayashi, Martin Petrick, Katharina Vantomme, Lovell Jarvis
The World Bank
IAMO, Germany
University of California, Davis

Kazakhstan’s Livestock Evolution

- First dip: after the First World War and the Russian Civil War
- Second dip: collectivization under Stalin
- Third dip: livestock transfer and liquidation following the collapse of the Soviet Union

(Sources: National Statistics Agency; Ciclit 1995)

Policy Questions

- What are the factors leading to livestock herd expansion?
- Is the use of communal land associated with lower animal productivity?
- How can policy increase productivity and improve efficiency?
- How can HHs develop into larger, more efficient commercial units?

Post-Soviet Transition and Recovery

- Kazakhstan’s initial livestock decline was among the largest in the former Soviet Union.
- Grain production by large agricultural enterprises (AE) was encouraged; only recently did production by AE be promoted.
- Livestock recovery during the 2000s suggests initial herd liquidation was excessive.

- Livestock recovery was led by smallholder households (HH), now averaging 2.8 cattle and 12.8 sheep and goats in the study area.
- HHs could absorb much of livestock liquidated by AEs using communal rangelands (free, open-access grazing lands near villages).
- Herd size on each registered family farm or ‘peasant farm’ (PF) has been increasing.

Data

- 2012 IAMO farm survey in Almaty and Akmola Oblasts, Kazakhstan
 - AE: agricultural enterprises (n=55)
 - PF: peasant farms (n=245)
 - HH: households (n=300)

- Proportion of farms that use communal range
 - AE
 - PF
 - HH
 - Almaty: 40% 26% 75%
 - Akmola: 41% 70% 82%
 - Only 10 producers use ranges 15+ km away from village

- Average # cattle per farm
 - 2008: 426.463
 - 2011: 64.78
 - Increase: 3.2 2.8

- Cow milk yield (kg/cow/year)
 - AE: 2,543
 - PF: 2,207
 - HH: 1,659

- Proportion of farms that increased herd size between 2008 and 2011
 - Almaty: 100% 72% 49%
 - Akmola: 68% 55% 19%

Conclusions

- Village dummies are included to control for climate and other location specific factors.
- Lower cow milk yield on communal land in Almaty Oblast.
- Hay has higher marginal product on communal range.
- Farms with larger herds achieve higher milk yields.

- Initially larger herds tended to expand for PF and in Akmola Oblast.
- Older PF operators tended to reduce herd size.
- Communal range users tended to expand herds.
- Trained HH tended to reduce herd size.
- Higher probabilities of herd expansion for: Almaty producers
- PF producers

Selected Regression Results

- Cow milk yield function
 - Independent variables
 - (Unit) Coeff
 - Almaty x communal range use
 - (0/1) -547.327
 - Log (hay per head)
 - (kg) -20.907
 - Hay/head x communal range
 - (kg) 0.164
 - Fodder per head
 - (kg) 0.920
 - Fodder/head x communal range
 - (kg) -0.804
 - Concentrate per head
 - (kg) 0.322
 - Log (all livestock in 2011) (head)
 - (20.413 R²)
 - N 232
 - + p<0.05; ++ p<0.01

- Herd expansion behavior
 - Dependent variable: 1 if grazing livestock increased during 2008-11
 - Independent variables
 - (Unit) PF HH Alm Akm
 - Log (grazing livestock in 2008) (head)
 - (year) + - + +
 - Operator age
 - (years) - + - +
 - 1 if use communal range (0/1)
 - + + + +
 - 1 if agricultural education (0/1)
 - + - - -
 - 1 if Almaty (0/1)
 - + - + +
 - 1 if PF (0/1)
 - + - - +
 - N 102 125 84 164
 - + p<0.05; ++ p<0.01 (AE farms are excluded from the regressions)