
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1  

 

 
 
 

The Economic Value of Precision Management System for Fungicide 

Application in Florida Strawberry Industry 

 

 

 

Ekaterina Vorotnikova  

Graduate Student 
E-mail: vorotnikova@ufl.edu  

 

John J VanSickle 

Professor 
 

 

Tatiana Borisova 

Professor 
 

 
Food and Resource Economics Department, 

  University of Florida  
 

 

 

 

 

Selected Paper prepared for presentation at the Southern Agricultural Economics Association 

(SAEA) Annual Meeting, Orlando, Florida, 3-5 February 2013 
 

 

 

 

 

 

 

Copyright 2013 by  Ekaterina Vorotnikova, Tatiana Borisova, and John J VanSickle. All rights reserved.  

Readers may make verbatim copies of this document for non-commercial purposes by any means, provided 

that this copyright notice appears on all such copies. 

  



2  

The Economic Value of Precision Management System for Fungicide 

Application in Florida Strawberry Industry 
 
 

Ekaterina Vorotnikova, John VanSickle and Borisova Tatiana1
 

1The authors are (respectively): Graduate Student, Professor, and Assistant Professor, Food and 
Resource Economics Department, University of Florida 

 

1 Introduction 

 

Precision techniques allow agriculture to cope with the challenges of meeting increasing demand for 

food and energy while at the same time improving environmental sustainability of food production, 

managing input costs, and improving the quality of work environment (Gebbers and Adamchuck 

2010). Precision agriculture (PA), also referred to as “information-intensive” agriculture (Bramley 

2009),  is defined as a “set of technologies that combines sensors, information systems, enhanced 

machinery, and informed management to optimize production by accounting for variability and 

uncertainties within agricultural systems” (Gebbers and Adamchuck 2010). Numerous studies have 

been exploring various aspects of PA; however, significant gaps in knowledge remain. Specifically, 

the majority of studies focus on PA for field crops (such as corn, wheat, soybean, and cotton) while 

much less attention is paid to application of PA technologies to horticultural crops (Bramley 2009, 

Griffin and Lowenberg-DeBoer 2005). While some studies deal with citrus and grapes (Whitney et 

al. 1999 and Stafford 2007), no studies were found that examine PA for small fruit production, such 

as berries. However, small fruit production comprises a significant share of total US agricultural 

production. For example, the U.S. is the world’s largest strawberry producer, accounting for over a 

quarter of total world production (NASS 1995). Over the past ten years, U.S. utilized production1   

increased by more than 60% (Figure 1). Most of the U.S. production is consumed domestically, and an 

increasing amount of strawberries are being produced for fresh-market uses (Boriss et al. 2010). 

Precision technologies could have a significant impact on strawberry input use and environmental 

sustainability.  

                                                           
1
 defined as produced crops that were marketed, and either domestically consumed or exported 
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Figure 1. Strawberry Production and Exports Values for the U.S. 1997-2011 

 

 

Source: National Agricultural Statistical Services (NASS), 2013 and Foreign Agricultural Service (FAS), 2013  

 

A review of 210 studies that examined the economic benefits and losses of PA technologies (Griffin 

and Lowenberg-DeBoer 2005) showed that although 68% of the studies reported benefits associated 

with precision agriculture technologies, some studies showed losses. The profitability of PA depends 

on the type of technology and its costs, farm size, and the methods used to evaluate the PA costs and 

benefits (Griffin and Lowenberg-DeBoer 2005, Batte 2000). A key factor affecting the PA 

profitability is the amount of information PA technologies can provide to the producer about the 

spatial or temporal variable factors. While the effects of information about spatial factors (e.g., soil 

fertility and weed pressure) have been extensively studied, the economics of PA technologies 

addressing the temporal variability is yet to be explored. Insufficient recognition of temporal 

variations has been identified as one of the critical issues in PA studies (McBratney et al. 2005).  

 

This study examines the profitability of PA technology developed to optimize the timing of fungicide 

application to control anthracnose fungus disease in Florida strawberry production. Using data from 

strawberry production experiments, we analyze the potential profitability of the strawberry advisory 

system (SAS) developed at the University of Florida. SAS uses real-time information about air 
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temperature and strawberry leaf wetness to evaluate anthracnose disease risk in strawberry and to 

allow producers to adjust the timing of fungicide application to the periods conducive to anthracnose 

development.  The background on Florida strawberry production and experiment are described in the 

next section, followed by the explanation of the data from the production experiments, the methods, 

results, and conclusion. Overall, we show that SAS can increase the returns of Florida’s strawberry 

producers. Specifically, the in comparison with the conventional calendar method of fungicide 

application, this precision disease management system reduces the fungicide applications and costs 

while either leaving strawberry yields unaffected or actually increasing the yield.  

 

2 Study Area  

 
Strawberry is the most significant berry crop by production value in Florida, and during the winter 

season Florida dominates the national strawberry market. In 2012, a record 300.4 million pounds of 

strawberry was harvested in Florida from approximately 10,100 acres (NASS, 2013).  Almost ninety 

percent of Florida’s strawberry is grown around Plant City in Hillsborough County, west central 

Florida. The production season starts in November and continues through March of the following year. 

The heaviest harvesting occurs between the months of February and March, driven by the climatic 

conditions and the dynamics of the strawberry markets. Specifically, prices for strawberries pick out in 

February and then experience steady downward pressure until bottoming out in May and June in 

response to the increasing strawberry supply from California.   

 

Fungal diseases such as anthracnose and Botrytis fruit rots are major challenges for strawberry growers. 

Even in well-managed fields, losses from fruit rot can exceed 50% when conditions favor disease 

development (Ellis and Grove 1982). Fungicides are commonly used by the growers to stem off the 

development of the diseases. Fungicides are applied once a week, and fungicide cost comprises 

approximately 7% of pre-harvest variable costs, which represents about $690 per acre (IFAS 2010). 

Main issues facing strawberry industry are increasing costs of fungicides, building resistance to the 
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fungicides, and rising public concerns about potential health and environmental effects of fungicide use 

(Peres et al. 2010b). Production methods that can reduce fungicide rates without affecting strawberry 

yields can provide significant economic and environmental benefits to Florida strawberry industry. 

 

Past research shows that accurate information about weather conditions can be used to tailor fungicide 

applications to precisely manage the anthracnose disease pressure.  Periods with warm and wet weather 

create especially favorable conditions for the development and spread of anthracnose fruit rot, thus 

increasing the risk of harvest losses. In contrast, given cool and dry conditions, the risk of the disease 

development is relatively minor. Bulger et al. (1987) and Wilson et al. (1990) used a logistic regression 

to model the proportion of immature and mature strawberry fruit infected by anthracnose (%Inf) as a 

function of temperature, T, and leaf wetness duration, W: 

ln � %����	%���
 = �
 + ���+ ���� + ����
� + �����       (1) 

 

Wilson and Madden (1990) estimated the model parameters, b0, b1, b2, b3, and b4:   

 

ln � %����	%���
  =  -3.7  + 0.33 * W - 0.069 * W * T + 0.005 * W * T
2  - 0.000093 * W * T3  (2)  

 

Finally, denoting the left-hand side of equation (1) as the disease index, or DI, the proportion of 

strawberry fruit infected by the fungus can be specified as: 

%��� = �������
���������           (3) 

 

The relationships (2) and (3) was used by Mackenzie and Peres (2012) to develop an on-line strawberry 

advisory system (SAS) that indicates the level of anthracnose disease risks and recommends fungicide 

application if the disease risks is high (Fig. 2). Specifically, using strawberry production experiments, 

Mackenzie and Peres (2012) identified the critical combinations of temperature and leaf wetness 

duration at which the disease pressure is high given Florida growing conditions, and at which fungicide 

application is recommended. When according to (3) there is 15% probability that strawberries are 
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expected to develop disease (%InfAnthracnose ≥ 0.15), SAS issues a warning of the “moderate” risk 

of disease development, and recommends to spray a “preventive” type of fungicide. When model 

(3) predicts that at least 50% of strawberries were expected to develop disease ( %InfAnthracnose ≥ 0.50), 

SAS indicates “high” risk of disease, and recommends to spray “a curative” fungicide (Turechek et al., 

2006).  Producers can also enter their past fungicide application practices into SAS, and the system will 

modify recommendation based on the manufacturer specifications for specific fungicide used by the 

growers. For example,  the maximum number of sequential applications for Cabrio should be limited to 

two, and the maximum rate of its application is 70 oz (4.375 pounds) per acre per season.   

 

Figure 2. Strawberry Advisory System (SAS)

 

Source: the system can be accessed at http://agroclimate.org/tools/strawberry/ 

 

The fundamental differences between two fungicide application systems, Calendar and Model, are 

demonstrated in Figure 3 On one hand, traditionally growers use weekly (Calendar-based) application 

method to control for disease to maximize the expected payoff. This method does not depend on weather 

conditions, thus it does not have an application trigger as it is routinely applied on the same day of every 



 

week. Depending on the length of the production season the number of appli

average season as shown in Figure 2. On the other hand, if grower chooses to use the precision 

application system, the final decision about the timing of fungicide treatment depends on the application 

trigger that is issued by Strawberry Advisory System, SAS. SAS determines if weather conditions are 

conducive for the disease development from the inputs of the sensors that measure leaf wetness duration 

and temperature during that wetness period. The sensors record new informatio

15 minutes – wetness duration then is reported in hours while temperature information gets averaged for 

that timeframe. These measurements are used as independent variables for the Wilson

(Equation 2). The final output of the logistic regression is a %Inf that ranges from 0 to 1 and predicts 

probability of the field getting infected. The specifications, 15%, at which the weather was considered to 

be conducive for the development of the anthracnose were determined 

(2010b).  If conducive for disease development weather is detected, SAS triggers an application, 

otherwise no application is recommended. The logic behind the system is that it is optimal for the 

producer to spray only when conditions are conducive for the disease development. This way the farmer 

avoids unnecessary treatments reducing fungicide costs while simultaneously decreasing the probability 

of the fungicide resistance buildup. In addition, targeted applications make the

because it stems off the disease right before it has the potential to develop and spread within a significant 

area of the field.  

Figure 3. 

week. Depending on the length of the production season the number of applications accumulates 15 for an 

average season as shown in Figure 2. On the other hand, if grower chooses to use the precision 

application system, the final decision about the timing of fungicide treatment depends on the application 

Strawberry Advisory System, SAS. SAS determines if weather conditions are 

conducive for the disease development from the inputs of the sensors that measure leaf wetness duration 

and temperature during that wetness period. The sensors record new information about the weather every 

wetness duration then is reported in hours while temperature information gets averaged for 

that timeframe. These measurements are used as independent variables for the Wilson-Madden regression 

output of the logistic regression is a %Inf that ranges from 0 to 1 and predicts 

probability of the field getting infected. The specifications, 15%, at which the weather was considered to 

be conducive for the development of the anthracnose were determined by Peres, MacKinzie, and Seijo 

(2010b).  If conducive for disease development weather is detected, SAS triggers an application, 

otherwise no application is recommended. The logic behind the system is that it is optimal for the 

onditions are conducive for the disease development. This way the farmer 

avoids unnecessary treatments reducing fungicide costs while simultaneously decreasing the probability 

of the fungicide resistance buildup. In addition, targeted applications make their effect more impactful 

because it stems off the disease right before it has the potential to develop and spread within a significant 
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In this study, we examine the potential economic benefits provided by SAS to an average Florida 

strawberry producer. Specifically, we compare the net present value (NPV) from strawberry production 

for a 10-year planning horizon given traditional fungicide application system and the precision 

fungicide application system that follows SAS recommendations.  

 

3 Data 

 
Strawberry Florida state-wide producer prices and yields were obtained from National Agricultural 

Statistics Service, NASS, for the years 1984 through 2011. The state-wide data were supplemented with 

the information collected from strawberry production experiments conducted at the University of Florida 

research farm at the Gulf Coast Research and Education Center, in Wimauma, Florida.  

 

The production experiments were conducted for six production seasons (November – March, 2006 – 

2012). The experiments followed a randomized complete block design with four blocks (four plots), each 

in a separate plastic-mulched, raised bed. Bare-root strawberry transplants were planted into fumigated 

soil using staggered rows. Each bed was divided into three section according to the fungicide application 

method used: calendar-based (with weekly fungicide applications), model-based (with fungicide 

application according to the SAS recommendations), and a control (with no fungicide application). 

Berries were harvested twice a week starting in December and ending in March. Marketable fruit were 

counted, weighed, and then cumulated for each production season. Diseased fruits were also counted 

for anthracnose (AFR) and Bortrytis (BFR) incidences, and also cumulated for each production season. 

The number of berries tossed for reasons other than anthracnose and Bortrytis diseases (i.e. cull) was 

also recorded and summed up for each season. To summarize, the information about marketable number 

of the berries (referred to as “Number”), marketable weight of berries in grams (“Weight”), the number 

of berries tossed for reasons other than the disease (“Cull”), the number of berries affected by Botrytis 

(“Botrytis”) and Anthracnose (“Anthracnose”) is available for four plots, three fungicide application 
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methods, and six production seasons (2006-07, 2007-08, 2008-09, 2009-10, 2010-11, 2011-12). Thus, 

the series contained 72 independent sets of observations.  

 

During each season, leaf wetness interval and the temperature during the wetness intervals were recorded 

with 15-minute intervals. The temperature measurements were then averaged out for a given wetness 

period. The number of days when the weather conditions were conducive for the development of 

anthracnose given two different thresholds (%Inf ≥ 0.15 and %Inf ≥ 0.50) was  recorded (Table 1).  

Table 1. The Number of Days with Weather Conditions Conducive for the Disease Development 

Number of SAS Triggers  

Season 
Threshold 

%Inf ≥ 0.15  %Inf ≥ 0.15 

2006-2007 33 1 

2007-2008 34 4 

2008-2009 13 4 

2009-2010 36 17 

2010-2011 14 1 

2011-2012 32 4 
 

 

In turn, the total numbers of fungicide applications for the plots in the calendar-based, model-based, and 

control groups are summarized in Table 2. Following manufacture’s specifications, the number of 

applications for the model-based treatment is smaller than the number of days conducive for the disease 

development (compare Tables 1 and 2). Fungicide can be applied at most once a week, and hence, even 

if there are several triggers for disease development during the week, only one application is 

administered.  On average there were 15 applications for Calendar-based fungicide application system; 

and only 8 applications for the Model-based system (with the range from 5 to 12 applications 

depending on the weather during the season). For the six years of experiments the number of 

applications per one production season diminishes on average to 9 compared to 15 of the Calendar based 

model, which is 44% lower on average than that of the weekly application system.   
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Table 2. Number of Fungicide Applications Per Season 

 

Season 

Calendar-
based 
system 

Model-
based 
system 

2006-2007 16 10 

2007-2008 16 12 

2008-2009 17 5 

2009-2010 14 6 

2010-2011 10 6 

2011-2012 15 8 

Average 14.66667 7.833333 
 
 

 

4 Methodology 

 

Let X denote the set of possible fungicide application options. The producer’s decision is a choice of 

the specific application level x ∈ X that satisfies profit maximization criteria. The outcome of 

alternative actions x, for example, yield, is affected by various uncontrolled factors (e.g., weather and 

disease pressure), and is not known precisely. Denote the un-controlled factors by a random variable 

θ. It is assumed that the producer can identify possible realizations of the random events - possible 

“states of nature” - θ ∈ Θ (e.g., high or low disease pressure). The decision maker’s beliefs about 

possible states on nature are reflected in the probabilities p(θ). 

 

Given that payoff function F(x) depends on the realization of the random parameter θ, the producer 

has two alternatives. First, he/she can immediately choose an optimal action x0 (apply) to maximize 

the expected payoff function: 

Π
 =  !"# $ �%	'�", )� − +	"�	,�)�	-).
/      (4) 

where r refers to the sale price, and w denotes the price of the fungicide. Alternatively, the producer 

can improve his/her knowledge about the random state variable by seeking additional information 

(e.g., by accessing SAS). Information is defined as any stimulus that influences the probability 

distribution assigned to states of nature θ. Suppose the producer receives information y (e.g., accurate 



11  

information about the disease pressure). This message leads the producer to change the beliefs about 

the probabilities of possible states. This change depends on how accurate the information message is. 

For example, information can be delivered in the form of a message “low risk” or “high risk”, and it 

would be up to the decision-maker to translate this message into the probability of the specific 

events.  

 

The decision maker’s probability distribution over the possible states of nature after getting the 

message y can be denoted as conditional probability p(θ|y). Let xy denote the optimal action posterior 

to the receipt of the message y: 

Π0 =  !"# $ �%	'�", )� − +	"�	,�)|2�	-).
/       (5) 

For each possible information message, y, ex post optimal decision should be chosen. Then, the 

expected profit given data collection can be estimated as the expectation of the ex post performance: 

 

Π� = $ 9 !"# 	�%	'�", )� − +	"�	,�)|2�:	,�2|)�	-).
/     (6) 

 

Then, the value of information, VOI, and hence, the expected benefits from precision agriculture 

technology, is the difference between expected payoffs with and without information: 

 

VOI = Π1 – Π0          (7) 

 

Value of information depends on the following factors: a) the distribution of θ; b) the accuracy of 

information, p(y| θ) and; c) the functional form of F(.) (Lawrence 1999). 

 

In this paper, the objective is to value the effect of the new precision technology on the Florida strawberry 

production. In other words, we examine the value of information provided by SAS to an average Florida 
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strawberry producer. To achieve this goal, we compare producer’s payoffs given two information 

collection strategies: no additional information is collected (i.e., the producers follow the traditional, 

calendar-based fungicide application strategy) and information about the decease pressure is collected 

through accessing SAS (i.e., the producers follow the model-based fungicide application strategy). 

Specifically, the value of information is calculated as difference between the 10-year net present values 

(NPV) of profits for each information collection and fungicide application system. Profits’ NPVs are 

stochastically forecasted using historical yields and prices as well as the results from the six year 

production experiments. The distribution of the difference between the two models for each respective 

weather condition determines the final NPV of VOI, and thus quantifies the impact of the new 

technology. The stochastic framework allows evaluation of a distribution of profits for each fungicide 

application method given a range of weather conditions typical to Florida. Thus, the final value of the new 

precision technology is also a stochastically modeled distribution that is weather dependent covering a 

range from most to least conducive to disease development weather conditions.  

; = <%=->?@=-	A=>B- ∗ <%DE=?@=-	<%>?= − <%DE=?@=-	�D@!B	FDG@G  (8)  

Strawberry Yield Model 

Predicted yield is obtained in several steps. First, we project state-wide strawberry yield by employing 

simple OLS regression using years as independent variable and historical state average yield as dependent 

variable – this is a deterministic component for the yield.  

 

Next, the deviates from the trend (as a percent of the predicted values, estimated as the ratios of the errors 

to the predicted values of yield) are obtained from the same OLS regression. Correlation is then found 

between the time series of yields’ and prices’ deviates.  The projected yield and price are then attuned by 

now correlated deviates from trend as percentage of the predicted values for yield and price respectively.  

These deviates now provide the distribution from which stochastic components for the predicted yield and 

price are going to be randomly drawn. Second, we calculate deviations from trend as a percent of 

predicted values from the OLS regression that was obtained from the six year experimental data. This 
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OLS regression is weather dependent and provides shifts in yields for each of the three models: Control, 

Calendar-based, and Model-based application methods. Specifically, strawberry yield (pound per acre) is 

modeled as a function of historical state yield, weather, and weather intensity.  

<%=->?@=-	A=>B- = HI��J@!@=	A>=B-,�=!@ℎ=%,�=!@ℎ=%	��@=�G>@2, FD�@%DB,LD-=B�M				�9� 

For the OLS Yield regression calendar model’s observations are chosen as a base scenario, i.e. the effect 

of the calendar treatment is accounted for in the Intercept variable while dummy variables are introduced 

to distinguish between Control and Model methods. The choice to have Calendar based treatment’s data 

in the intercept is driven by the fact that this method is in fact the traditional method that is currently used 

and has been used over several decades. Thus, the data for the historical state yield for the years 1984 to 

2011 are for calendar based application method. This is important because state yield is used in the 

regression as an independent variable. The yield regression is actually expressed in terms of calendar 

method, i.e., calendar method behaves as a base scenario while adjusting other methods by introducing 

dummy variables, Control and Model (Equation 9). 

 

For Weather variable, the 15% threshold is used to quantify this variable since 15% threshold is more 

sensitive and indicative of the weather conditions conducive for the disease development than the 50% 

threshold. Thus, the Weather variable is a summation of days during which 15% threshold was 

reached.  

 

In model (9), Weather Intensity measures how early in the season and how intensive, i.e. close to each 

other, the triggers occur. This intensity measure may affect the overall season’s production because there 

a risk of a disease spread, and the earlier it occurs in the season, the more following yield might be 

affected. The measure is quantified by the following logic: for each trigger issued by the SAS system, we 

count the number of weeks left in the season respective to that trigger, so the number of weeks left in the 

season at the time of the trigger is recorded at every occurrence and then cumulated in the Weather 

Intensity measure for the entire season for every production season (Table 3).  
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These data points are then used to forecast Weather Intensity as a variable. OLS regression models the 

relationship between Weather Intensity as the independent and Weather as dependent variable. Thus, 

Weather Intensity is a function of a coefficient multiplied by the “Weather” variable. From the same OLS 

regression deviates as a percentage of predicted are calculated by dividing the error term by predicted an 

then randomly fitting them around the projected values, creating a distribution stochastically.  

Table 3. 

Weather and Weather Intensity 

Measures form Production 

Experiments 

Production 

Season  Weather 

Weather 

Intensity 

2006-2007 33 344 

2007-2008 34 289 

2008-2009 13 173 

2009-2010 36 653 

2010-2011 14 46 

2011-2012 32 649 

Average 27 359 

 

The errors from this OLS Yield regression were tested for normality by conducting Chi-square test with 

null hypothesis that the errors are normally distributed. The results of the test show that at 5% significance 

level the test fails to reject the null hypothesis.   

 

Normal distribution with mean and standard deviations that are calculated from 6 year experimental 

weather data as indicated in Table 3. Thus, the deviates from trend as a percent of predicted values are 

calculated from this regression specifically for each application method. Then these unique to each 

method deviates adjust previously projected yields putting another level of stochastic component that 

incorporates weather and method effect on the yield. The errors were also tested for being normally 

distributed and results of the chi-square test show that the hypothesis that these errors are from normal 

distribution cannot be rejected at 5% significance level.  The final results are three Yield distributions that 
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reflect yield as a function of possible weather events. Uniform distribution is used to draw the deviates, 

which keeps weather conditions relatively consistent amongst all three methods given each set of weather 

conditions in otherwise a random stochastic forecasting.  

 

The hypothesis is that the regression analysis will confirm that the calendar-based treatment and the 

model-based treatment result in higher strawberry yields (as compared with the control group). We also 

expect that the model-based treatment results have higher yields than those of calendar-based treatment. 

Weather conditions are modeled based on Wilson-Madden weather index, and we expect it to have a 

negative effect on yield. However, weather conditions can also have a positive effect on yields, since it 

takes sun and water for the crop to grow.  

 

Table 4. Independent variables used in regression analysis for Strawberry Marketable Weight 

Variable Description Expected effect on the dependent 
variable, marketable yield 

State Yield State Yield during the production seasons from 
2006 to 2012 as obtained from NASS. 

Positive  

Control Dummy Variable, 
indicating the experimental plots that did not 
receive any treatment. 

Negative, the yield for control is 
expected to be lower than those of 
the other two models. 

Model Dummy Variable, indicating the experimental 
plots treated with the model-based method 
(i.e., precision 
disease management) . 
 
 

Positive since the yield is expected 
be higher than that of the Calendar 
based treatment. 

Weather Cumulated number of days that are conducive 
for the development of the decease 
according to the Wilson-Madden weather 
index for the entire season (%Inf > 0.15, 
Table 2). 

Negative 

Weather Intensity Metric that measures how early in the season 
each trigger occurs. The measure is cumulated 
for all triggers for the entire production 
season. 

Negative 
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Strawberry Prices 

To forecast strawberry prices, first, projected price was obtained from the OLS regression of historical 

average strawberry state prices for the years 1984 to 2011 on the year trend (NASS, 2012).  Similar to the 

approach used to forecast the yield, the errors from the regression are tested whether they are from normal 

distribution, and chi-square test confirms at 5% significance level that the hypothesis that the errors are 

from normal distribution cannot be rejected. Furthermore, deviation from the trend as a percent of 

predicted values is then calculated by dividing error term by predicted values of the same OLS regression.  

As mentioned earlier, correlation is found between price and yield unsorted deviations from the trend as a 

percent of predicted. Next prices and yields are adjusted for correlation uniform standard deviates, which 

then result in final stochastic prices for both yield and price. The prices that are correlated with the 

projected historical state yield reflect proper supply/demand fundamentals.  

<%DE=?@=-	<%>?= = HI��O>G@D%>?!B	'BD%>-!	J@!@=	<%>?=�, ?D%%=B!@>D��<%>?=, A>=B-�M		�10�,  

Strawberry Production Costs 

Projected total production cost is a sum of projected total fixed and variable costs: 

<%DE=?@=-	�D@!B	FDG@G = <%DE=?@=-	�D@!B	'>"=-	FDG@G + <%DE=?@=-	�D@!B	R!%>!�B=	FDG@G	�11�, 

The data for costs was obtained from the Strawberry Production Budget for the year 2011 prepared by 

Institute of Florida Agricultural Service (IFAS). The data is arranged as cost per acre. The budget 

contained the following price and quantity data: fertilizer, fumigants, fungicides, insecticides, 

surfactants, labor, contracted services, machinery use, and miscellaneous other materials. The 

information used in constructing the budgets were obtained by consultation with, and review by, 

individual growers, county Extension faculty, and UF/IFAS researchers. Surveys and correspondence 

with farm suppliers and growers were used to obtain the input prices.  

Fixed costs is a sum of land rent, machinery fixed cost and overhead. We project this sum at 2% inflation 

rate over the 10 Year period. Variable costs are operating costs, harvesting costs, pack and sell costs: 
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Operating costs include strawberry production operating costs with the exception of fungicide costs (since 

these costs were modeled differently for the three different models of fungicide application), such as 

transplants, plastic mulch, scouting, tractor and general farm labor, fumigant, machinery variable costs, 

transplants, herbicides, insecticide, fertilizer, crop insurance, and interest on operating capital costs per 

acre. These operating costs are projected at inflation rate of 2% and are the same for all three models of 

fungicide application. 

Fungicide costs depend on the fungicide application method. Specifically, for control group, fungicide 

costs are zero. For the Calendar method, the number of fungicide applications is equal to the number of 

weeks in a season (15, on average). Finally, for the Model-based method, the number of fungicide 

applications depends on SAS-based risk assessment. For all three methods, fungicide costs per season 

equals to a product of price per fungicide application, the number of applications per season, and the 

number of acres (26 acres, assuming an average Florida farm). Fungicide price at the year one is $590 per 

application per acre, it is then projected at 2% for every consequent year for 10 years.  

To model the number of applications for the model-based application method, first OLS regression was 

used to find a relationship between applications and weather. For the OLS regression the dependent 

variable was the six year data on the number of applications per season as displayed in Table 4 and 

independent variables were Weather and Weather squared, where Weather as discussed earlier is a normal 

distribution with mean and standard deviations obtained from the experimental six year data (Table 3).  

The errors from the regression were tested for normality using chi-square test. The hypothesis that the 

error are from normal distribution cannot be rejected at 5% significance level. Second, the estimated 

number of applications was adjusted by the deviates from the trend.  as a percentage of predicted 

obtained by dividing the errors from the regression by the predicted values making the 10-year projection 

stochastically distributed and at the same time respective to the range of the weather conditions. Thus, 

when weather value is randomly drawn from the normal distribution as mentioned above, it enters directly 
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to the number of application calculation plus gets adjusted for an error distribution around it.  

Harvesting costs are yield-dependent and calculated by multiplying the predicted yield for each fungicide 

application method by harvesting cost (per pound) obtained from the IFAS Strawberry Budget. Similarly, 

Pack and Sell Costs are also yield dependent and specific to each model of fungicide application. These 

costs are obtained by multiplying pack and sell costs per pound by yield in pounds. The harvesting cost 

per pound and pack and sell costs per pound are projected at 2% rate of inflation to the 10 year horizon of 

the model.   

 

5 Results 

5.1 Deterministic Results: OLS Regression Results for Strawberry Marketable Weight 

 

The results of the regression analysis are presented in Table 5. The results were consistent for the two 

strawberry varieties, and the effects of all the variables on strawberry yield matched the expectations. 

The only exception is variable Weather Intensity, which appears to have a positive effect on yield. 

However, this effect is much smaller in absolute terms than the significant and negative effect of 

variable Weather. 

 

Table 5. Regression Analysis Results for the Marketable Weight of Strawberries  

 

Variable Estimates Standard Errors 

Intercept 5909.493*** 1861.526 

Average State Yield 0.467*** 0.069 

Weather -736.556*** 40.002 

Weather Intensity 53.018*** 2.218 

Control -2430.243*** 476.847 

Model 1392.280*** 476.847 
R^2 = 0.835; R^2 adj = 0.828 
*** signifies 0.001 significance level 
**  - 0.05 significance level 
*    - 0.01 significance level 
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Table 6 breaks down the estimates of the results of regression above (Table 5) according to each 

method of application by configuring dummy variable effect for each estimate in the regression 

respectively. The errors from this OLS regression were tested for normality using Chi-square test, 

and the results confirm that at 5% significance level the hypothesis that the errors are normally 

distributed cannot be rejected. 

 

Table 6. 

Method of Application Estimates For Yield (grams) 

Control 3479 

Calendar 5909 

Model 7301 
 

 

The results show that Model application method improved yield over Calendar based application by 

24%. In other words, while Model application method reduced the number of fungicide applications 

by 44%, it resulted in the yield higher than the yield in Calendar based application.  

4.2 Stochastic Results  

 

Using the results from the OLS regression, Yield is forecasted stochastically as described in the 

Methodology section using deviates as percentage of trend obtained by dividing errors by predicted 

values. The final stochastically obtained values for yields are then simulated using Monte Carlo 

method of simulation by drawing 500 observations from the stochastic Yield distribution for each 

method of fungicide application. Figure 4 displays the results of the Yield distributions after being 

stochastically forecasted. These approximations of the probability density functions are weather 

dependent, thus seasons with disease-conducive weather are reflected on the left hand side (yield is 

magnitude).   

 

 



 

Figure 4.  

 

It can be seen that Model based yield is skewed to the right 

yield and Control, implying that at any given weather condition Model bas

system gives the highest yield. The

smallest by magnitude while that of the Model

Calendar based (the variance of Control

the least risks out of all three methods. Therefore, it is important to realize whether the increase in 

yield that the Model-based treatment provides is worth the slightly increased risk that is

a function of slightly increased variance. 

 

NPV of 10 year cash flows (CF), referred to also as profits,

are found. Monte Carlo simulation is applied to the final formulation of profit presented in th

Methodology section in the Equation (8). 
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smallest by magnitude while that of the Model-based treatment is higher by magnitude than the 

the variance of Control is the highest). This shows that the Calendar model presents 

least risks out of all three methods. Therefore, it is important to realize whether the increase in 

based treatment provides is worth the slightly increased risk that is

a function of slightly increased variance.  

NPV of 10 year cash flows (CF), referred to also as profits, for each method of fungicide application

are found. Monte Carlo simulation is applied to the final formulation of profit presented in th

Methodology section in the Equation (8).  
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Figure 5. 
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These profits now incorporate the difference in yield between models, which result in difference in 

Revenues, as well as difference in total costs. Configured for all these variables, Figure 4 

trates that Model indeed outperforms the Calendar method and certainly the Control. Given 

revenues), the graphs 

systems has in fact widened 

compared to the gap that was observed in the graphical result of the Yield distributions. This shows 

tem provides is increased once costs savings are 

the main goal of the paper was to value this new information intensive technology in 

as improvement over the presently used traditional fungicide 

the difference between NPVs of the two application 

systems was found and then Monte Carlo simulation was performed, drawing 500 observations from 

the difference of 10 year profits between two models distribution. The result presented in Figure 6 
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The data from six-year strawberry production experiments were examined using regression analysis 

techniques. Strawberry harvests given the traditional (calendar-based) and the precision (forecast 

model- based) fungicide treatment were compared with the control group with no fungicide 

applications. Stochastic forecasting framework and Monte Carlo simulations were used for the analysis. 

10 Year NPV of free cash flows for each fungicide application method were forecasted for a 26 acre 

Florida Strawberry farm. 4% discount rate was used for the valuation. 

 

Production experiments data showed that for the six production seasons (2006-07, 2007-08, 2008-09, 

2009-10, 2010-11, 2011-12), Model based treatment required on average 44% less fungicide 

applications as compared with the Calendar based treatment while increasing the yield by 26%. 

Forecasted and simulated results confirmed the preliminary results by demonstrating that indeed a 

probability density function of Model based yield was outperforming that of Calendar based application 

system at any given weather condition. 

 

Therefore, precision disease management system while reducing fungicide use and costs, either leaves 

yields unchanged or actually increases the yields if compared to conventional Calendar application method, 

thus precision disease management system can increase profits for the grower.  

 

Overall, the precision disease management system is a viable fungicide application system that adds 

economic value to the Florida strawberry producer because it reduces their fungicide use and costs 

while potentially increasing the yields, therefore, increasing profits while reducing environmental 

hazards. 
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