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Abstract 

 

This study offers a unique contribution to the literature by investigating the influential 

factors of energy-related carbon dioxide emission intensity among a panel of 30 provinces in 

China covering the period 1991-2010. We use novel spatial panel data models to analyze the 

drivers of energy-related emission intensity, which we posit are characterized by spatial 

dependence. Our results suggest: (1) emission intensities are negatively affected by per-capita, 

provincial-level GDP and population density; (2) emission intensities are positively affected by 

energy consumption structure and transportation structure; and (3) energy price has no effect on 

the emission intensities.  

 

 

 

Keywords: CO2 emissions intensity, spatial panel data models, China 

JEL codes: Q43, Q53, Q54, Q56 

  



1 

 

1 INTRODUCTION 

Understanding the geographic distribution of sources of carbon dioxide 

emissions (CO2) can aid policy in combating climate change. The geographic 

distribution of emissions does not affect the climatic impact of greenhouse gas 

emissions, but the distribution of economic activity and energy consumption does 

affect local regions which are the source of emissions. Combating global climate 

change will require multilateral, international agreements, but the fight against 

local climate change causes will start at home.  

This is particularly true in China which surpassed the US to become the 

largest aggregate emitter of CO2 emissions in 2006. Since the market-oriented 

reforms of 1978, China, as a whole, has experienced remarkable economic growth 

accompanied by a very high demand for energy consumption. An analysis at a 

more disaggregated level reveals an imbalance in economic growth and energy 

consumption among different regions in China. For example in 2010, the GDP in 

Jiangsu accounted for over 3 trillion whereas Hainan accounted for less than 300 

billion Chinese Yuan. These disparities also reveal themselves in terms of 

provincial-level CO2 emissions. Therefore, in order to mitigate its own emissions, 

China must first have a look inward at the geographic distribution of the drivers of 

its emissions. Arguably, mitigation policies will come at the expense of economic 

growth in some or all regions of China, which in turn will affect the political 

economy of implementing such policies at the province and national level. 
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Past studies have found that the main factors driving China’s 

environmental emissions are pressures from population, urbanization, 

industrialization, GDP per capita and energy intensity (Kambara, 1992; Fan et al., 

2006; Hang and Tu, 2007; Ma and Stern, 2008; Lin et al., 2009; Li et al., 2011). 

These factors have a positive effect on emissions but the impact has been 

gradually declining over the past few decades (Lin et al., 2009). Other factors 

such as technological advancement, industrial sector and energy prices have also 

been identified as influencing China’s CO2 emissions (Li et al., 2011; Kambara, 

1992; Ma and Stern, 2008; Hang and Tu, 2007). 

A possible shortcoming of previous studies within this literature is that all 

assume that inter-jurisdiction regions to be cross-sectional independent and the 

spatial interaction effects are ignored. Anselin (1998) and LeSage and Pace 

(2009) point out that the a local region’s characteristics may depend on its 

neighbors; therefore, ignoring spatial dependence would lead to model 

misspecification or create biased estimated parameters in an ordinary least squares 

(OLS) framework. 

The importance of geography is captured in the argument for a “pollution 

displacement” hypothesis in which high-income regions are effectively exporting 

their pollution to low-income regions; or, one could argue that higher-income 

regions are inducing greater emissions by importing goods from these more 

energy intensive, lower-income regions. Geography has been identified as a major 
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determinant of cross-country economic growth due to factors such as the diffusion 

of technology (Keller, 2004). One could argue that CO2 emission intensity would 

decrease with technological improvements, so the diffusion of technology could 

possibly help improve neighboring environmental conditions. Geography is also 

important because environmental policies promulgated in one region might spill 

over into other neighboring regions (Markusen et al., 1995). Local governments, 

such as a province, likely assess policy against those of their neighbors in order to 

reduce the costs of decision-making. Hence, spatial interaction effects should be 

considered in the context of regression modeling. 

Recognizing the importance of geography in China’s CO2 emissions, 

Auffhammer and Carson (2008) use a spatial econometrics model to forecast 

China’s emissions using province-level information. The authors found that 

incorporating spatial dependence into their regression model, in general, 

improved forecasts. Despite their contribution however, the authors did not 

explore different data generating processes for the spatial dependence, nor did 

they offer a rigorous interpretation of the spatial impacts. These small 

deficiencies, therefore present a gap in the literature. 

Comparing with the previous studies, this study offers four unique 

contributions to the literature by: (1) more explicitly considering and testing for 

the types of spatial dependence within the relationship; (2) using recently 

developed, spatial panel data models and diagnostics to determine the most 
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appropriate spatial econometric model; (3) offering a more rigorous interpretation 

of both the direct and indirect (spillovers) spatial impacts; and, (4) extending the 

data to consider the years 1991-2010, which is important for capturing recent 

developments in provincial-level energy consumption and economic growth. 

The rest of this manuscript is structured as follows. Section two offers a 

description of the data, model, and the explanatory variables. Section three 

discusses the spatial statistics. Section four introduces the spatial econometric 

techniques and the methodology.  Section five discusses the estimation results. 

Finally, section six concludes this study and offers some policy suggestions. 

 

2 DATA AND METHODOLOGICAL APPROACH 

2.1 Data Sources 

This paper uses a panel data of China’s 30 provinces and municipalities 

for the period 1991-2010 (Hong Kong, Macao, Taiwan and Tibet are not included 

due to lack of data). First, CO2 emission estimates for each province were 

obtained following the IPCC Guidelines (Intergovernmental Panel on Climate 

Change, 2006). These data were then used to calculate the units of CO2 emission 

per unit GDP, which defines CO2 emission intensity. 

The explanatory variables include per-capita GDP, energy prices, 

population density, the ratio of coal consumption to total energy consumption, 
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and the total length of highways. All of the variables are derived from the China 

Statistic Yearbooks and the provincial Statistical Yearbooks (CSY, 1992-2011). 

The specific definition of each variable is provided here: 

1. Per capita GDP (PCGDP): measured by the gross domestic product divided by 

the population. We hypothesize that economic growth is one of the most 

important factors in determining energy consumption and energy efficiency, 

which then exerts an influence on CO2 emission intensity. Specifically, we 

hypothesize that per-capita GDP will reduce the CO2 emission intensity. 

2. Energy prices (EP): as in the standard economic law of demand, we 

hypothesize that energy prices are important a determinant of energy 

consumption. We predict that the energy price for a specific fossil fuel will be 

inversely related to the consumption of that fuel type; and since CO2 is measured 

based upon energy consumption, we assert that energy prices will be inversely 

related CO2 emission intensity. 

3. Population density (PD): is measured as the population divided by the area. 

Theoretically, as China’s population increasingly migrates to urban areas, which 

have greater access to modern energy technologies, we hypothesis a positive 

relationship between population density and CO2 emission intensity. However, 

agglomeration effects can optimize the spatial allocation of production and energy 

resources which could improve production and energy efficiencies. 
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4. Ratio of coal consumption to total energy consumption (RCC): represented as 

the percentage of coal consumption of the total energy consumption. Since coal 

consumption accounted for the highest rate of total energy consumption in China 

(U.S. EIA, 2012), and the power transfer efficiency of coal is relatively lower 

than petroleum, natural gas and hydro power, we predict that the higher the ratio 

of coal consumption the higher the CO2 emission intensity. 

5. Total length of highways (TH): is measured as the total kilometers of paved 

highways at the province level in a particular year. The total length of highways 

serves as a proxy for activity in the transportation sector. The transportation sector 

in China accounts for a large portion of CO2 emission intensity. Road 

transportation alone is consuming about half of the total energy used by the 

transport sector in China. Advances in technology have led to a reduction in 

certain pollution emissions, but the transportation sector is still the largest and 

fastest growing consumer of crude oil and the largest producer of CO2 emissions 

produced from oil (Ministry of Transport, 2011). Thus, we expect an increase in 

the total length of highways will increase the CO2 emission intensity. 

2.2 Methodological Approach 

We specify the regression model as follows: 

(1)          0 1 2 3 4 5it it it it it it i t itCI PCGDP EP PD RCC TH                  

where all variables are defined as natural logarithms in order to interpret the 

coefficients as elasticities. The parameter µi denotes the individual effect for each 



7 

 

province and ηt denotes a common time effect. The individual effect can be 

interpreted as characteristics within provinces that do no change over time such as 

unobservable geographic characteristics. The time period effects control for time-

specific shocks that affects all provinces in a given period of time; e.g., national 

policies that affect CO2 emissions across all provinces in China. 

 

3 SPATIAL STATISTICS 

3.1 Overall Distribution 

FIGURE 1. Provincial CO2 emission intensity through time 

 

We choose three points in time (1991, 2000, and 2010), to display China’s 

provincial CO2 emission intensity distribution, which shown in Figure 1. From 
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1991 to 2010, the CO2 emission intensity of each province decreased year by 

year. The results show that provinces such as Shanxi and Ningxia consistently 

have the highest CO2 emission intensities – their CO2 emission intensities are 

almost six times higher than provinces such as Hainan and Guangdong. The 

disparity of CO2 emission intensity shows a certain trend to spatial clustering. As 

displayed in Figure 2, the northern and western provinces are aggregated in terms 

of their high CO2 emission intensities, and the southern and eastern provinces are 

generally aggregated in terms of their low CO2 emission intensities. Figure 2 

displays the average CO2 emission intensities for 1991-2010. 

FIGURE 2. Spatial distribution of average CO2 emission intensity over the 

entire sample period 
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3.2 Global Spatial Autocorrelation 

The global spatial autocorrelation of China’s overall (energy-related) CO2 

emission intensity can be measured by Moran’s I index. The formula for 

calculating global Moran’s I index is  

(2)    2

2

( )( ) 1 1
'   ;     = ( );    = 

ij i ji j

i i

i iiji j

Y Y Y Y
Moran s I S Y Y Y Y

S n n





 
 
 

 
 

 

where Yi and Yj represent CO2 emission intensity of province i and j, respectively. 

The term ij denotes the element in the i
th

 row and j
th

 column of the spatial weight 

matrix. The spatial weight matrix is a compact reflection of the geographic 

relationship among different provinces. In this study, we choose the binary 

contiguity matrix, which is determined by observing whether the regions share a 

common border. The elements of the spatial weight matrix are defined as: if two 

regions i and j are neighbors, then the matrix elements ij  = 1 and ij  = 0 

otherwise. Consistent with the literature, we normalize the spatial weight matrix 

according to row standardization (LeSage and Pace, 2009). That is, the sum of 

elements ij  in each row equals one. Row standardization allows us to interpret 

spatial spillover effects as an average of all neighbors. 

The global Moran’s I index is defined over the interval [-1, 1]. Positive 

Moran’s I values imply positive spatial autocorrelation (or spatial dependence), 

where a value of one indicates perfect correlation. Conversely, negative values 



10 

 

imply negative autocorrelation, where a value of negative one indicates perfect 

dispersion. A zero value indicates a random spatial pattern. The significance of 

Global Moran’s I index can be tested by standard z-statistics. 

In this study, the overall Moran’s I over a twenty year period is calculated 

as 0.394, which indicates positive spatial correlation at the one percent 

significance level. This indicates that China’s carbon dioxide emission intensity 

tend to cluster together. Specifically, the provinces with high carbon dioxide 

emission intensities have a tendency to cluster together, whereas the provinces 

with low carbon dioxide emission intensities cluster together. Despite our findings 

of the spatial autocorrelation of CO2 emission intensity, the Moran’s I test only 

assesses the overall pattern and trend, and Moran’s I is only effective when the 

spatial pattern is consistent across the provinces. If some of the provinces have 

positive spatial autocorrelation while others have negative spatial autocorrelation, 

then the effects could offset one other. In which case, the global Moran’s I test 

may reveal non-spatial autocorrelation characteristics. 

To further examine the clustering of among provinces, we employ a 

Moran’s I scatterplot displayed in Figure 3. In this scatterplot, the horizontal axis 

refers to the deviation of provincial average carbon dioxide emission intensity 

from 1991 to 2010, whereas the vertical axis refers to the spatial lags of the 

deviation of the average carbon dioxide emission intensity. We calculate the 

spatial lags by using a first-order contiguity spatial weight matrix, which produces 
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an average measure of carbon dioxide emission intensity among neighboring 

provinces. The four quadrants in the scatter plot depict: the quadrant I (the star 

points) is the HH clustering, which means provinces with high CO2 emission 

intensity are associated with neighboring province with high CO2 emission 

intensity; the quadrant II (the circle points) is the LH clustering, which means 

provinces with low CO2 emission intensity are associated with neighboring 

province with high CO2 emission intensity; the quadrant III (the cross points) is 

the LL clustering; and the quadrant IV (the square points) is the HL clustering. 

The results in Figure 3 also imply that during this period of analysis, 

63.33% (19 provinces) show similar characteristics of spatial autocorrelation. 

Further, 30% (nine provinces) in quadrant I and 33.33% (ten provinces) in 

quadrant III demonstrate similar characteristics of positive spatial autocorrelation. 

On the other side, 20% (six provinces) in quadrant II and 16.67% (five provinces) 

in quadrant IV demonstrate negative spatial autocorrelation. This means that the 

spatial autocorrelation and dispersion of provincial CO2 emission intensity exist at 

the same time. 

The statistically significant, spatial autocorrelation among provinces 

implies that standard ordinary least squares regressions of the drivers of emission 

intensities may lead to significant bias in regression results. Therefore, we posit a 

spatial panel data model to analyze the drivers of emission intensities at the 

provincial level in China.  
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FIGURE 3. Moran Scatterplot of Provincial CO2 emission intensity 

 

4 SPATIAL ECONOMETRIC MODELS 

Spatial relationships can be modeled in a variety of ways depending on the 

relationship between the dependent variable and the explanatory variables. 

Following Elhorst (2012), there are three basic models that are used to estimate 

the spatial panel data models. All of the spatial econometric models can be 

grouped by the following equation 

(3)                         
1 1

1

,

N N

it ij jt it ij ijt i t it

j j

N

it ij it it

j
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where Yit denotes the dependent variable (CO2 emission intensity) for the cross-

sectional unit i at time t ( 1,..., ; 1,...,i N t T  ). Xit is a matrix of observations on 

the explanatory variables. The parameter β is a column vector of regression 

coefficients. The parameter ρ denotes the scalar spatial autoregressive parameter 

on the dependent variable, λ denotes the spatial autocorrelation coefficient on the 

error term, and γ is a (K×1) vector of spatial autocorrelation coefficients on the 

explanatory variables. The error term, εit, is assumed to be independently and 

identically distributed with a zero mean and variance σ
2
.  

The term j ij jtW Y denotes the interaction effect of the dependent variable 

Yit with the dependent variables Yjt in neighboring provinces, where ijW  is the i, j-

th element of a pre-specified nonnegative (N×N) spatial weighting matrix W. 

ij ijtW X denotes the weighted average effects of the neighboring provinces on 

the independent variables; and ij itW  denotes the weighted average effects of 

the neighboring provinces on the error terms. 

 The restriction of the parameters within Equation (3) defines the specific 

type of spatial panel model used. One, the spatial autoregressive model (SAR) is 

obtained by restricting both 0   and 0  – this model exhibits spatial 

dependence within only the dependent variable. Two, the spatial error model 

(SEM) is obtained by restricting both 0   and 0  – this model exhibits 

spatial dependence within only the error terms. Three, the spatial Durbin model 
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(SDM) is obtained by restricting 0   – this model allows for spatial dependence 

within both the dependent variable and the independent variables. Finally, if all 

the parameters with the exception of β are restricted, then the model reduces to 

the traditional panel data model with two-way fixed effects. 

In this study, we follow the specification tests outlined in Elhorst (2012). 

The first step is to test the standard, non-spatial panel models against the SAR and 

SEM models by employing a series of Lagrange Multiplier (LM) tests. The 

second step is to investigate the joint significance of spatial fixed effects and 

time-period fixed effects by using the Likelihood ratio (LR) tests. If we fail to 

reject the spatial model in the previous step, then the third step will be to test 

whether the SDM model can be simplified to the SAR or SEM model.  

The hypothesis tests for the third step are  

(4)                                               0: 0H    

(5)                                          0: 0H                                                                  

H0: γ = 0 examines whether the SDM model can be simplified to the SAR model, 

and H0: γ + ρβ = 0 examines whether it can be simplified to the SEM model 

(Elhorst, 2012). Both tests follow a chi-squared distribution. A rejection of both 

hypotheses suggests that the SDM model provides the best fit to the data. 

Conversely, a failure to reject (4) suggests that the SAR model best describes the 

data, which can be balanced against the results of the (robust) LM tests for the 

spatial autoregressive model. Similarly, a failure to reject (5) suggests that the 
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SEM model best describes the data – which can also be balanced against the 

results of the (robust) LM tests for the spatial error model. 

The last step is to estimate the spatial spillover effects of CO2 emission 

intensity. We follow LeSage and Pace (2009) by estimating the direct and indirect 

effects of the explanatory variables. Direct effects estimates measure the impact 

of changing an independent variable on the dependent variable of a spatial unit 

and the indirect effects estimates measure the impact of changing an independent 

variable in a particular unit on the dependent variable of all other units. 

 

5 ESTIMATION RESULTS 

The estimation results for the non-spatial panel data models are reported in 

Table 1. Columns (1) through (4) represent the estimation results of pooled OLS, 

spatial fixed effects only, time-period fixed effects only, and spatial and time-

period fixed effects, respectively.  

When using the classical LM tests, both the hypothesis of no spatially 

lagged dependent variable and the hypothesis of no spatially autocorrelated error 

term are strongly rejected at a one percent significance level with the exception of 

including both the spatial and time-period fixed effects. When using the robust 

LM tests, the hypothesis of no spatially lagged dependent variable is still rejected 

at a one percent significance level for each of the specifications. The hypothesis 

of no spatial autocorrelated error term is rejected at one percent significance level 
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when spatial fixed effects are included and five percent significance level when 

the time-period fixed effects are included. But this same hypothesis (robust LM 

spatial error) cannot be rejected for the pooled OLS. These results seem to imply 

that the SAR model is a more appropriate specification than the non-spatial model 

as we find fairly consistent evidence across all models to reject the null 

hypothesis of no spatial lag. We find mixed results to reject the hypothesis for 

spatially autocorrelated error term. 

TABLE 1. Estimation results of non-spatial panel data models 

 

To investigate the joint significance of the fixed effects and time-period 

fixed effects, we perform the LR tests. The null hypothesis that the spatial fixed 

Determinants Pooled OLS
Spatial Fixed 

effects

Time-period fixed 

effects

Spatial and time-

period fixed effects

-0.413*** -0.642*** -0.366*** -0.755***

(-23.038) (-21.822) (-10.382) (-7.466)

0.476** 0.427*** -0.255 0.199

(2.574) (3.737) (-0.743) (0.896)

-0.180*** -1.007*** -0.193*** -1.153***

(-13.119) (-5.328) (-14.163) (-5.610)

1.036*** 0.149 1.061*** 0.080

(16.188) (1.441) (17.068) (0.806)

-0.226*** 0.207*** -0.228*** 0.056

(-12.414) (5.032) (-10.362) (1.035)

5.683*** NA NA NA

(6.229)

σ
2 0.137 0.049 0.123 0.044

R
2 0.723 0.900 0.751 0.912

Log Like -251.420 55.585 -219.016 91.450

Sample 600 600 600 600

LM Spatial lag 94.862*** 60.1405*** 26.821*** 0.876

Robust LM Spatial lag 57.297*** 71.2093*** 32.183*** 7.692***

LM Spatial error 37.572*** 15.2978*** 5.624** 0.062

Robust LM Spatial error 0.007 26.3666*** 10.986*** 6.878***

PCGDP

EP

PD

RCC

TH

Intercept

Note: All variables are measured as natural logs. The symbols ***, ** and * denote a one, five and ten percent 

significance level, respectively. Numbers in the parentheses represent t-test values.
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effects are jointly insignificant is rejected at a one percent level (620.9317, with 

30 degrees of freedom, p < 0.01), and the null hypothesis that the time-period 

fixed effects are jointly insignificant is also rejected at a one percent level 

(71.7303, with 20 degrees of freedom, p < 0.01). These test results seem to justify 

the extension of the model with the two-way fixed effects model– i.e., include 

both the fixed effects and time-period fixed effects. 

We also conduct a Hausman test to further test the correct panel data 

specification between a fixed effects and random effects model. The Hausman test 

results (44.6832, with 11 degrees of freedom, p < 0.01) imply that the fixed 

effects model is the more appropriate specification. Table 2 gives the estimation 

results of CO2 emission intensity according to the three spatial specification panel 

data models. 

Since the Lagrange Multiplier test results suggest that the spatial models 

are a more appropriate specification than the non-spatial models, we will continue 

to test which spatial model offers the best fit for the data. We perform both the 

Wald test and LR test to test the hypothesis whether the SDM model could be 

simplified to the SAR model or SEM model. According to the Wald test result 

(105.233, with 5 degree freedom, p < 0.01) and LR test result (125.952, with 5 

degree freedom, p < 0.01), the null hypothesis (4) that the SDM model can be 

simplified to the SAR model is rejected at a one percent significance level. 

Similarly, the null hypothesis (5) that the SDM model can be simplified to a SEM 
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model is also rejected at a one percent significance level based on the Wald test 

result (117.640, with 5 degree freedom, p < 0.01) and LR test result (112.906, 

with 5 degree freedom, p < 0.01). These results imply that both the spatial lag 

model and spatial error model are rejected in favor of the spatial Durbin model. 

Therefore, we conduct a sensitivity analysis of the SDM model by comparing the 

estimation results to the SAR and SEM model (all models are estimated with both 

the fixed and time-period fixed effects).  

TABLE 2. Estimation results of spatial panel data models  

 

As can be gleaned from the estimated results in Table 2, the coefficients of 

independent variables are basically consistent with the theoretical expectations 

offered in section 2.1. Just focusing on the SDM coefficient estimates, an 

Determinants

PCGDP -0.640*** (-6.300) -0.749*** (-7.118) -0.519*** (-5.073)

EP 0.142 (0.639) 0.204 (0.888) 0.106 (0.491)

PD -1.146*** (-5.550) -1.165*** (-5.440) -1.282*** (-5.941)

RCC 0.124 (1.243) 0.083 (0.809) 0.257*** (2.624)

TH 0.073 (1.341) 0.054 (0.962) 0.150*** (2.748)

ρ 0.342*** (7.175) NA 0.106** (1.950)

λ NA 0.094* (1.658) NA

W*PCGDP NA NA -0.702*** (-8.247)

W*EP NA NA 0.203 (0.552)

W*PD NA NA 1.062*** (2.656)

W*RCC NA NA -0.343* (-1.802)

W*TH NA NA 0.275** (2.362)

σ
2 0.044 0.047 0.039

R
2 0.918 0.912 0.927

Sample 600 600 600

Log Like 84.973 91.496 147.949
Note: All variables are measured as natural logs. The symbols ***, ** and * denote a one, five and ten percent 

significance level, respectively. Numbers in the parentheses represent t-test values.

SAR SEM SDM
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interpretation of the coefficient on per-capita GDP is that a ten percent increase of 

per-capita GDP is associated with 5.19% decrease of the CO2 emission intensity 

(holding all else constant). An interpretation of the ratio of coal consumption to 

total energy consumption is that a ten percent decrease will lead to a 2.57% 

decrease in emission intensity. Similarly, the total length of highways coefficient 

implies that a ten percent increase will lead to 1.5% increase of CO2 emission 

intensity. The results also suggest that a ten percent increase in population density 

is associated with 12.82% decrease of the CO2 emission intensity, which implies 

that agglomeration effects are leading to an improvement in energy efficiency 

which in turn reduces emission intensity. Contrary to expectations, we do not find 

a significant relationship between energy prices and CO2 emission intensity, 

which implies that energy prices do not play a role in reducing CO2 emission 

intensity. A possible explanation for this lack of statistical significance is that the 

Chinese government subsidizes energy prices thereby keeping prices artificially 

below the market price.  

Following LeSage and Pace (2009), we estimate the direct and indirect 

effects to yield an interpretation of the spatial spillover effects. The direct and 

indirect effects of each explanatory variable are reported in Table 3. The 

difference between the direct effects in Table 3 and the coefficient estimates in 

Table 2 are due to the feedback effects that arise as a result of impacts passing 

through neighboring provinces and back to the provinces themselves. The 
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feedback effects include both the impacts from the spatially lagged dependent 

variable ( ij jtW Y ) and the impacts from the spatially lagged value of the 

explanatory variable itself ( ij jtW X  ). 

TABLE 3. Direct & Indirect effects of SDM model 

 

The results in Table 3 reveal that the direct effects of all the explanatory 

variables (with the exception of energy prices) are statistically significant, and 

three of the explanatory variables have significant indirect effects. The 

statistically significant coefficients on both the direct effect and indirect effect of 

per-capita GDP are negative which implies that the own-province per-capita GDP 

increases will reduce the CO2 emission intensity of both own province and 

neighboring provinces. The coefficients of both the direct effect and indirect 

effect of total length of highways are positive and significant, and the coefficients 

imply that an increase in own province highway construction leads to an increase 

Determinants

PCGDP -0.533*** (-5.412) -0.827*** (-7.594) -1.360*** (-9.626)

EP 0.105 (0.466) 0.231 (0.536) 0.336 (0.697)

PD -1.252*** (-5.738) 1.002** (2.278) -0.250 (-0.581)

RCC 0.247** (2.410) -0.353 (-1.728) -0.106 (-0.461)

TH 0.157*** (2.934) 0.310** (2.457) 0.467*** (3.463)

Note: All variables are measured as natural logs. The symbols ***, ** and * denote a one, five and 

ten percent significance level, respectively. Numbers in the parentheses represent t-test values.

Direct Effect Indirect Effect Total Effect
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of both own province and neighboring province CO2 emission intensity. The 

negative coefficient of direct effect and positive coefficient of indirect effect of 

population density imply that own-province population density increases will 

decrease the CO2 emission intensity of own province but increase the CO2 

emission intensity of neighboring provinces. 

 

6 CONCLUSION AND POLICY IMPLICATIONS 

In this paper, we analyzed the influence of economic activity, energy 

prices, population density, energy consumption structure, and transportation 

structure on CO2 emission intensity in China. We used spatial econometrics 

methods so as to avoid the potential coefficient bias from ignoring spatial 

autocorrelation as in OLS estimation. 

Our regression results suggest that: (1) per-capita GDP reduces CO2 

emission intensity, which implies that promoting the local economic 

development, may help to reduce CO2 emission intensity; (2) population density 

decreases the CO2 emission intensity, which suggests that population 

concentration, could improve the production efficiency and energy efficiency so 

as to decrease the CO2 emission intensity; (3) an increase in the ratio of coal 

consumption to total energy consumption significantly leads to a significant 

increase in the CO2 emission intensity; (4) an increase in the total length of 
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highways leads to an increase of the CO2 emission intensity; (5) energy prices in 

China have no significant effect on the CO2 emission intensity.  

Based on the analysis, we provide some policy suggestions that: (1) 

targeting an increase per capita GDP but weigh such targets with policies to 

reduce emission intensity since economic development can still be compatible 

CO2 emission mitigation; (2) increasing population density with population 

control to decrease emission intensity since population density leads to 

agglomeration effects; (3) encouraging the development of less carbon-intensive 

energy resources such as natural gas or renewables to replace the coal 

consumption; (4) improving governmental fuel efficiency standards to reduce 

emission intensity in the transportation sector; (5) reducing artificial price 

distortions so that the energy prices more accurately reflects the true market cost. 

The significance of the indirect effects suggest that the Chinese 

government should promote the sharing and exchange of information and 

technology across provinces, and develop appropriate policies to strengthen cross-

province development. 

This study suffers from some limitations including the problem of 

measurement error. Our measure of carbon dioxide emissions, which is consistent 

with the rest of literature, is based upon the consumption of energy, so it subjects 

to mismeasurement. An additional problem is that we specified a single equation, 

reduced-form model, not a structural model. Although these reduced-form models 
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are used fairly frequently in the energy literature, they can offer limited 

information for policy decisions because such models ignore issues such as inter-

fuel substitution, technical change, and changes in supply (Bhattacharyya, 2011). 

Further research may consider variables that indicate the likelihood of a 

province adopting cutbacks in energy emissions. Due to data limitations we did 

not explore this variable within this study. 
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