The National Flood Insurance Program Underwater: Censored Regressions on Flood Insurance Claims

Ashley Hungerford*
Department of Economics, North Carolina State University

Sujit Ghosh
Department of Statistics, North Carolina State University

Barry Goodwin
Department of Economics, North Carolina State University

Copyright 2013 by Ashley Hungerford, Sujit Ghosh, and Barry Goodwin. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

*Corresponding author. Contact: aemabee@ncsu.edu
Estimate the probability of at least one flood insurance claim being filed per month for each county in Florida.

- Almost 90% of the county-month observations have zero flood insurance claims filed.

- Determine whether significant changes have occurred in the number of flood insurance claims filed.

The dataset contains observations for each of the 67 counties of Florida. The number of flood claims, the variable of interest, is aggregated monthly for the months June 1992 to June 2012. 16,147 observations are utilized in the estimation.

- Almost 90% of the county-month observations have zero flood insurance claims filed with the NFIP. To reduce bias, we choose to include the zero observations and utilize zero-inflated models.

In 1968 Congress passed the National Flood Insurance Act, creating the National Flood Insurance Program (NFIP) (Government Accountability Office, 2011). The indemnity payments for the flood claims are modeled as a Zero-Inflated Poisson (ZIP) distribution with spatial random effects.

Using Bayesian hierarchical modeling, we model the data with a Zero-Inflated Poisson (ZIP) distribution with spatial random effects, such that:

\[P(Y_t = k) = \begin{cases}
(1 - P_0) + P_0 e^{-\lambda_t} \lambda_t^k & \text{if } k = 0 \\
(1 - P_0) P_0 e^{-\lambda_t} \lambda_t^k & \text{if } k = 1, 2, 3, \ldots
\end{cases} \]

where \(C_{kt}\) denotes the random variable of the count of flood insurance claims, for county \(i = 1, \ldots, N\) and for month \(t = 1, \ldots, T\). The probability parameter \(P_0\) is modeled using the logit link:

\[\logit(P_0) = \alpha_{0i} + \alpha_{NumPolicy_{it}} \] \hspace{1cm} (2)

\(NumPolicy\) is the number of flood insurance policies in force for each county. The Poisson parameter \(\lambda_t\), the expected number of flood claims given at least one claim has been filed, is modeled using the log link:

\[\log(\lambda_t) = \beta_{0i} + \beta_{NumPolicy_{it}} \] \hspace{1cm} (3)

The random effects \(\alpha_{0i}\) and \(\beta_{0i}\) are modeled with the spatial Conditional Autoregressive (CAR) model.

Below are the estimates for the probability parameter, \(P_0\), and \(\lambda\) for five counties in Florida. As can be seen in Figure 1, these counties are located in different regions of Florida.

Conclusions

- As would be expected, there is a large range in the probability of a given county experiencing at least one flood claim being filed in a month.
- As seen in Figure 4, there is approximately a 70% probability that there will be at least one flood claim filed in Miami-Dade County. This sharply contrasts with other counties, such as Nassau County, which has a relatively low probability of at least one flood claim being filed.
- Overall there is a gradual decrease over time in the probability of at least one flood claim being filed, yet the expected number of flood claims being filed given a flood event occurred has increased over time.
- Although some counties, such as Miami-Dade County, have a high probability of at least one flood claim being filed and a high expected number of flood claims given a flood has occurred, other counties, such as Okaloosa, have a relatively low probability of at least one flood claim being filed, yet a high number of expected flood claims given a flood has occurred.

Future Research

- The Zero-Inflated Negative Binomial distribution is also considered to allow for greater dispersion.
- Other covariates relating to weather patterns and topography will be included in modeling the parameters.
- The indemnity payments for the flood claims are modeled with spatially varying coefficients.
- Monte Carlo simulation will be run in order to determine the premium and coverage totals for each county.

References
