Unbiased and Consistent Estimation of Risk Preferences: A Monte Carlo Simulation

Zhengfei Guan
Assistant Professor
Gulf Coast Research and Education Center &
Food and Resource Economics Department
University of Florida
14625 County Road 672
Wimauma, FL 33598
Office: 813-633-4138
guanz@ufl.edu

Feng Wu
Research Associate
Gulf Coast Research and Education Center
University of Florida
14625 County Road 672
Wimauma, FL 33598
Office: 813-633-4141
Email: fengwu@ufl.edu

Selected Poster prepared for presentation at the Agricultural & Applied Economics Association’s
2013 AAEA & CAES Joint Annual Meeting, Washington, DC, August 4-6, 2013.

Copyright 2013 by Z. Guan and F. Wu. All rights reserved. Readers may make verbatim copies
of this document for non-commercial purposes by any means, provided that this copyright notice
appears on all such copies.
Introduction

Agents’ risk attitudes directly impact their decision making. A significant amount of effort in the literature has been devoted to estimating risk preferences from agents’ production decisions. However, whether risk preferences can be indeed recovered is being debated in the literature. We conduct a Monte Carlo experiment to investigate this issue and discuss potential factors that might affect estimation performance.

The Experiment Design

The experiment design in this study largely follows Lence’s (2009) setup with some modifications. Producers are assumed to maximize their expected utility (EU) conditional on random, end-of-period wealth:

\[
\ln(W_t) = \ln(p_t) - r_t s + W_{t-1}
\]

where p_t denotes the end-of-period output price and W_t output, both of which are stochastic; r_t is input price vector; W_{t-1}, the initial wealth, is generated from $W_0 = 18.9 + 69.2z$, where the random variable z falls in the interval $[0, 1]$ and follows the standard Beta distribution. The production function is:

\[
\ln(S_t) = \alpha_t a_t \ln(X_t) + \epsilon_t
\]

Parameters α_t, a_t and a_t are set as 3, 0.2, and 0.6, respectively.

<table>
<thead>
<tr>
<th>Risk Preferences</th>
<th>Sample Size</th>
<th>Utility</th>
<th>Technology</th>
<th>with known γ_1</th>
<th>with known γ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARA</td>
<td></td>
<td>$\hat{\gamma}_0$</td>
<td>$\hat{\gamma}_1$</td>
<td>$\hat{\alpha}_0$</td>
<td>$\hat{\alpha}_1$</td>
</tr>
<tr>
<td>DRRA</td>
<td>100</td>
<td>3.292</td>
<td>5.236</td>
<td>2.833</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-18.06,309.70)</td>
<td>(0.51,48.54)</td>
<td>(25.5,13.13)</td>
<td>(0.19,02.22)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0.011</td>
<td>2.085</td>
<td>0.201</td>
<td>0.604</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1.029</td>
<td>2.661</td>
<td>0.601</td>
<td>6.021</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>5.015</td>
<td>2.036</td>
<td>0.220</td>
<td>0.600</td>
</tr>
<tr>
<td>CRRA</td>
<td>100</td>
<td>6.114</td>
<td>6.836</td>
<td>2.835</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-18.86,375.71)</td>
<td>(0.79,67.67)</td>
<td>(25.7,13.13)</td>
<td>(0.19,02.22)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>4.267</td>
<td>4.001</td>
<td>2.855</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>2.901</td>
<td>3.510</td>
<td>2.861</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>0.026</td>
<td>3.018</td>
<td>2.867</td>
<td>0.200</td>
</tr>
<tr>
<td>IRRA</td>
<td>100</td>
<td>17.670</td>
<td>8.556</td>
<td>2.839</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-17.25,437.12)</td>
<td>(0.77,74.59)</td>
<td>(25.6,13.15)</td>
<td>(0.19,02.22)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>27.959</td>
<td>5.917</td>
<td>2.859</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>35.132</td>
<td>5.887</td>
<td>2.882</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>42.870</td>
<td>5.984</td>
<td>2.866</td>
<td>0.200</td>
</tr>
</tbody>
</table>

Estimation

Recovery of the utility function parameters is based on the following first order conditions (FOC) of the EU maximization problem:

\[
\epsilon_{y,a} = \ln(x_{y,a}) - \ln(x_{a}) - a_t \ln(x_{a}) - \alpha_t \ln(x_{y,a})
\]

(6) $\epsilon_{y,a} = \ln(Y_0 + W_{0,a}) - \ln(Y_0 + W_{a}) - \beta_t \ln(Y_0 + W_{0,a}) - \gamma_t (Y_0 + W_{0,a})^\gamma_t - \gamma_t Y_0 - \gamma_t W_{0,a}$

where $W_{0,a} = W_{0,a} + p_t x_{a} - p_t x_{a} - p_t x_{a}$, the multiplicative term $(Y_0 + W_{0,a})^\gamma_t$ in (7) is a scaling factor used to avoid the solution of γ_t for Y_0 of the original FOCs.

The GMM is used to estimate parameters $[a_0, a_t, \gamma_t, \gamma_t, \gamma_t]$. Instruments used are $[1, W_{0,a}, p_t x_{a}, Y_0, Y_1]^T$.

Results and Conclusions

Two million observations were generated in each scenario (DRRA, CRRA, and IRRRA) and used in the estimation at different sample sizes. The table on the left reports the median and the 2.5% and 97.5% quantiles (in parentheses) of the results obtained from valid estimations (without singularity issues).

- All risk preference parameters in the flexible HARA utility function can be consistently estimated, though at a slower convergence rate for γ_0.
- Technology parameters can be estimated with high precision across all sample sizes (bias in DRRA is due to log transformation of distribution and can be corrected accordingly).
- The right panel of the figure below shows that the GMM objective function for Y_1 (for a sample of 1,000 obs.) has a steep curve, which means the algorithm will easily converge and produce estimates in a relatively small range. However, the left panel gives a fairly flat surface for a large set of Y_0, suggesting relatively large shifts in solutions may be produced (see wider ranges in the table). But the curve becomes much steeper at the sample size of 10,000 (not shown).
- Estimates converge faster if one parameter is set at true value (the last two columns). Parameters of the widely used power utility function (i.e., when Y_0 is known) can be estimated with good precision.