Volatility spillovers between agricultural commodity and financial asset markets

IATRC Annual Meeting, 10 December 2012

Stephanie Grosche
Stephanie.grosche@ilr.uni-bonn.de
Structure

- Background and research objective
- Methodology
- Results and conclusions
Growing importance of commodities as portfolio assets

More investment vehicles available

Growth in Commodity ETF assets
2002-11, bn USD

Global financial crisis

- 2007-2012 global financial crisis
 - Sovereign debt crisis (from ~2010)

Use of agricultural commodities as portfolio diversifiers facilitated

Higher importance of agricultural commodities as refuge assets or real asset substitutes

10 December 2012 Stephanie Grosche, ILR, University of Bonn
Development of trading volume in asset markets

Significant increase in commodity trading volume after 2006

Source: Bloomberg
Research objective

Investigate whether market interdependence and volatility transmission between agricultural commodity markets and financial asset markets increases...

A In normal markets:
As a result of portfolio rebalancing and asset weight adjustments.

B In crisis markets:
As a result of real asset substitution and use of agricultural commodities as refuge assets.

Stephanie Grosche, ILR, University of Bonn
10 December 2012
Methodology

Selection criteria

- Multivariate (~8 variables)
- Link to economic theory
- Account for potential regime-switches

Methodology

- Structural VAR (rolling estimation)
- Generalized Forecast Error Variance Decompositions (Pesaran and Shin, 1998)
- Volatility spillover indices

Application examples

- Diebold and Yilmaz (2009, 2012)
- Dimpfl and Jung (2012)
Modeling steps

1. Selection of included financial and commodity assets
 - Data gathering

2. Computation of volatility proxies

3. Estimation of rolling VAR models
 - Generalized variance decompositions

4. Calculation of volatility spillover indices
Assets included in the analysis

<table>
<thead>
<tr>
<th>Assets</th>
<th>Commodity</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural commodities</td>
<td>- Corn, CBOT* (C1)</td>
<td>- Crude Oil, NYMEX* (CL1)</td>
</tr>
<tr>
<td></td>
<td>- Soybeans, CBOT* (S1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wheat, CBOT* (W1)</td>
<td></td>
</tr>
<tr>
<td>Equity</td>
<td>- S&P 500 Index (SPX)</td>
<td>- DJ Equity All REIT Index (REI)</td>
</tr>
<tr>
<td>Fixed income</td>
<td>- 10-y U.S. Treasury* (TY1)</td>
<td>- ICE Futures US Dollar Index (DXY)</td>
</tr>
<tr>
<td>Foreign exchange</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Future contracts, 1st generic (Bloomberg), rolling “relative to expiration”, contracts rolled after last trading day of front month
2 Volatility proxies

Range-based volatility*

\[\hat{\sigma}_{\text{Range,it}} = \sqrt{\frac{1}{4 \ln 2} \left[\ln \left(\frac{P_{it}^{\text{High}}}{P_{it}^{\text{Low}}} \right) \right]^2} \]

Return-based volatility

\[\hat{\sigma}_{\text{Return,it}} (m) = \sqrt{\frac{1}{m-1} \sum_{n=1}^{m} (R_{it-n} - \bar{R}_i (m))^2} \]

with \[R_{it} = \ln \left(\frac{P_{it}^{\text{Close}}}{P_{it-1}^{\text{Close}}} \right) \]

and \[m = 5, 30, 90, 180 \]

Pro:
- Captures intraday movements

Con:
- May show high volatility in times of a persistent trend in returns
- May be inflated due to intraday periods of low trading volume

* based on Parkinson (1980)
2 Asset volatility profiles: Grains and oilseeds (Annualized*)

* Multiplied by \(252^{0.5}\)

Source: Own calculations
2 Asset volatility profiles: Other assets (1/2) (Annualized*)

* Multiplied by $252^{0.5}$

Source: Own calculations

Stephanie Grosche, ILR, University of Bonn
2 Asset volatility profiles: Other assets (2/2) (Annualized*)

* Multiplied by 252^{0.5}

Source: Own calculations
Estimation of VARs – Rolling regression

<table>
<thead>
<tr>
<th>Model</th>
<th>Specification*</th>
<th>Included observations (No. per variable = T)</th>
<th>No. of windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log \hat{\sigma}_{\text{Range}})</td>
<td>VAR(4)</td>
<td>06/03/98 … 03/30/12 (3,488) 3,237</td>
<td></td>
</tr>
<tr>
<td>(\log \hat{\sigma}_{\text{Return (5)}})</td>
<td>VAR(1)</td>
<td>06/10/98 … 03/30/12 (3,483) 3,232</td>
<td></td>
</tr>
<tr>
<td>(\log \hat{\sigma}_{\text{Return (90)}})</td>
<td>VAR(1)</td>
<td>10/09/98 … 03/30/12 (3,398) 3,147</td>
<td></td>
</tr>
</tbody>
</table>

* Lag length selected with SBC, VAR models for 30 and 180 day return-based volatilities estimated, results not reported
Variance decompositions and volatility spillovers

Background

Forecast error variance (FEV) decomposition:

- **Own variance shares:** fraction of H-step ahead FEVs for one asset class (i) that are due to shocks to this asset class (i).

- **Spillovers (cross variance shares):** fraction of H-step ahead FEVs for one asset class (i) that are due to shocks to another asset class (j).

Indices

- **Total spillovers (H)**

 \[\text{Total spillovers (H)} = \text{sum of spillovers across all asset classes in relation to the total forecast error variance.} \]

- **Directional spillovers FROM (H)**

 \[\text{Directional spillovers FROM (H)} = \text{spillovers received by asset i from all other assets } j = 1, \ldots, N , j \neq i \text{ in relation to the total forecast error variance.} \]

- **Directional spillovers TO (H)**

 \[\text{Directional spillovers TO (H)} = \text{spillovers transmitted by asset i to all other assets } j = 1, \ldots, N , j \neq i \text{ in relation to the total forecast error variance.} \]

- **Net (pair wise) spillovers (H)**

 \[\text{Net (pair wise) spillovers (H)} = \text{spillovers transmitted by asset i to all other assets } j = 1, \ldots, N , j \neq i \text{ (one asset j)} - \text{spillovers received by asset i from all other assets } j = 1, \ldots, N , j \neq i \text{ (one asset j) in relation to the total forecast error variance.} \]

Source: Diebold and Yilmaz (2012, 2009)
Index calculations based on FEVDs

Total spillover index
Sum of cross-variance shares rows 1:N / Sum of all variance shares rows 1:N (=N) * 100

Spillover index FROM all j to i
Sum of cross variance shares in row (i)/ sum of all variance shares in rows 1:N (= N) *100

Spillover index from i TO all j
Sum of cross variance shares in column (i)/ sum of all variance shares in columns 1:N (= N) * 100

Net (pairwise) spillover index i
Spillover index from i TO all j (one j) – spillover index FROM all j (one j) to i

Matrix with FEVDs for a given forecast horizon H

Entries have been normalized with row sum

Source: Diebold and Yilmaz (2012, 2009)
Results – Total volatility spillover index, $H = 10$

Early 2000s recession

Late 2000s recession

Stephanie Grosche, ILR, University of Bonn

10 December 2012
Two periods of volatility spillover peaks

<table>
<thead>
<tr>
<th>One-off events</th>
<th>Financial economy</th>
<th>Real economy</th>
<th>War/ conflict</th>
<th>Policy environment</th>
<th>Structural changes to commodity markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late 2000 (from Jan 2007)</td>
<td></td>
<td></td>
<td></td>
<td>Fed decreases interest rate 12 times b/w Aug 07 and Dec 08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stock market downturn of 2002</td>
<td></td>
<td>Beginning of war in Afghanistan, Invasion in Iraq</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **One-off events**
 - Nasdaq crash, end of dot.com bubble (March 2003)
 - Stock market downturn of 2002

- **Financial economy**
 - Nasdaq crash, end of dot.com bubble (March 2003)
 - Stock market downturn of 2002

- **Real economy**

- **War/ conflict**
 - September 11
 - Beginning of war in Afghanistan, Invasion in Iraq

- **Policy environment**
 - Fed decreases interest rate 15 times b/w Jan 01 and Jun 03
 - Fed decreases interest rate 12 times b/w Aug 07 and Dec 08

- **Structural changes to commodity markets**
 - Continued reduction of EU buffer stocks
 - Biofuel mandates in EU and US
 - Growth in imports from China (esp. Soybeans) and India
 - Further growth in imports from China and India
 - Low stock levels (see backup)
 - Commodity ETP, Trading volume growth

Source: Fed; EuroStat; Piesse and Thirtle (2009)
4 Net directional spillover indices: Commodities

\[
\log \hat{\sigma}_{\text{Range},it} \\
\log \hat{\sigma}_{\text{Return},it} (5) \\
\log \hat{\sigma}_{\text{Return},it} (90)
\]

Corn
Soybeans
Wheat
Crude oil

10 December 2012
Stephanie Grosche, ILR, University of Bonn
Net directional spillover indices: Financial assets

\[\log \hat{\sigma}_{\text{Range}, it} \]

\[\log \hat{\sigma}_{\text{Return}, it} (5) \]

\[\log \hat{\sigma}_{\text{Return}, it} (90) \]
Pairwise analysis (Range-based): Corn

- Corn, Soybeans
- Corn, Crude oil
- Corn, Real Estate
- Corn, Foreign Exchange
- Corn, Wheat
- Corn, Equity
- Corn, Bonds
- Corn, Foreign Exchange
4 Pairwise analysis (Range-based): Wheat

- Wheat, Corn
- Wheat, Crude Oil
- Wheat, Real Estate
- Wheat, Foreign Exchange
- Wheat, Soybeans
- Wheat, Equity
- Wheat, Bonds

10 December 2012
Stephanie Grosche, ILR, University of Bonn
Pairwise analysis (Range-based): Soybeans

Soybeans, Corn

Soybeans, Crude oil

Soybeans, Real Estate

Soybeans, Foreign Exchange

Soybeans, Wheat

Soybeans, Equity

Soybeans, Bonds

10 December 2012

Stephanie Grosche, ILR, University of Bonn
4 Pairwise analysis (Range-based): Crude oil

Crude oil, Corn

Crude oil, Wheat

Crude oil, Real Estate

Crude oil, Foreign Exchange

Crude oil, Soybeans

Crude oil, Equity

Crude oil, Bonds

10 December 2012

Stephanie Grosche, ILR, University of Bonn
First insights and preliminary conclusions

- Total volatility spillovers generally increase during times of financial crises
- Net volatility spillovers from equity and real estate markets reached unprecedented levels during and after the subprime crisis
- Commodities (except soybeans) were mostly net receivers of volatility spillovers (from equity, real estate and bonds) during and after subprime crisis ⇔ crude oil net transmitter of volatility during early 2000 crisis
- Most effects more pronounced in the short-term (range-based / 5D return-based)
- No general evidence on effects of financial crises on *intra-commodity* market spillovers

- Some evidence for closer integration of commodity and financial asset markets during times of crises (especially crude oil market as net volatility receiver)
- Some evidence for a structural change in volatility spillovers in *soybean-corn* and *soybean-wheat* market pairs, soybean market net volatility transmitter
Robustness checks and possible extensions

Robustness checks
- Sensitivity analysis (e.g. different lag lengths (HQ, AIC criteria), different forecast horizons, different window size, different variable measurements (where possible))
- Check for whiteness of residuals for each window (Ljung Box Test, Breusch-Godfrey LM Test)
- Check for structural breaks within the windows

Possible extensions
- Check for structural breaks within volatility spillover indices
- Orthogonalized variance decompositions
- Complementary structural analysis (e.g. Impulse responses, Granger Causality Analysis)
- Inclusion of more details on “fundamental events” in the specific commodity markets
- Inclusion of more variables (e.g. Harvest dummies for C1, S1, W1; Metal markets)
- Linkage to IFPRI food price volatility early warning system: periods of excessive volatilities?
BACKUP
Selection of econometric model

Candidate models

<table>
<thead>
<tr>
<th></th>
<th>Selection criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multivariate (~ 8 variables)</td>
</tr>
</tbody>
</table>

Granger causality in variance

- Two stage S-test, Cheung & Ng (1996)
- Two stage Q-test, Hong (2001)

- Theory link: ~
- Regime switches: ×

Multivariate GARCH

- a) without regime-switching
 - DCC, BEKK

- b) with regime-switching, e.g.
 - SWARCH model, Edwards and Susmel (2001)
 - Markov-switching, Chan et al. (2011)

- Theory link: ~
- Regime switches: ✓ (limited no. of regimes)

Structural VAR, variance decompositions

- Diebold and Yilmaz (2009, 2012)
- Dimpfl and Jung (2012)

- Theory link: ~
- Regime switches: ✓ (but may have to be complemented with break tests)

Multiplicative Error Model (MEM)

- Engle et al. (2012)

- Theory link: ~
- Regime switches: ~

Copula approaches

- Rodriguez (2007)
- TVLCARR(X) model, Chiang and Wang (2011)

- Theory link: ×
- Regime switches: ✓

Stochastic volatility models

- with Merton Jump, Du et al. (2011)

- Theory link: ✓
- Regime switches: ~

Theory link

Regime switches

Focus
5 Stock-to-use ratios

Source: USDA

10 December 2012 Stephanie Grosche, ILR, University of Bonn
Results from previous studies

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diebold and Yilmaz (2012)</td>
<td>Overall increase of volatility spillovers to the commodity market (DJ UBS Index) after the year 2006 (break in 2007)</td>
</tr>
</tbody>
</table>
| Du et al. (2011) | Volatility spillovers between crude oil and agricultural commodities increased after 2006
 Volatility in the wheat market significantly affects volatility in the corn market before 2006 and vice versa after 2006 |
| Trujillo-Barrera et al. (2011) | Strong volatility spillovers from U.S. crude oil to corn markets |
| Chan et al. (2011) | Flight from quality during „tranquil“ market regimes
 Evidence of contagion between stocks, bonds and real estate during „crisis“ market regime |