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Drought Tolerance of Soybean Crops in Missouri 

 

Joseph L. Parcell and Jewelwayne Cain 

University of Missouri-Columbia 

 

 

Abstract 

 

Constant research efforts have been undertaken to create 

and adopt soybean varieties and farming practices that 

would lead to more drought-tolerant crops. Given that 

drought-tolerant crops are more stable in terms of price and 

supply, private genetic companies invest in those genetic 

materials with the biggest market opportunities. This begs 

the question: has there been any indication of improvements 

in drought-tolerance of crops? In this study, we focus on 

analyzing three soybean distinct relative maturity zones in 

the state of Missouri and determine if and in what direction 

is the drought tolerance of these crops changing over time. 
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Drought Tolerance of Soybean Crops in Missouri 

 

Introduction 

Soybean crops are an important source of oil and protein. Apart from being a 

popular substitute for meat, it is widely used in industrial and pharmaceutical 

application because of its known health-promoting properties (Gepts et al., 2005; 

Duranti, 2006; Chema et al., 2006; O’Brian and Vance, 2007; Tran and Mochida, 2010).  

It’s more recent industrial application includes production of biodiesel (Hill et al., 2006; 

Tao and Aden, 2009; Pradhan et al., 2011; Yusuf et al., 2011). 

According to data from the American Soybean Association, the United States is 

the world’s largest producer of soybeans, producing 33% of world soybean production 

in 2011. The United States is also the second largest exporter of soybeans, exporting 37% 

of world soybean exports in 2011. Major growing areas of soybeans include Illinois and 

Iowa, with minor growing areas encompassing the surrounding states including 

Missouri.  In the year 2010, 77.4 million acres (31.3 million hectares) of land were in 

soybean production yielding crop value of approximately $38.9 billion. 

However, soybean farmers continue to face a number of challenges, among 

which is the constant environmental threat brought about by prolonged periods of 

drought. Drought is a situation where there is either less than average precipitation in 
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the air or less amount of moisture in the soil. Among the immediate consequences is a 

diminished crop growth or yield production. 

The United States has experienced several major periods of drought since the 

early 1900s. The worst recent drought was during the summer of 1988 where 35 states 

were affected and rainfall totals were up to 85% below normal. These periods of 

extreme drought have also witnessed low soybean crop production. Midwest states 

were affected heavily. For example, Saline, one of the central counties of Missouri, 

experienced sharp decline in soybean crop yields in 1978, 1980, 1984, and 1988 that were 

associated with high levels of drought conditions1 (see Figure 1). 

Towards the end of 2011, the United States again began experiencing drought. 

The drought persists into 2013. Throughout Midwest, soybean farms are producing far 

smaller yields (Taylor, 2012). 

While correct farm management practices that minimize the environmental 

stress due to drought are constantly being advocated and adopted (McWilliams et al., 

1999), increasing focus is being given to create and develop soybean varieties that are 

more drought-tolerant (Tran and Mochida, 2010). Plant breeding programs have offered 

better alternative to appropriate farm management practices that minimize adverse 

drought effects (Manavalan et al., 2009). Furthermore, there has already been arguments 

made that crops genetically modified for other purposes have the unintended 

                                                 
1 Drought conditions as measured by the drought index proposed by Yu and Babcock (2010). See next 

section for a discussion on how the index is calculated. 
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additional benefit of making these crops able to withstand drought conditions as well 

(Yu and Babcock, 2010). While these arguments come from studies that look at corn 

varieties, soybeans genetically modified for a different purpose might acquire the same 

unintended additional trait of becoming more tolerant to droughts. This is particularly 

interesting especially given the fact that after a decade of introduction, 87 percent of 

total U.S. soybean production in 2005 are genetically modified (Chema et al., 2006).2 

This begs the question, has there been any indication of improvements in 

drought-tolerant soybean crops? We explore the answer to this question by focusing on 

the state of Missouri.  

There are already many studies that analyze the effects of extreme weather 

conditions on crop levels and yield variability using either simulation models (for 

example: Terjung et al., 1984; Mearns et al., 1996; Eitzinger et al., 2003; Schlenker and 

Roberts, 2009) or regression techniques (for example: Thompson, 1986; Mendelsohn et 

al., 1994; Isik and Devadoss, 2006; Lobell et al., 2007; Almaraz et al., 2008).3 Regression 

techniques, however, provide more accurate estimates of the effects of climate factors 

on crops (Sarker et al, 2012). Most studies are on agronomic crops, especially corn. 

Regression-based studies that look at the effects of weather on soybean crops in 

particular include Chen et al. (2004), Prasad et al. (2006), McCarl et al. (2008), and Yu 

and Babcock (2010). Of these, Yu and Babcock (2010) is one of the few studies that 

                                                 
2 The Roundup Ready Soybean is a herbicide immune crop introduced in the U.S. market in 1996. 
3 Also see McKeown et al. (2006) and Schlenker and Roberts (2009) for excellent reviews of some methods. 
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further analyze the changes in drought tolerance of soybean crops over time. Their data 

sample, however, only includes counties from Iowa, Illinois, and Indiana. 

In this paper, we took a similar approach as that of Yu and Babcock (2010) in 

identifying if there are any improvements in drought tolerance of soybean crops in 

Missouri over time using county-level data on soybean yield and climate. In contrast to 

other studies, we distinguish three periods at which extreme drought incidents have 

occurred. These three periods combined cover the annual life cycle of a soybean plant. 

In addition, we consider geographic sensitivity of the effect of drought by dividing our 

sample into three regions. These two novelties help identify temporal and spatial 

heterogeneity in the drought effects.  

 

Empirical Model 

We analyze drought tolerance over time using a multivariate panel data 

regression model. We use a modified version of the yield-drought model specification 

of Yu and Babcock (2010): 

 

(1) 

        ∑   (             )

 

   

 ∑   (             )

 

   

                 

 ∑   (                   )

 

   

 

 ∑   (             
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Subscripts t, i, and m denote time, county, and geographic region (northern 

counties, central counties, and southern counties), respectively. Y denotes natural log of 

soybean yield. TREND is a time trend variable with a starting value of 1 for year 1970 

and 41 for year 2010. DI is a measure of drought index, which is also adopted from Yu 

and Babcock (2010): 

 

(2)       [    (         
     )]  [   (         

     )] , 

 

where CLDD refers to cooling degree days and TPCP refers to total monthly 

precipitation. Both are standardized by subtracting county averages (across years) from 

each observation and then dividing the result by the county-level standard deviations 

(also across years). The Yu-Babcock drought index is a composite measure that has the 

advantage of capturing not only hot conditions, but dry conditions as well. Higher 

values of the index mean either the temperature measure is above average, the rainfall 

measure is below average, or both. We calculate aggregate drought indices separately 

for three periods encompassing the life cycle of a soybean plant: April to June total, June 

to August total, and August to October total. The drought indices are aggregated by 

summing CLDD and TPCP over each of these periods and then using the formula in (2) 

to calculate the final value. 
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The last variable is the quadratic form of DI. The quadratic form of DI is included 

to capture the possibility that the rate of marginal effect of drought on yield could be 

increasing or decreasing at higher levels of drought. 

Equation (1) consists of a deterministic trend yield,    ∑   (        
 
 

     ), the drought-driven deviations from the trend, ∑   (             )
 
  

∑   (                   )
 
   ∑   (             

 ) 
 , and the residual,     . The 

deterministic trend yield contains a time-invariant county-specific intercept term,   , 

that will also serve to capture heterogeneity across panels, such as soil type and quality 

(Schlenker and Roberts, 2009). The second term of the deterministic trend yield is a 

region-specific slope. We assume that the yield over time is similar among counties in 

the same region. 

We are most particularly interested in the drought-driven deviations. We also 

assume that the deviations are region-specific. Soybean yield from counties in one 

region experience the same effects from drought. If we differentiate equation (1) with 

respect to the drought index for a particular region  , we have the effect of drought on 

soybean yield: 

(3) 
     
   

                           

 

Since it is widely acknowledged that one primary consequence of drought is 

diminished yield production, we should expect the marginal effect as defined above to 
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be negative. This is primarily seen through the value of   . If     , drought has an 

adverse effect on soybean yield. Still, there could be a possibility that soybean crops 

benefit from high levels of drought, in which case we should see     .     simply 

indicates the rate of change of the marginal effect of drought on yield, while    

specifies how this marginal effect changes over time.  

Most important in our analysis is the sign of   . In particular, differentiating 

equation (3) with respect to time,      , we capture the change in the effects of 

drought on yield over time for any given region m: 

 

(4) 
     
     

      {
                                                           
                                                              

 

 

If    is positive for any given region m, this means that soybean crops of this 

region are generally becoming more drought-tolerant over time. If instead the 

coefficient is negative, then soybean crops are becoming less tolerant to droughts over 

time. Finally, if the coefficient turns out to be not significant, then there is not enough 

evidence to suggest any changes in the soybean’s drought tolerance over time. 

 

Data 

Data on soybean yield are available from the National Agricultural Statistics 

Service (NASS) of the U.S. Department of Agriculture (USDA), while data on cooling 
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degree days (CLDD) and total monthly precipitation (TPCP) are from the National 

Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration 

(NOAA). Out of 80 counties with complete 1970 to 2010 soybean yield data, 9 have 

complete climate data from one weather station. Missing climate data from 11 other 

counties are imputed as follows: first, one station for each county with more complete 

climate data are identified and used as the primary source; second, missing values are 

generated using the Gaussian normal regression imputation method, with data from the 

primary station used as the dependent variable and data from another station as the 

independent variable. We implement the imputations in a Monte Carlo set-up of 1,000 

iterations with the final value aggregated as the average of all results.  The results are 

averaged and then used as the final value. 

The same method was also used to impute missing climate data of an additional 

10 counties, this time using climate data from stations of adjacent counties. To ensure 

that unique information are preserved for the main regression analysis, two conditions 

have to be met: (i) counties with which climate data will be imputed should have at 

most six missing observations (no more than 15% of the total 41 observations per 

county); and, (ii) adjacent counties have to be those that will not be included in the final 

analysis. The last condition is met by choosing among counties that have incomplete 

soybean data. In identifying and matching two counties, the distances between their 

respective weather stations have to be no longer than 50 road miles apart and the 
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correlation coefficients of available climate data between the two counties be no less 

than 0.75. Once the match is made, the same Gaussian normal regression imputation 

method is implemented using climate data from the adjacent county as the independent 

variable. 

The 30 counties are broken into three geographic regions: 8 northern counties, 13 

central counties, and 9 southern counties. Each county has 41 observations; each 

observation corresponding to each year in the sample (1970 to 2010). A summary of 

descriptive statistics on the variables used in the regression analysis is presented in 

Table 1. 

 

Preliminary Tests 

Before identifying the correct regression estimation method to use, we conduct 

several preliminary tests to check if there is a need to transform the data or use a 

different regression method other than ordinary least squares. We first perform unit 

root tests to verify that the variables natural log of soybean yield and the calculated 

indices are each stationary. This is particularly important given that we are using a 

trend variable. Thome (1996) cautions that there might be some consequences of using a 

time trend when the series actually contain some unit roots.  Among the consequences 

are spurious coefficient of determination (R-square) and biased estimators.4 We 

                                                 
4 This refers to the so-called situation of “spurious detrending.” 
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specifically use four panel data stationary tests. The first two, the Levin-Li-Chu test 

(Levin et al., 2002) and the Hadri test (Hadri, 2000), assume that the autoregressive 

parameter is the same across all panels. While the null hypothesis of the Levin-Li-Chu 

test is that all panel data are stationary, the null hypothesis of the Hadri test is that all 

panel data have unit roots. In a way, these two tests complement each other. Running 

both tests can clearly establish if (i) all panel data are stationary, (ii) all panel data have 

unit roots, or (iii) some panel data are stationary while others have unit roots. If we 

were only to run one test, the Levin-Li-Chu test for example, rejection of the null 

hypothesis can either mean some panel data have unit roots, or all panel data have unit 

roots. If we additionally run the Hadri test, we can narrow down which of the two is 

likely the case. For example, if we additionally fail to reject the null hypothesis of the 

Hadri test, then we have strong evidence that all panel data contain unit roots. 

One obvious weakness to the Levin-Li-Chu test and the Hadri test is the 

restrictive assumption of common autoregressive parameter. Certain factors, especially 

geographic features, may make such assumption unrealistic. So we employ two other 

panel data stationary tests that relax this assumption: the Im-Pesaran-Shin test (Im et al., 

2003) and a Fisher-type meta-analysis of the results from implementing augmented 

Dickey-Fuller tests on each panel data (Fisher, 1932; Maddala and Wu, 1999). The Im-

Pesaran-Shin test and the Fisher-ADF test have the same null hypothesis: all panel data 

contain unit roots. 
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In order to minimize complications that would arise due to cross-sectional 

dependence when implementing the stationary tests, the cross-sectional averages are 

subtracted from each panel data. Furthermore, we include only one-period county-

specific lags in all tests. We determined that including only one-period lagged term is 

sufficient given that the appropriate number of lags chosen by three information 

criterion (Akaike, Bayesian, and Hannan-Quinn) averaged between 0.03 to 0.90 across 

all panels.  

The results of the stationary tests are reported in Table 2. All tests strongly reject 

the null hypothesis of the existence of unit roots in all panel data. In particular, the 

results of both the Levin-Li-Chu tests and the Hadri tests provide strong evidence that 

the drought index for each period in each county is stationary. In summary, these 

results suggest that we do not need to transform the data to address any potential 

nonstationarity issues in the time series. 

We also ran tests on the error structure of the model to check for cross-sectional 

dependence (contemporaneous correlation of errors across panels), serial correlation, 

and cross-panel heteroskedasticity. The results of all these tests are shown in Table 3. 

Significant cross-sectional dependence in errors may cause either inefficient 

estimators (if the dependence is caused by unobserved common factors not correlated 

with any of the regressors) or biased and inconsistent estimators (if such unobserved 

factors are correlated with the regressors). Three tests of cross-sectional dependence 
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were employed: the Pesaran CD test (Pesaran, 2004), the Friedman R test (Friedman, 

1937), and the Frees average R test (Frees, 1995, 2004).5 All tests have no cross-sectional 

dependence as the null hypothesis. Given the test results shown in Table 3, there is 

strong evidence suggesting that cross-sectional units are not independent.  

Next we test for serial correlation within each panel using the method suggested 

by Wooldridge (2002). Drukker (2003) showed that the Wooldridge test is very 

attractive because it is less restrictive than other tests and it is easy to implement.6 As 

shown in Table 3, the null hypothesis of no serial correlation is not rejected.  

Finally, using least squares method on panel data regression requires that 

variances should not differ within cross-sectional units as well as across units (Baum, 

2001). So we also test cross-panel heteroskedasticity using a method proposed by 

Greene (2000). The Greene test calculates a modified Wald test statistic from the 

residuals of a fixed-effect regression model. The p-value of the modified Wald test 

statistic shown in Table 3 indicates that the null hypothesis of no cross-panel 

heteroskedasticity is strongly rejected. This means that there is strong evidence the 

variance differs across panels. 

                                                 
5 A more common test in the literature is the LM test of Breusch and Pagan (1980). We did not include this 

test since the Breusch-Pagan test cannot be implemented for non-linear specifications. As De Hoyos and 

Sarafides (2006) stated, all four tests can still be considered as complimentary to each other. 
6 The Baltagi-Li test, for instance, makes certain specific assumptions about individual effects, whereas 

the Wooldridge test requires only a few assumptions (Baltagi and Li, 1995; Drukker, 2003). 
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Based on these preliminary findings, we run equation (1) using feasible 

generalized least squares method that includes a heteroskedastic error structure with 

cross-panel correlation. This method will take into account the presence of cross-

sectional correlation and heteroskedasticity across panels. 

 

Estimation Results 

We estimate equation (1) separately for each of the three time periods of drought 

data: April to June, June to August, and August to October. We also made a fourth 

estimation, where we simultaneously include drought episodes from all three periods. 

Column (1) of Table 4 shows the estimation results of the specification that uses 

drought data only from April to June. Contrary to expectations, the positive and 

significant coefficients on drought index for northern and central regions indicate that 

drought seems to have a positive effect on yields for soybeans planted in counties 

within these two regions. However surprising this result may be, at least for counties in 

the northern region, we find that this positive marginal effect of drought on yield gets 

smaller as the level of drought increases. This is evident from the significant and 

negative coefficient of the drought index quadratic term. For counties in the southern 

region, the coefficient of drought index is not significant, which imply that drought has 

no effect on soybean yield at all. 
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Despite these differences across regions, the drought-trend interaction terms are 

the same for all regions. They are negative and significant, showing that the positive 

effect of drought on yield, if any, is decreasing over time. This means that soybean 

crops are becoming less tolerant to droughts that occur between April and June. 

Looking next at results of the specification that include only drought incidents 

between June and August, as shown in column (2) of Table 4, we now find that the 

drought index is negative and significant for all regions. Matching our expectations, 

drought occurring in this period has caused lower soybean crop yield. The result that 

soybean crops are adversely affected by extreme drought incidents from this period and 

not from the period between April and June coincides with studies that find flowering 

stages of the soybean plant to be most critical with regards to drought stress (Meckel et 

al., 1984, and Wrather et al., 2003).  The soybean’s flowering stages primarily occur early 

during the June-August period.  

The drought-trend interaction term continue to be negative and significant for 

northern and central regions. This means that soybean crops in counties within these 

two regions are also becoming less tolerant to drought incidents occurring in the 

months of June to August. For the southern region, however, the interaction term is 

positive and significant for the southern region. This is evidence that soybean crops 

planted in counties within the southern region have actually become more tolerant over 

time to drought incidents happening during this period. 
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Drought incidents occurring between August and October continue to adversely 

affect the annual soybean yield of all regions, as shown from the results of the third 

model specification in column (3) of Table 4. The coefficients of all drought indices are 

negative and significant. This time, however, crops in all regions exhibit increasing 

tolerance over time to droughts occurring in this period. This is evidenced from the 

drought-trend interaction terms, which are positive and significant for all regions.  

For the final model specification in column (4) of Table 4, we now include 

drought indices from all three periods. We see some robustness in the results from the 

previous three specifications. In particular, crops from all regions are still becoming less 

tolerant over time to droughts occurring between April and June (as seen from the 

negative and significant coefficients of the drought-trend interaction terms). The only 

difference from the previous specification is that all regions, including the southern 

region this time, are shown to be positively affected by drought occurring in this period. 

For drought incidents occurring between June and August, we find qualitatively 

similar results: drought adversely affect annual soybean yield in all regions; and, only 

soybean planted in counties within the southern region are exhibiting increasing 

drought tolerance over time. Counties from the rest of the other regions are shown to 

still have decreasing tolerance to drought over time. 

Finally, for August to October drought occurrences, only soybeans planted in the 

northern region have qualitatively similar results as that of the previous specifications. 
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The findings that drought adversely affect annual soybean yield and that soybeans are 

nevertheless becoming increasingly drought tolerant over time, is robust only for 

counties in the northern region. 

For counties in the central region, extreme droughts happening between August 

and October still adversely affect soybean yield. This time, however, the drought-trend 

interaction term is not significant. This means that in contrast to the previous 

specifications, the effect of drought on soybean crops in the central region is not 

changing over time. 

For the southern region, we find a completely different result. The coefficient of 

the drought index is now positive and significant, while the coefficient of the drought-

trend interaction term is negative and significant. This means that contrary to the 

findings of the previous specifications, drought between August and October positively 

affects annual soybean yield in counties within the southern region, and that this 

positive effect is declining over time (i.e., decreasing drought tolerance).  

 

Conclusion 

This paper attempts to analyze the effects of drought on soybean yield over time, 

focusing on the state of Missouri. We employ a regression-based approach, using 

generalized least squares estimation on county-level data to account for cross-panel 

correlation and heteroskedasticity. Drought data aggregated in three periods over the 
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life cycle of a soybean plant are analyzed for 30 counties divided into three geographic 

regions. 

The regression results can be summarized as follows: 

1. Drought occurrences between April and June seem to have positive effect 

on soybean crop yield, but that this positive effect is decreasing over time. 

2. Soybean crops are adversely affected by drought incidents that occur only 

between June and October. 

3. Soybean crops planted in northern and central counties show increasing 

tolerance only against droughts occurring between August and October. 

4. For soybean crops planted in southern counties, they only exhibit 

increasing tolerance over time against droughts occurring between June 

and August.  

All these suggest that there is heterogeneity in the effects of drought on soybean 

crop yield for the state of Missouri depending on (i) geographic location and (ii) period 

in the soybean plant’s life cycle. Such differences may be due to soil quality and various 

farming practices.  It could even be simply down to differences in physiological traits of 

soybean crops planted across different regions. However, analysis of which of these 

factors come into play is beyond the scope of this paper and should be the subject of 

future research. 
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Table 1. Descriptive Statistics of Data 

Number of observations: 1,230 

Variables Mean 

Standard 

Deviation Minimum Maximum 

Soybean yield 

(bushels per acre) 
30.4509 7.8832 6.8000 50.8000 

Natural log of 

soybean yield 
3.3779 0.2895 1.9169 3.9279 

Drought index 

(April to June) 
0.2159 0.5505 0.0000 5.9189 

Drought index 

(June to August) 
0.2430 0.6870 0.0000 7.3993 

Drought index 

(August to October) 
0.1932 0.4831 0.0000 4.7434 
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Table 2. Unit Root Tests for Panel Data 

Variable 

Common Autoregressive 

Parameter 

Panel-specific Autoregressive 

Parameter 

Levin-Li-Chu 

(Adjusted t) 

H0: Unit root 

Hadri 

(Z) 

H0: No unit root 

Im-Pesaran-Shin 

(Wt-bar) 

H0: Unit root 

Fisher – ADF 
(Inverse normal Z) 

H0: Unit root 

Natural Log of 

Soybean yield 

– 15.1075 

(0.0000) 

2.4716 

(0.0067) 

– 18.8042 

(0.0000) 

– 17.9155 

(0.0000) 

Drought Index 

(April to June) 

– 14.8954 

(0.0000) 

0.9692 

(0.1662) 

– 16.6167 

(0.0000) 

– 17.7446 

(0.0000) 

Drought Index 
(June to August) 

– 12.4403 

(0.0000) 

1.0671 

(0.1430) 

– 15.3297 

(0.0000) 

– 16.4718 

(0.0000) 

Drought Index 
(August to October) 

– 14.8488 

(0.0000) 

1.2249 

(0.1103) 

– 16.6774 

(0.0000) 

– 17.8080 

(0.0000) 

Note: Each test uses one-period lagged term. P-values in parentheses. 
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Table 3. Analysis of the Error Structure 

Test for cross-sectional dependence (H0: No dependence) 

     Pesaran CD test 
78.554 

(0.0000) 

     Friedman Rave test 
683.089 

(0.0000) 

     Frees Rave2 test 
9.139 

(0.0000) 

Test for serial correlation (H0: No serial correlation) 

     Wooldridge Wald test 
0.527 

(0.4736) 

Test for cross-panel heteroskedasticity (H0: No heteroskedasticity) 

     Greene modified Wald test 
113.82 

(0.0000) 

Note: P-values in parenthesis 

 

 

  



26 

 

Table 4. Generalized Least Squares Estimation Results with Quadratic Term for Drought Index 

Dependent variable: Natural log of soybean yield 

Region Variables (1) (2) (3) (4) 

April to June Drought 

North 

Drought index 0.1583 ***   0.1511 *** 

Drought index * Trend – 0.0041 ***   – 0.0025 *** 

Drought index squared – 0.0272 ***   – 0.0228 *** 

Central 

Drought index 0.0353 **   0.1301 *** 

Drought index * Trend – 0.0036 ***   – 0.0031 *** 

Drought index squared 0.0045   – 0.0089 * 

South 

Drought index 0.0038   0.1077 *** 

Drought index * Trend – 0.0033 ***   – 0.0055 *** 

Drought index squared 0.0094 **   0.0039 

June to August Drought 

North 

Drought index  – 0.1019 ***  – 0.0484 ** 

Drought index * Trend  – 0.0023 ***  – 0.0040 *** 

Drought index squared  0.0061  0.0042 

Central 

Drought index  – 0.0993 ***  – 0.1270 *** 

Drought index * Trend  – 0.00445 ***  – 0.0025 *** 

Drought index squared  0.0012  0.0011 

South 

Drought index  – 0.2396 ***  – 0.2539 *** 

Drought index * Trend  0.0042 ***  0.0051 *** 

Drought index squared  0.0106 ***  0.0157 *** 

August to October Drought 

North 

Drought index   – 0.3531 *** – 0.2105 *** 

Drought index * Trend   0.0053 *** 0.0045 *** 

Drought index squared   0.0433 *** 0.0250 *** 

Central 

Drought index   – 0.3136 *** – 0.1078 *** 

Drought index * Trend   0.0043 *** – 0.0009 

Drought index squared   0.0183 *** 0.0268 *** 

South 

Drought index   – 0.1541 *** 0.0585 ** 

Drought index * Trend   0.0018 ** – 0.0042 *** 

Drought index squared   – 0.0217 *** – 0.0285 *** 

      

Northern county dummy * Trend 0.0130 *** 0.0119 *** 0.0119 *** 0.0119 *** 

Central county dummy * Trend 0.0138 *** 0.0129 *** 0.0129 *** 0.0133 *** 

Southern county dummy * Trend 0.0138 *** 0.0124 *** 0.0133 *** 0.0140 *** 

Notes: Number of panels: 30; number of periods: 41; total number of observations: 1,230. Also 

included but not reported in the estimation above are time-invariant county-specific dummy 

variables. *** indicates significance at 1%; ** indicates significance at 5%; * indicates significance 

at 10%. 

 


