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Introduction 

 

Buildings account for 42 percent of energy use and 38 percent of CO2 emissions in the United 

States (USGBC 2011).   In recent years, State and Federal governments have increased funding 

programs that subsidize energy-efficient retrofits to existing buildings.  For example, the 

American Recovery and Reinvestment Act of 2009 (ARRA) included $17 billion for energy-

efficiency programs, which helped to initiate $54 billion in energy-related home improvements 

in 2009 (von Schrader 2010).  In 2013, President Obama announced a new goal, “Let’s cut in 

half the energy wasted by our homes and businesses over the next 20 years. We'll work with the 

states to do it.”1  

 

Despite the immense policy importance of these investments, surprisingly little research directly 

assesses the effectiveness of retrofit rebate programs.   Allcott and Greenstone (2012) argue, 

“much of the evidence on the energy cost savings from energy-efficiency comes from 

engineering analyses or observational studies that suffer from a set of well-known biases.” Davis 

et al. (2012) and Metcalf and Hassett (1999) show that engineering simulations over-predict the 

energy savings from retrofits by 150% to 400% compared against estimates from billing data.  

The literature characterizing simulation-bias is small. It only considers three retrofit options 

among dozens, and only verifies national-level engineering predictions, rather than preferred 

household-level predictions. Observational studies rely on utility-level data, rather than 

household data, creating numerous empirical problems, including omitted variable bias, 

questionable control groups, and poorly defined treatments that aggregate heterogeneous retrofit 

programs (see Gillingham et al. 2009 for a review of literature).   

 

The purpose of this paper is to evaluate retrofit-specific residential rebate programs based on 

observed household-level billing data.  I identify the energy savings from fifteen retrofit rebate 

programs in Gainesville, Florida using a panel dataset of electricity and natural gas consumption 

and building characteristics for 30,000 residences. The difference-in-difference method 

compares changes in energy use within a residence before and after an energy-saving retrofit 

intervention (treatment group) with changes in energy use within a similar residence that did not 

receive improvements (control group).  A unique feature of the data, which is central to my 

identification strategy, is that I have monthly billing data combined with time-variant and time-

constant characteristics of each residence.  

 

Preliminary work makes three contributions to the literature assessing energy efficiency 

programs. First, this is the first assessment of a retrofit rebate program to apply difference-in-

difference methods linking billing data and housing characteristics for every customer within a 

utility service area.  Second, by assessing 9 retrofit programs, this study explores heterogeneity 

across a diverse range of retrofits options using billing data.  Third, this study is the first to use 

project-level data on engineering predictions and rebate-levels to identify retrofit-specific 

estimates of simulation bias and cost-effectiveness, permitting a carefully matched control group.   

                                                             
1
 Statement delivered on February 12, 2013 in a State of the Union Speech.  Obama continues to promise that 
“Those states with the best ideas to create jobs and lower energy bills by constructing more efficient buildings will 
receive federal support to help make that happen." 



My results reveal important heterogeneities across retrofit programs.  First, estimates of cost per 

kilowatt hour saved vary widely, ranging between 1 to 28 cents depending on retrofit type. 

Second, results indicate that engineering simulations seriously over-predict energy savings when 

compared against empirical estimates, though bias varies widely across retrofit types.  Thus 

policy makers could use these results to expand cost-effective programs and eliminate ineffective 

ones, information that is unavailable from the utility-level program averages found in the 

literature. 

The first section below describes my data.  Then section 2 presents an overview of testable 

hypotheses that extend current literature.  Sections 3 and 4 present the empirical model and 

preliminary results.  Section 5 concludes. 

Data  

Table 1 compares descriptive statistics between two separate datasets, each identifying 

participants in GRU retrofit rebate programs.  Due to time constraints, the results presented in 

subsequent sections are generated from a partial dataset, however, a complete dataset will be 

used in future analyses.   

The University of Florida dataset is a partial sample of rebate participants for nine residential 

rebate programs used to generate preliminary regression results presented in Table 2.  For each 

property address, the partial sample includes information on the retrofit installation date and type 

of rebate program. The Gainesville Regional Utility dataset is a full sample of rebate participant 

for fifteen residential rebate programs and three commercial rebate programs.  

Empirical Model 

The sample of households is restricted in several ways. First, the analysis is restricted to single 

family households that have a single customer account during the four-year time period.  Second, 

all treatment households are required to have at least 6 months of billing data pre-retrofit and 

post-retrofit to ensure consistent estimation of treatment effects. Third, the treatment group only 

includes households that receive a single retrofit intervention; households that receive multiple 

retrofits are excluded from the analysis. 

Similar to Davis et al. (2012), I employ a difference-in-difference model to estimate the effect of 

retrofits on household energy consumption.  Specifically, I use the partial dataset to estimate the 

following two-way fixed effects model: 

                                         (1) 

   

where     is electricity consumption for house   in month  ;    are month-specific indicator 

variables capturing city-wide trends that affect electricity consumption over time, such as 

weather fluctuations;    are household-specific indicator variables capturing all time-constant 



factors of a house that affect electricity consumption;      are treatment indicator variables that 

are equal to 1 for all months   after a retrofit installation in homes   that participate in a rebate 

program for retrofit type   , and equal to 0 otherwise.   is a constant equal to the maximum 

number of monthly bills for house  , which is 143 months on average, and   is a constant equal to 

the total number of rebate programs.      is an error term clustered by house and represents 

unmeasured time-variant factors affecting electricity consumption. The coefficient    is a vector 

of retrofit-specific ATEs, or the average monthly energy savings from retrofit type  , that is 

assumed to persist over time.  

A two-way fixed effects model imposes very weak identifying assumptions. Specifically, my 

model maintains the standard fixed effect assumption of strict exogeneity of treatment, expressed 

as    (        )         .  Endogeneity problems violating this assumption arise from four 

common sources: period effects, measurement error, unobserved heterogeneity, and simultaneity. 

The model directly addresses period effects.  Month fixed effects eliminate time-variant period 

effects common to all households in Gainesville within a billing period, as non-participant 

households serve as counterfactuals that isolate period effects.  Treatment effects are identified 

from remaining within variation beyond period effects (time trends).   

To address other forms of endogenity, the preliminary model assumes: (i) non-participants in the 

comparison group never receive unobserved retrofit interventions (measurement error); (ii) 

treatments are uniform for each retrofit type (measurement error) (iii) retrofit interventions are 

uncorrelated with time-variant changes affecting energy consumption, such as changes in 

occupancy or home-remodels (omitted variable bias); and (iv) pre-retrofit shocks to energy bills 

never trigger retrofit interventions (simultaneity bias). 

Preliminary Results 

Baseline Energy Savings Estimates 

Table 2 presents the main results of the energy savings from retrofit installation.  Electricity 

usage is reported in kilowatt hours per month.  Coefficients reflect average monthly treatment 

effects across retrofit types, represented by    in equation (1).  If retrofit installations increase 

efficiency, then energy use should decrease post retrofit for participating households.  This is, in 

fact, the case for most retrofits. 

Results confirm expectations, suggesting most retrofits reduce electricity use.  At the upper 

extreme, a retrofit can save an average of 130 kWh per month, or 12 percent of the median 

household energy consumption of 1,100 kWh per month2.  Five programs have results significant 

                                                             
2
 1,100 kWh is the median energy consumption for the median house averaged across all months.  Energy 

consumption varies seasonally.  Preliminary estimates do not explore heterogeneous treatment effects across 
seasons, although many retrofits, such as air-conditioning systems, may cause season-specific energy savings. 



at the 1 percent level (energy savings reported in parentheses); including, refrigerator buyback 

(49 kWh per month), pool pump replacement (129 kWh per month), super SEER air-conditioner 

replacement (116 kWh per month), duct leakage repair (64 kWh per month), and low-income 

energy efficiency upgrades (107 kWh per month). Energy savings for attic insulation installment 

(33 kWh per month) are significant at the 5 percent level.  Three programs have no statistically 

significant energy savings: high-efficiency room air-conditioner replacement, air-conditioner 

maintenance, and low-interest energy-efficient loans.   

Comparison with Ex-Ante Engineering Models 

Table 3 compares my results with GRU ex-ante predictions derived from engineering 

simulations.  Ex-ante bias calculations report the percentage that engineering predictions deviate 

from my estimates of realized energy savings.  Importantly, ex-ante and ex-post energy savings 

estimates come from different samples3, so these comparisons are included only to illustrate 

likely findings from more future analysis. 

Results indicate that GRU engineering simulations consistently overestimate the energy savings 

from residential retrofits. On average, ex-ante assessments predict more than double the realized 

energy savings estimated using billing data.  However, bias varies considerably across retrofit 

types, with some engineering predictions closely matching realized energy savings.  Relative 

bias is reported for the six programs with significant energy savings (percentage of over 

prediction reported in parenthesis), including, low-income weatherization (-4%), pool pump 

replacement (14%), duct leakage repair (171%), super SEER air-conditioner replacement 

(172%), refrigerator buyback (268%), and attic insulation installment (389%).  Interestingly, 

room air-conditioner replacement and air-conditioner maintenance – two programs with zero 

energy savings – have considerably lower ex-ante predictions than any other retrofit types.  In 

terms of kilowatt hours, the absolute bias is smaller for these zero-effect programs than for two-

thirds of retrofits with significant observed energy savings.   

Cost-Effectiveness 

Preliminary results suggest that program cost-effectiveness varies considerably across retrofit 

types. Following standard assumptions in the literature (see, e.g., Arimura, Li, Newell, and 

Palmer 2011), cost-effectiveness estimates assume a 5% discount rate and 10-year product 

lifetime4.  Average cost savings per kilowatt hour range from 1 cent to 27 cents among programs 

based on rebate levels and energy savings estimated from electricity bills.  Program-specific 

                                                             
3
 Table 3 describes the samples used for ex-ante and ex-post estimates. GRU does not report expected energy 

savings for the low-interest loan program, so comparisons focus on the other eight rebate programs. 
4
 Davis et al. 2012 assumes a 5-year treatment effect for an appliance retirement program, arguing that household 

would naturally replace appliances after 5 years; rebates only prompt households to replace them earlier.  Since 
GREP rebates require participants to meet stringent energy-efficiency standards to qualify for rebates – standards 
that homeowners may not meet otherwise – the cost-effectiveness calculations used in this section assume a 
longer 10-year treatment effect suggested by others.  



results are significant at the 1 percent level for six programs, including; refrigerator buyback (1 

cent per kWh), pool pump replacement (3 cents per kWh), super SEER air-conditioner 

replacement (5 cents per kWh), duct leakage repair (6 cents per kWh), attic insulation installment 

(12 cents per kWh), and low-income weatherization (27 cents per kWh). Programs without 

significant energy savings are cost-ineffective regardless of rebate levels.  Cost-effectiveness 

estimates change predictably under alternative assumptions.  Assuming a shorter 5-year 

treatment effect, costs per kilowatt hour saved increase by 78 percent.   

Homeowners also benefit from lower electricity bills.  Based on GRU’s block-rate pricing in 

2009 and the distribution of monthly consumption levels observed in the data, the average 

marginal price that GRU charges consumers is 14.6¢. This consists of an 8.6¢ average energy 

charge plus a 6¢ fuel adjustment charge.  These numbers imply that annual electricity savings per 

household range across retrofits, including, refrigerator buyback ($86.65), pool pump 

replacement ($225.33), super SEER air-conditioner replacement ($203.68), duct leakage repair 

($111.70), attic insulation installment ($58.30), and low-income weatherization ($187.50). 

Programs without significant energy savings are cost-ineffective regardless of rebate levels. 

Discussion 

These results present estimates of energy savings, simulation-bias, and cost-effectiveness for a 

large number of programs compared to other studies using micro data of energy consumption.  

Three GRU retrofit programs can be directly compared with existing estimates from the 

literature, including, air-conditioner replacements, refrigerator removal, and attic insulation.  

Results for remaining programs provide new insights about heterogeneity between retrofit types 

in terms of cost-effectiveness and simulation-bias.  In general, these results provide new 

optimism that retrofits rebates can attain cost-effective demand reduction. 

Cost-Effectiveness 

Unlike previous studies, my results indicate that well-designed retrofit programs can achieve 

similar cost-effectiveness as other leading energy-efficiency programs.  In Gainesville, a 

portfolio of rebate retrofits targeting refrigerator buybacks, pool pump replacements, super 

SEER central AC replacements, and duct leakage repair can achieve an energy savings at a cost 

between 1 and 6 cents per kilowatt hour avoided.  By comparison, Alcott (2011) reports cost-

effectiveness measures for peer-comparison programs from OPOWER to range from 2 to 5 cents 

per kilowatt hour saved.  I am not aware of any other studies using household billing data that 

identify rebate programs with cost-effectiveness on par with OPOWER. 

My research has unusual policy relevance and external validity, as GRU employs best practices 

that demonstrate the potential of well-designed retrofit rebate programs.  By contrast, any retrofit 

rebate can be cost-prohibitive if rebates are too generous, or energy-savings are too low.   For 

example, Davis et al. (2011) acknowledge that the Mexican rebate program they evaluate has a 

flawed program design that allows participants to purchase virtually any new appliances 



regardless of energy-efficiency5.  As a result, Davis et al. (2011) find refrigerator replacement 

rebates are costly, averaging 17 cents per kilowatt hour removed6.  At the opposite extreme, 

GRU is an award-winning national leader in energy conservation7 requiring households and 

contractors to report detailed product information to verify that installed retrofits meet stringent 

program standards for energy-efficiency.  Unlike the inefficient Mexican program, GRU 

operated a refrigerator buyback program averaging 1 cent per kilowatt hour removed.  Thus, my 

study makes and important contribution to literature by demonstrating the potential of best-

practices, thereby rebutting literature that focuses on under-preforming programs. 

However, my results agree with some claims in the literature that select retrofits are cost-

prohibitive, including room air-conditioning and attic insulation.  Hypothetically, a GRU 

program focused only on attic insulation, low income grants, room air-conditioning 

replacements, and central air-conditioning maintenance would be inefficient with cost between 

12 to 27 cents, or more, for each kilowatt hour saved. This claim echoes findings by Davis et al. 

(2011) that room air-conditioning replacements do not provide any energy savings; making any 

amount of rebate cost-prohibitive.  Similarly, Metcalf and Hassett (1999) also argue that attic 

insulation interventions are not cost-effective, although they lack detailed information about 

project costs. 

Simulation-Bias 

For the three previously studied retrofit types, simulation-bias is comparable to estimates 

available in the literature.  Davis et al. (2012) find engineering simulations over-predict savings 

by 150% to 250% for refrigerator replacements; while GRU simulations over-predict energy 

saving by 168% for refrigerator buybacks8. In the same study, Davis et al. (2012) find that room 

air-conditioner replacements actually increase in energy consumption; GRU estimates also 

suggest that room air-conditioner replacements may increase energy use, though estimates are 

not significant.  Metcalf and Hassett (1999) suggests that engineering simulations over predict 

returns from attic insulation by as much as 400%; while GRU estimates suggest an over-

                                                             
5
 The Mexican program rules require participants to purchase refrigerators and air-conditioners that are 5% more 

efficient than minimum energy-efficiency standards established in 2002. The rebate program was administered 
from 2009 to 2011, during which time almost any new appliances available on the market met or exceeded 
program requirements based on outdated energy-efficiency requirements.  
6
 17 cent cost-effectiveness is based off of a 10-year treatment effect and 5% discount rate, which parallel 

assumptions used in Table 3.   
7 Awards include the 2005 Green Power Beacon Award presented by the U.S. Environmental Protection Agency, the 

U.S. Department of Energy and the Center for Resource Solutions. 

(http://www.epa.gov/greenpower/documents/2005awards.pdf; 

https://www.gru.com/AboutGRU/NewsReleases/Archives/Articles/news-2005-10-28.jsp) 
8
 Refridgerator treatments differ between the two studies, so direct comparisons of kilowatt hour saved are not 

appropriate.  Davis et al. (2012) is a replacement program where an old refridgerator is removed after a new one is 
purchased.  The GRU buyback program simply removes an old refridgerator, which in many cases is a second 
refridgerator in the house that is not replaced.  However, comparisons of simulation-bias between the studies are 
more valid as engineering models are adjusted to account for specific program requirements. 
refrigerator buyback

8
 despite a higher level of energy savings of 594 kilowatt hours per year. 

http://www.epa.gov/greenpower/documents/2005awards.pdf
https://www.gru.com/AboutGRU/NewsReleases/Archives/Articles/news-2005-10-28.jsp


prediction bias of 289%9.  Although previous studies only evaluate basic country-level 

engineering simulations, GRU project-specific engineering simulations do not improve the 

accuracy of predictions. 

Unlike existing literature, my study finds that engineering simulation-bias varies widely across 

retrofit types.  Despite reasonable agreement with other studies on room air-conditioner, 

refrigerator buyback and attic insulation, these three retrofit types have unusually large 

simulation-biases.  Broad claims about simulation-bias for other retrofit interventions would be 

misleading.  In fact, my results that engineering-bias can be very low for certain retrofit types.  

For example, simulations are surprisingly accurate for pool pump retrofits and low-income grant 

programs, with average predictions within 4% and 14% of actual energy savings10. Thus, an 

important contribution of this study is to reveal that engineering simulations are much more 

accurate for some retrofits missing from existing literature. 

Given the reliance on simulations for retrofit program evaluations, it is worthwhile to qualify my 

assessments of simulation-bias using on observed energy savings.  Simulation-bias captures 

unpredicted exogenous shocks, such as weather events, in addition to bias caused by simulation 

error.  Weather shocks may particularly affect retrofits related to space conditioning, such as 

central air-conditioner replacement, duct leakage repair, and attic insulation.  Adjusting 

simulation to account for actual weather conditions could improve identification of underlying-

bias of engineering predictions.  In fact, empirical studies that rely on a small sample of post-

retrofit billing data may identify energy savings that are unrepresentative of long-term treatment 

effects, especially if weather is abnormal.   By assuming a constant 10-year treatment effect for 

cost-effectiveness calculations, this study implicitly assumes that observed post-retrofit weather 

accurately reflect future weather conditions.  Thus, one way of minimizing simulation-bias from 

exogenous shocks is extending the length of post-retrofit billing data until post-weather trends 

converges to historical baselines used by engineering software.  [* By including retrofits as early 

as 2007, our estimates use a much longer post-estimation period than other studies.  By contrast, 

Davis uses only 2 years of billing data in total *] 

Conclusion 

Despite the widespread implementation of retrofit rebate programs and calls for increased 

investment in demand side management programs, surprisingly little is known about whether 

energy-efficiency retrofits are an effective way to reduce energy consumption.  Engineering 

simulations provide most of the evidence, but simulated predictions, even if based on sound 

                                                             
9
 Metcalf and Hassett (1999) find the attic insulation reduces total household energy consumption by 9%, while 

contemporary engineering simulations predicted energy savings as high as 50%.  GRU attic insulation retrofits 
achieve about a 3.5% reduction in household energy consumption, with simulations predicting energy savings of 
about 13%.   
10

 I have not run hypothesis tests to determine predictions are significantly different from point estimates.  
Hypothesis test may require more information about the error reported for engineering simulations.  



models, do not account for installation quality or behavioral responses. Hence there is an 

important and timely need for empirical research that uses field data to more fully evaluate the 

effects of energy-efficiency retrofits on energy consumption.  

The primary contribution of this paper is the evaluation of retrofit-specific residential rebate 

programs based on actual billing data.   Using retrofit programs in the city of Gainesville, I find 

an immense variation in energy savings and cost-effectiveness across retrofit types.  Three out of 

nine programs fail to achieve any energy savings.  For the remaining six programs, average 

realized energy savings are less than half of predicted savings from engineering simulations.  

Though direct comparison with engineering simulations is challenging, my estimates reveal a 

systematic over-prediction bias that raises new doubts about the reliability of simulated 

predictions.  I also estimate the costs and benefits of the retrofit rebate program.   Cost-

effectiveness varies widely across retrofit programs, varying between 1 and 27 cents per kilowatt 

hour saved.  Five out of nine programs achieve energy savings below 18 cents per kilowatt hour, 

or the average cost of new electricity generation in Gainesville.  The six effective retrofit types 

benefit homeowners with reductions in annual electricity expenditures between $58 and $225.  

These contributions provide new policy insights about the effectiveness and cost-effectiveness of 

retrofits.  First, results inform policymakers about the relative efficacy of different retrofit 

rebates, allowing inefficient programs to be terminated and efficient programs to be expanded.  

Second, results also provide new empirical evidence about the over-prediction bias of 

engineering models, suggesting a need for future research to validate ex-ante program 

evaluations.  Third, these evaluations empower homeowners to make informed decisions about 

energy-efficiency investments using credible information on the expected cost-savings from 

various retrofit options. 

  



Appendix: Residential Retrofit 

Table 1. Descriptive Statistics for Rebate Participation Data  

    Partial Sample1   Complete Sample2 

Rebate Program 

 

Frequency 

 

Frequency 

 

 Rebate 

 

Ex-Ante Savings 

Duct Leakage Repair 

 

222 

 

2,702 

 

$359 

 

1.3 

AC Maintenance 

 

401 

 

3,158 

 

$55 

 

0.5 

High Efficiency Room AC  

 

130 

 

812 

 

$161 

 

0.2 

Super SEER Central AC 

 

393 

 

792 

 

$550 

 

2.4 

Attic Insulation 

 

393 

 

2,033 

 

$361 

 

1.6 

Refrigerator Buyback (I) 

 

391 

 

3,131 

 

$64 

 

1.6 

Refrigerator Buyback (II) 

   

544 

 

$51 

 

1.2 

Pool Pump (I) 

 

113 

 

797 

 

$307 

 

1.8 

Pool Pump (II) 

   

284 

 

$251 

 

1.8 

Low Income Grants (LEEP) 

 

213 

 

695 

 

$2,703 

 

1.2 

Low-Interest Loan 

 

61 

 

211 

 

$606 

  Central AC (I) 

   

2,430 

 

$549 

 

1.9 

Central AC (II) 

   

1,182 

 

$294 

 

0.5 

Natural Gas Water Heater 

   

1,657 

 

$392 

 

2.8 

Home Performance Energy Star 

   

3,398 

 

$377 

 

1.6 

Solar Water Heater 

   

129 

 

$477 

 

1.5 

Solar Photovoltaic 

   

122 

 

$6,207 

 

3,504.3 

Window Replacement/Film 

   

159 

 

$184 

 

0.7 

Customized Business 

   

511 

 

$8,724 

 

243.2 

LED Exit Signs 

   

365 

 

$469 

 

0.2 

Vending Machines 

   

305 

 

$287 

 

1.8 

Total   2,317   25,558         

1 University of Florida dataset is a partial sample of rebate participants for nine residential rebate 

programs used to generate preliminary regression results presented in Table 2.  
2 Gainesville Regional Utility dataset is a full sample of rebate participant for fifteen residential rebate 

programs and three commercial rebate programs. Average rebate amounts (dollars) and average ex-ante 

engineering predictions of energy savings (megawatt hours per year) by rebate program are aggregated 

from project-level rebates and energy saving predictions. 

  



Table 2. Two-Way Fixed Effect Estimates of Electricity Savings1
 

Dependent variable: kilowatt hours per month 

Duct Leakage Repair 

 

-63.75   *** 

  

(17.95) 

  AC Maintenance 

 

0.04 

  

  

(11.70) 

  High Efficiency Room AC 

 

24.74 

  

  

(18.91) 

  Super SEER Central AC 

 

-116.26 

 

*** 

  

(11.84) 

  Attic Insulation 

 

-33.27 

 

** 

  

(16.90) 

  Refrigerator Buyback 

 

-49.46 

 

*** 

  

(10.78) 

  Pool Pump 

 

-128.61 

 

*** 

  

(28.46) 

  Low Income Grants  

 

-107.02 

 

*** 

  

(20.61) 

  Low-Interest Loan 

 

-39.71 

  

  

(33.97) 

  Constant 

 

912.44  

 

*** 

  

(3.93) 

  Fixed Effects 

         MonthxYear 

 

YES 

       House   YES     

No. Observations 

 

412,292 

  No. Houses 

 

9,450 

  R2   0.341     

1Variables are program specific treatment indicators equal to 1 for billing months after retrofit 

installation for houses participating in that specific program and equal to 0 otherwise.  

Coefficients represent the electricity changes caused by retrofits (average treatment effect).  

Results generated using partial sample including 2,317 treatment homes and 7,133 control homes 

(Table 1. includes program-specific observation counts). Numbers in parentheses are standard 

errors clustered by house. Asterisks denote statistical significance: ** denotes significance at the 

5% level and *** denotes significance at the 1% level.  



Table 3. Ex-Ante Energy Savings Bias and Rebate Cost-Effectiveness 

  

Energy Savings1 

 

Cost Savings2 

 Retrofit Program 

 

Ex-Post 

 

Ex-Ante 

 

Ex-Ante Bias 

 

Rebate 

 

$/kWh 

Duct Leakage Repair 

 

0.8 

 

1.3 

 

71 % 

 

$ 359 

 

0.06 

AC Maintenance 

   

0.5 

   

$ 55 

  High Efficiency Room AC 

   

0.2 

   

$ 162 

  Super SEER Central AC 

 

1.4 

 

2.4 

 

72 % 

 

$ 550 

 

0.05 

Attic Insulation 

 

0.4 

 

1.6 

 

289 % 

 

$ 361 

 

0.12  

Refrigerator Buyback 

 

0.6 

 

1.6 

 

 168 % 

 

$ 64 

 

0.01 

Pool Pump 

 

1.5 

 

1.8 

 

  14 % 

 

$ 307 

 

0.03 

Low Income Grants   1.3   1.2   - 4 %   $ 2,703   0.27 

1 Energy savings are reported in megawatt hours per year. Ex-Post energy savings calculated 

using the estimates in Table 2 multiplied by 12 to reflect annual changes and divided by 1,000 to 

covert units to megawatt hours.  Ex-Ante engineering simulations are program averages of 

project-level GRU predictions from the full dataset.  Reported ex-post and ex-ante estimates are 

based on different treatment samples. Ex-Ante bias represents the percentage that ex-ante 

engineering predictions overestimate realized energy savings.  
2 Cost-savings are reported in dollars per kilowatt hour saved.  Cost-savings calculations use 

average rebate amount and average ex-post energy savings assuming a 10-year treatment effect 

and 5% annual discount rate for all programs.  

 

 

 


