The Demand for Food Consumed at Home and Away from Home

By R. McFall Lamm, Jr.*

Abstract

Over the last 20 years, consumers have spent a declining portion of their income on food for consumption at home, while the share of income spent on meals purchased at restaurants, cafeterias, and fast-food chains has held constant. This article attempts to explain this phenomenon by estimating a three-equation translog system of quarterly consumer demand for food consumed at home, purchased meals, and nonfood items. An explicitly additive, nonlinear, nonhomothetic translog system is found to be the best representation. Results indicate that rising consumer incomes rather than changing relative prices are the principal reason consumers are eating away from home more often.

Keywords
Consumer food demand, translog system, dynamic model

A significant economic trend in recent decades is the declining share of consumer expenditures on food purchased for consumption at home. Per capita expenditures for at-home consumption fell steadily from 16.9 percent of all expenditures in 1960 to 13.2 percent in 1980. This drop occurred while the share of consumer expenditures on meals purchased at restaurants, cafeterias, and fast-food chains remained constant at about 4.0 percent. In contrast, the nonfood share of all consumer expenditures rose from 79.1 percent in 1960 to 82.8 percent in 1980. Hence, nonfood consumption has become more important relative to food consumption, and the consumption of purchased meals has become more important relative to food consumed at home.

Few researchers have attempted to explain why the budget share of food purchased for consumption at home has declined relative to away-from-home consumption. In their 1970 study, Houthakker and Taylor (7) did analyze the demand for food consumed at home and away from home, but, the recent systems work by Brown and Heeren (1), Christensen and Manser (3, 4), and Manser (9) focuses only on at-home food demand. Furthermore, these studies consider only annual consumption patterns. Although annual data can be used to explain why expenditures for food consumed at home declined relative to food purchased away from home, policymakers and forecasters are also interested in consumer demand over shorter periods.

In this article, I examine the nature of quarterly demand for purchased meals and for food consumed at home by using a three-equation model of consumer demand. I consider three aggregate goods: meals purchased away from home, food purchased for consumption at home, and nonfood items. The methodology used requires estimation of a family of competing translog demand functions. I find an explicitly additive, nonlinear, nonhomothetic form to be the best system representation. I then derive impact, interim, and total multiplier elasticities and review the implications of the results. My major conclusion is that rising consumer income is the primary variable that explains why the consumption of purchased meals has become more important relative to food consumed at home.

The Model

Christensen, Jorgenson, and Lau (2) proposed the translog utility function as a second-order approximation to allow tests of different assumptions normally imposed on consumer demand systems. The indirect form of the translog utility function is written as

\[\ln U = \alpha_0 + \sum \alpha_i p_i^* + \frac{1}{2} \sum \sum \beta_{ij} p_i^* p_j^* \tag{1} \]

Maximization of this equation subject to the budget constraint leads to "share" equations of the form
where \(w_i = p_i x_i / m \) (the budget share), \(p_i^* = \ln(p_i/m) \), \(p_i \) is price, \(x_i \) is consumption, \(m \) is total expenditure, and \(\alpha_i \), \(\beta_{ij} \), \(\psi_{ij} \), are parameters. Multiplying through each side by \(m/p \) gives demand equations which are neither additive nor homothetic.

Phillips (10), Manser (9), and other consumption analysts have criticized static demand systems because they neglect the influence of habit formation. This would seem to be a particularly important aspect of food consumption. Manser proposed a dynamic version of the indirect utility function to incorporate habit formation by defining the \(\alpha_i \) as a linear function of lagged consumption. This specification allows interaction between prices, total expenditures, and lagged consumption, and is written as

\[
\ln U_t = \phi_0 + \frac{1}{2} \sum_{i,j} \phi_{ij} x_{it}^2 - 1 \psi_{ij}
\]

It preserves the general characteristics of the translog approximation and yields budget equations of the form

\[
w_{it} = \frac{\alpha_i + \sum \beta_{ij} p_{it}^*}{\sum \phi_{ij} + \sum \delta_{ij} x_{it}^2 - 1} = \frac{1}{1 + \sum \beta_{ij} p_{it}^*} \]

where the normalization \(\sum \phi_{ij} + \sum \delta_{ij} x_{it}^2 - 1 - 1 \) is imposed to assure that budget shares sum to unity. Importantly, from these share equations (6), impact, interim, and total multipliers (or elasticities) can be derived straightforwardly. This property is crucial for interpreting the full implications of any set of dynamic demand functions.

Empirical Implementation

Because all the parameters of a \(k \) equation translog demand system can be derived from estimating any \(k - 1 \) equations and because the system variance-covariance matrix is singular, only the budget share equations for food consumed at home and for purchased meals need to be estimated. The stochastic system of interest is then

\[
\begin{align*}
\alpha_i + \sum \beta_{ij} p_{it}^* \quad & i = 1, \ldots, I \\
\sum \phi_{ij} + \sum \delta_{ij} x_{it}^2 - 1 \quad & i = 1, \ldots, I \\
\end{align*}
\]

where symmetry \((b_{ij} = b_{ji})\) and the normalizations, \(a_1 + a_2 + a_3 = -1 \) and \(\sum x_{it}^2 - 1 = 0 \), are imposed on the general translog form. Equation (5) is the budget share equation for food consumed at home, and equation (6) is the budget share equation for purchased meals. The subscripts 1, 2, and 3 denote food consumed at home, purchased meals, and nonfood items, respectively. Each equation represents a general, nonhomothetic, nonadditive utility function which allows for habit formation.

By the imposition of restrictions on equations in demand systems, special cases of the utility function are implied. For the indirect translog function, those cases of greatest interest include explicit additivity (imposed using \(b_{ij} = 0 \), \(i \neq j \)), homogeneity (imposed with \(\sum \delta_{ij} x_{it}^2 = 0 \)), and the absence of habit formation (introduced by setting \(d_i = 0 \)). As long as equations (5) and (6) can be estimated, these restrictions can be tested explicitly as nested maintained hypotheses. This is the approach Manser used when choosing among alternative models which are special cases of the general translog system.

In practice, it is difficult to estimate equations (5) and (6), the large number of parameters, nonlinearity, and the probability of collinearity between \(e_1 \) and \(e_2 \), complicate matters. Christensen, Jorgenson, and Lau estimated a three-equation translog system using Malinvaud's (8) maximum likelihood estimator. Christensen and Manser (3) and Manser (9) used the nonlinear, iterative Zellner (12) estimation procedure (which converges to maximum likelihood estimators) to estimate a four-equation translog system. Both these studies utilized annual data which generally contain fewer measurement errors than do the quarterly data I consider here and, consequently, they were easier to estimate.

Estimation Results

I attempted to estimate equations (5) and (6) using the nonlinear, iterative estimation technique proposed by Gallant (5). The estimation algorithm is contained as part of the Statistical Analysis System (11) and uses the modified Gauss-Newton iterative approach to solve for estimators. It allows restrictions to be imposed through parameter definition. Even with a large range of possible starting values, conver-
gence could not be attained for the general equations. However, attempts to estimate most of the restricted forms of the system were successful.

Table 1 presents estimation results. On the basis of the asymptotic standard errors, most parameters are highly significant statistically and of appropriate magnitude. The calculated error sums of squares for each equation differ significantly. The explicit additivity restriction with habit formation gives the best fit for both equations, the error sums of squares are 0.32×10^{-5} and 0.41×10^{-5}, respectively. Imposing homogeneity with habit formation gives the second best fit with error sums of squares of 2.58×10^{-5} and 0.69×10^{-6}.

4 Data on expenditure shares, prices (measured by the appropriate expenditure class deflator), and total expenditures are from the U.S. Department of Commerce. One can obtain consumption series by dividing total expenditures into each class by the expenditure class deflator. The sample consists of 83 observations covering the period from 1960 I to 1980 III. The food-consumed-at-home variables are defined as the Commerce food-consumed-off-premises series, whereas the purchased meals variable is defined as the Commerce food consumed on-premises series.

5 Autocorrelation may be an important, but neglected, consideration.

Given explicit additivity and habit formation, one can test whether homogeneity and no habit formation are suitable restrictions using likelihood ratios. Table 2 presents the appropriate chi-square test statistics and the critical chi-square values at the 99-percent confidence level. In both instances, further restriction of the explicit additive form with habit formation is rejected with more than 99-percent confidence. It is also possible to test whether additional restrictions on the homogeneous system with habit formation are acceptable. Again, the imposition of no habit formation, explicit additivity, and explicit additivity without habit formation are rejected with more than 99-percent confidence.

This process reduces the model selection problem to a choice between the explicit additive system with habit formation and the purely homogeneous system with habit formation. Based on the error sum of squares, the former is preferred on the basis of fit. More information can be generated if dynamic simulations of the system are performed and if the resulting percentage root mean square errors (RMSE) and mean absolute errors (MAE) are computed.

Table 1—Nonlinear, iterative Zellner estimates for various forms of the indirect translog utility function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explicit additivity, habit formation</th>
<th>Explicit additivity, habit formation, homogeneity</th>
<th>Explicit additivity, homogeneity</th>
<th>Homogeneity, habit formation</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>-0.663 (0.071)</td>
<td>-0.319 (0.011)</td>
<td>-0.146 (0.001)</td>
<td>-0.302 (0.010)</td>
<td>-0.150 (0.001)</td>
</tr>
<tr>
<td>a_2</td>
<td>-1.95 (0.023)</td>
<td>-0.036 (0.001)</td>
<td>-0.040 (0.000)</td>
<td>-0.018 (0.002)</td>
<td>-0.042 (0.000)</td>
</tr>
<tr>
<td>d_1</td>
<td>-118 10^{-3} (0.016 10^{-3})</td>
<td>379 10^{-3} (0.024 10^{-3})</td>
<td>336 10^{-3} (0.022 10^{-3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2</td>
<td>-164 10^{-3} (0.029 10^{-3})</td>
<td>-0.032 10^{-3} (0.010 10^{-3})</td>
<td>-154 10^{-3} (0.019 10^{-3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_{11}</td>
<td>-0.78 (0.008)</td>
<td></td>
<td>0.061 (0.009)</td>
<td>0.086 (0.011)</td>
<td></td>
</tr>
<tr>
<td>b_{12}</td>
<td></td>
<td></td>
<td>-0.016 (0.009)</td>
<td>0.014 (0.003)</td>
<td></td>
</tr>
<tr>
<td>b_{22}</td>
<td>-0.24 (0.003)</td>
<td></td>
<td>0.027 (0.003)</td>
<td>0.017 (0.002)</td>
<td></td>
</tr>
<tr>
<td>b_{33}</td>
<td>0.054 (0.022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σe_{1t}^2</td>
<td>32×10^{-5}</td>
<td>3.53×10^{-5}</td>
<td>12.20×10^{-5}</td>
<td>2.58×10^{-5}</td>
<td>6.89×10^{-5}</td>
</tr>
<tr>
<td>Σe_{2t}^2</td>
<td>41×10^{-6}</td>
<td>1.47×10^{-6}</td>
<td>1.73×10^{-6}</td>
<td>6.9×10^{-6}</td>
<td>2.89×10^{-6}</td>
</tr>
</tbody>
</table>

Blanks indicate not applicable.

1 Asymptotic standard errors are presented in parentheses. Symmetry is imposed for all models. For additivity, $b_{12} = 0$, for homogeneity, $b_{11} + b_{12} + b_{13} = 0$ and $b_{12} + b_{22} + b_{23} = 0$ ($b_{11} + b_{12}$ replaces b_{13} and $b_{12} + b_{22}$ replaces b_{23} in estimation), and the absence of habit formation requires $d_1 = d_2 = 0$.
Table 2—Test statistics for alternative restrictions on the general translog form

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Degrees of freedom</th>
<th>χ^2</th>
<th>$\chi^2 0.005$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given explicit additivity and habit formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneity</td>
<td>3</td>
<td>295.8</td>
<td>12.84</td>
</tr>
<tr>
<td>Homogeneity, no habit formation</td>
<td>5</td>
<td>421.9</td>
<td>16.75</td>
</tr>
<tr>
<td>Given homogeneity and habit formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No habit formation</td>
<td>2</td>
<td>148.0</td>
<td>10.60</td>
</tr>
<tr>
<td>Explicit additivity</td>
<td>3</td>
<td>81.5</td>
<td>12.84</td>
</tr>
<tr>
<td>Explicit additivity, no habit formation</td>
<td>5</td>
<td>207.7</td>
<td>16.75</td>
</tr>
</tbody>
</table>

Table 3—Comparisons of fit: Explicit additivity with habit formation versus homogeneity with habit formation

<table>
<thead>
<tr>
<th>Budget share</th>
<th>Percent</th>
<th>Explicit additivity</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>MAE</td>
<td>RMSE</td>
</tr>
<tr>
<td>Food consumed at home</td>
<td>121</td>
<td>0.91</td>
<td>329</td>
</tr>
<tr>
<td>Purchased meals</td>
<td>144</td>
<td>89</td>
<td>197</td>
</tr>
<tr>
<td>Nonfood items</td>
<td>22</td>
<td>16</td>
<td>62</td>
</tr>
</tbody>
</table>

the resulting summary statistics. For all three budget shares, the explicit additive form with habit formation performs best in terms of predictive ability. Hence, given a choice between competing restrictions, the imposition of explicit additivity is more reasonable.

Implications

Assuming explicit additivity with habit formation as the best available translog approximation to consumer preferences, exploring the implications of the estimates is worthwhile. It can be shown that the direct price and expenditure elasticities take the form

$$\frac{p_i \partial x_i}{x_i \partial p_i} = -1 + \frac{b_i}{w_i} \frac{1}{1 + \Sigma b_j p_j^*}, \quad i = 1, \ldots, I$$ \hspace{1cm} (7)

$$\frac{m_t \partial x_{it}}{x_{it} \partial m_t} = \frac{-b_{it}}{w_{it}} \frac{1}{1 + \Sigma b_j p_j^*}, \quad i = 1, \ldots, I$$ \hspace{1cm} (8)

where

$$\eta_{it} = \frac{p_{it} \partial x_{it}}{x_{it} \partial p_{it}} = \frac{-b_{it}}{w_{it}} \frac{1}{1 + \Sigma b_j p_j^*}$$ \hspace{1cm} (9)

$$\eta_{int} = \frac{m_{it} \partial x_{it}}{x_{it} \partial m_{it}} = \frac{-b_{it}}{w_{it}} \frac{1}{1 + \Sigma b_j p_j^*}$$ \hspace{1cm} (10)

for the demand for food consumed at home and for purchased meals. In contrast, the demand for nonfood items is both price and expenditure-elastic.

The results are generally consistent with prior expectations, the demand for food being traditionally assumed to be price- and income-elastic. But, it is usually presumed that the demand for purchased meals is more price- and income-elastic than the demand for food consumed at home, purchased meals are less necessary and more of a luxury than meals at home. For this reason, the initial findings are somewhat puzzling. When the dynamic implications of the model are fully considered, however, one finds the demand for purchased meals is more elastic with respect to price and to total expenditure than is the demand for food consumed at home.

To show the dynamic implications of the model, we must solve equations (5) and (6) for x_t using $w_t = p_t x_t$ and we must substitute the resulting values sequentially for x_{it-j}. Computing the price and income elasticities at each stage of this process with respect to changes $t-j$ periods ago leads to the general expressions

$$\frac{p_{it-n} \partial x_{it}}{x_{it} \partial p_{it-n}} = \left(\prod_{k=0}^{n} \frac{d_{it} x_{it} - k - 1}{w_{it-k} (-1 + \Sigma b_j p_j^{*})} \right)$$ \hspace{1cm} (9)

$$\frac{m_{it-n} \partial x_{it}}{x_{it} \partial m_{it-n}} = \left(\prod_{k=0}^{n} \frac{d_{it} x_{it} - k - 1}{w_{it-k} (-1 + \Sigma b_j p_j^{*})} \right)$$ \hspace{1cm} (10)

A mathematical appendix illustrating the derivation of these expressions as well as equations (9) and (10) is available from the author.
Table 4—Direct price and expenditure elasticities, selected years

<table>
<thead>
<tr>
<th>Year</th>
<th>Food consumed at home</th>
<th>Purchased meals</th>
<th>Nonfood items</th>
<th>Food consumed at home</th>
<th>Purchased meals</th>
<th>Nonfood items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price elasticity</td>
<td></td>
<td></td>
<td>Expenditure elasticity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>-0.38</td>
<td>-0.10</td>
<td>-1.02</td>
<td>0.34</td>
<td>0.11</td>
<td>1.03</td>
</tr>
<tr>
<td>1965</td>
<td>-0.30</td>
<td>-0.11</td>
<td>-1.02</td>
<td>0.25</td>
<td>0.13</td>
<td>1.03</td>
</tr>
<tr>
<td>1970</td>
<td>-0.26</td>
<td>-0.08</td>
<td>-1.02</td>
<td>0.21</td>
<td>0.10</td>
<td>1.03</td>
</tr>
<tr>
<td>1975</td>
<td>-0.25</td>
<td>-0.13</td>
<td>-1.02</td>
<td>0.20</td>
<td>0.14</td>
<td>1.03</td>
</tr>
<tr>
<td>1980</td>
<td>-0.16</td>
<td>-0.11</td>
<td>-1.02</td>
<td>0.11</td>
<td>0.12</td>
<td>1.03</td>
</tr>
</tbody>
</table>

These are the interim elasticities for price and total expenditures, respectively. Expression (9) gives the percentage impact on consumption this quarter resulting from a 1-percent increase in price n quarters ago. Similarly, expression (10) gives the impact on consumption this quarter resulting from a 1-percent increase in total expenditures n quarters ago.

Table 5 presents calculated, mean sample, interim elasticities for food consumed at home, purchased meals, and nonfood items over 8 quarters as well as the total multiplier elasticities obtained by summing all interim multipliers over 20 quarters (after which additional quantity impacts converge to approximately zero). The total multiplier elasticities represent the ultimate effect on consumption of a 1-percent increase in prices or in total expenditures many quarters ago. Clearly, the longrun demand for food consumed at home is less price- and expenditure-elastic than is the demand for purchased meals. Total price and expenditure elasticities are -0.630 and 0.507 for food consumed at home and -0.701 and 0.995 for purchased meals. This finding is consistent with traditional theory. In addition, the longrun demand for nonfood items is more elastic with respect to both price and expenditure.

The evidence presented in Table 5 further suggests that the effects of changes in own price or expenditures quickly affect food consumption at home, whereas the effects of changes in own price or expenditures for purchased meals are felt only after many quarters. Thus, over two or three quarters, increases in disposable income will have a greater effect on food consumed at home than on purchased meals. Similarly, price changes in grocery stores have a larger shortrun impact on food consumption at home, substantially more than the effect of changes in purchased meal prices on food consumption away from home. This may simply reflect the fact that lunches during work days or food consumed while traveling must generally be purchased. In the long run, however, adjustment occurs, and the amount of food purchased in grocery stores for home consumption is less sensitive than is the consumption of purchased meals to price and expenditure changes.

Conclusion

I have fitted indirect translog budget share equations for a three-good aggregate system using quarterly data. An explicitly additive, dynamic form provides the best approxima-
Shortrun demand for food consumed at home and for purchased meals is highly inelastic, whereas shortrun demand for nonfood items is elastic. The longrun demand both for foods consumed at home and for purchased meals is determined to be inelastic, but less so than the shortrun demand. The demand for food consumed at home is also somewhat more inelastic than that for purchased meals, which confirms prior expectations.

Prices for food consumed at home and for purchased meals have increased at similar rates over the last two decades, implying little relative price change. However, per capita consumer expenditures on all items increased about 13 percent per year over the same period. Thus, rising consumer incomes are the primary reason that consumption of purchased meals has increased relative to consumption of food at home. Consequently, the purchased meals share of the consumer's budget has substantially increased relative to the share of consumers' at-home food expenditures.

These findings have important implications for the food-retailing industry as well as for the restaurant and fast-food trade. Rising consumer incomes and increased expenditures signal a continuation of the trend toward consumption of purchased meals relative to at home food consumption. Recent efforts by retail food chains to offer on-premises food services in grocery stores (for example, delicatessens, instore fast-food service, and small restaurants) suggest industry recognition of this fact.

Other developments suggest an acceleration towards increased consumption of purchased meals. In particular, recent policy proposals to reduce minimum wages for individuals under 18 would benefit restaurants, cafeterias, and the fast-food trade more than it would benefit food retailers. Grocery chains rely more on higher wage, unionized labor, whereas most workers in restaurants, cafeterias, and fast-food establishments receive the minimum wage. Hence, new legislation would likely lower relative prices for purchased meals as reduced labor costs are passed through to consumers. This would have a longrun positive effect on the consumption of purchased meals.

References

