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Abstract
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The Timing Option in Futures Contracts and Price Behavior at Contract M aturity

Jana Hranaiova and William G. Tomek

Net benefits of using a futures market as a risk management tool depend on
hedging effectiveness. A perfect hedge can be completed if the futures price converges
exactly to the spot price at maturity, i.e., the basis convergesto zero. In practice,
complexities of delivery specifications of futures contracts as well as arbitrage costs
cause imperfect convergence. Delivery options embedded in contract specification
introduce uncertainty about the relevant spot price to which the futures contract will
converge at maturity, resulting in basisrisk. Variability of the basis at maturity is a cost
to hedgers and negatively influences hedging demand. Thus, from the point of view of an
exchange as well as that of risk management demand, it isimportant to understand price
and basis behavior at contract maturity.

This paper analyzes the effect of the timing option on basis behavior. The option
permits delivery any time during the expiration month. Timing option’s value on the first
delivery day is estimated for the corn futures contract traded at the Chicago Board of
Trade (CBOT) for all expiration months during 1989-97. We show that the timing option
has a positive value even in the absence of convenience yield, contrary to the result of
Boyle. When convenience yield is incorporated in the estimation procedure, the value of
the option increases dramatically. The effect of the timing option on the basis is
examined.

The rest of the paper is organized as follows. First, selected literature on the

timing option and basis behavior is reviewed. Then the model and data are presented,



followed by empirical results. Finally conclusions are drawn, and suggestions made for
future research.
Timing Option and Basis Behavior
Timing Option

A futures contract creates an obligation to deliver (if short) or accept delivery (if
long) of the underlying asset at time T for a price agreed upon at time t<T. Models of
futures prices ordinarily assume the expiration date T to be fixed. Under the assumption
of perfect frictionless markets, exact convergence of the futures and spot prices occurs at
t =T. Inreality, convergence is not perfect. First, for many contracts, no single
expiration day exists. Shorts have an option to deliver any time during the delivery
month, the so-called timing option. Second, many futures contracts' specifications
include other options pertaining to quality, location, and time of delivery. The quality
option gives the short the right to deliver non-par assets in place of the par asset at
specified discounts or premia (Margrabe, Manaster and Gay). The location option allows
delivery at various locations (Pirrong et al.). The wild card and end-of-the month
options, present in the T-bond futures, give added flexibilities to the time of delivery
(Hemler). Since the short will choose the cheapest asset and location for delivery, the
futures price will converge to the price of this asset. If relative prices of deliverable
assets and locations vary, basis risk arises as at time t uncertainty exists about the
cheapest to deliver asset and location at time T.

The timing option embedded in futures contracts gives the seller choices: while
trading persists, she/he can offset, deliver, or defer the choice. Boyle and Silk come to

different conclusions in their analyses of the timing option. Boyle argues that the timing



option has no value in the absence of quality and/or location options. With only one
deliverable asset and one deliverable location, the asset will be delivered at the earliest
date possible. Only the interaction effect of the timing option with quality/location
option provides benefits to delaying delivery. Boyle assumes no dividend and no service
flow (convenience yield).

Silk develops a model more suitable for agricultural commodity contracts. He
assumes that there are costs as well as benefits in terms of convenience yield from
holding the spot commodity. Both of them are taken to be constant and known when the
futures position isinitiated. His analysis implies that all deliveries occur immediately at
the beginning of the delivery month, t=0, or on the last delivery day, t=T. The choice
depends on the value of the convenience yield relative to the storage and opportunity
costs of holding the commodity. Thus, convenience yield is the only source of potentia
benefit from delivering later.

Basis

Basis is defined here as the difference between the futures and the spot prices and
as noted above, the lack of exact convergence implies basis risk. The larger the basis risk
the lower the hedging demand, ceteris paribus. Heifner and Peck and Williams analyze
hedging effectiveness in terms of the predictability of the change in the basis using the
basis at the time of hedge initiation. Heifner evaluates gains from basing storage
decisions on predicted basis changes. Peck and Williams focus on the effect of delivery
timing during the expiration month on basis convergence. They find the effect

insignificant in predicting the basis change.



Model
Timing Option Model

The model used in our analysis assumes perfectly competitive markets, no
transaction costs, and no taxes. Aswe are interested in the value of the timing option on
the first delivery date, the no transactions costs assumption is perhaps a reasonable
abstraction. Most small hedgers offset their positions prior to the expiration month. Thus,
traders who potentially might make delivery are likely those with low transaction costs.
The other two assumptions are widely used in the theoretical as well as empirical
literature on option pricing, but it is true that futures markets become more concentrated
asthe last day of trading approaches.

In this paper, the futures contract is assumed to have a timing option where no
deliveries are allowed after the last trading day.* No quality, location, or other timing
options are present in the contract. The delivery monthrunsfromt=0tot =T, where T
represents the last day of trading. Let F(t) be the price at day t of the currently deliverable
futures contract and S(t) the spot price of the underlying asset at time t. Every day during
the delivery month, the short has an option to deliver, offset, or hold the futures position
open, and makes a decision based on maximizing the value of hig’her position. Thus, the
value of the option at any time t equals

Max{ F (t) — S(t),0] + CF(t),
where F(t) isthe price of the currently deliverable futures contract, S(t) is the spot price

of the underlying asset, both at day t and CF(t) is the cash flow to the short from marking

! Actual delivery can occur until the last day of the delivery month. The price for deliveries after trading
stops is the futures price of the last trading day.



to market. The timing option has a character of an American put option on the underlying
spot with a stochastic strike price equal to the futures price.

Note, the discrete nature and the implicit institutional structure of our timing
option model make it possible for the futures price to exceed the spot price during the
delivery month, even in the absence of convenience yield. The usual arbitrage argument
relies on the possibility to buy spot, sell futures and deliver immediately. The strategy
would yield a positive arbitrage profit if F(t) > S(t). Our implicit institutional framework
prevents arbitrage using this strategy. A futures position is established at the beginning of
the day t, and can only be closed by delivery at the end of the day t. Thus, in addition to
the difference F(t)-S(t), arandom cash flow occurs. The usua arbitrage strategy does not
yield a certain profit.

The spot price is assumed to follow a continuous stochastic process of the form

dS(t) = u [et + o [aW(t)
where dS(t) denotes a change in spot price during a (infinitesimally small) time increment
dt and dW(t) is a Wiener process with zero mean and variance dt. 4 and o arethe
diffusion drift and volatility parameters respectively.? As the probability distribution of
the geometric Brownian motion describing the spot price is lognormal, a binomial
approximation to the lognormal distribution can be applied to value the American option.

First, given the initial spot price and volatility, a binomial tree for the spot priceis
generated. Next, the futures price tree is constructed such that the value of the futures
contract at every node is zero. Finaly, the option value is estimated by backward

induction, checking every state of the world in every time period for optimal early

2 The spot price can have seasonal behavior, but thisis not explicitly modeled in our paper.



exercise. A martingale pricing approach is used implying risk neutral evaluation. The
risk-free interest rate, used in calculating present values in the binomial lattice, is
assumed constant for the duration of each individual contract month, a reasonable
assumption given the short horizon. Asaresult, the binomial lattice recombines (see
Appendix A).

No convenience yield: In the first approach, convenience yield isignored in the
estimation of the timing option. The up and down factors for the binomial tree, U and D
respectively, are determined as

U= e(r—o.staz)mmmm and D= e(r—o.smrz)m—ath

wherer istherisklessinterest rate, o denotes volatility and h is the time increment here
chosen to be one day, h =1. The value of the timing option is obtained for the first
delivery day, t = 0. This approach separates the pure value of the choice of timing the
delivery from that derived from the convenience yield.

Boyle argues that timing option without convenience yield and without any other
delivery options present does not have a positive value. However, his analysisis valid for
forward contracts only, as marking to market isignored. He justifies his approach by the
result that forward and futures contracts are equivalent under deterministic interest rates
(Jarrow and Oldfield, 1981). However, this result is only valid for futures contracts
absent timing or any other delivery options. Jarrow and Oldfield (1988) show that a
futures price represents the price of an asset with a deteriorating present value and early
exercise may be optimal.

Implicit Convenience Yield: In the second approach, convenience yield is

estimated from the market data by inversion. The theoretical futures price with



convenience yield equal to zero is compared to the observed futures price. By adjusting
the value of the convenience yield in the tree generating process, the theoretical futures
price that closely approximates the observed market price is arrived at iteratively®. The
spot price tree resulting in this futures price is used to estimate the timing option value on
the first delivery date. The up and down factors for this approach are

U= e(r—y—O.SBZ)EEHUEVE and D= e(r—y—O.SBZ)ED—UE}/E

wherey isthe proportional convenience yield. The estimates now represent the joint
effect of the convenience yield and the option of timing the delivery (see Appendix B).
Basis Model

As noted earlier, theoretical models of futures prices assume a single expiration
day T and perfect convergence of the futures and spot prices on this date. For any datet <
T , the futures price in perfect and frictionless markets equals

F(t,T) =S(t) &0,
where c is storage cost, and F(t,T), S(t), r and y are as defined above. Thisis aresult of a
cash-and-carry no arbitrage argument. The timing option adds a value to the short and
resultsin alower futures price:
F(t,T) = S(t) @90 +TO(t) ,

where TO(t) isthe value at timet of the timing option. Thus, basis at timet isafunction
of the interest rate, convenience yield, storage cost, time to maturity and the timing
option

FAT) _ QYT TO(t)
S(t) S(t)

% Note, convenienceyield is estimated residually and may capture other effects due to possible
mi sspecification of the model. At a minimum, storage costs are ignored.



The following model for the basisis estimated by OLS,
_ 4 TO
LnB = B, + Zizlai D, + Ban(E) + B,FS+ B.IntRate+ e,

where LnB isthe log of the basis, IntRate is the 90-day T-hill rate, FSisthe spread
between the price of the currently deliverable futures contract and that of the next nearby
onday t and isa proxy for carrying charges, and TO/S denotes the estimated timing
option as a proportion of the spot price. Inturn, TO is defined using the values of the
timing option without and with convenience yield. Dy’ s are contract month dummies with
December as a reference month. Storage costs, other than interest rates, are not included
in the regression, but they are likely to have low variation within the sample period. The
same model is also fitted as a linear equation, with observed basis as a function of TO/S.
Data

The value of the timing option is estimated for the corn futures contract traded at
the CBOT. Daily data are used for each expiration month (March, May, July, September
and December) in 1989 to 1997. The years before 1989 are influenced heavily by price
support programs and substantial government stocks and are excluded from the analysis.
Futures prices are the daily settlement prices. Cash prices are those reported for the
Chicago terminal market. The 90 day T-hill rates obtained from CRSP database are used
as risk-free rates. The number of trading days in individual delivery months ranges from
12 tol6.

Astheinitial spot price, martingale probabilities and the up and down factors are
the only lattice parameters needed to price an option under risk neutral valuation, just the
initial spot price, riskless rate and volatility need to be known for the estimation method.

The volatility for each contract month is estimated as a sample variance of the log of spot
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price returns, with the number of sample observations equal to the number of trading
days in individual expiration months. This approach is equivalent to assuming perfect
foresight. Martingale equivalent probabilities for alognormal distribution are equal to
0.5 (Jarrow and Turnbull).
Empirical Results

The value of the timing option without convenience yield averaged 0.26 cent over
the years 1989-97, ranging from zero to 0.7 cent (Table 1). This constitutes just 0.1% of
the average futures price but 4% of the average basis, both as observed on the first
delivery day. On average, the option has the lowest value for the expiration months of
July and September prior to the new harvest (Figure 1). In July, prices are especialy

Table 1. Timing option with no convenienceyield (in cents)®

Year 89 90 91 92 93 94 95 96 97

Month

March 0.8 0.6 0.3 0.3 0.3 0.2 0.5 0.4 0
May 0.7 0.6 0.4 0.2 0.05 0 0.5 0.2 0.1
July 0 04 0.2 0.2 0 0 0.4 0 0

September 0.4 0.3 0.2 0.04 0.1 0 0.1 0 0.2
December 0.5 0.4 0.2 0.1 0.2 0.3 0.4 0.4 0.3
a. Values are estimated for thefirst delivery day.

sensitive to changing information about the expected harvest and are characterized by the
highest volatility. Asvega (dP/do ) for an option is positive, where P is the value of a
put option, values of the timing option should increase during the months with high price
volatility. However, corn prices are typicaly at their highest levelsin July. The effect of
the high prices through the negative delta of a put option (dP/0S) offsets the effect of

the positive vega, resulting in low option values in July and September.
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Figurel

Timing option withoutconvenience yield
(seasonal fluctuation)

cents

Mar M ay Jul Sep Dec

contract month

Asindicated in Table 2, the value of the timing option increases dramatically with
convenience yield incorporated in the estimation procedure. The average value is 5.7
cents, representing 2% of the futures price, but this option value represents alarge
proportion of the basis, 92% on average.

Table 2: Timing option with convenience yield (in cents)®

Year 89 90 91 92 93 94 95 96 97
Month
March 6.5 4.3 1.6 4.2 1.6 1.9 4.3 5.9 13.9
May 10.1 9.9 2.4 0.9 3.3 3.9 3.6 20.8 9.6
July 7.1 10.9 3.8 0.1 8.5 7.1 1.5 27.1 9.8

September 0.3 0.0 4.1 0.0 7.5 7.3 18.6 0.0 0.1
December 5.6 0.8 18 6.3 6.4 3.0 49 4.1 29
a. Values are estimated for thefirst delivery day.

The combined effect of the vega and delta of the timing option is reversed by the
effect of a convenience yield, and consequently, on average the timing option value is
largest in July. Inits traditional interpretation, as a value to merchants of holding the spot
commodity, convenience yield increases with decreasing aggregate stocks (Telser).

Beginning stocks are lowest on September 1, but September is a transition month to the
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new crop when stocks will increase. December is the first month with the new crop fully
in storage. As an increasing function of convenience yield, the timing option with
convenience yield is lowest in December and highest in July (Figure 2).

Figure2

Timing option with convenience yield
(seasonal fluctuations)

cents

0.0

Mar May Jul Sep Dec
contract month

Basis

Basisis calculated as the ratio of the futures price of the currently deliverable
contract and the spot price on the first delivery day. Over years 1989-97, the basis
averaged 2.7 percent, ranging from 0.1 percent to 7.9 percent. Results presented in Table
3 aswell as Figure 3illustrate, that the basis is lowest in December and rises over the

Table 3. Basison thefirst delivery day (in percent)®

Month March May July September December

Y ear

1989 2.7 4.2 3.0 0.1 2.9
1990 2.2 39 4.1 7.9 0.8
1991 10 13 2.1 2.1 11
1992 19 0.7 0.4 0.1 3.6
1993 12 19 4.3 39 2.7
1994 10 18 3.3 39 19
1995 2.3 18 0.9 7.1 18
1996 17 4.6 55 7.2 19
1997 51 3.6 4.6 0.1 14

a. Basis= F(t,T)/St)-1 and is calcul ated for the first delivery day.
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crop year. On average, basis convergence is worst in September, the transition month and

best in December, the first month with full new crop in storage.

Figure3
Basis on 1st delivery day
(monthly average)
4.0
3.0
<
(4]
© 207 - - -
[
o
1 O e
0.0
Mar May Jul Sep Dec
contract month
Basis behavior

The estimated option values, obtained above, are used in regression models of
basis behavior. These models are fitted to the data for the five delivery months in each of
the years 1989 through 1997 using ordinary least squares (Tables 4 and 5). Since the
basis is measured on the first day of the delivery month, the models help explain why the
degree of convergence up to this point can vary from one delivery month to the next and
from year to year.

The following conclusions can be drawn from the regression results. First, as
measured by R?, the explanatory power of the models is modest, but compares favorably
with other attempts to model basis behavior at or near contract maturity (Leuthold). It
perhaps should be noted that the R? coefficients for the linear and logarithmic models are
not directly comparable, because the dependent variables differ in the two equations.

Given that the costs of arbitrage (making and taking delivery) are important, it seems

14



likely that any model of basis behavior at contract maturity will have a large random

component.

Table 4. Basis behavior using timing option without convenienceyield

Log mode Linear modd
Coefficient Coefficient Coefficient Coefficient
(t-stat) (t-stat) (t-stat) (t-stat)

Constant -5.851 (-5.3) -5.705 (-5.4) 0.014 (1.4) 0.015 (1.6)
D1 (Mar) -0.085 (0.2) 0.001 (0.2)

D2 (May) -0.046 (0.1) 0.001 (0.2)

D3 (Jul) -0.060 (-1.1) - 0.006 (-0.6)

D4 (Sep) 0.729 (-1.5) 0.007 (0.8)

Futures Spread -5.279 (-1.2) -3.779 (-1.0) - 0.186 (-2.6) -0.168 (-2.5)
Interest Rate 14.475 (1.5) 13.644 (1.4) 0.361 (1.6) 0.356 (1.6)
Timing Option -0.182 (-1.8) -0.131 (-1.4) -5.905 (-1.1) -5.698 (-1.2)
R? 24% 21% 36% 32%

Second, the measure of the timing option value with convenience yield increases

the explanatory power of the models and reverses the sign of the coefficient of this

variable. Using the broader definition, the timing option effect is positively related to the

size of the basis; the larger the value of the timing option, the larger the initial basis,

ceteris paribus.

Third, the futures spread coefficient is consistently negative across the various

models. In the logarithmic models, which are consistent with the underlying model of

price behavior, using the timing option value with convenience yield has the effect of

increasing the absolute size of the coefficient of the futures spread as well asitst-ratio

relative to using the timing option value without convenience yield. The analogous

change does not occur in the linear equations.

Fourth, the interest rate coefficient is consistently positive, as suggested by

theory, though the t-ratios typically range between one or two. In general, the dummy
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variables for the delivery months are statistically unimportant. The other variablesin the
model apparently are successful in capturing the “seasona” behavior of the basis.

Table 5: Basis behavior using timing option with convenience yield

Log modd Linear modd
Coefficient Coefficient Coefficient Coefficient
(t-stat) (t-stat) (t-stat) (t-stat)

Constant -3.405 (-5.1) -3.533 (-6.2) 0.007 (0.8) 0.009 (1.2)
D1 (Mar) -0.057 (0.1) -0.001 (-0.2)

D2 (May) -0.040 (-0.1) -0.001 (-0.2)

D3 (Jul) - 0.303 (-0.6) - 0.004 (0.7)

D4 (Sep) -0.153 (-0.3) 0.011 (1.7)

Interest Rate 6.889 (1.5) 7.172 (0.8) 0.127 (1.0) 0.140 (1.2)
Futures Spread - 8.817 (-2.3) -7.632 (-2.4) -0.131 (-2.3)  -0.099 (-1.5)
Timing Option 0.163 (2.1) -0.166 (2.6) 0.648 (4.7) 0.001 (2.7)
R? 26% 25% 58% 50%

These results suggest that measuring the value of the timing option contained in
agricultural futures contracts can help explain the variability of the basis at contract
maturity. Since the option value has a seasonal pattern, the basis at contract maturity also
has a seasonal pattern.

Concluding Remarks

The value of the timing option in CBOT corn futures contract is estimated for all
expiration months during years 1989-97. Estimates show that the value of the timing
option without convenience yield averaged 0.26 cent per bushel, representing 0.1% of the
futures price and 4% of the basis. The option value increases when convenience yield is
incorporated in the estimation procedure. The value of the timing option then averages
5.7 cents per bushel, and represents 2% of the futures price and 92% of the basis.

The timing option has positive value even without taking account of convenience
yield, i.e., it may be optimal to delay delivery even in the absence of convenience

(dividend) yield and other delivery options. This result highlights the importance of
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taking institutional arrangements into account. Namely, Boyl€e' sintuition that timing
option is worthless in the absence of convenience yield and/or other delivery options
ignores the marking to market feature of the futures markets. The daily marking to
market cash flows may cause forward and futures contracts with the timing option to be
different even under constant interest rates. As the futures price represents the price of a
deteriorating asset, it may be optimal to delay delivery.

The timing option values without convenience yield is lowest during the months
of July and September. These months, especialy July, are characterized by the highest
price levels as well as by relatively high price volatility and demonstrate the dominating
effect of the delta over the vega effect of the put option in the corn futures contract. The
combined delta and vega effect is, however, reversed by the effect of convenience yield.
When convenience yield isincorporated in the estimation, values of the timing option
attain their highest levels in the month with the lowest inventory levels and decline as
aggregate stocks grow. Thisis aresult of convenience yield being a decreasing function
of inventory levels and the timing option value being an increasing function of the
convenience yield.

The timing option has low explanatory power for basis variability when estimates
without convenience yield are used. With convenience yield incorporated, a percent
increase in the timing option value increases the proportional basis by 16%. Thus, timing
option for commodities with convenience yield appears to be a significant factor in basis
non-convergence.

Additional research should focus on incorporating other delivery optionsin the

analysis of hedging effectiveness as well as analyzing other aspects of price and delivery
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behavior at contract maturity. The quality and location options should be included in a
comprehensive study of delivery options and their effects on hedging effectiveness.
While the literature has treated different options additively, present analysis offers a way
to capture the joint effect of al three options by interacting the location and quality
options with the timing option. Estimated values of delivery options may help explain

timing of deliveries within the expiration month.
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APPENDIX A
Estimating Option Values without Convenience Yield
Spot Price Tree

The binomial tree approach assumes that price in one period can move in two

possible directions, up or down. Pricesin the two states of the following period are
generated as products of the current price and the up and down factors,
SY(t+1) = U*S(t) and S(t+1)=D* S(t), (1)
where the factors for alognormal distribution are U = e %"+ gnq

D = g 0%9m-08h respectively. r, o, and h are the riskless interest rate, volatility, and
time increment here defined as one, respectively. Figure Al illustrates a spot-price tree

generating process for two periods.

Figure Al s4(2)
S'(1)
s*2

Given the initial price S(0), price in period one can either become S*(1) with
equivalent martingale probability p or S%(1) with equivalent martingale probability (1-p).
The prices in the two possible states of the world in period one are obtained from (1) as
SY(1) = U*S(0) and S(1) = D*S(0). From each node in period one, prices can again move

up or down, resulting in three possible states of the world in period two
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SM(1) = U*S'(2) = U*U*S(0),
s(1) = s¥(1) = D*S(1) = D*U*S(0),
s%(1) = D*sY(1) = D*D* S(0).
The tree recombines as a result of constant (deterministic) interest rates and the number
of nodesin every time period t ist+1.
Futurespricetree

The futures price on the last trading day is assumed to equal the spot price,
F(T)=S(T), in al states. Asthe value of afutures contract is reset to zero every day
through marking to market, the following relationship for the futures prices obtains under
risk neutral valuation
F(t-1) = pFi(t)+(1-p)F(D),
where p is the equivalent martingale probability of the up-state, for alognormal
distribution equal to 0.5 (Jarrow and Turnbull). Backward induction is used to calculate
futures prices down the tree. Thus, F'(1) = pF*(2) + (1-p)F*4(2) and FY(1) = pF¥(2) + (1-
p)F*!(2). The futures price at period zero is F(0) = pF(1) + (1-p)FY(1), asillustrated in

A2.

Figure A2

F'(2=s"(2

F(1)

1

F(2) = s2)

p
F(0)

1

AR

F2) =s"2)
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American option tree

Every day, the short decides whether to exercise the put option and deliver or
keep the option alive and delay delivery. The boundary condition is
MaxX{ F(t) — S(t), PV[E(P(t +1)]} + CF (1),
where PV[E(P(t+1))] is the present value of the expected value of the option and the
expectation is under equivalent martingale probabilities. CF(t) is the cash flow to the
short at date t, F(t-1)-F(t). Depending on the optimal exercise decision, the value of the
option at datet is F(t)-S(t) if exercised, and [pP(t+1)+(1-p)PY(t+1)]/R + CF(t) if kept
alive, where R=1/(1+r). The value of the option at the initial day is obtained by working

down the tree (Jarrow and Turnbull). A two period example is given in Figure A3.

Figure A3
P*(2) = S"(2) -F'(1)
/
P(1)=
max {F'(1) -S'(1), PV[E(P(2))]} R
p P P42)= S92 -F(Y)
P(0)? R P(2)= s4(2) — F()
/
1-p
P(1) =
max { F(1) -S*(1), PV[E(P(2))]} R
+F(O)-Fd(1) \
o P(2)= $4(2) - F(1)
0 1 2



The calculations assume no cash flow at date zero and P(0) = max{ F(0)-S(0),

PVIE(P(1)]}-

APPENDIX B
Estimating Option Values with Convenience Yield

The spot price tree can be generated with convenience yield included. The up and

down factors are now U = g Y0590t gng p = g -y-058"-08h \yherey jsthe
proportional convenience yield. Convenience yield is estimated from the market data by
inversion. The theoretical futures price with convenience yield equal to zero (as estimated
in Figure A2) is compared to the observed futures price at date zero. If the theoretical
futures price is above (below) the observed futures price, y in the spot price tree up and
down factorsis increased (decreased) by afixed step value and new spot and futures
price trees are generated. The new theoretical futures price at date zero is again compared
to the observed futures price. By iteration, an implicit convenience yield is arrived at that
equates the theoretical and observed futures prices. The corresponding spot and futures

price trees are used in estimating the timing option value.
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